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For diffusion equations of indefinite Sturm-Liouville type, we develop two 
equivalent methods of constructing explicit representations for the solutions. The 
lirst method is based on an eigenfunction expansion whereas the second uses a 
Wiener-Hopf-type integral equation and factorization. Some illustrative examples 
are worked out. c 1987 Academic Press, lnc 

I. INTRODUCTION 

In this article we shall obtain explicit representations for the solution of 
the boundary value problem 

(0 < x < Co, p E Z), 

Il/(o~P)=cp+(P) if w(p)>O, 

s lti(x,~)l~ l4~L)l &=Wl) or o(1) asx-t 03, 
I 

$(x, p) satisfies self-adjoint boundary conditions of the differen- 
tial operator h H - ($2’) + q/z. 
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Instead of (3) we may also consider the boundary condition 

Here I= (a, 6) is a finite or infinite interval, W(P) is an indefinite weight 
function with finitely many sign changes and h I-+ - (ph’)’ + yh is endowed 
with boundary conditions that make it into a positive self-adjoint 
Sturm-Liouville operator. It is assumed that this operator has its spectrum 
within the set (0) u [E, co) for some E > 0. 

Boundary value problems of this (forward-backward) type arise as 
various kinetic equations. Bothe’s model for electron scattering leads to the 
partial differential equation [ 10, 51 

(.~E(O, ~),PE(-1, 111, (6) 

where $(x, p) has a finite limit as p -+ + 1. A Fokker-Planck equation 
[31, 32,9] has the form 

(7) 

where h H -(e.- ("2)1'2 /z’)’ is considered as an operator in L,(( - a, z ); 
e (‘~‘)“’ &). Both problems involve Sturm-Liouville operators which are 
positive self-adjoint, have discrete spectrum and have a simple eigenvalue 
zero. 

For boundary value problems of the type (l)-(4) a complete existence 
and uniqueness theory has been constructed by Beals [S] (also [7]; for 
Eq. (7) also [9]), who realized a synthesis of the variational approach of 
Baouendi and Grisvard [2] and the semigroup method used by 
Hangelbroek [20]. Under minor regularity assumptions on p, q, and ~1’ it 
has been proved that for strictly positive self-adjoint Sturm-Liouville 
operators there exists a unique continuous function $ : [0, co ) -+ H, = L,( I; 
1 w(p)\ &) which is Hr-differentiable on (0, co) and satisfies Eqs. (l)-(4). 
[Here we identify $(x)(p) with $(x, cl)]. If the Sturm-Liouville operator 
has an isolated (and simple) eigenvalue zero, the solution exists in the 
above sense and is unique. Some care should be taken with condition (3). If 
cpO denotes the zero eigenfunction, one has to read 0( 1) in (3) if 
i, w(~)l(p0(~)12 dp>,O and o(l) if 1, w(~)~~~(~)I* &CO. [For the examples 
(6) and (7) the integral vanishes and O(1) must be read in (3).] At present 
no explicit representations are known for the solution. 
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The formal similarity between Eqs. (l)-(4) and the half-space problems 
of neutron transport, radiative transfer and rarefied gas dynamics (cf. [ 11, 
33, 121) has given rise to the emergence of abstract kinetic equations 
theory (e.g., [6, 27, 193). In this theory one deals with the issue of existence 
and uniqueness of solutions of the boundary value problem 

T$‘(x) = -/4$(x) (O<x<co), (8) 

Q+Il/(o)=c~+s (9) 

IItW)ll=Wl) or o(l) as x-cc (10) 

on the abstract Hilbert space H, where T is an injective self-adjoint 
operator, A is a (positive) self-adjoint Fredholm operator and Q* is the 
orthogonal projection onto the maximal positive/negative T-invariant sub- 
space. [Thus A has a finite-dimensional kernel and closed range but may 
be unbounded.] If A is strictly positive, then A-IT is self-adjoint with 
respect to the inner product 

(k k), = (Ah, k); (11) 

on the completion H, of the domain D(A) of A we may then define 
the orthogonal projections P, onto the maximal positive/negative 
A - ’ T-invariant subspace and introduce the operator 

V=Q+P++Q-P-. (12) 

The solutions may then be written in the semigroup form 

I/(X) = e m.‘r-‘A$(0), Odx<co, 

where $(O) = P, $(O) satisfies VI,+(O) = p+. By establishing the invertibility 
of V and introducing the afbedo operator E = V-’ we obtain the unique 
solution 

t,//(x)= e -.rT~e’AEq+ = m ep-““z(dp)E~+, 
s 0 

(13) 

where z( .) is the resolution of the identity of A -IT. For positive operators 
A having a nonzero null space Ker A one has to modify A on the (finite- 
dimensional) zero root subspace of T- ‘A in order to reduce Eqs. (8)-(10) 
to the above set up. Depending on the structure of Ker A, Eqs. (8)-(lo), 
either with O(1) or o(1) in condition (lo), are uniquely or non-uniquely 
solvable. Similar results have been obtained under the boundary condition 
(5) (cf. ~27~91). 
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The above functional formulation was first carried out by Hangelbroek 
for subcritical isotropic neutron transport [20] (also [22]) and developed 
further by several authors. There are two variants. One variant due to 
Beals involves general bounded A and Sturm-Liouville-type operators. In 
[6] he introduced the completion of D(T) with respect to the inner 
product 

(k k),= ( I  Tlh, k) (14) 

and for injective and certain noninjective A he established the unique 
solvability of Eqs. (8t(lO) on H,. As a major tool for the invertibility 
proof of V on H,, he proved the equivalence of (14) to the inner product 

(h,k),=(IA-‘T(h,k),=(T(P+-P )h,k) 115) 

and hence the equivalence of their completions H7. and H,. [For the non- 
injective A treated he introduced the above modification.] In [S] he 
obtained the same results for the Sturm-Liouville problems (l)-(4). 
Introducing, on H = &(I; tip), the operators 

and 

(Ah)(p) = - -$ (p(p) h’(p)) + q(p) h(p) + self-adjoint b.c., 

it is easily seen that (l)-(4) reduce to an example of (8)-( 10) and the above 
existence and uniqueness result on H,= &(I; 1 w(p)1 tip) can be proved 
along the same lines. 

The second variant involves operators A which are compact pertur- 
bations of the identity and was developed by van der Mee [26,27]. (In 
these works T is bounded but the result can be generalized to unbounded 
T; cf. [IS]). For injective A the operator I’ is invertible and Eqs. (8)-( 10) 
are uniquely solvable on H and D(T). Although in this case the result can 
also be obtained in a somewhat weaker sense in HT (using [6]), the major 
importance of the present variant is that the boundary value problem 
allows reformulation as a vector-valued Wiener-Hopf equation and 
therefore a solution by Wiener-Hopf factorization. In this way he 
generalized a plethora of concrete results in various applied fields of kinetic 
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theory and obtained an explicit expression for the albedo operator E of the 
form 

(see [28]). Here a( .) is the resolution of the identity of T, B= I-A has 
finite rank and j: Ran B -+ H and n : H -+ Ran B are the natural embedding 
and orthogonal projection, respectively. The matrix functions HI and H, 
are Wiener-Hopf factors and can be computed using a generalization of 
Chandrasekhar’s H-equation [ 131. 

In this article we present two methods to compute in principle the 
albedo operator E for the Sturm-Liouville problem (l)-(4). The first 
method, when formulated for strictly positive A, is based on the vector 
equation 

(I+K)g=K+cp+, (17) 

where Km = -Q-P+Q-: Q-[HT]+Q-[HT] and K, =Q-P+Q+: 
Q + [ HT] -+ Q _ [ HT], which has g = Q _ Ecp + as its unique solution. Using 
an explicit representation for the resolution of the identity of T-IA, we 
obtain an equation to be solved for g in Q _ [ HT], whence Ecp + = cp + + g. 
For neutron transport and rarefied gas dynamics this procedure leads to 
singular integral equations as appearing in [ll, 121. 

