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Abstract. Closed form solutions are obtained for a Fokker-Planck model for 
cell growth as a function of' maturation velocity and degree of maturation. 
For reproduction rules where daughter cells inherit their parent 's  maturation 
velocity the complete solution is derived in terms of Airy functions. For more 
complicated reproduction rules partial results are obtained. Emphasis is given 
to the relationship of  these problems to time dependent  linear transport  theory. 
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1. Introduction 

In a recent article Rotenberg [1] derived a diffusion equation which describes 
the number  of  cells with a certain degree of maturity as a function of maturation 
velocity and time. This equation is the partial differential equation 

Of+ v af= ~ a2f (1) 
at 8tx *aOv--5' 

where t c (0, co) is time, v c (0, oo) the maturation velocity, /x e (0, 1) the degree 
of maturat ion and D a (positive) diffusion coefficient. It was derived from a 
linear integrodifferential equation describing the same quantities using the 
Fokker-Planck approximation that the transition rate which specifies the transi- 
tion of cells from one maturation velocity to another is symmetric and highly 
peaked about conservation of maturation velocity. As boundary conditions (in 
the maturation velocity v) one takes 

0 
0-7 f(/x, v, t)lv= o = 0 (2) 

and 

lim f(/z, v, t ) =  0, (3) 
o ~ o o  
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since these are necessary to produce a continuity equation without sources, 

Ot f ( g ,  v, t) dv + - -  vf(tz, v, t) dv = 0. (4) 
0/z J0 

According to Rotenberg [1], there is no known closed solution to Eq. (1) with 
initial condition 

f ( # ,  v, 0) = 8(/~)~(v - w) (5) 

and boundary conditions (2) and (3). The purpose of the present article is to 
supply such closed solutions. 

On separating off the time variable t, by means of the Ansatz 

f ( l z ,  v, t) = e-at~, (fz, v), (6) 

one obtains the eigenvalue equation 

af a2f 
v - - -  D ~ v 2 =  )tf(tz , v ), (7) 

0/z 

subject to the boundary conditions (2) and (3). Further separation of variables, 
viz. 

~, (t~, v) = e~ (8) 

gives the ordinary differential equation 

Dg~(,p(v) - Agx,p (v) = pvga,p(v) (9) 

with boundary conditions 

g~,p(0) = 0, lim vgx,p(v) = 0. (10) 
V ---~ c o  

We shall consider Eq. (9) on the Hilbert space L2(•+; ;3 do). Then the Sturm- 
Liouville differential operation g[ ~ D g " - A g  is regular at v = 0 and singular of 
limit-point type at v = +oo (cf. [2, 3]); a normal and, for A ~ R, a selfadjoint 
boundary value problem arises by imposing the first boundary condition (10) 
and replacing the second one by gx.o c L2(R+;/3 dv). For fixed A one then has to 
find the (regular and singular) eigenvalues p and the corresponding eigenfunctions 
and eigendistributions as to obtain a complete set in L2(R+; v dv). Since this may 
be done for any A the conditions (2) and (3) do not suffice to specify the solution 
f(/z, v, t) to Eq. (1) uniquely. In order to accomplish well-posedness, an additional 
boundary condition involving/z should be imposed which specifies the (regular 
and singular) time eigenvalues A and allows one to solve the corresponding 
initial-boundary value problem by expansion with respect to the eigenfunctions 
and eigendistributions corresponding to A, given f(/z, v, 0). 

