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wwmﬂmmmw critical sigenvalues of the aovﬂmﬂmﬁmmﬂyn
time-independent neutron wwwsmﬁonﬁ eguation MWﬂHon
compared for spheres, omPpﬁummm.va mHmUMr
monotonicity properties are derived and e .
generalization to the energy-dependent case is

discussed.

1. introduction

Neutron transport eguations have been studied
intensively both in integro-differential and in

i r this
integral form. A& large amount cf literature on
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field has been devoted to the cases when the particular
symmetry induced by the geometry of the medium leads to

a one-dimensional transport equation.

The criticality problem connected with the
one-dimensional transport eqguation in slab, spherical..
and cylindrieal geometry has been successfully
investigated in different functional spaces, both in -
one-speed as well as multigroup approximation and in

energy-dependent cases.

For the integral equation in the one-speed
approximation it has been proved that the first
{¢ritical) eigenvalue cf the transport operator in
gpherical geometry is the second eigenvalue of the
transport operator in slab geometry Mp_. Hence, the
critical eigenvalue for spheres is smaller than the
critical eigenvalue for slabs as one would expect from
Physical considerations.

There is substantial numerical evidence that the
critical eigenvalue of a sphere of radius R is less
than the critical eigenvalue of an infinite cylinder of
radius R and that the latter is smaller than the
omuwuan eigenvalue of a slab of thickness 2R.
Tabulating some of the results (obtained by Busoni et
al. numuwvmww for spheres and slabs, and by Sanchesz and

[31]

OmsmﬁoH.Apmmmw. for cylinders) we get
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R sphere cylinder slab
0.5 0.308910 0.417653 0.619049%
1 0.502919 G.618935 0.783022
3 0.B821042 0.883141 0.%44914 -
7 0.949160 0.965182 0.986466
10 0.972620 0.983652 0.982914

These results as well as similar results by Carlvik

5}
Awommwﬁ»_\ S3yros and Theocharopoulos ﬁumquw , Dahl

6] pomraning (1980) 7! ana

(&l

and Siostrand {1979}
Premuda et al. (1382) all support the above strict
order relation between the critical eigenvalues of
‘sphere, cylinder and siab. Such support also comes,
more indirectly, from values for critical slab and
sphere sizes (rather than critical eigenvalues)
obtained numericzally by Kaper, Lindeman and
rmmwnquﬁvﬁmw. While studying the behaviocr of the
neutron flux for vanishing small media, all three
one-dimensional geometries were considered

. 7]
simultanecusly before by Pomraning [ .

In this article we shall prove this strict order
relation analytically. This problem is substantially

complicated by the completely different nature of the
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kernels of the transport operatorsin one-dimensional

ephere, cylinder and slab geometry.

This trouble leads us to return to
three-dimensional formulations of the transport
operater.This allows us to deal with integral onmwmﬁowm
defined on different demains but having the same
kernel. Resorting to a commen three-dimensional form
of the transport mﬂbmﬁuon has mcm@mmwmm us to extend
the investigation on the comparison of the first
¢ritical eigenvalues to some more general classes of

domains,

With this aim we examine in Sect. 2 the problems
connected with the transport eguation in arbitrary
demains (possibly unkbounded). We give a weak order
relation for the spectral radii of the transport
operaters acting on two domains of ﬂ%, UHnUu. In Sect.
3 we mﬁcmw,dwm eigenvalue problem for the transport
operator in the class of bounded domains. We prove the
existence of a dominant eigenvalue with corresponding
positive eigenfunction. Then we establish a strict
order relation between the dominant eigenvalues for a
couple of domains UunUu. In Sect. 4 we obtain the same
results for domains of ¢ylindrical type. 1In Sect. 5 we
discuss the eigenvalue problem for sphere, cylinder and

slab and prove a strict order relation among the

respective dominant eigenvalues. In Sect. & we extend
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the results obtained in the preceding sections to the

energy~dependent case.