The second method will yield a generalization of (16). The key step is the 
following well-known observation: We may add such self-adjoint boundary 
conditions at the sign changes cr ,..., cN (a < c, < . . . < cN < b) of the weight 
w(p) that (i) the resulting Sturm-Liouville operators a,, a,,..., AN on the 
spaces Mu, cl 1, UC,, cd,..., L,(c,, b) are strictly positive self-adjoint and 
(ii) the operator A -‘-a-‘, where A is assumed strictly positive and 
2 = a, @ . . . @ AN, has finite rank N. By construction, T, = A^ ~ ’ T will have 
Q, as its positive-negative spectral projections and Eqs. (8)-( 10) (on HT) 
will be equivalent to the boundary value problem 

T, $‘(x) = -A 1 Ii/(x), (O<x<co), (18) 

Q+W)=cp+, (19) 

II Icl(x)ll T= o(l) or o(1) asx+ co, (20) 

where A, = A^ - ‘A. Since also A r- ’ T, = A - ‘T, the albedo operator E and 
the semigroups involved in the solution (13) coincide. As a result, 
Eqs. (18)-(20) are uniquely solvable on H, = L,(I; 1 w(p)1 &). The finite 
rank of C = A -IT- A ~ ‘T is our major gain, since we may now refor- 
mulate the problem as an integral equation. However, since A, is unboun- 
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ded (in Hr.), the reduction to a formula of the type (16) is more com- 
plicated than it is to be expected from [27, 281. Introducing the function 
q(x) = -t,V(x) = Tp’At,b(x) we first derive the integral equation 

o<x< “cj, (21) 

where, in terms of the resolution of the identity 0, (. ) of T ‘A  ̂= T, I. 

1 

i‘ 

r‘ 
+ w -t”o,(&), 0 < x < x 

4(x)= lJ (22) 

s 

0 
- w -- p.vcJ , (dp ), -rj<x<o. 

-Ix) 

If j and 71 are the natural embedding and orthogonal projection (with 
respect to (14)) satisfying Cjrc = C, we shall then derive a (finite-dimen- 
sional) equation for i(x) = rrcp(x), which we solve by Wiener-Hopf fac- 
torization. However, the existence proof for the Wiener-Hopf factorization 
will make essential use of the strict positivity of A and is, in fact, based on 
the geometric factorization principle of Bart et al. [4, 31. For the latter case 
we shall obtain a complete analogue of (16). At present the second method 
does not work for noninjective A, such as needed for Eqs. (6) and (7). 

The paper will be organized as follows. In Section 2 we explain in detail 
the first method. In Section 3 we construct A^ and arrive at the equivalent 
problem (18))(20). In Section 4 we prove the equivalence of the latter 
problem to the integral equation (21) and its finite-dimensional reduced 
form. In Section 5 we establish in a formal sense the Wiener-Hopf fac- 
torization associated with the integral equation and construct the albedo 
operator explicitly. In Section 6 we shall specialize our results for indefinite 
weights with one sign change and work out some illustrative examples. 

II. AN EIGENFUNCTION EXPANSION FOR 
COMPUTING THE ALBEDO OPERATOR 

The first method of computing the albedo operator has an analogue in 
neutron transport, radiative transfer and rarefied gas dynamics known as 
the method of singular eigenfunction expansion (cf. [ 11, 121). We shall 
work out the details for the abstract problem (8)-( lo), state our 
assumptions on the indefinite Sturm-Liouville problem and then specialize 
the method for these problems. 

Let T be an injective self-adjoint and A a positive self-adjoint Fredholm 
operator on a Hilbert space H, and let Q-t denote the orthogonal projec- 
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tion of H onto the maximal positive/negative T-invariant subspace. We 
denote by H, the completion of D(T) with respect to the inner product 
(14), and put H, = D(A “*). Then H, is densely and continuously embed- 
ded in H. Let us assume that H, c D(T) and T is a bounded operator from 
H, into H. (In [S] this was, in fact, assumed.) Then we have the decom- 
position 

where Z, = Ker( T- ‘A )’ 2 Ker A; this decompsition reduces the operator 
T-IA, and S, =(T-‘A Iz,)-’ is bounded and self-adjoint on Zi with 
respect to the inner product (11) (cf. [ 191 for the most general result; first 
result of this type in [25]). If P, denotes the projection of H, onto Z, 
along Z, and {PO, P,, Pp } is the triple of complementary projections of 
H, such that P, lz, is the (.,.),-orthogonal projection of Z, onto the 
maximal (.,.),-positive-negative S,-invariant subspace, then Hs will denote 
the completion of Z,@ D(S,)( c HA) with respect to the inner product 

(k k),= {P,k PI&} + (IS, IU-PO) h> (I-P,)k), 

= (P,h, P,k} + (T(P+ - Pp) h, k). 

Here { .,.} is an arbitrary inner product of Z,. We shall assume that (.,.)T 
and (.,.)s are equivalent and therefore H, and H, may be identified. This 
assumption is known to be satisfied if A is bounded (cf. [6]) or in the case 
of a Sturm-Liouville problem of the type (l)-(4) (cf. [8]). If Ker A = 0, 
then PO = 0 and (.,.)s is given by (15). Finally, the projections Q+, PO, and 
P, allow continuous extension to H,z H,. 

THEOREM 2.1 (cf. [6, 19,8]). If Ker A = (0) or if Ker A =span{cp,} 
with (TV,, cpO) 2 0, there exists a unique solution of the differential equation 
(8) with boundary conditions (9) and /I $(x)11 T= O( 1)(x -+ co). This solution 
satisfies 

-f, r>O: II~)(x)-t)~(l~<Me-” (23) 

for some II/, E Ker A. On the other hand, if Ker A = (0) or if 
Ker A = span { cpO} with (TqO, cp,,) < 0, there exists a unique solution of 
Eq. (8) with boundary conditions (9) and 11 $(x)11 T= o( 1)(x -+ co). This 
solutions satisfies 

3M, r > 0: )I Il/(x)ll r< Me-‘-‘. (24) 

In all cases one may write G(O) = E, cp + where E, is the (H,-bounded) 
projection along Q _ [HT] onto P, [H,] @ Ker A in the former situation, 
and onto P, [Hs] in the latter situation. For injective A we have 
E, = EQ, where E= V-‘. We define on H,: 
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p+ if KerA={O}or(T~,,,cp,)<O 

Pi, = p++po if (TV,, cp”)>O 
(25) 

t., Wo) 
‘+ + (cpo, Wo) ‘PO if (Tvo, cpo) = 0. 

[In the latter case there exists tjo such that A$,= T$,. We then have 
(cp,,,T$,,)= (A+,, $o)>O and we may select $. in such a way that 
( T$o, +(,) = 0. As a result we find P + cpo = q. and P + tiO = 0.1 Next, put 

LEMMA 2.2. The vector g = Q _ E, cp + is the unique solution in Q . [ H7.] 
of the equation 

(I+K-)g=K+cp+. (26) 

Prooj: One easily calculates 

K+cp+ -K-g=Q-P+b+ +g)=Q-j”+(Q+E+cp+ +Q-E+(P+) 

=Q-p+E+cp+=Q-E+cp,=g, 

using P+ E, = E + Conversely, if g is a solution of (26) in Q _ [H,.], we 
have 

Q~-ts-P+(v+ +g))=g-K+cp+ + K g=@ 

and therefore there exists cp + E Q + [ H7] satisfying 

g--B+(cp+ +g)= -(p+ +‘b+. 

