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STRONG SOLUTIONS OF STATIONARY EQUATIONS
IN ABSTRACT KINETIC THEORY

William Greenberg’, Cor van der Mee? and Wlodzimierz Walus®

An abstract differential eguation with “partial range” boundary conditions,
modelling a variety of plane-symmetric stationary fransport phenomena, is studied
in Hilbert space. The collision operator is assumed to be a positive compact pertur-
bation of the identity. A complete existence and uniqueness theory for the ab-
stract equation is presented and two examples from rarefied gas dynamics are de-
tailed.

1. INTRODUCTION

In recent years considerable effort has been devoted to the study of the

boundary value problem

(TY(x) = —AP(x), 0 < x < oo, (1.1
Q) = ¢, (1.2
fim sup Gl < oo. (1.3)

Here T is an injective, self-adjoint operator defined on a complex Hilbert space H,
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Q. is the orthogonal projection onto the maximal T-positive, T-invariant subspace
of H and A is a positive compact perturbation of the identity. In particular, we
cite Hangelbroek [9,10], Lekkerkerker [17], Beals [2], Kaper {13], Van der Mee [18]
and Greenberg et al. [8]. The theory so far developed either assumes T is bounded
or seeks solutions which are HT-valued for an "enlarged” space H’I‘ D D(T) (weak
solutions). On the other hand, for certain specific one-dimensional models in gas
dynamics of especially simple form, explicit representations of solutions of the
boundary value problem posed on H are known. (See, for example, Kaper [13],
which deals with A a concrete rank one perturbation of the identity.)

Equations (1.1)-(1.3) model a large variety of transport phenomena in semi-in-
finite media under steady state conditions. For most problems in radiative transfer
and neutron transport in non-multiplying media, the operator T is bounded and A is
a compact perturbation of the identity. In this case, the existence and uniqueness
theory for H-valued functions P (strong solutions) has been developed by Hangel-
broek and Lekkerkerker for degenerate neutron transport [9,17], by Hangelbroek [10]
for I — A a concrete trace-class operator from neutron transport and by Van der
Mee [18] for I — A an abstract compact operator with a "regularity” condition. In
rarefied gas dynamics the operator T is unbounded. We shall study here the ab-
stract boundary value problem for T unbounded and I — A a compact operator, a-
gain with a “regularity” condition. Our technique will parallel the arguments deve-
loped in [8] and [18] and, in some cases, the reader is referred to these sources for
the proofs of preliminary propositions.

In Section 2 we will obtain existence and uniqueness results for A strictly
positive. The first part of Section 3 contains decompositions needed to accomplish
the reduction of the half-space problem with A non-strictly positive to the half-
space problem with a strictly positive collision operator. The complete existence
and (non) uniqueness theory for boundary value problems with T unbounded and A
non-strictly positive is presented in the second part of Section 3. Finally, in the
last section, two applications from rarefied gas dynamics are exhibited.

Throughout this article H will be a complex Hilbert space, T an injective
self-ad joint operator on H and Q n the orthogonal projections of H onto the maxi-
mal T-positive/ negative T-invariant subspaces, while A is a positive operator such
that B = I — A is compact. Positivity will always be understood in the sense of
positive selfadjointness. The domain, the range, the kernel and the spectrum of a

linear operator S will be denoted by D(S), Ran S, Ker S and o(S), respectively.
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2. DISSIPATIVE MODELS

In this section we will assume that A = 1 — B is a strictly positive compact
perturbation of the identity I on H. Then Ker A = {0} and A™' == 1l 4 C, where C
= BA™! is obviously compact. Let HA denote the Hilbert space H with inner pro-
duct

(f,2), = (Afg). 2.1)

