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Polarized Light Transfer Above
a Reflecting Surface*)

C. V. M. van der Mee, Lubbock and Amsterdam **)

Communicated by H. Neunzert

The existence and uniqueness are established for the solution of the equation of transfer of
polarized light in a homogeneous atmosphere of finite optical thickness, assuming reflection by the
planetary surface. A general Lp—space formulation is adopted. The boundary value problem is first
written as a vector-valued integral equation. Using monotonicity properties of the spectral radii of the
integral operators involved as well as recent half-range completeness results for kinetic equations with
reflective boundary conditions, the present results follow as a corollary.

1 Introduction

If one neglects vertical inhomogeneities and thermal emission, the
equation of transfer of polarized light in a plane-parallel atmosphere of finite
optical thickness b is the vector-valued integro-differential equation

(1.1) uil(r,u,ga) +i(r,u,9)
dr '

a i 2@
=— | [ Z@w,u',9 — "I, u',p"dp du’ ,

47 Z1 0
where 0 < 7 < b. In this equation 0 < a < 1 is the albedo of single scattering,
Z(u,u',0 — @) the phase matrix and I(z,u,p) a four-vector depending on
optical depth 7, direction cosine of propagation # and azimuthal angle ¢. The
components /, O, U and V of the vector I describe the intensity and state of
polarization of the beam. These so-called Stokes parameters always satisfy the

inequalities
(t2) I2)V0*+U*+VvVizo0,
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which mean that the degree of polarization p of the beam satisfies p € [0,1]. A
consistent treatment of polarized light transfer based on the (equivalent) con-
ventions for polarization parameters of Chandrasekhar [3] and Van de Hulst [13]
is given in [12]. For notations we shall rely on this work as well as on the
predecessor paper [25].

The phase mairix can be expressed ag the product

(1.3) Z(,u',¢ — ¢') = L(z — 6)F(O)L(-0y)

of two rotation matrices of the type

i 0 0 0

0 cos2a  sin2a 0
(1.4 L(a) = .

0 -—sin2e¢ cos2a 0

0 0 0 1
and the scatfering matrix

a,(8) b (B) 0 0

b (0 ] 0 0
1.5 F(@O) = 1(0)  a(0)

0 0 ay(8) b:{6)
0 0 —by(8)  a4(6)
The quantities¥ = —cost, ¥’ = —cos? and 6(0 < ¥,¥,0 < 7} on the one hand
and the angles ¢, ¢, o, and g, on the other hand are connected by the equations

1.6 cosf = costfcost?’ + sint?sindd’cos(p’ — @)
(1.6) cost? — cost? cosd cost?' — costfcosf
Cosg; = - - , COos0, = - -
sint¥’ sin @ sindsind
where sing; and sing, have the same sign as sin{¢’ — @). When the denomina-
tors of the equations (1.6) vanish, the appropriate limits must be taken. The
phase function a;(#) must be nonnegative measurable with normalization

j' o {hd{cosf) = 2,
_1 -

The elements of the scattering matrix are measurable functions and for almost
every 8 e {0, ) the matrix F () transforms four-vectors satisfying (1.2} into four-
vectors of the same type. This implies ([12], (82) — (85))

|510)] < Hay 9) + 2,(6)} < 4 (6) }
b (0 + b0 + arlf)’ < 4 (6 (k = 3,9)
whence all entries of F(f) are real L;-functions of cosf. Moreover, if ¢, (f) is an
L -function of cos@ for some » > 1, so are the remaining clements of the scatter-
ing matrix.

The present article offers a complete existence and uniqueness theory for
the solution of the equation of polarized light transfer endowed with the

boundary conditions

(1.7)
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(1.8) YO0,u,9) = J(u,p)

i2nm

12, u@)m—HuR(uu,w—w’)i(bu,ca’)dfo du’ + J(—u,p)

where u > 0. Here J(u, ¢) specifies incident light and R, (u,u',¢ — ¢') the reflec-
tion properties of the planetary surface. By physical necessity J(u, @) is a four-
vector of the type (1.2) and R, (1, #',¢ — ¢') transforms four-vectors of the form
(1.2} into vectors of the same type. We shall assume that the surface does not
reflect more energy than it receives, i.e., that its plane albedo (cf. [3]) does not
exceed unity:

19 0<LITuiR,amu'p - 92udw - o)au' < 1.