The functional space, which we shall choose in
order to formulate the transport m@ﬂmd»ds as a vector
equation, is the space of uniformly nosﬁuznn:m bounded
functions defined on a domain D, i.e. cnmﬂbv. For
unbounded domains this Banach space is the natural
extension of the space of continuous mmsndHOSm defined
on moawwnﬁ domains. We shall use a C-setting when
dealing with bounded domains. Because of its physical
relevance we shall also study the eigenvalue problem
for the transport operator in wshw1mmﬁdusm. Iin fact,
in Sects. 3 and 4 we establish the independence of the

spectrum of the integral transport operator of the

specific C- or Pvnwmdﬁwsa\ lsp<e,

2. The integral transport eguation

Let us write down the stationary integral eguation
for monoenergetic neutron transport in a homogeneous
multiplying medium occupying a convex (possibly

3 . . .
embedded in vacuum or in a

unbounded) region DelR
purely absorbing medium. Under the assumption of

isotropic scattering, the eguation reads as follows:

s(x)= & £ ez e, (1)
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where ¢(r) is the total neutron flux at position reD, ¢
is the average number of secondaries per collision and

! is the total cross-section.

We shall analyze Eg. (1) as a vector equation in
the Banach space of uniformly continuous bounded (UCB)

mmsnﬂwvsm defined con the demain D:

X=X(D): = UCB{D)
with norm |£|=§f;X[: = sup |f(r)].
. feD :

The abstract formulation of Egq. (1)} in UCB(D) then

reads as follows:
¢=cK.¢, (2)

where ﬂb is the integral operator defined by Eg. (1},
Eg. (2) represents a simplified version of the
well-known Peierls eguation, with the total
cross~section I constant and in absence of sources
ﬁwou. Usually the functional-analytic and numerical
study of Eg. (2} is restricted to transport in simple
geometries, as, for instance, slab, sphere and
cylinder. 1In these cases the specific symmetry of the
geometry reduces the transport egquation to a one-
apamlmwosmw eguation which has been analyzed in great
detail. As a matter of fact, the study of Eg. (2) in a
more general domain D is often complicated by the

absence of suitable properties of NU. On the one
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hand, for any, even an unbounded, domain D, the cperator
NU is contihucus on X{D) with norm :xuhwﬂxﬁDvV= 5 1.
Moreover, since NU has a weakly singular kernel, it is
a completely continuous cperator on C(D) if Gnﬁ% is a
‘compact set. On the other hand, if D is unbounded, Kj
.need not be compact. For instance, in a slab of
thickness 2Za, K, defined by (1) as acting on
comAﬁrmumwx%mv~ is neither a compact operator nor a
power-compact operator. Direct application of the

f11] is impossible. First of

theory of ﬁomuﬁwdm.nosmm
all, K maps a vowpﬁwﬁm function with compact support
inte a functicn ¢m5Hm5M5ﬂ at infinity in the direction
of the y and = coordinates, which is not an interior
element of the positive cone. Secondly, Kt maps a
function vanishing at infinity into another function of
the same kind, for any n. Hence, K is not a strongly
positive operator on the positive cone. One can also

verify that K does not even have the weaker property of

ug-pesitivity {as defined in Ref. [11], Sec. 2.3).

In crxder to study the stationary criticality

problem, we essoclate to Eg. (2Z) the eigenvalue

egquation for the coperater NU"

A=Ky (3)

(121

It is well-kpnown that the spectral radius of a

pesitive compact operator acting on a Banach lsattice is
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also an eigenvalue with corresponding positive
eigenfunction. The inverse of ‘the spectral radius dﬁMﬁ
gives the average number of secondaries per collision
which keeps critical the mwmﬁma. For unbounded domains
D the mumm5<mwco preblem (3) nmasmﬂ,vm successfylly
analyvzed directly. Only by dmeba account of the
possible symmetries cof the medium, a more manageable

eguation can be obtained.

The principal aim ¢f this paper is to compare the
critical eigenvalues (i.e., the spectral radii of the
transport operators) for different geometries. In this
paper we shall compare the spectral radii of two
transport operators for two different Qmamunm‘
disregarding for the moment whether wﬁm corresponding

eigenvalue problems admit sclutions.