This inner product is equivalent to the original inner product on H. Let S =
A7YT. Then D(S) == D(T) and S is injective and self-adjoint with respect to the
HA-inner product (2.1). We define Pi as the HA—orthogonal projection of H onto
the maximal S-positive/ negative S-invariant subspaces of H. These projections
are complementary, as are the projections Qi associated with T. Moreover, they
leave D(T) invariant and are bounded on the complete inner product space D(T)

with the T-graph norm defined by

The selfadjointness of S with respect to the inner product (2.1) allows the
machinery of the Spectral Theorem to be introduced. If F{-} is the resolution of

the identity associated with S, we can define the operator functions

)
Tt 4pth (2.3)

o]
for Rex > 0. Then the restrictions of exp (:FXT"IA)PZE to Ran P:i: are bounded a-
nalytic semigroups on Ran Pi whose infinitesimal generators are the inverses of
the restrictions of FA™'T to Ran P:}:' From the injectivity of A and the domina-
ted convergence theorem, we have Jﬁﬁo flexp (FxT AP :i;hﬂH = 0 for all h € H.
Moreover, the strong (and even uniform) derivative of the expression (2.3) exists
for x € (0,90), belongs to D(T) and satisfies the differential equation (1.1). Using
the invariance of D(T) under these semigroups, we may also prove that these sem-
groups are bounded and analytic on Ran P:L_ N D(T) relative to the topology genera-
ted by the graph norm (2.2).

We define a solution of the boundary value problem (1.1)-(1.3) for given @,
€ Q.ID(T)] to be a strongly continuous function ¥: [0,00) — H such that y(x) € D(T)
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for all x € (0,00), TY is strongly differentiable on (0,00) and Egs. (1.1)-(1.3) hold
true.

The proof of the next lemma is straightforward.

LEMMA 2.1. The vector function P(x) Is a solution of the boundary value problem
(1.1)-(1.3) if and only if

-1
P(x) = e‘XT Ah, 0 < x < oo, 2.4)

for some h € Ran P, N D(T) with Q h = ¢,. Such solutions are strongly differen-
tiable on (0,00) and vanish at Infinity with respect to the original norm on H as well
as the graph norm on D(T).

Hence the problem reduces to finding the vector h. Let V = Q,P, + Q_P_.
Then an cbvious candidate for h will be Ep, = V7Y, if we show that V is boun-
dedly invertible and V maps D(T) onto D(T). In order to prove this we shall esta-
blish the injectivity of V on H and the compactness of T — V on H and on D(T) e-
quipped with the norm (2.2). Once these are proved, the Fredholm alternative
gives the boundedness of V™! and shows that VID(T)] = D(T). The operator V was
first introduced in [11L

We present three technical lemmas. The first is a consequence of the norm
closedness of the algebra of compact operators, and the second one is a moment ine-
guality which follows easily from the Spectral Theorem and Hélder's inequality.
The third was proved by Krein and Sobolevskii [15]; an accessible proof can be

found in Krasnoselskii et al. [14].

LEMMA 2.2. The integral of a (norm) continuous compact operator-valued function

with integrable norm Is a compact operator.

LEMMA 23. Let A be a positive self-ad joint operator. Then for any T € (0,1) and
any x € D(A) we have A ]y < k l}Ax1£H7l§x£IH1"’.

LEMMA 24. Let A be a strictly positive self-ad joint operator and B a closed ope-
rator satistying IIBxMH < k IleI]HTllxllH‘—T rfor any D(A) and some T € (0,1). Then,

for all § > 7, D(A") C D(B) and, for all x € D(A%), [Bxlly < KollA®llgy-
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In addition to the compactness of I — A, we shall assume throughout the re-

gularity condition

J o €(0,1) and > max [1‘;“,2 2= Ran (I — A) C Ran (TI®) N DOTI*(2.5)
LEMMA 2.5. The operator P, — Q. Is compact on H and the restriction of P, —
Q. to D(T) Is compact on D(T)} (endowed with the graph inner product (2.2)). More-
over, (P, — Qu)H] C D(T).