The latter implies 

~,~Q,CHrln(~-~+)CHsI={O), 

whence cp+ -+g~p+[H~]. As a result we necessarily have g = 

Q E+v+. I 

We may compute E + in principle by soiving (26), putting 

E+cp+=cp++(Z+K-)~~‘K+cp+ (27) 

and applying the method to Sturm-Liouville diffusion problems. Let us 
consider the Sturm-Liouville differential operator 
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defined on a domain where it is self-adjoint and positive with cr(A) c (0) u 
[E, co) for some E > 0. We shall make the usual assumption that p is locally 
absolutely continuous and positive on I and g is continuous and positive 
on I. [In fact, we may require less, e.g., (p-‘, q} c L:““(Z).] A more specific 
description of the differential operator will follow in the next section. Next 
let us assume that the indefinite weight function w(p) has the following 
properties: 

(i) W(U) is continuous and nonzero on Z, except possible at c,,..., c,; 

(ii) for each j= 1, 2,..., N there is neighborhood U, of c, and a num- 
ber OLD> -f satisfying w(p)= +_sgn(CL-c,).(~-~~I”Iu(~) for ~cLEU,\(C~) 
with v(c,) # 0 and U(U) continuously differentiable on U,, and 

(iii) the operator 

satisfies the condition 

where C is some fixed constant and n, is the orthogonal projection of 
L,(Z) onto Ker A. 

As a result, if we define H, as the direct sum of the finite-dimensional 
subspace Ker A, with some inner product, and {h E D(A’12) 1 (h, g) = 0 for 
all g E Ker A }, the latter endowed with the (complete) inner product 

(h, k)A = (A1’2h, A”%) =J (A1’2h)(p)(‘4”2k)(p) d/L, I 

the third hypothesis means that H, c D(T) and T is a bounded operator 
from H, into IS. Moreover, T and A meet the assumptions at the begin- 
ning of this section and Theorem 2.1 holds true in full, where in this case 

(k k)T= j I wb)l. NP)&) 4. I 

We shall consider the more elementary situation where T-'A has a com- 
pact resolvent. Let I,, be the (simple) eigenvalues of Tp'A with 
corresponding eigenfunctions cp,, numbered according to the following 
convention: 

(i) if Ker A = (01, th e index n runs through the nonzero integers and 

(V,Z? (Pm),4 = km d, 2 0; (28) 
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(ii) if Ker A # (0) and Ker A = span{ cpO}, the index n runs through 
all integers and (28) is valid for 0 # n, m E ii!; 

(iii) if (and only if) (TV,, 50,) = 0, there is a generalized eigenvector 
Ic/O which can be chosen uniquely by requiring (Z&k,, $“) = 0. We then have 

where 

P+ =P,,+ +B,, (29) 

P,.+h= 1 (k 14!I’~29n)e l&/“2v,1 
n>o 

and 

0 if Ker A = (0) or (TV,, q,)<O 

(k TV,) 
P,h = (vo, Tqo) ‘PO 

if (TV,, vo)>O 
(30) 

(k Wo) 
(90, Wo) ‘PO if (Ty,, cpo) = 0. 

We shall now use the identity [21, Eq. (2.8); 19, Sect. 31 

(.~g)s=(f,(2V-z)g),=((Q+-Q ).L(P,.+-P,. )g),., 

where {.A 8) cz, c H, ?: H,. As a result we obtain for Ker A = {O} : 

K.-h=- c U(Q+-Qp,Q-h,(P+ 
,1 > 0 

K+h= + c A,((Q+ -Q-)Q+k (P, 
n > 0 

- p ) 9,,), 

P 1 Vn)T 

= 2 L(k Q+vnl~Q~-vn. 
n>o 

For nontrivial Ker A we obtain the same formulas if (T9, , cpo) < 0, and a 
correction term if (T9,, 'p. > 0, which is easily derived from (29) and (30). 
The equation (26) for g = Q_ EQ, 9+ now has the following form: 

(i) g+CllDo ;l,,(s,Q~fp,)TQ~vn=C,,,o 
KerA={O} or (T90,90)<0, 

.,(v+,Q.(P~~)TQ-v~~ if 
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if (Tqo, rpo) > 0, and 

(iii) 

if ( Tqo, cpo) = 0. Finally, if Tp ‘A has continuous spectrum on parts of 
(0, 00) a similar integral equation for g can be derived involving 
integrations over a continuous rather than a discrete measure. 

As an example we consider the Fokker-Planck equation (7) for which 
the eigenvalues and eigenvectors of T- ‘A have been computed by Pagani 
[321, 

A +n= *Ji lo = 0, 

Qo(U) = 1, 

q?,(u) = cp-,( -u) = (n”” ,/i@$) ~ ’ eVZ’4Dn( u - 2&z), 

where n = 1, 2, 3,..., and D, are the Weber functions. As in this case 
(TV,, cpo) = 0, we use the above formula (iii) for the albedo operator and 
obtain the solution $(O, II), where $(O, v)= q+(u) for u>O, $(O, u)=g(o) 
for u < 0 and g(u) has to be computed from the integral equation 

g(u) + ,,Fo ,,I% Jo= u’e ~(“2)(v”2~,(u) cp,( - v’) g( -v’) dv’ 

- (I/,,,‘%) s,x (0’)’ e --(“2)(v’)2g( --of) du’ 

= 1 J;;p ~‘e-(~/*)(~‘)~q~(u) cp,(u’) cp+(u’) du’ 
Hz-0 

+ (l/,,/‘%) j-Om (u’)’ e~(“~)(~‘)‘c~ + (v’) du’. 
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III. FIRST REDUCTION: 
THE MODIFIED STURM-LIOUVILLE PROBLEM 

Let us consider the Sturm-Liouville differential equation 

-h’)’ + w = k +.f (32) 

on the interval I= (a, b) (cf. [14, 15, 1, 23, 161 for the general theory). 
where it is assumed that p is locally absolutely continuous and positive on 
I, q is continuous on I and f’~ &(I; &). The endpoint a (or h) is called 
regular if it is finite, p and q extend continuously to [a, h) (resp. (a, h]) and 
p(a) >O (resp.p(h)>O). Otherwise it is called singular. If both endpoints 
are regular, we may turn the Sturm-Liouville operator g H - (pg’)’ + qg 
into a self-adjoint operator on &(I; &) by imposing the boundary con- 
ditions 

cos ag(a) -p(a) sin rg’(u) = 0, 

cos fig(b) -p(b) sin /Ig’(h) = 0, 

(33) 

(34) 

for certain a, /I E [O, 7~). If a is a regular and b is a singular endpoint, we 
have to distinguish between the limit-circle (at b) case where for some (and 
hence all) complex A all solutions of the differential equation 

are square integrable near b, and the limit-point case where for some (and 
hence all) nonreal A there is only one linearly independent solution of 
Eq. (35) that is square-integrable near b. In the limit-point case a self- 
adjoint boundary value problem arises by only imposing condition (33), 
while in the limit-circle case one needs condition (33) as well as a condition 
for p --f b in order to ensure self-adjointness. If u is a singular and h is a 
regular endpoint, we have a similar distinction as before with a and h 
interchanged. If both endpoints a and b are singular, we choose c E (a, h), 
impose the boundary condition 

cosyg(c)-p(c) sinyg’(c)=O (36) 

and consider the limit-circle versus limit-point classification at each of the 
endpoints a and b. Depending on the four possibilities as to each of the 
dichotomic classifications, we impose self-adjoint boundary conditions for 
Eq. (35) on I. The classification is independent of the particular choice of c 
and y. In particular, if the differential equation (32) meets the limit-point 
condition at both endpoints a and b, no boundary conditions are to be 