We also assume that the ground surface displays reciprocity symmetry and
mirror syminetry, i.e., we have (¢f. [9, 10])

(1.10) R,(wu',p — 9"y = PR (u',u,0' ~ ¢)P

and

111y Ry(u,u',¢ — 9) = DR (u,u',0' — @)D,

respectively, where P = diag(1,1,-1,1), B = diag(1,1, —1, —1) and tilde
above a matrix denotes transposition.

Let us introduce the functional formulation of the boundary value
problem (1.1) and (1.8). Let H,, 1 € p < oo, denote the direct sum of four
copies of L,(£2), where £ is the unit sphere in R®. The norm of a function
1:Q > C*is given by

i 2m
Il = [jl Jli@o? +10@ o)l + U9l

1/p
+| ¥y, w)ip}dqodu} .

where # = —cost? and (4, @) are the polar coordinates of a point w € £2. On H,
we define the bounded linear operators T, B, 4, Q.. Q_ and Jby

(1.12) (TDHw, ) = uln,@),  (AD(u,9} = L, @) — a(BD(u,9)

1 2n
(1.13) (BD(w,9) = @m) ! _j1 g Z(u,u',¢ — o) I(u',p")de’ du’

Iu, foruz 0
(1.14) (Q-D(,p) = | 1P . UD@e) = DI(—ux - 9),
0 foru=s0
and the H-vector I(z) by I(t)(u,¢) = I(r.u,¢). If the surface reflection
operator
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2

T
u' g(u:urs(p - ¢r)DI(uf!E - mr)dgoldu'

1
(1.15) (@D g) = ]
mTao

is bounded on H,,, then by a solution in H,, of the boundary value problem (1.1)
and (1.8) we mean a vector-valued function I:(0,b) — H, such that T'I is
differentiable on (0, ) in the strong sense and the following equations hold true:

(1.16) (TD'(1)y = —AIM{0 <1< D)
(1147) 1m0, 1) ~ 0, 3], = 0,

ligllQ_I(f) ~JA2Q, () - 0_J[, = 0.

It can be shown (see Section 2) that this boundary value problem has the
same bounded solution as the vector-valued integral equation

(1.18) I(x) - a?[&?(r — 1)+ 9T g Jawh - 1) Bi(x)dr’
0

= TQ ¥ +e T g [F 4 s2e T 0,10,
where 0 < 7 < b,

lu| e ""I(u,p) forou >0

1.19) (# (@)D, p) =
(1.19) (F (@)D, 9) { 0 for o < 0

defines the propagator function and

¥4y, p) foruz 0

e T 0, D, g) =
( Q. Nu,0) [ 0 foru = 0

defines two semigroups. On neglecting reflection, analogous results have appear-
ed both for unpolarized light (cf. [22, 23]) and polarized light (cf. [25]). If # is
bounded on H,, we consider (1.18) on the Banach space L,(H,), of strongly
measurable functions 1:(0,56) — H, which are bounded with respect to the
Lgnorm, Since for phase functions ¢, () which are L,-functions of cosé for
some r > 1 the norm estimate

T 1#@)Blly o < o
holds true, one may prove the boundedness on L,(H,), of the operators
(1.20) (LpyD(7) = E@t”(r — ) BI(r")dr’
forall 1 € g < o, and the operator

(1.21) (M,D(7) = Ife(b*fJT’IQ_J@f(b — ) BI(z")dt’
Q
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for sufficiently large ¢ and rewrite (1.18) in the form

(1.22y @~ aNg 1 =0,

where N, = L, + M, and (1) denotes the right-hand side of (1.18). As
observed by Germogenova and Konovalov [6], the solutions I(r) must belong to
the cone

K =0=0QUuVViz)o+ U+ V>0

on the real Banach space H,,, as a consequence of the physical requirement (1.2).
In {6, 19, 20} the cone preservation methods of Krein and Rutman [17] and
Krasnoselskii [16] have been applied to K, to obtain information on the position
and multiplicity of the zeros of the characteristic equation (which are the discrete
eigenvalues of T~ 14) and the structure of the corresponding eigenfunctions,
thereby generalizing the results of Maslennikov 211 for unpolarized lLight
transfer. Related methods have been applied by Van der Mee [25] to the existence
and uniqueness problem for the equation of transfer (1.1) with non-reflective
boundary conditions (i.e., Z = (), both for atmospheres of finite and infinite
optical thickness. In this article we shall extend these methods to the equation
(1.1) with reflection by the planetary surface taken into account. On the real
Banach space L, (Hp), we define the cone

L (Kp)y = {1€ Ly(Hp,)y/1(1) € K almost everywhere} .

