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ABSTRACT ¥

It is suggested that in certailn cases the Fredholm alternative
theorem can be used to simplify existence proofs in time-independent
linear transport theory., Existing results in abstract kinetic equa-
tions thecry are generalized as to encompass polarized light transfer
as well as certain inhomogeneous finite slab meddia.

1, Intreduction

The proof that a transport equation (or any mathematical equa-
tien) is well-posed includes a demonstration that a unigue solution
exists. In many instances, it is relatively simple that a solution,
1f it exists, is unique, whereas the existence question is often
consgiderably more delicate. 7This situatien occurs for the generalized

transport equation originally studied by wmmHmH and generalized by a

number of m:n$DNmm.w. Here it turns out that mwawwm positivity

mnmcsmsﬂmb modeled after an idea introduced originally by Case and

NSmHmmwm can be used to prove uniqueness. The exdstence proof is
rather invelved, requiring the introduction of various auxiliary
inner preducts and Hilbert spaces with asseccilated projection
operators, and a number of techuical arguments which tend to

obascure the subject to the physjcist or engineer. Another dis-
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advantage of this approach 1s that it seems to defy generalization
to inhomogeneous media problems and nen-plane-parallel geometry,
and requires selfadjointness assumptions of the two basic opera-
tors appearing in the abstract equation.

The purpose of this article is to point cut that in certain
cases, at least, the separate existence proof is entirely redundant,
i.e., existence is already implied by the demonmstration of unique-
ness. These cases are those in which the Fredholm alternative can
be brought into actlon. By way of wmtpmﬁ. we recall Halmos' par-
ticularly elegant statement of the mwnmdsmnu<m.m which we para-
phrase as follows. Let C be a compact operator from a Banach

space H inte itself, and consider the operator equation
£f=Cf +g; £, g €H, (1)

where g is %nown. Then if the solution to Eq. (1) is unique, it

exists. We refer the reader to Reference 6 for a proof of the
alternative n:monms.q

A class of generalized kinetic eguations for which the above
Fredholm alternative can be applied in a most elegant fashion is

the class of boundary value problems

(T£)"(x) + (IT-B)E(x) = g(x), = € (0,1} (2)

Q_d. (3)

Q,E(0) = 04, Q_E(T)

Here T and B are operators on an sbstract Hilbert space H, T is
(bounded or unbounded)} self-adjoint and injective and B is a compact

selfadjoint operator satisfying
o
30<a<l: Ran B & Ran|T| , (&)

while A = I-B is positive self-adjoint. By the closed graph theorem,

this condition implies the existence of a bounded operator D such that
B = {1|%. (5) -

The operators o+ and Q_ appearing in the boundary conditioms (3} are

the orthogonal projections of H onte the maximal positive and nega-—
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tive T-invariant subspaces, respectively. This class of abstract
boundary value problems which model a large variety of kinetic aqua-
tions in neutron transport, radiative transfer, rarefied gas dynamics
and even phonon transport (see References 3, 9 for many references)
has been discussed at great length by Van der zmmm.HoAH bounded) and
Greenberg, Van der Mee and Emycmo (T unbounded). For these models
uniqueness can be proved by a generalization of the argument used in
Reference 4. Turthermore, Van der Mee proved (for T bounded in

Reference 2, for T unbounded in Reference 10} that the operator

T
mﬁamuﬁxu = H H{x-y)BE(y)dy, 0 < x < 1(<=), {6)
¢}

11

is compact on rnhaauanmv. 1<p<e, {Here H{*) is the '"propaga-

tor function” of T, f.,e., the integral kernel of the operator

AH+HWWV|H.V He then goes on to prove that the boundary value problem
(2) - (3) 1s eguivalent to the vector equation

f= ram + W %)

on L_({0,7);H), where & is a known mcsnﬂHos.HN At this point,

existence follows from the Fredholm alternative theorem; no further
argument is needed.

Although for many applications the unboundedness of the operator
A = I-B in Equation (2) causes the simplification suggested above to
be non-applicable {for example, cf. References 13, 14, 15), we hope
that our remarks have added a new dimension and have suggested a new
direction for existence questions In transport theory. We recall

16 have relied on the fact that

that some classical existence preofs
the operator ha of Equation (7) cbeys :hﬂ: < 1, so that the Neumann
series solution to Equation (7) converges, Evidently, thils gives
only a sufficient condition for existence, which is not very
sharp; the Fredholm alternative may well give substantially improved
criteria.

In this article we shall also generalize the existing theory in
two directions. First we shall assume that A = I-B has a non-

negative real part, ReA = }{A+A*) > O, and satisfies
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Ker{ReA) = Ker A. (8)

Beyond the models where A4 is positive selfadjoint, a new applica-

tion is provided by polarized light ﬂﬂwsmmmﬂwq.wm

proof of a recent result of Van der zmmpm. The use of A with non-

negative real part was suggested by work of wmmummo. A second

leading to a novel

generalization ig to allow x-dependence of the compact operator B.
In partijcular, wx is a continuous function from [0,7] into the
compact operators on H, which satisfies the regularity condition
(4) for all x € [Q,1], while vx @ Hrmx has nonnegative real part
with WmnAmexv = Ker A_almest everywhere. For this general situa-
tion the Fredholm alternative argument still applies (although with
some modifications) and the uniqueness argument goes through com-
pletely. As a result new existence and uniqueness results are
obtained for inhomogeneous media problems.