266 KLAUS, VAN DER MEE, AND PROTOPOPESCU 

imposed to guarantee self-adjointness. If A denotes the self-adjoint 
Sturm-Liouville operator (with boundary conditions), then the resolvent 
(A -A)-’ is given as g(p, A) = [(A - Il))‘f](p), where 

+ (P(PL, A) j" Ic/(v, AIf dv}. (37) 
w 

Here 

w(n) =PwP’(PY 2) ti(P? 1) - $‘(PL, A) 44/A 41 (38) 

is a constant relating to the Wronskian and (p(p, A) and $(p, A) are non- 
trivial solutions of Eq. (35) satisfying the boundary conditions at a and b, 
respectively. [In the limit-point case the condition is square integrability 
near the endpoint.] The isolated eigenvalues of A correspond to isolated 
zeros of W(A) and are simple. The resolvent set of A consists of the open 
upper and lower half-planes and that part of the real line to which IV(A) 
has the same analytic continuation from above and below leading to a non- 
zero value. The remaining part of the real line is continuous spectrum. Next 
let us see what happens if one decomposes the self-adjoint Sturm-Liouville 
problem (32) on 1= (a, b) into a problem on (a,~) and a problem on (c, 6). 
We shall give a detailed discussion of basically well-known material, since 
the precise details are required for the subsequent construction of the 
albedo operator. Let x(p, A) be a nontrivial solution of Eq. (35) on (a, b) 
that satisfies the additional boundary condition (36). The resolvents of the 
Sturm-Liouville problems on (a, c) and (c, b) have the respective forms 

1 
g,L% A) = w,(L) - {xb 2) 5,:' cp(v, AIf dv 

where 

+ CP(P, 1) j’ Av, l)f(v) dv 9 (39) 
P 

and 

W,(i) =P(P){cp’(PY 2) x(,4 2) -X’(P, A) (P(P, A,>, (40) 

(41) 
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where 

Writing 

(42 1 

x(tk 4 = c,(J) dt4 A) + 4) Il/(tb 3.) 

and using the formulas 

c,(A) = W,(~)IWj.), c,(i) = W,(I)/W(E,) 

obtained by substituting (43) into (40) and (42) we finally get 

(43) 

(44) 

where 11 E (a, c) and f~ L,(u, c), and 

W,(A) 
R(tb 2) -ghL, I.)= - w,(n) w(i) $(P, j-1 jl’ $(v, ju)/(v) dv, i, 

(45) 

(46) 

where p E (c, h) and f E L,(c, h). Thus if j. belongs to the resolvent set of all 
three Sturm-Liouville operators and A denotes the direct sum of the 
Sturm-Liouville operators on &(a, c) and &(c, b) (viewed as an operator 
on &(a, h)), we have for .fE &(a, h) 

= _ W,(i) Wr(J.1 
Wj-) 

KttLL, 1.1 j’ lib’, i).f’(~) dv, 
0 

where 

(47) 

Hence, the difference of the resolvents is an operator of rank one. 
If A is positive self-adjoint with spectrum a(A) c (0) u [E, co) for some 

E > 0, it is possible to choose the constant y in condition (36) in such a way 
that the resulting operator A is strictly positive self-adjoint. Let us nor- 
malize x(p, A) by requiring ~(c, ;C) =p(c) sin y and x’(c, 3.) = cos y. We then 
easily derive the identities 

W,(i) = +P(c)(P(c) sin Y’P’(c, j-1 - ~0s Y(P(C, 211, 

W,(A) = -p(c){p(c) sin y$‘(c, A) - cos r$(c, i.)}, 
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from (43) and (44) and the derivative of (43) with respect to ~1 (for 1 real 
and W’(1) # 0) and observe that IV,(J) = W,(n) = 0 implies W(1) = 0. The 
latter implies the existence of unique and distinct y, = y,(n) and yr = y,(l) in 
[0, rr) satisfying B’,(1) = 0 for y = y,(n) and W,(A) = 0 for y = y,(l). This in 
turn gives the existence of an interval of values of y where W’,(L) IV,(n) 
W(A) ~’ > 0 and an interval of values of y where W,(n) W,(J) B’(A) -’ < 0. 
On inspecting (47) it appears that we may choose y in such a way that 
(A - A))’ b (A -A)-’ as self-adjoint operators. If o(A) c (0, co) and ,J = 0, 
we get a -’ b A -’ 3 0 for an interval of values of y. If A is positive with 
isolated (simple) zero eigenvalue, then W(0) = 0, W,(O) # 0 and W,(O) # 0, 
except for the unique y = y0 satisfying the equality 

P(C) sin Y~P’(c, 0) = cos hdc, 0) 

with qo( -, 0) = d$( -, 0) the zero eigenfunction of A. Because of the usual 
oscillation theorems we have cp(p, 0) # 0 for ,D E I and therefore y0 E (0, n). 
However, for every 1” <O we have an interval of values of y where 
(A^ - 1) ~ ’ 3 (A - A)- ’ 3 0. Thus if we exclude y0 from this interval, we find 
an interval of y (the same or a smaller one) where o(A) c (0, co). Hence, 
the constant y in condition (36) can be chosen as to make 2 strictly 
positive. 

THEOREM 3.1. Let us consider a self-aa’joint Sturm-Liouville operator A 
and a weight function w(u) on (a, b), both of which satisfy the previous 
assumptions. Let A be either strictly positive or positive with an isolated zero 
eigenvalue. At the sign changes c, ,..., cN of the weight function we may add 
boundary conditions of the type 

COS Y,g(C,) - Ptcj) sin Y,g’(C,) = 0, j= 1, 2 ,..., N, 

and obtain strictly positive Sturm-Liouville operators A,, A, ,..., AN on the 
respective subintervals (a, c,), (c,, cz),.,.,(cN, b). Then the direct sum 

A=A,@A^,@-*@AN (49) 

is strictly positive self-adjoint on L2(I). If the original Sturm-Liouville 
operator A is strictly positive, then C = A ~ ’ T - A - ’ T is a bounded operator 
on H,= L,(I; 1 w(n)] du) of rank N. 

The proof follows easily by induction on N if the weight function is 
bounded. First we construct A, by using Eq. (47) for c = ci. On (c,, 6) we 
further split up the Sturm-Liouville operator obtained at c = c2 and apply 
(47) again. After N steps we have constructed Ao,..., A,, and (P -A)-’ - 
(A -A)-’ is an operator of rank N for n$a(A)uo(A)=a(A)u 
~(2,) u ... u ~(2,). If the weight function w(p) is bounded, then C(n) = 
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{(A-%-‘-(& A)-.‘) T (A#a(A)ua(A)) is bounded on H,. If 
the weight function w(p) is unbounded, it must be unbounded near 
either a, c, ,..., cN or b. Let (p(p) be a positive P-function on I with 
compact support within r\{c’,..., c,,,). For each of the functions 
ti#, A)(i 4 a(A) u a(A)) constructed in (48) the function cp(p) IC,(~, jb) is 
continuous and has a compact support on which ‘U(P) is bounded; hence, 
j, / w(,u)12 1 cp(p) ~,(p, n)l 2 dp < co. The function (1 - q(p)) K+, jU) is square 
integrable on I with weight 1 w(p)1 for the following reasons: 

(i) (1 - dlc)) K~(P, 2) is continuous on (u, h) and W(U)= 
0( I p - c, I “f) for some c(, > - 4, 

(ii) (1 -q(p)) ~,(p, A) satisfies the boundary conditions (or local 
square integrability conditions) at a and b, and 

(iii) D(A)c D(T). Hence, C(n)= ((A --;I) ~’ - (2 -i) *j T is a 
bounded operator on H, and has rank N if J” # a(A) u o(A). 