Proof: We will prove first that P, — Q, is compact on H and (P, — QU[HI C
D(T). Let A, = A(¢,M) denote the oriented curve composed of the straight line seg-
ments from —ie to —i, from —i to M—i, from M-i to i, and from i to ite. Let A,
= A(M) denote the oriented curve composed of the straight line segments from
M-—i to 4oo—i and from +oo+i to M+i. Denote A = A; U A, with the orientation
inherited from A; and A,. We recall that the projections P, and Q, are bounded
on H and on D(T) endowed with the graph inner product (2.2). We have the inte-

gral representations
1 ~1 1 —1
e/ o I (. — 8)Y"dN, Q. —elma 3 j A — T)Y 'd\,

where the limits are taken in the strong topology. Let Pm and Pf] be defined as
P, but with A replaced by A, and A, and Q“) and Qm as Q, with the same change
of integration curve. Then P, — Q, = m Qm} + (Pm Q(Z] We will show
that Pm Qm and Pm lel are compact on H, and (Pm — Qm)[H] C D(T) as well
as (PY — QP)HI C D(T).

Consider first

Py — QY = I F I (A — Sy ! — (n — T) 'dA. (2.6)
A

1
We shall see that this limit can be taken in the norm topology. We exploit the re-
gularity condition (2.5) and obtain from the Closed Graph Theorem the existence of
a bounded operator D such that B = ITI®D. Then, for non-real A, (A\—8)"! -
O—T) ! = O—T) HS~TIA—S)"! = (\—T)"'BS(\—S)~!, which shows that \—S)™' —
(—T)"! is a compact operator on H. Next, since S is seif-adjoint on H with res-

pect to the inner product (2.1), we may use the Spectral Theorem to prove
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t
iu—t

ISae — )Y < Sup <L

But the inner products on H and H A are equivalent and thus also are the L(H)- and

L(H A)-norms, so there is a constant ¢, such that IIS(iu——S)_‘IIL(H) < ¢p Also, from

L3 |g colt®*~ L Thus
iu—t * :

v
u“ - I ][(x -9 -0 - T)“lld)\N < 2|}D1|L(H)c0caj u*ldu,
Ale,M)  JA(Y,M) L(H) .

which shows that the limit (2.6) exists in the operator norm topology and conse-
quently proves the compactness of P[ﬁ) — Q(f.

Let us take x € H. Since [A—8)"" — O—T)"'Ix and TIG—S)"' — O—T)"'Ix
= TO\—T) 'BS(\—S)'x are bounded and continuous functions on A,, we find that

1 @yl (Y=t
the vector 2wiIA1 [(A\-S) O--T)Y *Ixd\ € D(T) and

the Spectral Theorem, IIITI“(i,u—T)'IHL(H) < félng I

1 - - _ 1 - _
T[fﬁ_[ [(A—8)"! — (—T) 1]xd)\] = RJA TIO — 8™ — (A — T) 'xdA.

1 1

Now, note that

”“ - J ]T[()\ -8 -0 — T)_lld)\” < 2¢olBll (gpyle — V!
Ale,M) A(Y,M) L(H)

implies the existence of the limit

1

—1 -1

J Ale,M)

in the operator norm topology. Therefore, by the closedness of T,

PP — QPx = hm <L [ [N — S)™! — (\ — T)YxdA € D(T),
e—0 27%i
4,
which proves the inclusion (P}’ — Q{)H] C D(T).
Next let us consider

PP — QP = 7% I [ — 87— — TN

2
Since, for non-real A, A\—S)"! — A—T)"! = AW—T)"'BS(\—S)! is compact, it is suffi-

cient to show the integrability of this operator. We rewrite this operator as
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D' =T =0 — DCTO — TV — TY — S UL