Because physical assumptions cause B, Q,, @, J, #(g) and e*oT! Q. toleave
invariant the cone K, and # to have the same property if it happens to be
bounded on H,,, the operators L, M, and N, are positive with respect to the
cone L,(K,), for sufficiently large g. Using the compactness on L, (Kp)p of the
operators L, , M and N, and the u,-positivity of L, and N,, (in the sense of [16})
we may prove that the spectral radius r{V,) of N, (which does not depend on g, if
g is sufficiently large) is strictly monotonically increasing from zero to a finite
positive value r,, as b increases from zero to infinity. (In the exceptional case
a;(8) = a,(6) those operators fail to be ug-positive, but the result is still true).
The function & = r(N,) appears to be a C”-function. It remains to prove that
O0<r, 1.

In order to establish the Iatter, we must assume that the ground reflection
matrix is dissipative, i.e., that condition (1.9) is satisfied. By monotonicity it then
suffices to prove 7., < 1 in all cases and to prove r, = 1 for # = 0. This is, in
fact, done by identifying r,, as the spectral radius of a positive operator N, on
L,(Hp)e (with g sufficiently large) and exploiting the equivalence of the vector-
valued integral equation

(I-aN)I=0w
with suitable right-hand side @ to the half-space boundary value problem

(T (7)) = —Al(1) (0< 1< ™)
123 < imlQ.16) - #JQ 1@ - 0.3, =0.

1@}, = O(1) (z— )
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For p = 2 we may then apply recent results of Van der Mee and Protopopescu
[26] and conclude that 0 < r,, € 1. The boundedness of the surface reflection
operator # on suitable spaces H, and the dissipativity hypothesis (1.9) will enable
us to extend these results to all spaces H,,, where 1 £ p < . The existence and
uniqueness results then follow as a corollary. Moreover, since apparently
F{Np) < 1, we may iterate the integral equation (1.18) and obtain the unique
solution in the form

<o .
I=F a"(Np)'o,
n=0
which belongs to the cone L,(X}),. In this way we shall obtain a mathematical
justification for the method of expansion with respect to successive orders of
multiple scattering {see [11] where reflection is neglected). All results can then be
proved for the component equations obtained by Fourier decomposition and

symmetry relations.

On neglecting polarization or for the simplest component equation the
existence and unigueness results in H, are immediate from results of Greenberg
and Van der Mee [8]. However, in [8] the equations (i.1) and (1.8) are analyzed
directly and cone preservation techniques do not play any role.

In Sec. 2 we discuss preliminaries and derive the integral equation (1.18).
Section 3 is devoted to the monotonicity and continuity of the spectral radius of
N, as a function of b, while in Sec. 4 we introduce the half-space problem (1.23)
and provethat 0 < r, < 1.

2 Preliminaries and Integral Formulations

Let us first compile some properties of the operator B (see [25], Prop.
2.1; part of it can be found in [6] as parts of Theorems 1 and 3).

Proposition 2.1. For 1 € p < o the operator B is compact and has unif norm on

H,. Ifa;e LI1-1,1) forsome r > 1, then B is a bounded operator from H into
H,, and

CH || #©)Blydo <.

Moreover, in this case B acts as a compact operator from H, .y info the space
CN(Q) of continuous functions h: 2 — C* with supremum norm.

As in the introduction, let L,(Hp), be the (real or complex) Banach space
of strongly measurable functions I (0, B) — H,,, which are finite with respect to
the norm

b 1/¢g
{S!II(r)lI%pdr} L 1<g<o
_Jlo
1Tliz 1, = _
esssupl{L(@)|s,, g =
D<t<dh
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Strong measurability is defined in the sense of Sec. 31 of [28]. If ¢; € L1 —1,1]
for some r > 1, then (2.1) guarantees that the operator L, defined by (1.20)is a
bounded operator on L (H,),, where 1 € p £ . As B is uniformly approxi-
mable on H,(1 € p < =) by operators of finite rank, L, is a compact operator
also (cf. [7]; infinite-dimensional generalization of Lemma 1.1), where it is again
assumed that ¢; € L[ —1,1] for some r > 1. In order to analyze M, we use the
proof of Proposition 2.1 of [25] to find the estimate