We remark that the restrietjon T < « in Equation (6) is neces-
sary to guarantee the compactness of the operator ha and therefore
the full machinery of the Fredholm alternative. For half-space
problems the compactness of hq often (and always for homogeneous
media) breaks down and the argument does not apply in the above way.
However, for suberitical problems {ReA strictly positive) the opera~
tor thﬁ 15 still a Fredholm cperator and some modification of the
Fredholm alternative argument might be sought for.

The article is organized as follows. In Section 2 we discuss
the uniqueness problem for the case of a homogeneous medium {ReA >0,
x—independent) as well as the precise form of the Fredholm alterna-
tive. In Section 3 we analyze the modifications required if B
depends on x. In Section 4 we apply our results to the eguation of

transfer of polarized light.
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2., Homogeneous Media

Let T he injective selfadjoint, B compact satisfying (4), A
have a nonnegative real part satisfying (8); let ¢ € D{T) and let

i

WHITHER EXISTENCE THEORY? 673

g(x) meet the Hélder continuity condition of Reference 12. Then
every continuous function £:[0,r]-H such that £(x) € D(T} for all
x € (0,1}, Tf is strongly differentiable on (0,T) and Equations
(2)-(3) hold true 1s a solution of the convolution equation (7
where w(x) is given in Reference 12. Conversely, every solution

f of BEq. (7} in I
in D(T)}, has Tf -
Equations {2)~(7%;

Lt¥1HY is continuous on (0,T], has its values

ungly differentiable on (0,7) and satisfies
10

, Hence, in view of the compactness of ha on

L ((0,7);H), it suffices to prove that the boundary value problem

(TE)' () 4+ (T-B)f(x) 20, 0 <x<T (9)

Q,f(0) = Q_f(r) = 0 (10)

has the trivial solution f = 0 enly. Indeed, given a soluticn £ of

these equations we have
2 ((ReAYE(x), E{x)) = —(AE(x),E(x)) - {E(x),AE(x}) =

= {((T)'(x),£(x)) + {Ex),(TEY' ()} = mwmamﬁxv.mﬁxvu

(see Appendix for the last equality) and, as ReA > 0,

T
G > -2 % ((Red)E(x},F(x))dx = (TE(T),£{T)) - (TE{0),£(0)) > O,
o .
because £(0) = Q_£(0) and £(1) = @+mﬁev. Hence, ((ReA)f(x),
E(x)) 2 0 and thus
(Rea)f(x) =20, 0<x < T.

Using (8), we have Af(x) Z 0 and therefore [cf. (9)I(TE) (k) = O,
Hence, f¢x) = h with h € KerA. Finally, we have fef. (10})]

b= Qh+Qh = QE@0) + Q_f(ty =0,

whence £ = 0, Uniqueness, and thus existence, of the solution of
Equations (2)-(3) is clear.
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3. Inhomcgeneous Media

Let T, ¢ and q{x) be as before, and let x T wx be a continuous

function (with|respect to the norm topology) from [0,T] into the
compact operators on H. Suppose that for fixed o £ (0,1)

* Ran 3 < Ran|t]%, 0 <x <1, (1L

where the family of operators ﬁ_aﬁlpwx_x € 10,71} 1is bounded. Also
suppose that ReA > O and Ker wmbx = mma>x for almost every x € [0.T].
Then every continucus function £:[0,7] + H such that £(x) € D(T) for
all x € (0,1), Tf is strongly differentiable om (0,1} and Equations
(2)=(3) hold true (with B replaced by mxu is a solution of the
integral equation {7}, where w(x) is given in Reference 12 and

T
AFAmvnxv = ﬁ xﬁxlwuwwmnwvaw, ® € (0,7). (12)
0

Conversely, every solutiom £ of Equation (7), with ﬁa defined by
(12}, in rsnno.auva is continuous on [0,T], bas its values in n(T),
has Tf strongly differentiable on (0,T) and satisfies Eguatioms
(2¥-(3) (with B replaced by wxu. Indeed, for fixed 0 < f < a one
may prove X Tme_:m B, eontinuous on [0,T}. Exaetly repeating the
equivalence procf of either Reference 2 (T bounded} or Reference 10
{T unbounded) ond considering the compact operator-valued function
xp o, = _,_”_1mw B
huﬁmo.ﬂvnmd_ 1 < p £ = The uniqueness proof of the previous

on [G,T}, one easily proves ra compact on

section goes through completely, with only the nominal change
B[ B . Hence, under the above conditions Equatioms (2)-(3) {with
B replaced by mxv are uniquely solvable.