Obviously, Ran (\—S8)"! = D(\—T) and, by the Closed Graph Theorem, (\—T)(\—S)™*
is a bounded operator on H. In fact, we will show that the norm of this operator is
uniformly bounded for A € A,. We have the identity (\—T)A—S8)™! = I +
CT(\—S)"!. By the estimate I}()\—S)‘lllL(H) < ¢g for N € A,, it is sufficient to show
that CT is bounded on D(T) = D(S). But, by the condition (2.5}, RanC = RanB C
DUTI'*®) C D(T) and thus, by the Closed Graph Theorem, the operator TC is boun-
ded on H, so that CT C (TC)* is bounded on D(T). Finally, for A € A, we have
]I()\—T)()\—S)"lllL(H) <14+ lI(TC)"!IL(H)cU, providing a A-uniform bound, as claimed.
Thus it is sufficient to show the integrability of FQ\) = QA—T)"'CTO—T) %
Let Qg be a spectral projection belonging to a spectral decomposition of T such
that the resolvent set of the restriction of T to the range of Q, = I — Q

contains a real neighbourhood of zero. We can decompose F(\) as follows:
FO) = O—T) ¥ QITICIT FITIT  * TO—T)"'Q, + A —T) UTImQ,ITI*CTA—T)"'Qq

+ O — TIIQCITIM™ITI T — T)™'Q; + (A — TI'QCT( — T Qg
where v = %cx and 2w > max {140a,2—a}, and we may choose 2w < 2 + a. Note
that v+w > 1. For A € [M+i,04i) we have the following estimates:

IO=T) T QU 5y < &xRe N7 T *TOTIT'QY gy < c2(Re N7
II(A"T)—lQo"L(H) < calRe N7, ”TO\—'T)—IQ(}“L(H) < cqRe N7

Moreover, as Ran C = Ran B C D(TI'") C DUTI'**) C DUTI), ITI°C and (CITI+)*
= ITI"**C are bounded, thus also CIT’'*” (on DUTI'*")). Let us consider ITI®CITI"*,
Evidently, it is sufficient to consider this product on Ran Q;,. Choose o €
(0,1). As CITI'*® is bounded on DUTI't®), we have [[Chll < k{ITI"""“hf for all h €
DUTI" ™) = Ran (iTI'*®). Then, by Lemma 2.3, for h € DUTI* ™) we have IC’h|| <
KT “h[°in)*~°. Hence, by Lemma 2.4, since ITI'*® is strictly positive on Ran Q,,
HCIPH < kHTI* b for all h € DATT %) and any 6 > o. Therefore,

TP and 1ICEITIPM are bounded. For 6§ = i%u—) and § — %, respectively,
and o = % we recover ITICICIY? and IC1YAITI"" as bounded operators. Then, using

the polar decomposition B = UIBl, we can represent ITI°CITI as a composition of
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bounded operators; one has ITI°CITI'* = ITIICI?UICHATIMY. Now we estimate
IFOly (ppy < elRe NT7° 4+ Re N7 + (Re N7'™ + (Re N7%) < c(Re N5,

where s = min {¢#+w,1+w,14,2} and c is a constant. This estimate, along with the
uniform boundedness of (A—T)YA—S)™! for A € A, proves the integrability of
(A—8)"" — \—T)™" on A, and completes the proof of the compactness of P? — Q7.

Let x € H. Note that [A—S)"" — (A—T)"'Ix € D(T) for any A € A,. To
prove (Pf) — Qf))x € D(T), it is sufficient to show that TI(A--S)™! -- (A —T) 'Ix 18
Bochner integrable on A, (see {12], Theorem 3.6.12). Since

ITIO-8)"" — O=TIxll < (L + KTVl JITO — TITCTO — T4 gl

it is sufficient to prove the integrability of [T(A — T) 'CTO — T)'IIIL(H) on A,.
But this can be done in the same way as in the case of HF()\)HL(H), the only change
being that one must use ITIT'"MTI'** instead of ITI"ITI® in the decomposition of
TF(\), for some K < w satisfying (2.5). Thus P, — Q, is compact on H and maps H
into D(T).

It remains to prove that the restriction of P, — Q; to D(T) is compact with
respect to the graph norm (2.2). Let P, = AP,A™. Then P, - Q. =P, —Q, +
P,C — BP, — BP,C is compact on H. Moreover, for h € D(T) we have (P,—Q,)Th
= T(P,—Q)h. Using the compactness of 13+ — Q4 and this intertwining property,
one shows the compactness of the restriction of P, — Q, to D(T) with respect to

the graph norm. This completes the proof of the lemma. 0
COROLLARY 2.6. /n both topologles under consideration, I —~ V i1s compact.