I (@) Bllg, = OCo|* ™Mo — 0)
forevery 0 < & < (r — 1)/pr, whence

@22 | |#@)B]}de <o

foralll £ g’ < (1 — o) 'with0 < a < (r — 1)/pr. Thusg = q'/{(g' — 1) must
satisfy

23) pr/ir—1)<g< + o

in order that (2.2) is fulfilled. Since the convolution product of an L ~function
and an L function is bounded and continuous, it is clear that the operator M,
defined by (1.21) and N, = L, + M, are bounded on L, (H)), whenever # is

bounded on H, and condition (2.3) is satisfied. One may, in fact, casily prove
that under these hypotheses all three operators Ly, M, and N, are compact on
L (Hp)p.

Theorem 2.2. Let a; € L 1—1,1] forsome r > 1, and let # be bounded on H,.
Then every solution of (1.18) in L., (H,);, is continuous on [0, b1 and satisfies the
boundary value problem (1.16)—(1.17). Conversely, every solution I:(0,b)
- H, of (1.16)— (1.17) that is continuous on [0, b] satisfies the vector-valued
integral equation (1.18).

Proof. We shall use the equivalence theorem 2.2 of [25]. Let I: (0,b6) » H,bea
solution of (1.16)—{1.17) that is continuous on [0, ] and satisfies the equation

b
2.4) I(t) - a|#(r — t)BLrHdr = ¢ 7 0, 1(0) + 29T 0 _1(b),
0
where 0 € 7 € b and the boundary conditions
25 Q.10 =03, Q I(p)=J%0,1(b)+ Q4

are Tuifilied. On substituting T = & in the above integral equation and premulti-
plying by Q. we obtain

Q. 1(b) — a?%(b — t)BIr)dr =e 2T 0, 10y =e ?T Q. ¥,
0
whence
(2.6) Q_1(b) = .:u@?;f(b — tYBI(z)dr' + J2e YT TI0, T+ 0.1,
0

Equation (1.18) then easily follows from (2.4) to (2.6).
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Conversely, let I € L,(H,), be a solution of (1.18). On rewriting (1.18) in
the form

I{(z) - a?%’(r - BI(tdr' = w(r),0< 1< b,
0

where
@ =70, T+ T g [N+ Jae?T'0,1T

is continuous on [0, #] and Tw is differentiable on (0,d), we may exploit the
equivalence theorem 2.2 of [25] as well as the identities

(T () + o) =00<1<h)
0,00 =0,3,0_ 0@ =J2¢T'0.J+0.1

Q.o@)=c""0,7
to obtain the equations (1.16) and (1.17). ]

Let X be a real Banach space with a cone K. A positive operator L {with
respect to K; i.e., LiK]} € K)is said to be uy-bounded above if forevery 0 « fe X
there exist n = n(f) € N and § > 0 satisfying L"f < fuy, and uy-bounded below
if for every 0 + ge Xthereexistm = m(g)e Nanda > Osuchthat L™ g > auy.
If 7. is both ug-bounded above and uy-bounded below, it is said to be uy-positive
and in this case for every 0 & A€ Xthereexist/ = /(#) e N and &, > O such that
auy < L'h < Buy. For more details on these notions we refer to Ch. 2 of [16].

Theorem 2.3. Suppose that a; € L[ —1,1] for some r > 1 and a,(0) % a,(8).
Then the operators Ly and N, are vypositive on L,(H,), where vo(T,u,9)
= (1,0,0,0), provided % is bounded on H, for p £ t € o and g satisfies condi-
tion (2.3).

Proof. Under the assumptions of this theorem the integrability condition

b
J Il #@)Bll,do < o

is fulfilled for 0 < 5 < pr/(1 + p(r — 1)) {cf. (2.3)). Using this integrability con-
dition we may prove that L, is a bounded operator from L,(H,), into L, (H ),
(1 € g £ <) and that M, and N, are bounded operators from L (), into
Ly (Hp)p(pr/(r — 1) < g € ). Also, if C(H,), denotes the (real or complex)
Banach space of continuous functions I:[0, 5] — H, with supremum norm, the
same Integrability condition implies that L,, M} and N, are bounded operators
from L,.(H,), into C(H,),, where s’ = s/(s — 1). Hence, if ¢ satisfies condition
(2.3)and gs" ! > s' = s/(s — 1), then L} and N? are bounded operators from
L,(Hy)p into C(H,)y.