It is clear from the above that an additional boundary condition must be 
imposed as to make Eqs. (1) to (4) well-posed. For this condition we take a 
reproduction rule which expresses the cell distribution of birth (/z---0) in the 
distribution at mitosis (~ = 1). The simplest reproduction rule stipulates complete 
inheritance of the maturation velocity from parent cell to daughter cell on mitosis, 

f(0,  v, t )=pf (1 ,  v, t), (11) 
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where p e (0, 2] is the average number of viable daughters per mitosis. Lebowitz 
and Rubinow [4] have introduced a class of more general reproduction rules 
given by 

fo vf(O, v, t) =p k(v, v')v'f(1, v', t) dr', (12) 

where k(v, v') is nonnegative and satisfies the normalization condition 

o~ v') dv = 1. (13) 

For k(v, v')= 6 ( v -  v') we will retrieve (11). Other special cases were discussed 
in Rotenberg [1], such as the reproduction rule assigning maturation velocities 
to daughter cells independent of the velocity distribution at mitosis, 

k(v, v') = k(v), k(v) dv = 1, (14) 

and the reproduction rule giving a fixed initial maturation velocity w, 

k(v, v') = 6(v - w). (15) 

We also mention the separated kernel 
M M [~ ao 

k(v, v') = • kj(v)lj(v'), E Kjlj(v')= 1 whereK~ = J 19(v) dv. (16) 
j = l  j = l  0 

For the "perfect memory rule" (11) we shall give a complete solution of the 
time-dependent transport equation. Except for this rather elementary reproduc- 
tion rule, where the eigenvalues A and eigenfunctions can be given without 
resorting to complicated series expansions, we shall give a detailed discussion 
of the completeness of the eigenfunctions and the distribution of the eigenvalues 
which will appear as the zeros of a "dispersion" function. 

We attack the solution of Eq. (1), with boundary condition (2), (3) (plus one 
of the reproduction rules (11), (12), (14), (15) or (16)) as follows. We begin, in 
Sect. 2, by solving Eq. (9), assuming A ~ C fixed, in terms of Airy functions. 
Having obtained the eigensolutions q~,,A, we go on to show how arbitrary functions 
of v may be expanded in terms of the ~,,x with expansion coefficients g,,. Next, 
we consider f(tz, v, 0) =fo(tX, v) and expand it using the eigenvalue expansion of 
fo(0, v). If  ~ (still assumed fixed) is an eigenvalue of t h e  original transport 
equation, (1), the function fo(/Z, v) has to satisfy the reproduction rule. Consider- 
ing first the general rule, Eq. (12), one gets an expression for the expansion 
coefficients g,, which is a complicated equation in which A is contained implicitly, 
through q~,,x, p, ()t) and C~,. To study it, we consider the simplest rule, correspond- 
ing to perfect memory, which leads to an explicit solution for Ps, while each Ps 
leads to an infinite sequence of eigenvalues A,.~. For 0 < p < 1 the corresponding 
eigenfunctions q~,,s are complete (s ~ Z, n e N). The final solution to Eq. (1) is 
obtained by expanding fo(tZ, v, 0) in terms of the ~p,,s and inserting the appropriate 
time exponents. For p ~> 1, the term s = 0 concerns continuous spectrum and the 
sum over n must be replaced by an integral. 

For more complicated reproduction rules, one can proceed in an analogous 
manner, but the procedure is much more complicated and we have obtained only 
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a partial answer. In all cases this leads to a dispersion formula which contains 
implicitly and must be solved for h. When the ~ have been obtained, the 

procedure sketched above for the simplest case can be followed to obtain the 
solution for the present case. This would undoubtedly require numerical tech- 
niques. 

The above problem has much in common with t ime-dependent transport 
theory problems (see [5-8] for references), since for p = 1 condition (11) reduces 
to a so-called periodic boundary  condition. Due to the complicated nature of  
the equation, one usually employs semigroup techniques to study the long-time 
behavior  of  their solutions. Only for some simplified equations and for periodic 
boundary  conditions, closed form results have been obtained (for instance, [9]). 
The eigenfunction method itself is commonplace in transport  theory (see [10]). 