First of all, we remark that womwhxv~ i.e. mc is &

bounded operator on the complex Banach space X, for any

DR (possibly unbounded)}. Thus, by definitien, the

spectral radius WANGV is given by
v n, i/n
wﬁxdvlwwaixuxmﬁxv= .
o0

t
Let ®(f,£ ) be the kernel defining the operator KU_

Texp(-L[r-r 1)
Al (

ko

{(z.x')=

sPs

4nzr-r |
As regards the operator norm of mu‘ it is easy to see

that
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IXp3B(X) = sup sup | fh(r.z')f(r")ar'|=
h£:Rf=1 reD D
t
= sup Jk(r,r')lgdr .
rel D

where HU is the characteristic function of D. Hence

IKpiB(X} |=IK2p; X) and similarly
Ik B(x) I=hRD 1 X

Consider now D, and Dunh% such that UHnUu“ from the

above considerations it follows that

n
D

BOX ) SIRD 1B,
1 ]

K.

where quMwV is the UCB-space on Uwﬁuuv. Finally, one
has the following order relation between the spectral

radii:
nnUwvmwAqu.

3. Bounded domains

In this section we shall mm< attention to the
eigenvalue problem (3} where the domain D is bounded
and closed. In this case the Banach space X is reduced
to the space of continuous functions defined on the
cempact set D, C(D}. Since the eigenvalue problem can
be successfully mﬂcawmm in c(D) wm well as in ﬁvaV\

lsp<», we shall derive some propositions in this

directien and write K instead cof HU.
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PROPOSITION 1. K is compdct as an operator acting on

L,{(D), 1sp<w, ana C(D).

Proof. K is an integral operator with a weakly

singular kernel; hence, K is compact both on C(D) and
ﬁﬁuw. Te prove the compactness of K on rp we can

follow the route of Ref., [1l4], but, as in the one-

Ly(D)

dimensicnal case, we may also use the fellowing simple
rgument.

Let us define a sequence of continuous kernels
P ,

2 )

In I \ 1
e mva,.mvx if |r-r _mm

-
i
a1

W

k{r.x"), if jg-r |»=.

\

For each n, the approximating operator (K 8)(x)=

' 1 ’ :
%wmﬁmxn Y¢(r )dr , with continuous kernel, is compact.
D

in fact,

Mum b
| (K ) (D) Is%5zexp(-2)1;L, (D)), and

(K ) (K)-(K ¢} (x V_M max |k (r.r")-k, (', ") 1$;L (D).

n n

Hence, by using Ascoli's theorem, K_ is compact as an

n
operator mﬂoa.ﬁwﬂbg intoe C(D}; moreover, since a
compact set in C(D) is always compact in bwauv‘ the
operator Hs is compact as acting on bwﬁUv. Because the

operators %n converge to K in the operator norm of

bpﬁcu. K wmumwmo compact as acting on FHAUV. Mcreover,
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X is beounded on L (D). This permits us to interpolate
the compactness property of K and to prove that K is

compact on hﬁﬁov‘ 15p<en .

PROPGSITION 2. The spectra of the operateor XK acting on

bvﬁuy, l€p<~, and C(D)} are the =ame.

Proof. As regards the dependence cf the spectrum of
the specific bﬁ:mmﬁﬂuso‘ we follow the procedure of
Ref. [16]. We dencte here by Hr and HO an operator T
as acting on VHAUV and C({D), respectively. Since D is

'a compact set, QAvabpﬁUu and hence, for each ),

o

Fer(I-aK) 2 xmﬁﬁmlyxvﬂ
HEmHinVPMU HEAH;VKVO.

Recalling the definition of nullity n(T) and deficiency

d(T) of an operator T, we have
bﬂwryﬁvb Z 5AH:ywvn
d{I-xK), < &AH:ymvo. (%)

It is well-known tha%, for a compact ocperator T and for
every A, I-\T is a Fredholm operator of index 0 quw.
This means that, using the definition of the index

ind{T) = n{T) - d¢

3

.