Here we note I — V = (Q__ — Q;)P, — Q,). To prove Ker V = {0} we have
LEMMA 2.7. The operatorl V has zero null space.
Proof: Let Vh = 0 for some h € H. Then Q,P,h = —Q_P_h yields that Pih =
(Q_—P)P,h = (P,—Q.)P h € D(T) and P_h = —(P,—Q,)P_h € D(T), whence h €

D(T) and KerV C D(T). Note thet P,h € RanQ_ N Ran P, (cf. [11]); thus
(TP h,P 1) < 0, (TP h,P h) = (A™'TP,h,P,) > 0 and hence P,h=0. [I
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THEOREM 2.8. The operator V Is Inverttble and E = V™! is bounded (on H, and
on D(T) with graph inner product (2.2)). The boundary value problem (1.1)-(1.3) is
uniquely solvable for each ¢, € Q,ID(T)], and its solution is given by

) = e XT ABp,, 0< x < oo, Q.7

One may seek solutions of the boundary value problem for all ¢, € Q[H] ra-
ther than just ¢, € Q,[D(T)l. However, in this case it seems necessary to reformu-
late the problem by replaced (1.1) with T9'(x) = —AP(x), 0 < x < oo, defining a so-
lution to be a strongly continuous function #®: [0,00) — H which is strongly
continuously differentiable on (0,00) such that /(x) € D(T) for x € (0,0) and
satisfies TP'(x) = —AP(x) for x € (0,00), (1.2) and (1.3). We have

THEOREM 2.9. The equation Ty'(x) = —AYEx) for x € (0,00) with boundary
conditions (1.2) and (1.3) Is uniquely solvable for each ¢, € Q,[H] and the solution
is given by (2.7).

3. CONSERVATIVE MODELS

In the previous section we have assumed that A is strictly positive. Requi-
ring Ker A = {0} excludes from consideration many physically important problems,
in particular linearized gas kinetics equations where conservation laws result in
the collision operator A having a nontrivial kernel consisting of the collision inva-
riants (cf. [5]). In this section we will generalize the results of Section 2 to the
case where A is positive but has a nontrivial kernel. As before we will assume A
to be a compact perturbation of the identity, but now it will satisfy the regularity

condition
Ja € (0,1) and w > max {1%3,2_2-—“}: Ran (1 — A) C Ran (TI1*) N DATET)3.1)

§ 3.1. Decompasitions

First, note that K — T7'A and its H-adjoint K* are closed and densely de-

fined. Let us define the zero root linear manifold Z, of K by



Greenberg, van der Mee and Walus 195

Zo = {f € D(K): f € DK™ and K*f = 0 for some n € N}
In addition to condition (3.1) we will assume that Z, C D(T). It then follows that
{f € Zy: (Tf,g) = 0 for all g € Z,} = {0}. 3.2
In a similar way one can define Zo as the zero root linear manifold of K*. The fol-
lowing lemma characterizes Z; and Zo and yields useful decompositions of H. For i-
sotropic neutron transport, these results are due to Lekkerkerker [17] and for more
general cases with T bounded to Van der Mee [18] and Greenberg et al. [8]. The

proofs therein can be extended easily to unbounded T.

LEMMA 3.1. /f £ € Z,, then there exists g € Z, such that Kf = g and Kg = 0, lLe.
Zo == Ker K% Likewise Z, = Ker (K*)>. One has

T[Zo] == 20,

AZ1 = @ = Tzt N Doy,
and the following decompositions hold true:

Zo ® Zoyt = H, (3.30)

~ _L .