2. Eigenfunctions of the boundary value problem in maturation velocity 

On substituting z = (pv +h) la  where a 3= Dp 2 and p # 0, into Eqs. (9) and (10) 
and putting G(z)=gx ,p( (az -a) /p)  we obtain the Airy equation [11] with 
boundary  conditions 

G"(z) = zG(z), arg(z) = arg(p/a), (17) 

a'(A/ce) = O, G ~ t2((p/a)P+; Izl de). (18) 

The Airy equation (17) has two linearly independent solutions Ai(z) and Bi(z), 
satisfying ([11], 10.4.59 and 10.4.63) 

Ai(z) --lqT-1/2z-l/4e-r ~. (--1)kCk~ -k (larg z[ < ~-) (19) 
k = O  

and 

Bi(z) ~ "Ir-1/Zz-1/4e r ~ ck~ -k ([arg z I < (~r/3)), (20) 
k = 0  

where c o = l ,  c k = ( 2 k + l ) ( 2 k + 3 ) " ' ( 6 k - 1 ) / ( 2 1 6 k ' k ! )  and ~=(2z3/2/3). 
Hence, if [arg(p/a)[ < (~r/3), then G(z)  -~ Ai(z)  where p must be chosen in such 
a way that Z/a  is a zero of Ai '(z).  Since Ai'(z) has all its zeros on the negative 
real line and these are simple and may be denoted as 0 >  a~>  a~> �9 �9 �9 > - m ,  we 

3 - -  2 
find a discrete set of  values p..o and corresponding a.,0 with a . , o - D p . , o  and 
larg(p.,o/a.,o)l<(rr/3), satisfying a.,o = ( A / a ' )  where n~N.  Next, if  ( ~ / 3 ) <  
arg(p/a) < m then G(z) = Ai(z /e)  with e = exp[2~ri/3], where p is chosen as to 
get (A/ae) as a zero of  Ai'(z); thus one must select a discrete set of  values p.,1 

3 - -  2 and a.,1-Dp.,1, (~r/3)<arg(p.,1/a.,1)<~r and a., l=(A/ea ") where n~N.  I f  
zr < arg(p/a)< (5~/3) ,  then G(z)= Ai(ez), where p is chosen such that (e)t/a) 
is a zero of  Ai'(z); thus a discrete set of  values p.,2 and a.,2 should be selected 
for which t~ 3,2 2 = Dp.,2, ~ < arg(p.,:/a.,2) < (57r/3) and a.,2 = (e.~/a') where n c N. 
The corresponding eigenfunctions are given by 

hn, k ( v )=Ai (  pn'k v ' )  \C%kT-s , n e N a n d k = O ,  1,2. (21) 

It  remains to discuss the case when arg(p/o~)= + (~r/3) or (zr). The asymptotic 
expansion (19) indicates that Ai(')~L2(eR+; Izl dz). Since every solution of 
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Eq. (17) is a linear combination of Ai(z)  and Ai(ez) ([11], 10.4.1), it is not 
difficult to see that no nonzero solution of Eq. (17) belongs to L2(eR+; Izl dz), 
whence no eigenfunctions will be found if arg(p/a) = + (z ' /3) or (r If  p =0,  
we consider Eqs. (9) and (10) themselves and easily derive that no eigenfunction 
exists for this case. Putting /3k = arg(p.,k/an, k) and observing arg(p.,k)= 3/3k, the 
eigenvalue equation 

(pn, k/Otn, k) = (ekarn/A)Pn,k, n ~ N and k = O, 1, 2, (22) 

yields 

arg(A) = 2/3k + ~'+ (2~rk/3), (23) 

where - (r </3k + (2~rk/3) < (7r/3). Hence, the eigenvalues A belong to the 
region 

(7r/3) < arg(A) < (57r/3) (24) 

and /3k = + (~-/3) + (2~rk/3) (the no eigenvalue case) corresponds to arg(,~) = 
+ (~r/3). Thus if A # 0 satisfies the condition (24), one must consider each of the 
three choices of ilk, all satisfying/3k =/3o+ (27rk/3) with I/3ol < (~/3)  and leading 
to the same [cf. (21)] sequence of eigenfunctions 