0= Mbaﬁunymvr = 5eryNVh - QAHavah~

)
it

i

ind(I-)K n(I-3K), - d{I-)K)..
(ID3K) = n(I-3K)g - d{I-3K),
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Thus, in (5} the eqguality signs hold. Hence, yxwkaﬂﬁrv

if and OWPM if saHnyxvhﬂaAHnymvﬁuo‘ and also ynwnoﬁxov
if and only if sﬁHuy%vnuaAHuyﬁvnﬂo. Thus from the
eguivalence of n{I-iK)=d(1-3K) in both hp and C, it

follows that of{K) 1s the same on FH and C.

The above propositions lead us to work in C, where
it is possible to study the stationary problem in the
simplest way. In fact, the property of C of having a

L + o .
pesitive cone € with non-empty intericr allows an

€asier use of the theory of positive operators in

%mm:moy lattices.

Before stating our results on the solution of the
eigenvalue problem (3), we recall some definitions. A
linear operator A is called strongly positive with
respect to c’ if for each £>0 (positive function not
identically zero) there exists z natural number n=n(f)
such that A"f is a function in the interior of C . The
points of the spectrum with modulus w@cmH te the
spectral radius are said to form the vmnwvwmﬂmw
spectrum. A positive eigenvalue greater than the

moduli of all other elgenvalues is said to be dominant.

Owing to the strict positivity of the kernel

¥i{r,r') on DxD (which in this case is bounded) the

g

operator K is strongly positive. Thus we can formulate

the following proposition, whose proof directly follows

¥

from the thecrfy of positive Oﬁmwmdowmﬁpwu.
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PROPOSITION 3. i) The operator K has a unique
eigenvalue with a positive eigenfunction interior to
O+“ the eigenvalue ls equal to the spectral radius
r(x).

1i) The peripheral point spectrum of K consist solely
of the dominant eigenvalue r{K).

iii}) The eigenspace corresponding to r(K) is
one-dimensiocnal; moreover, r(K) is algsbraically

simple.

We conclude this secticon with the compariscon of
the dominant eigenvalues for two different bounded

domains 1 Om\ the former included in the latter:

UHnDN. Let us dencte by yw and ¢ the dominant

eigenvalue, equal to ﬁnxU )y, and the corresponding
i

positive eigenfunction cf the operator NU , i=1,2. We
i
can rewrite the eigenvalue equation ymﬂmnwo ¢, as
5 2
follows:
A
Aoty tFp #7RE,
-
A

where K is the integral operator
A A
(Ke)(x) u\. (g, o' ¥¢(x 2ar’
DDy
“ L
and NAM.M_U is defined as in {4) with r'e€D,~D; and
rep

Obvicusly, when K is applied to a function

2 Dy
¢, this function must he restricted to UH. Thus,

the non-homogeneous eguation
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ymm;ﬁcpmne

A .
with g=Ke¢, restricted to D, is solvable in o:oi.
while g>0. Hence, ym must be greater than the spectral

radius of K. , i.&. »,>\, {Ref. [11], Theorem 2.16}.
Up 27"

4. Demains of cylindrical type

Let us study now the eigenvalue problem (3) in the
family of domains which are unbounded in the

z-direction only and have z-translational symmatry:

D, = :xé,ﬁ%w“ ﬁx;;mwﬂmm, E bounded};

throughout this section we shall concisely call Dn a

domain of cylindrical type.

We define the following operator on C(E):

with x = {x,y), x'=(x",y')}eE, and

I e mxmﬁsmﬂhxux_VM4ﬁwnw.w
Lt V2
—- (z-x")

NLhmin.vaN_

dz'.
s (y-y' ) oo (zmz')?

Mereover, if xo denctes the modified Bessel function of

zero order, then

2.2

s | 1“+s

+o _ ! z 2.
flx,x') = .Ml\ SR BRI )t
- x-x'
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_ z Ky(t)de, (6)
Znix-x" Bir-x'|
which behaves as 1/4|x-z'| for |z-x'|+0 (for the

equality (6) see Ref. [19],p. 483, 11.2.8 and 11.2.10).