Zo @ (Zo)— = H. (3.3b)

The decompositions (3.3) will enable us to reduce a boundary value problem
with given A (having nontrivial kernel) toc one with a strictly positive collision ope-
rator. This reduction, in fact, follows immediately from the following proposition.
PROPOSITION 3.2. Let B be an invertible operator on Z; satisfying

(TBh,h) > 0, h € Z,. (3.4)
Let P, be the projection of H onto (Z,)~L along Z,. If A Is a nonnegative, compact

perturbation of the tdentity with nontrivial kernel and satisfies the regblarlty cond|-
tion (3.1), then A, defined by
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Agh = T Il — Poh + APoh (3.5)
is a strictly positive operator satisfying

AT =B @ (TT'A 2 e (3.6)

0

The operator Ag Is a compact perturbation of the identity satisfying the condition
Ran (I — Ag) C Ran (ITI*) N DATI'), (3.7
with oo and w as in (3.1).

Proof: The identity (3.6) follows immediately from the definition of Agz Moreo-
ver, for g € H we have (Agg,8) = (APug,Pog) + (TB Il — Pole,(I — Pplg) > 0, using
(3.4) for h = B7'T(I—Pylg. As o(A) C {0} U [e,00) for some € > 0 and Z, has finite
dimension, we must have strict positivity for Ag; from the triviality of its kernel.

Next, since Ay — A = (Ag—A)UI—Py) has finite rank, A; is & compact pertur-
bation of the identity. Furthermore, I — A, = (I—A) + T(T™'A,—T'ANU-Py),
Zs = Ker (T7'A)%and (3.1) imply

Ran (I — Ag) C Ran (IT*) N DUTI'®),
thus yielding (3.7). O

As in Section 2 one can construct the Hilbert space HAﬁ with the HAB-norm
equivalent to the original norm on H, so that the topology of HAﬁ does not depend
on the particular choice of 8 in Proposition 3.2. We may define P + as the H Aﬁ—or-
thogonal projections of H onto the maximal Az 'T-positive/ negative Ag 'T-inva-
riant subspaces. From the above proposition it follows that P, , = PoP,, P, =
P,P. and P, form a family of complementary projections commuting with T'A
which do not depend on the particular choice of A.

The next proposition gives a decomposition of Z, into T-positive/ negative
subspaces and a characterization of 8 compatible with the intended boundary value
problems. A proof of this proposition can be found in [18] and [8] for bounded T;

the unbounded T case introduces some technicalities connected with D(T).
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PROPOSITION 3.3. The subspaces

My = [Ran P, = & Ran Qi] N Zy
satisfy the conditions

HTHE) >0, 0<f € M,

My P M =2,

[, N Ker Al @ [A_ N Ker Al @ T !AIZ,] = Ker A.
Moreover, it is possible to choose 8 such that

Ran P, C Ran P, @ Ker A,

§ 3.2. Existence and uniqueness theory for half-space problems

In this subsection we will analyze the boundary value problems
(TPY(x) = —APY(x), 0 < x < oo,
Q¥(0) = o,
and
(TPY(x) = —AP(x), —oo < x <0,
QY = p_,
along with a condition at infinity, namely, one of
m w6l = o,

II’b(x)IIH = 0(1) (x - 4),

197

(3.8)

(3.9

(3.10)

(3.11)

(3.12)

(3.13)
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lWGxlly = O(x) (x — ool (3.14)

The upper and lower signs are to be taken with Egs. (3.8)-(3.9) and Egs. (3.10)-(3.11),
respectively. As there is a complete symmetry between left and right half-space
problems, we will consider the right half-space problem only. By a solution of the
various boundary value problems for @, € QuD(T)] we shall mean a strongly
continuous function ¥: [0,00) — D(T) such that T is strongly differentiable on
(0,00) and Egs. (3.8), (3.9) and one of (3.12)-(3.14) are satisfied. Solutions of left
half-space problems are defined analogously.

First we outlline the procedure which will be used to construct solutions to
these boundary value problems. Let us reduce the half-space problem (3.8)-(3.9) to
two subproblems. Writing %, = (I — Py and ¥, = Py¥, Eq. (3.8) may be decom-

posed as follows:
(T )(x) = —AP(x), 0 < x < oo (3.15)
Vo'(x) = —T 'APy(x), 0 < x < oo.