As a result of the above theorem, the operator T, = 2 ‘T is bounded on 
Lz(l) and compact if A has a compact resolvent. Also, T, commutes with 
the projections Q + defined above (following Eq. (15)). If we denote by 
Hi = D(k”‘) the completion of D(a) with respect to (.,.)a = (a.,.), then T, 
is self-adjoint on HA, Q + and Q are the HA-orthogonal projections onto 
the maximal HA-positive and negative T,-invariant subspaces and I T, I = 
A ~’ I TI is the H,--p ositive absolute value of T, . Therefore, by analogy with 
H,. we have 

(A, I?)~, = (I T, lh, k)A = (k ’ / TI h, k)A = (h, k),. (50) 

Also, defining A, = a ~ ‘A as an HA-positive operator, we have 

T,‘A, = T-~‘A (51) 

and,ifKerA={O},andS,=A”T’, 

(h,k),,=(A,IA;‘T,I /I,~)~=(A,~‘T,(P+ -P )l~,k),=(h,k),~. (52) 

Hence, the boundary value problem (8)-( 10) on HT N H,y has precisely the 
same solutions as the modified problem 

T, f(x) = -A, $(,r) (O<.u<m), (53) 

Q+ti(O)=c~+, (54) 

/I $(-~)ll 7.= o(l) or 4 1) (x -+ ‘X 1, (55) 

and the existence and uniqueness properties of the latter problem can be 
described by Theorem 2.1. We have obtained the problem (53)-(55) of the 
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same type and with the same solutions as (8)-( lo), but now the resolvents 
of T- ‘A and T; * = T- ‘a have a rank N difference. As we shall see, it is 
exactly this rank condition which guarantees a further reduction to a 
matrix integral equaton and factorization. 

IV. SECOND REDUCTION: 
WIENER-H• PF EQUATION AND FACTORIZATION 

In this section we shall reduce the (modified) boundary value problem 
(53)-(55) further. As a result, we shall obtain a Wiener-Hopf integral 
equation which can be solved by factorization. Throughout we assume A 
strictly positive self-adjoint. (At the end of this section we shall indicate 
how to relax these assumptions.) We shall need the following technical 
condition: 

3o<cr< 1: RanCcIT,j”[Hr]n[A~‘T[l[HT], (56) 

where I T, 1 = A -’ 1 T( and 1 A -‘TI are the absolute values with respect to 
the inner products (14) and (15). In the Appendix we show that condition 
(56), respectively, the equivalent conditions (80) to be defined below, are 
valid for a large class of operators A with one sign change in the weight. 
We believe that the extension to more than one sign change can be done by 
the same methods. We shall make use of the estimates 

II I T,I”~(x)ll,,.=~(Ixl”~‘), 
(I lA-‘TIs-’ e---rT-‘AP+ IIHi=O(/xJ=y 

(57) 

as x -+ 0. Here q(x) is the propagator function defined by (22). 

THEOREM 4.1. Let cp+ EQ+[H,]. Then the vector function 
q(x) = T-‘Ae- rTm’AEq+ is the unique solution qf the integral equation 

(P(x)+~ jom ;x;(X-Y)C~(Y)~Y’=~(X)(P+r o<x< co, (58) 

satisfying s: e” 11 cp(x)ll T dx < co for some r > 0, where C= A--IT- k’T. 

Proof: Using (56) and (57) one easily proves that for every E d x < 03, 

s m II% WY)llTdY<M(E)< a, (59) 
I: 
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so that 1; ,X,(x - y) Ccp(y) dy is an absolutely convergent Bochner integral 
for 0 < x < ‘m. We compute 

T, z s -%(X-Y) CCP(Y) 4 
0 

= 
s _ 
ocg {e -(.Y- L.)T(‘Q 

+e ” ‘“Ecp, ) dy 

_ 
I 

‘$ {e-(~-Y,~,‘Q_, -?‘T ‘A&, ) &, 
+ _ 

1; 

=$(x)-e-‘cp,, o<x< m, 

where we used the identity Q + EQ + = Q, . By differentiation and using 
$‘(x) = -q(x), we get (58). 

Conversely, putting +(x) = j;~ q(y) dy (well defined since 
j;” e” I/ cp(x)ll Td-r < a for some Y > 0) we may integrate (58) and obtain 

w-?^ux &(x-y)Cq(~~)dy=e ‘T~‘(p+. o<x< co, (60) 

where the integral term is strongly differentiable for x E (0, xz ). Let us write 

Because of the estimate (59) and by dominated convergence (for Bochner 
integrals; cf. [34, Sect. 31, p. 301) we may differentiate this equation in the 
following manner: 

r;3’(x)+j;e- (r-.v)T[’ Q+Cdy)dv-T,Q+Ccp(x 

i 

OT 
- e “~‘“l’Q_Ccp(y)cZy-T,Q Ccp(x 

‘i 

zz -TT,e-‘TI’(p*, 

whence 

T,$‘(x)-Ccp(x)+[* &(x-y)Ccp(y)dy= -e ‘71’(p+, 
0 

o<x< CL. 

(61) 



272 KLAUS, VAN DER MEE, AND PROTOPOPESCU 

On adding (60) and (61) we obtain 

T, C(x) - Wx) + Icl(x) = 0, o<x<co. 

By virtue of Ii/‘(x) = - q(x) and T, + C = A - ‘T, this in turn implies (53). 
Using (60) we conclude 

whence (54). 1 

Let Ct denote the Hladjoint of C, i.e., 

C+=K!+ -Q-)C(Q+ -Q-l (62) 

Let j denote the natural imbedding of Ran Ct into H,, and ‘it the 
HTorthogonal projection of H, onto Ran Ct (as an operator rr: 
H,-+ Ran C?). Then j and rc are adjoints and 

Cjn = C. (63) 

It is then clear that c(x) = z(p(x) satisfies the finite-dimensional convolution 
equation 

C(x)+f-J: ~3/iq(X--)Cji(y)dy=n~(x)cp+, O<x< co. (64) 

The function q(x) may be computed from c(x) by putting 

(65) 

Clearly, J,” e’” (1 c(x)11 dx < co for some r > 0. Conversely, if i(x) is a 
solution of Eq. (64) satisfying J,” e’-’ (1 [(x)11 dx < co for some r > 0 and q(x) 
is given by (65), then we may multiply (65) by rc from the left and subtract 
the resulting equation from (64). As a result, we get i(x) = ncp(x). Sub- 
stituting the latter into (65) and utilizing (63) we find (58). Hence, Eq. (58) 
is equivalent to the pair of equations (64) and (65). The latter pair of 
equations, however, is defined on the finite-dimensional space Ran Ct. 

Let us transform (64) into a Riemann-Hilbert problem, as arising from 
the application of the classical Wiener-Hopf method. Using (59) it is not 
difficult to establish that s~ K%?,(x -y) Cj[(v) dy is (strongly) differen- 
tiable for x E ( - GO, 0). Let us put 

i(x) = - $ Jorn n=%(x -Y) WY) 45 XE(-ccl,O). (66) 
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Since c(x) = nT-‘AepxT-’ Ecp + (see Theorem 4.1 in combination with the 
equivalence of Eq. (58) and Eqs. (64), (65)) and (56) holds true, we have 

SF t? 11 [(x)11 dx < co and therefore 

for some s > 0. Let us define the Laplace transforms 

where Re A = 0. Using the formula 

l x e”‘f’(x) dx = [e”‘f(x)]t= z + [e”rf(x)] fzo. 
-)r 

-A s % e”lf(x) dx, 
-x 

we obtain the Riemann-Hilbert problem 

[I- n&l)] [+(A) + î  (n) = k(i), Re i. = 0. (67) 

The right-hand side is easily computed and reads 

&(~)=K(I-LT,)-’ T,cp+, ReA=O. (68) 

Equation (67) has to be solved by factorizing the so-called dispersion 
function 

A(r.)=I-nR(~)=Z-/In(Z-AT,) ’ Cj, ReA=O, 

into matrix functions which are analytic and invertible on appropriate half- 
planes. 