Hence, £(x,x'} is a weakly singular kernel and bm 15 a

compact operator on nﬁm,_ww_

. It is also easy to prove
that Hm is a stronelv positive operator on the cone of
positive functions of C(E}. In fact, let

g= sup |[x-x'|; since E is bounded, d<=. Now,
X.8'€E
directly from (&) wa have

+om

e | Fot®ideze0, (7)

which proves the strict positivity of &(x,x'} and hence
our statement. From classical results on the
ﬁmnuvrmmmw point spectrum of positive operatcrs 11&] we
have the existence of a positive dominant eigenvalue of
ﬁm~ ymumhvmv, and ¢f a corresponding strictly positive
elgenfunction ngD+ﬂmv. It is obvious that by
inserting @m in the eigenvalue problem (2} we find that
em is also a sclution of (3), with ym the corresponding
mwﬂﬂ5<mw5m. Moreover, ymnwﬁanv if Un is a domain of
cylindrical type. In fact, if we denote ananAUnv~ we

have

sup _&.wﬂm\w.vam.vum_—n
€ D
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Now, we obtain

K. :B(X )i=sup fi(x. %' )1.dx =1L ;B(C{EN].
Un c x¢E E E E

By induction we have

n e _

and hence

«ﬂanuuwﬁrmvuym.

Thus, the deminant sigenvalue which solves the

two-dimensional eigenvalue problem
= m
AL (8)

is alsc an eigenvalue of the three-dimensional problem

{2) and is equal to HﬁﬂU y.
<

We mention here concisely some results on the

spectrum of rm. Since bm is an cperator with a weakly

singular kKernel, it is compact on beoth bpﬁmu and rmﬁmv

ﬂwuw. Moreover, ﬁm is bounded on L_(E) and hence (151

cempact on each rﬁnmv‘ lgp<=. Condition {7) implies

that Hm is strongly positive, i.e. for each £>0, bmm is
- + e
guasi-interior to the positive cone ﬁﬁamuﬁw u. Thus,

the eigenvalue problem (28) admits a dominant eigenvalue
with corresponding strictly positive eigenfunction in
each L_{(E}. By considerations similar to the ones

P
developed in the case of bounded domains, we obtain the
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, l<p<e, i1.e.
@ -

‘these (point) spectra coincide as sets and corresponding

equivalence of the spectra of ﬁm on C and L

multiplicities are the same.

We now prove a strict orxder relation between the
dominant eigenvalues corresponding to different domains
ow mwwwzawwomw type. Let EcE'; we can write the
following identity which follows from the solution gm.

of (8) for L. :

tzl

— e ! 1 t
b by (%)= wﬁmAw\r Yo (%' )dx'.
Rearranging the above identity we have

_ . 1 ' "= ' ._ *ydx!,
bt (2) mpﬁw\m Jooo (7 )dx w_/mwﬁm,m Yo (x)dx

which can be written in the shorter form
yH.QN.!bMﬂﬁ.H@.

As in Sect. 2, g>0 because the eigenfunction em. is
positive; therefore ym.vym {Ref. [11], Theorem 2.16}.

Extending this result to the spectral radii of the

corresponding K. , we can state a strict order relation,
e
even if the domains Un involved are unbounded: if
1 ’ t
] ¥ < MA N
Uon nn‘ on Dn. then HANUOV r Unu

Summarizing the results cof the present and the
previcus section on the comparisen of dominant

eigenvalues we obtain
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Hmmmmmgw.uva Huu.no“w Awuuouv mwmﬁscvocsamaaoamusw
quﬁw‘ then the dominant eigenvalues of Eg. (3)

satisfy X, <X,
]

1 L
ii) If UOnUn AUO1UnV are two domains of c¢ylindrical
type contained in %wh then the deminant eigenvalues of
Eg. {3} satisfy

!