The second equation is an evolution equation on the finite-dimensional space Z;

and therefore admits an elementary solution of the form
—1

Pox) = e XT Ay 0) = (I — xT'ANpe(0),
using Lemma 3.1. Next consider Egq. (3.15). Add to it the dummy equation

(T (x) = —Agpy(x), 0 < x < oo, (3.16)
on Z, where A, is given by (3.5) for some 8. The solution of Eq. (3.16) is easy to
compute but does not concern us, as it will be projected out shortly. However, de-
fining ® = ¥, -+ ¥, we can combine Egs. (3.15) and (3.16) to obtain

(TEY(x) = —Agp(x), 0 < x < oo, (3.17)

Now since Ay is strictly pesitive (and a compact perturbation of the identity satis-

fying (3.7)), we apply the results of Section 2 to Eq. (3.17) and find its solution as
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@(x) = exp {—xT 'AgEg,, x € (0,00), where g, € QD(T)] and E = (Q,P,+Q _P.)"".
Then projecting @(x) onto (Zo)'L along Z, and adding %,(x) we obtain a solution of
Eq. (3.8) in the form

Plx) = e'XT_lA(]I — PolEg, + ¥o(x), 0 < x < oo,

Now we will fit the boundary condition (3.9). To do so we must indicate vectors g,
€ Q,ID(T)] and %o(0} € Z, such that

Q(T — Po)Egy + %o(0)] = o,.

Note that if $4(0) = 0, P(0) € Ker A or P,(0) € Z,, then the respective right half-
space condition (3.12), (3.13) or (3.14) is satisfied.

Let us define the measure of non-completeness for any of the boundary va-
lue problems to be the co-dimension in Ran Q, of the subspace of boundary values
©+ € RanQ, for which the problem has at least one solution, and the measure of
non-uniqueness to be the dimension of the solution space of the corresponding ho-

mogeneous boundary value problem. The principal results of this article are the

following existence and uniqueness theorems.
THEOREM 3.4. The boundary value problem (3.8), (3.9) and (3.12) has at most one
solution for each ¢, € Q.ID(T)] and its measure of non-completeness coincides with
the maximal number of linearly independent vectors g,, -+-, g» € Ker A satisfying

(Tgug,y) == 0’ 1 <ij <n i

(Tghgt) > Os 1 < i < n
T he solution, if it exists, is given by

—1
Px) = e*T A — poEg,,

where g, is the unique solution of the vector equation

Qi(II- Py)Eg; = ¢,.
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THEOREM 3.5. The boundary value problem (3.8), (3.9) and (3.13) has at least one
solution for each o, € Q,ID(T)] and its measure of non-uniqueness coincides with
the number of linearly Independent vectors h,, ---, hp € Ker A satisfying

(Thph) =0, 1<, j<p i

(Thyhy) <0, 1 <i < p.
T he solutions have the form

¥ = e *T AQl — POER, + hy,
where h, € [Ran P, , @ Ran Q_]1 N Ker A and h, is the unique solution of

Q+(]I“ Po)Eh; + Qihy = 4.
THEOREM 3.6. The boundary value problem (3.8), (3.9) and (3.14) has at least one
solution for each o, € QID(T)] and its measure of non-uniqueness coincides with
the number of linearly independent vectors e,, - -, en € Z, satisfying

(Teye,)) =0, 1 <i, j<m i3]

(Teye)) <0, 1 <igm
T he solutions have the form

¥x) = e *XT AUl — PYES, + (I — xT'AX,,
where f, € [Ran P, , @ Ran Q_1 N Z, and £ Is the unique solution of

Q- PREf, + Qufp = 0.