Finally, let us consider the case when A is positive self-adjoint with an 
isolated (simple) eigenvalue zero. Recalling the definitions of PO and S, in 
Section 2. we define 

C=(S,-PT)(Z-P”), 

which is an operator of rank at most N. We rephrase the regularity 
assumption (56) as 

30 < LY < 1: Ran Cc 1 T, IX [H,], Ran (Z-P,) Cc (S, 1’ [ZZT]. 



274 KLAUS,VANDER MEE, AND PROTOPOPESCU 

By construction, and for E, defined in Section 2, the function 

q(x)= Tp’Aep-‘Tm’AE+cp+, o<x<m, 

has its values in (I- P,)[H,] 0 Ker A. We may then repeat the proof of 
Theorem 4.1 and the derivation of (64) and (65) with the sole adaptation 
that 

W-tm)=~~ cp(Y)4 
.Y 

(and similarly for c(x)). We then obtain the Riemann-Hilbert problem (67) 
as a result. Unfortunately, as will become clear shortly, the existence proof 
of the factorization of /1(l) will break down if A has a zero eigenvalue. 

V. WIENER-H• PF FACTORIZATION AND ALBEDO OPERATOR 

Let us again assume that A is strictly positive. It is then easily seen that 

n(l/t)=Z-rr(<-T,))l Cj (69) 

has the form of a transfer function of linear systems theory. For such 
functions a factorization principle has been developed by Bart, Gohberg, 
Kaashoek and Van Dooren [4; 3, Chap. I]. In the terminology of [3] we 
have Ran Ct as the input-output space, H, as the state space, the identity 
as the external operator, T, as the main operator and T, + Cjrc = A-‘T as 
the associate operator. Let us consider EQ, where E is the albedo 
operator. Then E = V-’ with V defined by (12) and satisfying Q, V= VP, 
implies that EQ, maps H, onto P, [HT] . The boundary condition 
Q+ti(O)=c~+ with Ii/(O) = Ecp + implies Q + EQ + = Q + and therefore 
(EQ+)‘=EQ+, Q+(Z- EQ+)=O and Q- = (I- EQ,) V(P- -P+); 
hence (I- EQ + ) [ HT] = Q _ [ HT] . It is then clear that EQ + is a bounded 
projection on H, with range P, [HT] (which is invariant under the 
associate operator A -‘T) and kernel Q- [HT] (which is invariant under 
the main operator T,), whence, in the terminology of [3], EQ, is a sup- 
porting projection. As a result we immediately obtain the factorization for- 
mula 

41/t)-‘= H,(-l/5) H,!MJ, (70) 

where 

H,(llW’=I-46 T,)-’ (I-EQ,) Cj, (71) 

H,(-l/~)p’=I-nEQ+(<-T,)-‘Cj, (72) 
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H,( - 115) = I+ ~(4 - A IT) ' EQ + <j, (73) 

H,(l/~)=Z+z(Z-EQ+)(c-A-IT) ’ cj, (74) 

A(l/<) l=z+7c(<-A -‘T) ’ qj. (75) 

The factors obtained have the following properties: 

(i) H,(z), H,(z)-‘, H,(z), and H,(z) ’ are continuous in the closed 
right half-plane (except possibly at infinity) and analytic in the open right 
half-plane. 

(ii) H,(O+) and H,(O+) are the identity operators where the limits 
to z=O must be taken from the closed right half-plane. 

(iii) At infinity we have the estimates 

ll~,(=)ll = 4z) and llH,(z) ‘11=0(z) (z--+x,Rez30), 

II Hr(=)ll = o(z) and 11 H,(z)- ’ /I = o(z) (2 + ~1, Re z 3 0). 

Property (iii) follows from the following fact: If S is a strictly positive self- 
adjoint operator on a Hilbert space H, then for every h E H we have 

The dispersion function itself has the property 

II n(z)11 = 4-‘) and II A(z)-’ II = 4=) 

for all o E (0, $7~). This property is based on the fact that if S is an injective 
self-adjoint operator on a Hilbert space H, then for every h E H one has 

-“.,I,2rr~~argI,Ir,,“5(:-S) ‘hl’=03 lim 01 E (0, $n ). 
: 

LEMMA 5.1. Zf the dispersion function has two .factorizations of the t~‘pe 
(70) with the,factors satisfying properties (i))(iii), then the.factorizations are 
connected by the ,formulas 

H/“(z) = H,“‘(z)(Z+ zA), H”‘(z) = (I+ zA) H”‘(z) r r ’ 

where A2 = 0 and for i = 1, 2 the expressions // H{“(z) A 11, I/ H{‘)(z)--’ A /I, 
)I H:)(z) A I/ and (1 H:‘)(z) ~ ‘A I/ converge to zero as z --f CC ,from the closed 
right half-plane. 

Proof: We easily obtain 

F(z)= H/2’(-z)P’ H;“(-z)= H!*‘(z) H;“(z)~ ‘, Rez=O. 
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Using Liouville’s theorem it appears that F(z) is an entire function satisfy- 
ing 

II m)ll = 4z2), IIF(z)~‘II =o(z*) (z-+ co, Rez<O), 

II m)ll = 4z2L IIF(‘11 =o(z*) (z-co, RezbO), 

whence F(z)=Z+zA and F(z))‘=I+zB. We easily find B=-A and 
A’=O. 1 

As we shall see shortly, the fact that in the case when the weight w(p) 
has more than one sign change the factorization (70) with factors having 
properties (i), (ii), and (iii) may be non-unique, does not affect the formula 
for the albedo operator E. The non-uniqueness may affect a computational 
algorithm to obtain the factors. 

Using a factorization of the type (70) we easily reduce the algebraic 
equation (67) to the Riemann-Hilbert problem 

H,(-II)~‘il+(~)+H,(~)il~(~)=H,(~)~(~), Rei=O. (76) 

LEMMA 5.2. The RiemannHilbert problem (76) has precisely one 
solution of the following type: 

(i) [+(;L) is analytic in the open left-right half-plane and continuous 
on the closed left-right half-plane; 

(ii) limj,,, A[+ (A) exists, as 1 approaches infinity from the closed left 

half-plane; 

(iii) limj.-oc 2’[-(2) exists for all 0 -C c -C 1, as 1 approaches infinity 
from the closed right half-plane. 

This solution leads to the unique solution of the boundary value problem 
(53))(55). 

Proof Put h k = lim,,, Ati(n) with the limit computed as in the 
formulation of the lemma. Then the conditions on H, and H, imply 

j.-s,Rcj.<OH~(-~)-‘î +(~)=O, lim lim H,(n) [-(A) = 0. 
I+m.Rej.20 

From (68) we also have 

j~4m~Re;~.oAho= --(p+, lim lim H,(1) &r(L) = 0. 
i-co, Rei.=O 

Given a Holder continuous function h(2) on the extended imaginary line 
satisfying &( + ice) = 0, we can find unique functions I$, (2) that are analytic 
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in the open left-right half-plane, continuous in the closed left-right half- 
plane and satisfying h,(ioo) = 0 (when approached from the appropriate 
half-plane), such that 

h^(i.)=h^+(l,)+h^ (A), Rei=O 

(cf. [28]). We therefore obtain 

e,(j~)=H,(-I)(H,L;))+(j,), î mm(i)=H,(i-’ (H,O)- (A). 