Let us comment on the physical meaning of Theorem
1. Recall that the dominant eigenvalue is equal to the
inverse ¢f ¢, the number of secondaries per collision
keeping critical the medium. Then the number of
secondaries necessary to keep critical a domain
containing ancther one is smaller for the larger
domain. This agrees with the physical fact that the
relative loss of neutrons by escape is larger for the

smaller domain.

5. Sphere, cvlinder and slab

Let us denote by Up~ i=1,2,3, the following sets:

UuumAx~w~Nvmmu" xm+mN+Nmmmmw

UNHHAX\%‘Nvﬂﬂuu xN+%NmeM

k]
Dy={(x,y,2)eR™: -R<x<R}.

Uu is the sphere of radius R, Um is the infinite

circular cylinder of radius R, Uw is the infinita slab
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of thickness ZR: .UHnUNnUm. In this section we analyze
the eigenvalue problem for each operator %U. in Muh
yeuWU.ex i=1,2,3 (here XH denotes GOwAUuVV.u For each
Qoamuw D. we shall prove the existence of a positive

i
eigenvalue yuuﬂﬂxuv that corresponds to a
one-dimensional positive eigenfunction au. At the end

of the section we shall give our main result, which is

the strict order relation ywnywnyu.
Let us consider the cases of slab, cylindrical and

spherical geometry separately.

a} The slab. It is well-known that the cne-dimensional

transport equation in a slab of thickness ZR reads as
follows:
R
@Axvnn‘\ rmﬁu\m,veﬁx_v&x_ (9)
um

with k, (x,x')=3E (Ila-x"]),

Hpmw. If we

where mw is the exponential integral
formulate Eg. (9) as an abstract eigenvalue problem in

C[-R,R] and put x=1/¢, we have
Kb 3 (10)

It is well-known that Eg. (10) .admits a positive
doeminant eigenvalue ym\ which is equal to the spectral
radius of mm and to which corresponds a unigque positive

eigenfunction eumo~|m~w_ (20, mw_. On the other hand,
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we can identify auneunxy as an element of xm. Thus in
order to study the eigenvalue wanmﬁpob yeuxu ¢, we put

2

gﬁmunemﬁxv“ by means of straichtforwvard computation

ﬁmmu\ one obtains

. E +o0 + 00
.ygquvu\ dax ' dy' \ aw.f.ﬁ,l‘vewﬁx_vu

~R fe £

R
UW \\ E(rx-%"[)¢
|m -

L(x')ax’. (11)

o)

From the preceding considerations it is manifest that

Eq. (11) can be m0w<mu for =i It follows also that

3
ym is a positive eigenvalue of xU corresponding to the
3

positive mmmm:mCEOd“oﬁpewﬂxwmxu.

Let us now prove that the spectral radius of NU

3

is equal to the spectral radius of K,:

HANU vunAxuv. {12)

3
Let Mw denote the Banach space of all bounded linear
operators on xu and Nu the Banach space of all bounded
linear operators on C[-R,R]J. Let us prove (12) by

first establishing the following eguality:

IKD +¥,I=IKS; 2,0, na2l.
3

1

In fact, ¥ ;Y. l= sup f. k{r.r')l. dr', where 1
Pa" 3 ren P3 Dy B3
is the cdonstant unit function of Xw. It follows

immediately that

R

| (YL = sup M.\
o i¥s 2/

E {ffx-r')dx"'=|K.;2.}.
%e[-R,R] 1 373

R
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By giving a MMBHHmw‘mH@camsd for the n-th powers of zb
and mw and taking the limit as n+= we may cenclude that
Y ﬂmﬁxmvnwﬁ%

U:u‘
3

b} The cvlinder. The one-dimensional transport

equation in a cylinder of radius R and infinite height

reads as follows:

R
q\.mmﬂu_ﬂﬂ.\o WJAX.‘)..ﬁva;x_quwﬂ\ ) (13)

where

+e Zn !
ml.\ dr ‘\ ae x.mxvﬂlmAxm+x m+mm;mxx.ncmmvxv.
0

4r 7 T2
—e 3 xm+x +Nm;wxxinomm

Formulating Eg. (13) as an abstract eigenvalue problem

in CIO,R] and putting A=l/c, we have
MKy (14)

Eg. (14) =sdmits a pesitive dominant eigenvalue
ym~ymHHAmNV\ to which corresponds a unique positive
eigenfunction gmﬁxvmﬂmoﬁmw (23,24] By complete
analogy to the slak rrobklem one first identifies

ew = @mAxu as a vegctoer in xm which satizfies Eg.