Let us return to the proof of Prop. 2.1 of [25]. It can be shown that for
fixed 1 < ¢ < r we have the integrability condition

b
| 1@ Bl 90
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where 0 € w < pt/(1 + p(t — 1)). Thus L;, M, and N, are bounded operators
from C(H,); into C(H,,),. We may also derive the estimate

b
L 196@) Bl 200 < o,

where C = C¥(£) (see Prop. 2.1), and establish that L, , M, and N, are bound-
ed operators from C(Hy .. 1))p into C(C),, where C(C)y is the {(real or complex)
Banach space of all continuous functions I:[0,8] - C = C#®(Q2) with
supremum norm. Hence, if g satisfies (2.3}, 1 < ¢ < ris fixed in such a way that
g > pt/(t — 1), and if we choose the integer m to satisfy the condition
ptm=1 2 ¢ = t/(t — 1), then L] and N7 are bounded operators from C(H,),
into C(C),. Thus L™ and N3™™ are bounded operators from L,(H,); into
C(C), whenever condition (2.3) holds true. It is clear that C(C), may be
identified with the (real or complex) Banach space C*([0, 5] x £2) of continuous
(real or complex) four-vector functions on [0,5] x £ with supremum norm.

It is straightforward that L, and N, are vy-bounded above as operators on
C([0,b] x Q), where vo(7)(u,9) = (1,0,0,0). In order to prove that L, and N,,
are vy-bounded below on this space, we consider a function Ie C*([0,5] x 2)
which does not vanish identically and whose values satisfy the positivity con-
dition (1.2). Then there exist a subset £ of (0, b) of positive measure and a non-
zero vector I, satisfying (1.2) such that I(r) — I, satisfies condition (1.2} for all
7e E. Since #(t — ') is ascalar multiple of the identity matrix and {# (@~ tydr’

E

> ¢l for some fixed € > 0, we easily obtain (in the partial order generated by the
positive cone):

(2.6) (LEDW) 2 (L7 el @) = "B "Ly, ue (0,0).

Here (1) = 1 forue Eand xg(u) = Oforu g E.

If a,(6) = a,(0), the operator B is ug-positive on C¥(Q) (see [6]; the
exception a; (6) = a4(8) was not considered there) where u, = (1,0,0,0). In com-
bination with (2.6) we may conclude that L, (and therefore N, also) is vy-positive
on C¥([0,h] x Q). Since some power of N, acts as a bounded operator from
L,(Hp), into c®([0,5] x £2) whenever p and g satisfy (2.3), we find that under
the hypothesis (2.3) the operators L and Ny, are vo-positive on L, (Hp)g . [ |

If a,(8) = a,(6), the operator B is not ug-positive on C¥(R). In view of
(1.7) we then have

(2.7 b(0) = by(0) = 0,|0,(0) € @ () ,|a:(O)| < &, (D),
and B is a self-adjoint operator on H, . In this exceptional case we shall derive our
results by exploiting [8].

3 Monotonicity and Continuity Properties of the Spectral Radius

Throughout this section we assume a,(8) #F a,(¢). We shall apply the
cone preservation arguments of Krasnoselskii (16}, Ch. 2) to prove the following
result:
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Theorem 3.1. Let a; € L[ —1,1] for some r > 1, and let g satisfy condition (2.3).
If # is bounded on H, for p < t € o, then the spectral radius r(N,) of N, is a
strictly monotonically increasing C*-function of b such that

G.0) ro = lim F(N,)
boo

exists and is finite.

The method of proof was used before by Van der Mee [24] and Borgioli et
al. [2] for various transport models as far as the monotonicity and the finiteness
of r,, are concerned. The C™-dependence of the spectral radius on the size
parameter was proved for a specific model in [2] using our present technique.

Proof of Theorem 3.1. We remark that L,(K,), is a reproducing and normal
cone in L, (H,), (cf. [6, 25]). This means (cf. [16]) that

) Ly(Hp)y = {; — L1, L€ L,(K,)} , and

(i} |j Il | € M|/ L] in the norm of L, (H,), whenever 0 < I, < L, in the partial
order generated by the cone.