As a consequence of Lemma 5.1, these formulas do not depend on the 
particular choice of H, and H,. 

Finally, the relevant solution of the problem (76) (for which we are now 
going to prove (i), (ii), and (iii)) is given by 

c 
4+ 

and 

0 
2) = e”(‘(x)d.x= -n(Z-jE.T,)p’ Qmm Eq,, Rei=O. 

I 

In the latter formula we have employed the expression 

d 
--TC “l’Q~E~+=-~~~(x)E~+, 
d.u 

--x <x<o. 

From these expressions the properties (i), (ii), and (iii) are clear, because 
11 H,(z)11 =O(z’ -~’ )(z+ co, Rez>O). 1 

THEOREM 5.3. The alhedo operator is given hi 

where cp + E Q, [HT] and o,( .) is the resolution of the identity of TV- ‘A. 

Proof: Choose q+ E Q, [HT] and some factorization of the type (70). 
Then 
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&+ =vW=Jo- cp(x)dx 

= %(x)cp+ -$j” &(x--Y) cji(y)dy 
0 

=(P+ +J, ~~WX(Y)~Y 

=v++j;, C-P) g,(h) Cam+, (78) 

The right-hand side of (76) with l,=,u, can be written as 

H,(p) h(p) = H,(p) joE e”-’ jox ve-‘-‘m,(dv) cp+ 

(v) 

= H,(P) j* v ro,(dv) v+ 0 v-p 
CL,) 

m H,(v) ffAv)-H,(P) = 
j i 

V -- na (dv) cp 
I +, 

0 V-P V-P i 
( I’ 1 

whence 

(79) 

The identity (77) now immediately follows from (78) and (79). 1 

We remark that the factorization formulas (71)(74) are not valid if A 
has a zero eigenvaiue. Therefore, it is not clear whether for this case the 
albedo oprator can be written in the form (77). 

VI. ALBEDO OPERATORS FOR MODELS WITH ONE SIGN CHANGE 

In addition to previous hypotheses, we shall assume that (i) the weight 
w(p) has one sign change only (say at CE (a, b), where e.@)<O for 



HALF-RANGEPROBLEMS 279 

ALE (a, L’) and w(p) >O for ALE (c, h)), and (ii) T ‘A has discrete spectrum. 
If we now add a boundary condition at c as to make the resulting direct 
sum 2 of Sturm-Liouville operators strictly positive, the rank one dif- 
ference of the resolvents of T- ‘A and T- ‘A^ implies that Tm~ ‘a has discrete 
spectrum. Let (Ib,)0 + n E I be the nonzero (simple) eigenvalues of T-~‘il with 
corresponding real eigenfunctions ( (P,~)~ + ,1 t L satisfying 

. < E. 7 < 2 , <O<A., <2,-c... (Av,,, cp,,,) = 6,,,,,. 

Let (inhf,lt a be the (nonzero, simple) eigenvalues of T ‘a with 
corresponding real eigenfuctions ($,!)” + ,, t I satisfying 

Then II/,,(p) = 0 if n(p - C) < 0. It is readily seen that 

(Ic/,> $,,,)~=(I~ ‘TI$,,,$,,,),i=/i,rl ’ 6,,,,,, 

and therefore (IL,1 2$,,)Of,lEz is an orthonormal basis in H, = 
&(I; I w(p)1 &). In the same way we see that (IA,,1 ’ (P,~),~+,,~~ is an 
orthonormal basis of (I - PO)[ H,y]. 

Let us define JC(~) = K(P, 0) by (48), and let us compute its expansion 
coefficients 

k,, = (4 Ii,, I ’ 2 i,,)T? I;,,=(k.. Ii,,1 2 cp,,).s. 

where 0fn~Z. Then ICE/T,I~[H~] and (I-P,,)ti~ lSll”[Hs] if and 
only if 

c Ir,,l*~ Ikl’<G C //.,,12’ ~C,,12<x~. 
0 7‘ !, E I’ 0 # II t B 

We shall assume the existence of 0 < x < 1 satisfying (8). 

(80) 

THEOREM 6.1. Let A he stridy positive se@cijoint. Then the albedo 
operator E is given by the formuku 
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Here cp,,, = (cp + , I i,, I “2 tinjT. Moreover, g), = R,( - L,,) and s:, = fi,(LJ, 
where H,(z) and A,(z) are the unique functions appearing in the factorization 

a( -z) R(z) 

where K= (K,(O) K,(O))/K(O), and having the following properties: 

(i) B,(z), R,(z)-‘, R,(z), and fir(z)-’ are continuous in the closed 
right half-plane (except at infinity) and analytic in the open right half-plane. 

(ii) R,(O+)=A,(O+)= I/m. 

(iii) At infinity all four functions R,(z), R,(z)-‘, p,(z), and A,(z)-’ 
are o(z) as z -+ co from the closed right half-plane. 

Proof: The uniqueness of the factorization (8 1) is a direct consequence 
of Lemma 5.1 if there is only one sign change. We then easily compute 

and we may therefore put R, = 1 Kl ‘I2 H, and R, = 1 KI “’ H,. We now 
easily obtain 

which reduces to the stated expression for E. 1 

Let us consider the special case where q+(p) = I irI ‘I2 $,(,u) for some 
HEN. Then (P+,~ = 6,,,, as a result of the orthonormality of the functions 
I11,~l’i2~n~OfrlEL in HT. We then obtain for /J E (a, c), 

b%+h4=isgnK)m~,~~ -mK,dng; Ii-n,I”‘kn(PL), 
m I 

Clearly, we must have 

+f i, 
2 -1 L 

m=, il~,H-i,Ld,, = li,Kclg;12 u w(cLW~+)W12dw~~ s 
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and therefore 

lhg;c,= O(l) (I+ +m). 

Next, let us consider the special case (arising from most applications) 
where I= (-N, N) is a (finite or infinite) interval symmetric about the 
origin and the weight and Sturm-Liouville operator satisfy the conditions 

(i) w( -PO = W(P), 

(ii) (Af)b) = (A sgn(pL)fN -pu). 

The eigenvalues and eigenfunctions will then satisfy < ~,, = i,, and 
t,-,(p) = $,,( -p), whence K( -p) = -K(P) and gj, =g; =g,,. We obtain the 
simplified expressions 

and 

Here we have the summability condition (where g,, > 0) 

<m. 
(84) 

EXAMPLE 6.2. For CI E [0, $c] we consider the operator Ah = -h” on 
I= ( - 1, 1) with boundary conditions 

COS ah( f 1) f sin crh’( f 1) = 0 

and indefinite weight w(p) = sgn p. Then A is strictly positive for c( E [It& $r) 
and positive with simple zero eigenvalue for c( = fz. To construct A we 
impose the additional boundary condition h(O) =O; we obtain a strictly 
positive 2. As special solutions of the equation -h” = 0 we have 

(~(~,O)=~+l+tana, ~~Z~=(-l,0), cosacp(-l,O)=sinacp’(-l,O), 

tj(p,O)=p- 1 -tana, ~1~1, =(O, l), cosa$(l,O)= -sina$‘(l,O). 

x(/A 0) = P? pEI=(-1, l), x(0,0) = 0. 
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As p(p) = 1, we find 

K(O)=-2(l+tana), L,(O)=K,(O)=-(l+tana), K=-+(l+tana), 

whence (cf. (48)) 

rc(p)=(sgnp){l-(l+tancr)-’ IpI}. 