(3} for o = Dy Bimilar arguments then lead to the

conclusion
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¢) The sphere. Let us consider the one-dimensional

transport egquation in a sphere of radius R:
R
eﬁxvuoxx rpﬁx,x_vemx_uax_\ (15)
) o}
where
K, Gk =B (Tinex’ =B, (3 nen’ )12
1 2471 1 X

The mUWdend eigenvalue problem yﬁumpe in CIO,R]

zdmits a positive dominant eigenvalue yu\ yunﬁnxuu\

nonﬂmmﬂozuH:@ to a unigue positive eigenfunction
ewﬁxvmnﬁo‘m_. Moreover, it has been proved that vp is

the second eigenvalue of Xw‘ the integral transport

. o : (i .
operator in one-dimensional slab geometry _. Hence,

ho»d Analogously to the preceding cases we may

3L

derive that

ypuuﬂxpvuwnxouv.

Now, 1f we recall the relationship between the spectral

radii of K_ proved at the end of Sect. 2, we conclude

D

yHMwNMyw.

The remalning part of this section will be devoted

to proving a strict order relation between yp\ L, and

_ 3 2. 2.2
yw. Let Up = {{x,y,2)eR": »7+y"<R”, -RszgR] be the

finite cylinder containing the sphere of radius R.

From our results on finite domains we have the

existence of a dominant eigenvalue of EU ,
4
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y@MHAmU»VVyw. Since HHxUpv mﬂhxcmvnywh we conclude

ypAy®Mym.
Next, let mmnmﬁx_wvﬁfm“vwmxmw\ ~RsysR}] and

3
Umumﬂk_w,mv&m “;Ax\wvmmmu. We have UNnUanu“ hence,

v,=r (K

2 D

2

yer{K. Ysr(K. }=Xx,.
Dy Dy’ "3

But Um 25 a domain of cylindrical type, «s well as Um\
with E_={(x,y)dR*: x“+y?sR?jcE.. We have proved that a
dominant eigenvalue exists for d&w corresponding "two-
nusmnmuosmwz operators ﬁﬁm and rmm (see the previous
section} satisfying

Ao=r{L. J=r{K. Y<i.=r{L_ )=r(K. ),
2 . mm UN 5 Eg Um

and frem this we also have

Thus, we summarize the above results by the following

theorem:

1 UM and Uw

spherical, cylindrical and slab domains. The dominant

THECREM 2. Let D be the previous

eigenvalues of the corresponding Egs. (3) satisfy the

strict order relaticn

ywnywnyw.
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6. The energy- dependent case

Throughout this vmﬁmﬂ we have developed our
results in a UCB-setting, since we had to consider a
functional space containing functions non-zero and
constant at infinity. At the same time, whenever we
treated bounded domains Amw bounded "projections" of
infinite domains), we used a C-setting. We showed the
independence of the spectral properties of the
monoenergetlc transport cperator of the specific UCB-,
C- and even L_~setting. HNow, if we want to generalize

P
our results to the energy-dependent case, we must write

"Eg. {1} in a different form, introducing an

energy-dependent total cross-section I(E) and a
so-called energy transfer function mAm,m,v. Keeping
the assumptions of homogeneity of the multiplying
medium and of isotropic scattering the transport

egquation reads as follows:

e(r,E)=

-

J expl-z(@)|r-z'D)
4y b U

fr-zr|?

where cuﬁma.mz_. OAMEAm <+w, is the energy interval.