[In fact, M = 1/5]. Since, for g satisfying (2.3) and # bounded on H,forp < ¢
< oo, the operator N is compact and vy-positive with respect to L,(K,),, wemay
use Theorems 2.10, 2.12 and 2.13 of [16] to establish the following properties:
() if (V) > 0, there exists an eigenfunction I, € L 4 (&p)p Of N, satlsfymg NyI,
= r{Ny) L5 if r(Ny) = 0, no such eigenfunction ex1sts

(i) the eigenvalue r(N,) > 0 is algebraically simple,

(iii) there does not exist an eigenvalue different from r(N) w1th the eigen-
function in L (K});, and

(iv) there are no non-positive eigenvalues of absolute value r(,).

Now choose 0 < &' < b < oo and write the equation NI, = r(N,}i,, where
F(Np) > 0, in the form

(3.2) (r(NyIL — Ny, = 'f,;f(r — t)BL,(r")dt’
2

b
+ §e® T g _Jaw®m - t)BLx)de
3

C<t<h".

Since the ug-positivity of B excludes the possibility of a non-trivial null space of
B, the right-hand side is non-trivial. As a consequence of Th. 2.16 of [16] we
obtain

(3.3) 0 r(Ny) < r(Ny) .
I r(Ny) = 0, (3.2) would read
—Nb'Ib =

for non-zero vectors I, and @ in L,(K,); , which is a contradiction. Hence, 7(N,)
> Q for all & € (0, =) and (3.3) holds true. We obviously have
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0 < r(Ny) <|INGll» 0 asalo,

and therefore (V) vanishes as b lo.

The analyticity of the semigroups ¢ "7 'Q, and &7 'O_ and their
derivatives #(t) (see [15] for analytic semigroup theory) implies that the
operators L, and Nj, allow analytic continuation from (0, ) to the open right
half-plane. As a result the algebraically simple eigenvalue r(NV,) of N, will also
allow analytic continuation to an open neighbourhood of every subinterval [5,,
b,] of (0,00) (see [15], Th. VII 1.8), whence & = r(N,) is a C*-function on

(0, o).
It remains to prove the existence and finiteness of the limit (3.1). Let us
consider the isometric operator #on L, (H,), defined by

FH@E@ =JIb-1), 0<1<bh.

Then %% = I and #is positive with respect to L (K,),. Because BJ = JB ([25],
{7.6)), we have

yLb = Lbﬁﬂ

as well as
, )
(FM, FI)(7) = ge—TT”’Q+ AIA#(—1)BI(z)dr', O<t<h.

Since N, and N, ¥have the same spectral radius r(N,), we find (3.1), where
(3.4 r, = lim r(Ny) = im r(¥N, %) = r(N,))
b oo

booo

with

(3.5) N.D(@) = T;&”(r - TYRI(z")dt’
0
+ ofe*””Q+ RIH(—TYBH(HdT', O0<1<bh,
2

defined on L,(Hp)o, -

Corollary 3.2. Let a; € L.l - 1,1] for some r > 1, and let g satisfy condition (2.3).
If 4 is bounded on H, for p < t € o, then the integral equation

(3.6) H—-aN}l=w
is uniquely solvable on L, (H,), for0 < a < )"(1’\/},)“1 and the solution is given by

the absalutely converging series

G7) I= ¥ a"No.

n=0Q

Thus if @ € Ly(K,),, we have L € L (K,)p.
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As a consequence of the compactness of the operator N, we remark that
r(Np) does not depend on ¢ and p, provided condition (2.3) is satisfied. As a
result of this invariance property and (3.4), the spectral radius of N,, does not
depend on g and p either, also under condition (2.3). We may also derive a full
analog of Corollary 3.2 for N,,. It takes some more trouble to prove that Foo
belongs to the spectrum of N, . First, the cone L, (K,) is reproducing and
normal (cf. {6, 25}) and therefore the adjoint cone of bounded linear functionals
on L,(#y)., leaving invariant L,(K,).. is reproducing (see [1], part 2 of Th. 1).
[gsing Theorem 4 of [14] we derive that r, = r(N,) belongs to the spectrum of
Ne.