For the HA-normalized eigenfunctions $,,, n 3 1, we obtain 

$,,(p) = [t ( I - (sin 2~/&,6,~~~]“~ sin&/b P>@ (85) 

where (tan &)I& = --t an@ and (n-t)nd&bnn. For n> 1 it then 
follows that 

K, = [~(l-(sin2&/2~))P1]1’2. 
n 

As conditions (80) are satisfied (cf. Appendix), we may immediately write 
down the expression 

n(z)= 1 -2z2(1 +tancc) f (1 -(sin2&/2&)))‘&2, 
II = 1 n 

and compute / Kj = 2( 1 + tan a) and sgn K = - 1. The estimate (84) 
simplifies to 

and the albedo operator can be written down using (83). For a = 0 we have 
<,, = n2rc2 (n E Fk!) and therefore (cf. [17, Eqs. 1.421(3), (4)]) 

&I(z)=$(cot&+cothJ;). 

For c1= +X we have [,, = (n - 4)’ n2 = lim [,(a) as CI J$r. We then find 

Ih$) hn(z)=i&(-tan&+tanh$). x 

For the o! =0 case the example was presented by Kaper et al. [24] as a 
way to illustrate the existence and uniqueness theory of Sturm-Liouville 
diffusion equations. For this example they proved the existence of E in a 
way different from [S]. Here we have been concerned with an explicit 
construction of E. 
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VII, CONCLUSIONS 

We have presented two different methods of constructing explicit 
representations of the solution (albedo) operator for a class of indefinite 
Sturm-Liouville problems, culminating in the formulas (27) and (77) 
respectively. Problems of this type have been shown to have a unique 
solution [S], which ensures automatically the equivalence of the two 
representations whenever they can be constructed. So far, the second 
method has only been developed for Ker A = {O}, since the existence proof 
for the factorization (70) breaks down for Ker A # (0). The first method 
works for both Ker A = (01 and Ker A # {O}. The practical advantage of 
having two different methods appears when trying to solve concrete 
problems, when one method may be considerably more expedient than the 
other. If the original Sturm-Liouville problem ( Tm ‘A) is easier to handle 
than the modified one (T ‘A), the first method should be preferred and 
viceversa. The situation is acutally illustrated by the examples given in 
Sections 2 and 6, respectively. 

APPENDIX 

Verification of condition (56) (resp. conditions (80)). We consider the 
eigenvalue problem 

Ah = iwh, (Al ) 

where Ah = -h” + q(p) h with boundary conditions 

h( -a) = h(b) = 0 (0, b>O) t.42) 

and 

4~) = sgn P I P Id U(P), CJ> -$. (A3) 

The boundary conditions (A2) are used for simplicity only. Other boun- 
dary conditions can easily be accomodated. For 1( E [ -a, b] suppose that q 
and 2)” are continuous, and u > 0. Moreover, let q be such that A is positive 
with Ker A = {O). Of the two conditions (80) we first consider 

,+;Ez I&,jZ1 IrZ,,l*<co forsomeO<a<l, (A4) 

where I,, denotes the eigenvalues of problem (Al). It suffices to prove (A4) 
for n > 0. We have 

(A5) 
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with 

(A6) 

On introducing the variables 

-d/NO, 647) 

O<p<b, OW 

where #3 = (CJ + 2)/2, and letting 

649) 

Eq. (Al ) can be rewritten as 

with 

&Y) = (0 + v2 d/d + v^- l/4(& d2 -l/4 

4’2P) 
p b (CL)). 64W 

The upper (lower) sign in (Al 1) pertains to the case -ad p < 0 
(0 <p Q b). Equation (Al 1) has two linearly independent solutions of the 
form 

fw)= w2 (L(~“* Kv7+4, i)), 6413) 

ff,(C) = I r I “2 (K(~“2 I r IPI + 4> 0 1, 6414) 
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for 0 6 p < h; v = (2 + CJ)-‘. For the construction of these solutions and a 
discussion of the magnitude of the remainders ~~(2, [) relative to the 
corresponding Bessel-functions we refer to Olver [30]. 

We put G,(c) = C”“(p) (p,(p) and impose the initial conditions 

@,(i( -aI) = 0, @Xi( -aI) = 1. (Al7 

If we then write 

@(i) = Cl H,(i) + c2H2(1), -it--a)bidO, (Al8 

@H(i) = c3ff3(1) + C4H4(1), 0 < i d i(b), (A19) 

the conditions (A17) and the requirement that @” and @‘:, be continuous 
across i = 0 determine the coefficients ci uniquely. It follows from the work 
of Olver cited above that the leading behavior as L + CC of these coef- 
ficients is not affected by the remainders &,(A, [) (see [30, pp. 233, 235, 
2381). This is not surprising since one expects the potential q to become 
negligible as j. + CCI. By using the familiar asymptotics of Bessel functions 
we find 

C,N- Ii(-a)11’2 
P 

C2N Ii(-~)l”~ e.‘:” 
B (2nxJ~2 

c,-15Fa)l’~2r(l-y) C’” 
28 (27c.~,,)’ 

C4-C.Ii(-u)J”21(v)I(l-v) e’” 

28 (2rcX,)“2’ 

where x, = &, I [( - a)1 B. Hence 

@ (,)-li(-u)I’l’r(L.)2’~~’ n 
B 

and 

.,(,)__I~(-u)I”~~(-v)~~‘~’ 80 A,,,2 
n W(v) (27cx,)“2 n ’ 

(A-73) 

t.421) 

t.422) 

(A231 

(A241 

(A251 

(A261 

(A27) 
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where 

A = I i(-a)I l’* (i(b))“’ e”” 
n x~“y~l’2fi sin(rc/2v) 

P-G 
Bn=-T(b)& 

y, = /y2(((b))“‘. 

Solving the equation @,,(c(b)) = 0 yields 

(A281 

(~29) 

(A30) 

(A3f) 

To proceed with our investigation of R, we write 

(4 WV,,) = A,;‘(& q(p,,) + 247’Cp;(o) + 1,’ (~32) 

where we have used (Al), (A2), and an integration by parts. Since 
max _ a< rGh I (P,, I = O(e-‘In) it follows that the second term on the right 
dominates the others as n + co and thus 

(K, wcpp,) = 0(A~‘2-5’4e-‘n). (A33) 

Next we turn to the denominator in (A5). We note that 

(cpm w(Pn)= -PC:,, ~:(i)li”d:+~ji’“‘~t(i)i”di. (A34) 
0 

To find the large-n behavior of these integrals we employ the identity 

where the + ( - ) sign is taken if [ > O([ < 0). Therefore, by using (A17), 
we obtain 

B(o + 2)((~,, WV,) = C’(i(b) +Ui(b))* + U -aI) = O(C’e*“n) (A36) 

and hence by (A33) and (A36) we see that 

@L(O) I?, - const. 2; ‘I* ~,(i(b)), (A37) 

i.e., 

:-, = qp - 314). (A38) 
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Thus (A4) holds for 0 < a < (1 + (r)/2(2 + a). Checking the other condition 
in (80) is now easy if we note that 

K =(anl”z(lI,)T= (K lwl @?I) 
n II tLI”24(/nIlr ($m Ilt’l 1/1,,)“2. (A39) 

Considering n>O we know that $,,(p)=O if ,u<O. If we let 
Y,(i) = ti”“$,(~), then Y,, is just a multiple of H,(c). The analogs of (A32) 
and (A36) are readily worked out and it is found that (A38) remains the 
same. A similar argument works if n < 0. 
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