( ) ~, ,~(v)=h, ,o(v)=Ai  O"v+a'~ , n~N,  (25) 
kOtn 

where p, = p,,o and a ,  = a,,o. For A = 0 or arg A = + (7r/3) the Sturm-Liouville 
problem (9)-(10) has continuous spectrum p ~ ( - ~ ,  0]. The set of eigenfunctions 
(25) has the orthogonality property 

fo ~ V ~ . , ~ ( v ) ~ , ~ v )  ,Iv = C.~.,.a (26) 

and the completeness property 

vlg(v)12 dv  -- 2 C~.lg.l  ~ wheregn=c~ - - ~  vg(v)~.,~(v) dr. 
0 n = l  

As a result every function g ~ L2(~+; v dv) may be expanded as 

g ( v ) =  ~ g.~.,a(v) (27) 
n = l  

in the sense that 

Io ~ lim v g ( v ) -  gnq~n,x(V) dr= lim C~.lg.12--0, 
L--> oo 1 L--> co n = L + l  

where 

c ~  = vL~. ,~(v)l  2 dr. 
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3. Eigenfunctions of the transport operator 

In our study of the boundary value problem (7)-(2)-(3)-(12) we introduce the 
Banach space B of functions h : [0, 1] • R+ -> C which are continuous in tz ~ [0, 1], 
measurable in v ~ R+ and bounded with respect to the norm 

Ilhll~-- max vlh(tz, v)l 2 dv 

We may consider B to be the Banach space of continuous functions /~: [0, 1]--> 
L2(R+; vdv) with supremum norm, the correspondence given by /~(/z)(v)= 
h(tz, v). Searching for a time eigenvalue 3, satisfying (22) and corresponding 
eigenfunction fo(/Z, v)( ~ B), we first make the expansion 

fo(tX, v)= ~ g.eP.U~o.,x(v), (28) 
n = l  

where 

[Ifol12= max ~ C~ e2"~ReP")lg,,12<~. (29) 
O ~ / ~  1 n = l  

On substituting (28) in (12) we obtain 

v ~ g,~.~(v)=p ~ g~e p~ k(v, v')v'~,,A(v')dr', (30) 
n = l  n = l  

whence (cf. (13)) 

where 

g.l~=p ~ eP.g.l~, (31) 
n = l  n ~ l  

A t t 
In - v ~On, x ( V ) d r ' .  

On multiplying (28) by r (v) and integrating we find 

io~ gmC~ =p ~ g,e ~176 k(v, v')v'~,,~(v')g,m,a(v) dr' dr, (32) 
n = l  

which must be satisfied for a nontrivial sequence (gm)~=l having the property 
(29) in order that 3̀  is a time eigenvalue. For 3̀  =0  or arg(3`) = + ( ~ / 3 )  one uses 
the continuous analogs of (28) and (29) and obtains (32) where the summation 
has been replaced by (another) integration. 

Let us first analyze the "perfect memory rule" (11) where k(v, v') = 6(v-  v'). 
Equation (32) reduces to the algebraic equation 

(1 -p  e~ = 0, (33) 

whence 

p~=ln(1/p)+2~is, scZ. 
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For  every s E Z and every 0 < p <~ 2, exempting s = 0 and 1 <~ p ~< 2 where -oo  < 
P~, ~< 0, we find the eigenvalues 

h,,,~ = a~D1/3[ln2(1/p)+ 4qr2s2] 1/3 exp[iq~], (34) 

where 

belongs to --~, i f  0 < p < 1 

q~, = a rg[ ln(1 /p)  + 27"ris] 2/3 7r equals-~ sgn(s) i f  p = 1 

belongs to \ 3 ' 3 ] u \ 3 ' 3 ]  i f  l < p <~ 2" 

In  all cases sgn q~ = sgn s and lim . . . .  ~ = • ( I r /3)  (except for s = 0 and 0 </3 < 1 
where ~ = 0). For  0 < p  <~ 1 none  and for 1 < p  <~ 2 at most  finitely many  classes 
o f  eigenvalues having the same s (exempting s = 0 for  p <~ 1) belong to the closed 
left half-plane.  The eigenfunctions are given by 