4 Existence and Uriqueness Theorems

In this section we shall prove that r,, = 1. In view of (3.3) and (3.1) we
then get 7(IVp) < 1, which implies the existence and uniqueness of the solution of
(3.6} and the series expansion (3.7) for 0 < @ < 1. We shall assume that the
ground reflection matrix Ry(u, u',¢ — ¢') transforms four-vectors of the form
(1.2) into vectors of the same type and satisfies the dissipativity condition (1.9)
and the symmetry relations (1.10) and (1.11), In analogy with the derivation in
Section 4.1 of {12] we may use the series expansion

Ry u',p — ¢) = R (u,u) + 2 X [RE (u,u") cos{j (@ — 9"}
Jj=

+ RY @, u)singi @ — 9O},

a similar expansion (namely, eq. (107) of {12]) for the phase matrix Z(u,u’, ¢ — ¢')
and the Fourier series

I(r,u,0) = 1°(t,0) + 2 ¥ [19(z,u)cosjo + ¥ (z,u)sinjo]
J=1

to decompose the boundary value problem (1.16)—(1.17) into a boundary value
problem for Iz, &) and boundary value problems coupling I (z, ) and I¥ (7, u)
for each j > 1. Using the symmetry relation (104) of [12] for the phase matrix
and the symmetry relation (1.11) for the ground reflection matrix, a further
decoupling can be obtained into equations involving real polarization param-
eters.

It has been known since the fundamental article of Kuscer and Ribari¢
[18] that the addition formula for the generalized spherical functions of Gelfand
and Shapiro {5] may be exploited to obtain explicitly the Fourier component
equations of the full equation of transfer (1.1). Usually the equations obtained
involve complex polarization parameters (cf. {18, 4]). One may use various
symmetry relations (developed in {9]) to obtain component equations involving
real polarization parameters (see [27]; also [12]). The simplest component
equation concerns the first two entries (7 and Q) of the azimuthal-averaged
Stokes vector
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n
IG(T!u) = EE I(T5usg0)d(09

which may be written as the two-vector (with s = symmetric)
2m 2n
(4.1) P@Eu) = ((I] I(r,u,¢)dg, g Q(r,u,¢)dg

and can be obtained by restricting the equation of radiative transfer to the
“subspace” Hy, = {(1, Q)!1 = (I, Q, U, ¥) does not depend on @}. The restricted
equation of transfer can be written explicitly as

4.2 u—aELIS(T u) + F(r,u) = ?a S W, uYFPlundu' ,
21

where W*(u, 1) is a real matrix function of order two satisfying
4.3) Wi, u') = W', u)

with tilde above a boldface matrix symbol denoting transposition. We now
define 7%, B, A%, O°,, Q°. and J® by

(T°F)(u) = ul'@) , (A¥) () = F@u) - a(B°F)(u)
(BF)(u) = % } W, uYFuHdu'
1

s v _VP@) foruz0 Sys _ g
(Q+I)(H)—[ 0 foru=0’ (")) = TF(-u).

By its very form (1.15) the surface reflection operator & will leave invariant HS
its restriction to H}, we will denote by #°. The cone K, induces on H, the cone

K, = {Fe H,/|Q)| < I(u) for almost everyuei—1,1}}.

Using the Fourier decomposition and the symmetry relations we easily find
“4.4) (P = Z{Eu’RS (u,uYF(u)du',

where

(4.5 Ry(u,u') = Ry(u',u),0< Zgu’[RZ(u,u’)]U du’ g 1

We may now introduce the spaces L o(H3)p and the operators L} and N7}, as the
restrictions of L, and N, to these spaces. We have

Proposition 4.1. Let a, € LI —1,1] for some r > 1, and let q satisfy condition
(2.3). Assume that the surface reflection operator Z is bounded on H, for p < t
€ . Then the speciral radii of N, and N, coincide.
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Proof. Since N3 is a compact positive operator on L4 (H3), with respect to the
cone [, (K7}); and the latter cone is reproducing (cf. [16] for the definition), there
exists a non-trivial vector Ij € L (K}), and a constant 7, > 0 satisfying N} I
= r,Ij. Putting

Ib(Tsuqu) = (IE(T,L[), QE(R”);O,O) ]

we obtain NI, = ry1, on L, (H,), with 0 # I, e L, (K,),.

If a,(8) $ a4(6), the operator N, is vy-positive and therefore positive
eigenfunctions (with respect to L,(K});) are unique up to a positive constant
factor. We may then conclude r, = r(N,) and therefore r(N3) = r(N,).