4, Application to Polarized Light Transfer

The equation of transfer of polarized light for a pleane-

parallel atmosphere of finite optical thickness T nmmmqu

1 2w

cmwmﬂx,z.au + {100 = ww _ — mﬁt.:..e;e.umnx.t..e.vae.mz..
=10 0<x<n 13

e
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£00,u,8) = ¢(0,u,9) for u > 0, Z{T,u,¢} =0 for u < O, (14

Here mﬁx.c.ev is the four-vector of polarization parameters 1,Q,U,V
with I the intensity, mn:.ﬁ..e;e_v is the phase matrix describing
single scattering, total absorption by the planetary surface is
assumed and ¢ € (0,1]. Introducing the Hilbert space B of measurable
functions muﬁlp.puxmo.mau - ﬁb

i.,-norm, and defining the operators

which are bounded with respect to the

2
(Th) (0, ) = wh(u,9),
1 2r (13)
(Bh) (1, 8) = 7 % — Z00,1' -9 I Elxn,pT )¢ A
-10
hiu,é), W > O 0 ,H>0
Q) (1,9} = Q_h) (u.¢) = {16)

9 ,u<0 nlusgds v <o,

L

an example of Equatdons (2)-(3) arises. Inhcmogeneous media prob-
lems arise for x-dependent phase functions, The phase function

allows the mmnnonHNmnMOﬂHu

20t 4-4") = L(T-0,)F(8)L(-c,)

for sultable angles m.qH.aM depending or W, W' and (¢-¢'), where

1 Q Q 0 muﬁmv vHAmv 0 0
¢ cos 20 sin 20 C b, (8 a,{8) 0 0

Lia) = Fey =| 1 2

< 0 -sin 20 cos 20 O - 0 0 mmamv vmhmv '
a 0 ] 1 0 0 -by(®) a, (@)

and where wnmv leaves invariant the positive cone of vectors (I,Q,U,V)
. 2,..2 E
satisfying I > (Q™+U +<mva >0 and ﬁw mwamvamoommv = 2, On the basis

of these properties it can be mrcsdwm.mH

that B is a compact operatoy
on H whose elgenvalues are situated in the half plane {x|rer < 1} if
¢ € (0,1), and in the aset {x|Rer < 1}U{1} if ¢ = 1. Since ReB =
15(B+B*) has the ferm (15) with dmAmv Z 0, we also have the eigen-

values of ReB in the set {A|Rek < 1} if ¢ € (0,1) and {A]Rex < 1)U
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{1} if ¢ = 1. Hence, Re4d > 0 and Kexr(Red) = Kerd = spanf{(1,0,0,0),
0,0,0,1)} if mHﬁmV z mbﬁou and Ker(ReA) = KerA = span{ (1,0,0,00}

otherwise. On zssuming that

1 _
v > 1 % a) (8) d(cos 8) < ®, (17}
-1
we may obtain the regularity assumptien nbva. Hence, if (17} is
satisfied and the scattering matrix F(€} leaves invariant the positive
cone of vectors (I,Q,U,V) with I > nom+cm+<muw > 0, the transport
problem (13)-(14) is uniquely sclvable. Hence, we have derived in

a different way a result of Van der mepc. In ordetr to have

F(0)
depends on x: F(9) = F(8;x). Also the functions vamm.mu.mp.dH and
b

application for inhomogeneous atmospheres, we have to assume !

2 must satisfy the continuity assumptions

1
(m"mmo“ﬁ%_nnmuxvlnﬁmnwuﬂﬂ d{cos 0}
21

T e s ey < 8

with x,y € [0,7] and fixed r > 1, as well as the property that all
watrices F{0;x) leave invariant the vectors (I,Q,U,V) satisfying

1> ﬂom+cm+<mvx > 0. Hence, the transport problem (13)-(14) with
Z(u,1",49~¢") replaced by 2(u,u" 90" %) 1s uniquely salvable alsa.

5. Concluding Remarks

In an almost trivial way we have derived existence and unique-

ness results which were previously known to be deducible rigorously only

using heavy functional enalysis, including an extensive apparatus

of immer products, projections and scattering operators. We have
extended these results to nomnegative real parts for A = I-B, while
such an extension is far from cbvioua Lf one applies the usual
arguments in abstract kinetic equations theory. The present approach
also seems promising since it appears to render results on the

Achilles heel of abstract kinetic equations theory: dinhomogeneous

media.
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Appendix
Let £: [0,7] + H be continuous, £(x) € D(T) for 0 < x < T, and

Tf strongly differentiable on (0,7). Then x b (T (x), £{x)) is
differentiable on (0,T7) and

mwAemaxv.mﬁxvv = ((TEY' (), EC)MHCE(X), (ZE) " (2D, x € (0,7). (18)

Since Tf is strongly differentiable rather than f, the identity is
not completely trivial and a proof, however straightforward, is

required. Indeed, writing
L{(TE(xete) , £ Gete)) - (TEGO,EG) =
= 2ersGere) (0T, £Gere)) + F(EGOLTIEGRE)~E()1)

using the strong differentiability of Tf and the (local) boundedness
of f, Eq. {18) is easily seen to be fulfilled.
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