~,,~(tz, v) = q~~ v) = l___y e2~i~ai(~qv + a ' )  (35) 
p .  

where 

Os = D-1/3[ln2(1/ p ) + 47r2s2] 1/6 exp[liq~,]. (36) 

For  s = 0 and 1 <~ p ~< 2 the time eigenvalue problem in the Banach space B 
has cont inuous  spectrum. Next  we shall discuss the reproduct ion  rule (14). Putting 

k~ = k(v)~p,,,,,~ (v) dr, 

Eq. (31) reduces to the algebraic equat ion 

kX l A x 
~, , , , , -pe p,, ~ ; ,  xfC-~,g,, (37) =0, 

which must  be solved for { ' f -~,g,}~=l  ~ 12[cf. (29)]. We easily derive 

IkAm[2 k(/))---~2 d/), 2 1  ~nn = ~ d/) = 00. 
m=, C ~  v 

oo 
Hence,  on assuming ~o (k(v)2/v) dv <oo,  we obtain h as a time eigenvalue if at 
least the summabil i ty  condi t ion 

and the dispersion relation 

~ l ~ e2Reo Iln~l ~ O0 

1 ~ k X l  ~ _ =  ep  ~ n . 
p n=l C~ 

(38) 
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A A are satisfied for A. The coefficients g. must then be taken as g. = (k./C,,), whence 

co A 

fo(p,v)= ~=l-~eP"~.,~(v) (39) 

is an eigenfunction in ~$ if it satisfies 

[[fo[[~= max ~. Ik~12e2"Re".<oo. (40) 
0 ~ < 1  n = l  

Thus if condition (40) is fulfilled with the corresponding series absolutely conver- 
gent, then the function given by (39) is an eigenfunction at the time eigenvalue 
A if (and only if) the summability condition (40) is satisfied. F o r  A = 0 or 
arg(A) = -~ (zr/3) one must use the continuous analogue of (32) leading to a 
complete analog of  conditions (38)-(40) for A to be a time eigenvalue. 

For the reproduction law (15) where k(v)=6(v-w) we do not have 
~o (k(v)2/v) dv < co. Therefore we shall do a separate computation. Putting 

n x ~. p. x = g, e 1,, 
n = l  

Eq. (32) leads to the algebraic equation 

gmCXm : - p H X ~ .  

Since H x # 0 to get an eigenfunction, we obtain the dispersion relation 

eP"-F~ ,p.,~ (w) = -  (41) Z.a 
n ~ l  ~ n  P 

to be satisfied for A, with corresponding eigenfunction 

fo(m v)=  Z 1 ,,=, ~ .  ~.,. (w) eP"~.,. (v), (42) 

provided it satisfies the normalization condition 

Ilfoll~= max ~ [~o,.a(w)[ 2 e2~'ReP-<oO. (43) 
0~p, ~< 1 n = l  

For A = 0  or arg(A)= + (r one uses the continuous analogs of  (32). 
Finally, let us consider the reproduction law (16). Putting 

fo o fo k ~ v'IAv%.,x (v') dr', j, . .  = ~ ( v ) ~ m , ( v )  dv, j , .  

we may reduce Eq. (32) to the algebraic equation 

( (~nm --P eP" ~. c"-'7-, r--'z-,I ~/t.,, ngn -- 0 (44) 
.=1 j=l 4C~4C~./ 

A co to be solved for {~C--~.g.}.=l ~ 12 in a nontrivial way. One easily computes 

io o ;o , j.m, = ~(V)2 dr, , j.n, = V[/j(V)I z dr. 
n = l  C ~  /.) n = l  C ~  
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oo 2 
Hence, on assuming, for j =  1,2 . . . .  , M, ~o (k j ( v ) / v )  dv<oo, one obtains h as 
a time eigenvalue if at least the summability conditions 