M

The choice of the functional space on which to
study Eg. (16) reguires suitable assumptions on the

functions I(E) and S{E,E'}). We shall emplcy the
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following set of assumptions appropriate to a C-setting
{25, 28]

A.l1 I:E PI(E) is a continuous and strictly positive

function of EeU:
OAMamMnmva2A+a, YEeU.

The energy transfer functicn S(E,E') is given by

(E' /EYI(E' )£(E,E'), where £(E,E') is the probability
density that a neutron packet with energy in
(E',E'"+dE') emerges with energy in (E,E+dE) after

ccllision; f£(E,E') is normalized by [22]

{£(2,E')dE=1, VE'eU.
U

We give the following conditions on S(E,E'):
A.2 S(E,E') is a nonnegative measurable function such
that
{ S{E,E')dE'<M, VEelU;
U
HHuM\ﬁmnm:\m.v-mﬁm‘m.vmam.uo, VEeU.
E'wE U

ol

Let S:C(U)+C{U), AmQVAmuug.mAm.m_v@ﬁm.vam.‘ be the
U .
corresponding operator acting on C(U)}. We also

reguire:

A.3 The n-th iterated kernel s‘™V(E,E') of 57, for

some n znd scme constant r, satisfies

248 BORGIOLI, FROSALI, AND VAN DER MEE

(PN E,E' y2es0, VE, E'eU.

A.2 and A.3 guarantee that S is a compact and strongly

positive oﬁmwmdow on C{U).

mOw.m<0w< P we define the integral transport
operator K by Eg. {16) as acting on UCB(DxU}. By
mSmwoow to the monoenergetic case, we prove the

fcllowing propesition:

PROPOSITION 4. For any bounded and closed D, ¥ is a
compact and strongly positive sperator acting on

C(DxU).

Procf. The compactness follows from A.1 and A.Z2 and
arguments of bmnowu:wwwmvw type. To exploit the
positivity of the transport operater, let k(r,r'.E,E'}
be the kernel defining K. Now,
WAH.M_.m.m_vwmﬁm,m.vmxﬁﬁsmzav\ﬁaam. where

sup lr-r'|=d<=. By iteration, from A.32 we cbtain
r,r'eb
directly the strong positivity of K, which completes

the proof.

As in Sect. 3 we conclude with the following

proposition:

PROPOSITION 5. i) The operator K has a unique
eigenvalue with a positive eigenfunction interior to
O+AUva“ the eigenvalue is equal to the spectral radius

r{K}.
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11} The peripheral point spectrum of K consists solely
of the deminant eigenvalue r(K)}.

iid) The eigenspace corresponding to r{X) is
one-dimensional; morecver, r(K) is algebraically

simple.

We compare now the dominant eigenvalues for two
bounded gecmetries Danm AUHxUmV. Denoting by yu and
eH\ i=1,2, the dominant eigenvalue and +he A

corresponding positive eigenfunction of the operator

WU., let us rearrange the eigenvalue eguation
i
ymawumvo@m in the following way:
A
f2%27Kp 927Re,
A

where K is the integral operator given by

A
(K¢)(z.E)=
= f f ®lr,z' E,E")¢(x’ B )aE apr.
UM/UH u
kKir,x'.E.E') is defined in {16) with M.mwm/UH and reD,.
Thus, by perfect analogy to the monoenergetic case, it
[11]

2771
The preceding results for the case of bounded

fellows that yw is larger than Hﬂmd Y. i.e. Al>»)
i

domains are the same, under assumptions A.1-A.3, as the
ones obtained in Sect. 3 for the monoenergetic
transport cperater. We omit the extension of the
results of Sects. 4 and 5 te the energy-dependent case.

However, on the basis ¢f the analogy to the preceding

250 BORGIOLI, FROSALI, AND VAN DER MER

arguments and under assumptions A.1-A.3, we may prove
that in the energy-dependent model the strict order
relation for the critical eigenvalues helds both for
domains of c¢ylindrical type and for mﬁmmﬁwnmr

cylindrical and slab geometry.
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