If a;(8) % a4(9), we use approximation of the scattering matrix F () by
(physically relevant) scattering matrices such that @, (6) % a,(8). The conclusion
will be the same. A

A simple compactness argument implies that 7(N,) does not depend on ¢
and p, provided (2.3) holds true. We may therefore prove r,, = 1 for p = 2 and
g = oo, provided # is bounded on H, for min{p,2) € ¢ £ <. For this case the
vector-valued integral equation

{4.6) (I —aN)F =0o°,
where

e "N Wy, u>0

@ = Ltb—r)w[f(u) + (@ PTG ) (—w)], u<0

has the same bounded solutions as the boundary value problem
(T°PY (1) = —A°F@),0<1<b

liimllQi F() - QL F|,=0

7i0

liml|Q* K@) - FEQF@ - @ Fl,=0
i b

(4.7)

However, on defining the unitary operator U: i3 — Hj satisfying
1 - 1 i1

who=—" Nro, o mHo=— r'e),
V_ 1 i 1/5 -1 1

we sec that U#°U ! leaves invariant the cone of HY consisting of all vectors
Uy, L) with I, 2 0 and 7, 2 0, while R} (x, 1') is transformed into the kernel

1 [Rn + Ry — Rz + Ry) Ry — Rp+ (R ~ sz):l
2

Réj(u,u’) =
Riy — Ry~ (R — Ry) Ry + Ry + (Ryp + Ry)

with R;; = R;;(u,u") = [R}(u,u")];;. Defining #* = U#°U~! and using the
positivity estimates

(4.8) |Ryp(uw,u") = Ry (u,u")| < Ryg(,u") + Ryy(u, '),
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a straightforward estimation yields
1 s 11
§u(@D @) - Wuydu | [ fun'{Ry (1) + Ryp(u,u")
0 . 00

+ [ Rpa(u,u’) + Ry (u,u”)| + (Ryy(ue,u")
— Ryp(u,u')) + |Ryp(u,u") — Ry (u,u")|}
x V@) + 10 V@) +10@ ) dudu’.

On using the estimates (4.8), Schwartz’s inequality and the dissipativity condition
in the second part of (4.5), we obtain

P @ D) - a0 du | < | ullle)|2du.
1] 0

Hence, by the unitarity of U,

1 —_— 1
4.9) 0< (u(ZP) W) - Fe)du < [ul|F@)|3du.

0 0
Theorem 4.2, We haver,, = 1.
Proof. For p = 2 and ¢ = oo the equation

(I — aN_)F = 0°,
where @? is a suitable right-hand side, has the same bounded solution as the
boundary value problem
(T°P)(1) = —A°F(1),0< T < o

(4.10) lriﬁ)lHQiIS(f) - BFEQE - 0L, F|,=0.

IT@)]l2 = O)(T - =)

However, A° is positive self-adjoint for 0 < ¢ < 1 and strictly positive self-
adjoint on H3 for 0 < @ < 1. In view of (4.9), problem (4.10) satisfies the
assumptions of the main result of [26] and as a consequence this problem is
uniguely solvable for 0 < a < 1. Because the above reasoning implies 7, < 1 and
7, = 1issmaliest for #° = 0, we have r, = 1 in all cases. -

If a; (8) £ a4(8), the vy-positivity of N, on L, (F,),, Proposition 4.1, the
identity (3.4) and r,, = 1 imply that

(@11 rivy) < 1.

In the exceptional case @y () = a,(f) we exploit the positive self-adjointness of
A® on Hj, the estimate (4.9) and the main result of {§] to obtain the unique
solvability of problem (4.7) for 0 < & < 1. Thus in this case we have r(N3) < 1
and therefore (4.11) holds true (cf. Prop. 4.1).
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Corollary 4.3. Let a, € L[ — 1,1} for some r > 1, and let q satisfy condition (2.3).
If # is bounded on H, for min{p,2) € f £ o, then the vector equation (3.6) is
uniquely solvable on Ly(H,), for 0 < a < 1 and the solution is given by the
absolutely convergent series (3.7). Thus if w € L,(K},),, we have 1 € Ly(Kp),.

This corollary justifies the method of expansion with respect to successive
orders of multiple scattering. (For # = 0 the method was explained in [11}).

‘We have obtained a complete existence and uniqueness theory for the
equation of transfer of polarized light, which accounts for an extensive class of
reflection laws. Equation (1.1) can be decomposed into separate Fourier com-
ponent equations (see {27, 12, 25] for equations involving real polarization
parameters). From the present results it is straightforward to establish the unique
solvability of all component equations for atmospheres of finite optical thickness
with and without reflection by the planetary surface.
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