l ~ 
e 2Rep  [ J'AI < O0 

n = l  C n  

are satisfied as well as the dispersion relation 

k x p \ M 
det ~,k--P ~ e ~ JC ? " )  =0.  (45) 

n = l  n ] j , k = l  

If  the latter holds true for A and 

k~= k--P e~ " ~k--0, j =  1 , 2 , . . . ,  M, 
=1 n = l  

for a nontrivial vector (~:k)ff=~, then one may choose g , .  =~jM__ 1 A A ~(kj, m/ Cm) and 

fo(/X,v)= ~ ~ ~ k~"e~ ~v ~ (46) 
i ~  A " Wn ,  A t. ! 

j = l  n = l  ~ j , n  

is an eigenfunction in B at the eigenvalue ,~, provided 

.k.~ e2, Re p. IlfollN= max ~ j,, <oe. 
0~<ts~l n = l  j = l  

For A = 0 or arg(A) = + (z ' /3)  one has to employ the continuous analogue of (32). 

4. The time-dependent transport equation 

In this section we discuss the solution of the transport equation (1) for f ( . , . ,  t) ~ 8 
under the boundary conditions (2), (3), and (12), assuming the solution at t = 0 
given. Let us first treat the case k(v, v') = ~(v - v'), where all eigenfunctions have 
been computed explicitly. For 0 < p < 1 we expand the initial density f(/x, v, 0) as 

+o~ ~ ~ e2~i~'Ai(t~sv+a'), (48) f(/z, v, 0) = E C,s 
S=--oo r l~l  , p /Z 

where o" s is given by (36) and 

I:Io /;; C,,s = vpg e-2~ig~Ai(cr~v+a')f(tz, v,O) dvdtz vlAi(o'sv+a'~)12 dv. 

The cell population density at time t is then given by 

fox,  v, t) = ~ C.,~ eX", st e2~"~Ai(o'~v + a'). (49) 
s = - o o  tl ~ l 

For 1 <~ p <~ 2 the situation is more complicated. For the density we first write 

fox,  v, t ) = l f / / ( v ,  t)+f~(tx, v, t), (50) 
P 

where 

fo lpgf~(l~, v, t) dl~ = O. (51) 
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+oo ~_~ 1 2"rri 
f~(IX, V,t)= ~, Z, Cnse ;%st e ~ Ai(cr~v+a.), ~ 

S~--oO rl=l ~ - ~  
s#O 

where 

fol;o ~ / ;o  ~ C,,~ = vp ~ e-2~SAi(crsv + a')fz(lz, v, O) dv dl~ vlAi(o'~v + a')l 2 dv. 

For the "paral lel"  density one obtains the boundary value problem 

f//(v,O) g i v e n a n d f o v l f / / ( v , t ) , 2 d v < ~  [ (52) 

which for p = 1 reduces to the heat equation. For p = 1 standard Fourier transform 
techniques [12] lead to the solution 

f//(V, t ) =  COS(SV) e-'~~ as, (53) 

where f//(v, O)=SoCOS(SV)f//(s)ds, it is then advantageous mathematically to 
o o  ^ 

require So If(v,t)l 2dv<~, since one then has LIf(s)12ds<~. For 1<p~<2 
we introduce Cis(z) as the unique solution of  the boundary value problem 

Ci~(z) = -zCis(z), Cis(s) = 1, Ci's(s ) = O, 

where s e (0, ~ ) .  In fact, in terms of Airy and associated Airy functions [11] we 
have 

A i ( - z ) B i ' ( - s )  - A i ' ( - z ) B i ( - s )  
Cis(z) - A i ( - s ) B i ' ( - s )  - A i ' ( - s )Bi ( - s )"  

For Q = - I n ( I / p )  > 0 we have 

~o ~ exp(-D~/3Q /3st)f//(s) ds, (54) 
[[ Q\,/~ \ 

whereJ~/(v, 0) = So Ci~((Q/D) ~/3v + s)f//(s) ds. The complete cell densityf(iz, v, t) 
then follows using (50). 
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For more complicated reproduction rules it is not straightforward to solve 
the time-dependent transport equation. In the case when the transport operator 

Oh 02h 
(ah)(/x, v) = v - - -  D - -  (55) 

Op. Ov a 

defined on a suitable domain of functions h ~B satisfying (Oh/Ov)(v = 0 ) = 0  
as well as condition (12) generates a strongly continuous semigroup on B, 
written e tA (cf. [13] for semigroup theory), the unique solution may be written 
formally as 

f ( tz ,  v, t) = [ e ' A f ( . , . ,  0)](/x, V), f ( . , . ,  0) C ~. (56) 

For the "perfect memory" rule this procedure can be implemented without 
modification for 0 < p  < 1. For 1 ~<p~<2 we must replace B by 

Bo,pG Qp[~] where(Qph)(ix ,  v ) = h ( p ~ , v ) -  pVh(~,,v) dv 

and go,p = L2(R+; d~p(v))  for a suitable measure d~p(V). If  A has a compact 
resolvent and its eigenfunctions and generalized eigenfunctions form a complete 
set (in the sense that the span is a dense linear subspace of B), one can express 
the formal solution (56) in terms of a series involving eigenfunctions of A. 
A more complicated situation arises if either A has a compact resolvent but its 
eigenfunctions do not form a complete set, or part of the spectrum of A is 
continuous. The latter occurs, for instance, for perfect memory reproduction with 
1 ~ p  ~2 .  In the latter case one may still solve the time-dependent transport 
problem explicitly if one has an explicit representation of A, possibly on a 
modified solution space, as exemplified for "perfect memory" and 1 ~ p ~ 2. 

5. Discussion 

For the simple reproduction rule (11) we have given the complete solution of 
the time-dependent transport equation. For more complicated rules our result is 
far from complete, since we did not solve completely three basic problems: (i) 
existence and uniqueness of the solution which requires a proof  that the operator 
A in (55) generates a strongly continuous semigroup, either on • or on a modified 
Banach solution space, (ii) a complete determination of the spectrum of A, i.e. 
eigenvalues, continuous and residual spectrum, and (iii) a spectral representation 
of A which allows for the solution to be written down by series and /or  integral 
expansion. The bulk of time-dependent transport theory (cf. [5-8]) centers around 
the first and second problems and usually does not lead to closed form solutions. 
The latter is almost solely restricted to very simple problems and in most cases 
to periodic boundary conditions (i.e. condition (11) for p = 1), as exemplified by 
recent work of Protopopescu [9]. Time-dependent Fokker-Planck equations are 
almost virgin territory (cf. [14] for one such problem, having v c R and different 
boundary conditions, for which (i) could be treated). 

From the perfect memory example it is easily seen that the spectrum of A, 
o-(A), is contained in the open left half-plane if 0 < p < l .  At the same time 
the solution decays in R-norm at least as fast as e -rt where ( - r ) =  
sup{Re h IA ~ o-(A)} < 0. For p = 1 the solution is bounded as t--> + ~ ,  while for 
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1 < p  ~< 2 the  s o l u t i o n  m a y  i n c r e a s e  e x p o n e n t i a l l y  in t i m e  i f  o n e  o f  t he  d i sc re te  

e i g e n v a l u e s  b e l o n g s  to t h e  r igh t  h a l f - p l a n e .  Th is  is to  be  e x p e c t e d  as p r ep re sen t s  

t he  a v e r a g e  n u m b e r  o f  v i a b l e  d a u g h t e r s  p e r  mi tos i s .  I n  n e u t r o n  t r a n s p o r t  t h e o r y  

the  c o r r e s p o n d i n g  q u a n t i t y ,  c, is t he  a v e r a g e  n u m b e r  o f  s e c o n d a r y  n e u t r o n s  p e r  

c o l l i s i o n  and ,  in  fact ,  a s i m i l a r  p h e n o m e n o n  occurs .  
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