The proofs of Theorems 3.4-3.6 can be given in almost precise analogy with
results derived in [18] (also [7,8]).
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If the differential equation (3.8) is replaced by
T(x) = —Ad(x), 0 < x < oo, (3.18)

one can seek solutions of the boundary value problems with ¢, € Q,[H]l. Here by
a solution we mean a strongly continuous function P: [0,00) — H which is conti-
nuously differentiable on (0,00), p'(x) € D(T) for x € (0,0) and such that Eq. (3.18),
the boundary condition Q,%¥(0) = ¢, and an appropriate condition at infinity are sa-
tisfied. Then one can prove the analogs of Theorems 3.4-3.6, where one has to sub-
stitute Eqg. (3.18) for Eq. {3.8) and ¢, belongs to Q,[H] rather than Q,ID(T))

4. APPLICATIONS

This section contains two physical models leading to equations of the form
(1.1) involving a time-independent one-dimensional transport problem in a semi-infi-
nite medium with spatial variable x € [0,0). We will specify the Hilbert space H,
the operators T and A, the kernel of A and the zero root linear manifold Zy and

point out the impact of the existence and unigueness theory of Sections 2 and 3.
§ 4.1. The one-dimensional BGK model eguation (cf. [1,19])
v8xv) = —flx,v) + L r 1+ 2vu + 2v*—D—Diftxwe ™ du, veR.
ox yTo) 2 2
The equation is posed in the space H = L (R,p) where dp = w—l/ze‘v2dv. Put
(TH)v) = vf(v),
(ANV) = f(v) — 7177 r 1+ 2vu + 2(v2—:1;)(u2~~%)]f(u)e““zdu.
Then T is unbounded self-adjoint, A is bounded positive and I — A has finite

rank. One can check that condition (3.1) is fulfilled, Ker A = span {},v,v?} and Z,

= span {1,v,v%v®. Now we introduce the sesguilinear form

[hk] = (Thk) = -L I vh(WEIe~ dv.
vV -
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To apply Theorems 3.4 and 3.5 one has to represent this sesquilinear form as a dia-
gonal matrix with respect to an appropriate (mutually [,l-orthogonal) basis of
Ker A. The diagonalization of a symmetric bilinear form is a simple algebraic proce-
dure and results in a matrix with 1, —1 and O on the diagonal. Then, by Theorem
3.4, a solution of Egs. (1.1)-(1.2) vanishing as x — < may not exist and its messure
of non-completeness is 2. Solutions of the boundary value problem which are boun-
ded as x — o always exist by Theorem 3.5, and indeed have measure of non-unique-
ness 1. Diagonalization of the symmetric bilinear form on Z, leads to a matrix
3

with 1, —1, g‘ and —3 on the diagonal. Thus, solutions to the boundery value pro-

blem of order x as X —» o have measure of non-uniqueness 2.

§ 4.2. BGK equation for heat transfer (cf. [4,5,6,16])

3 fl(X,V) YI(X,V) 1 - r](x;u) u2
V= = — —— j D(v,u e” du, v ER,
x| 1,(x,v) £.(x,v) vE £5(x,u)
with
14 2v—hut—))  Hvi-))
Dlv,u) = 202 1 2
s’ —3) 5

This equation is posed in the space H = L,(R,0) @ L,(R,p) with p as in the first

example. Let f be the column vector with entries f; and f,. We define T and A by
(TF)v) = vi(v),

(AD(V) = £(v) — L J Div,wf (e du,
v ;

Then T is unbounded self-adjoint, A is bounded positive and I — A has finite
rank. One easily checks that condition (3.1) is satisfied. Then

1 |{v?
Ker A = span ob , Zg = span

4 9|

ofjifl1{lv

1] v [{Vv?[|v®
1

Again we introduce the sesquilinear form
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o0

[hd = (Thi) = L I vh(Wie Y dv + L J vhy(WE Ve dv.

Since Ker A is degenerate with respect to this sesquilinear form, Theorem 3.5 im-
plies that the boundary value problem (1.1)-(1.2) has a unique bounded solution as
X -+ . On the other hand, by Theorem 3.4, solutions vanishing as x — o may not
exist, its measure of non-completeness being 2, which is a result of the conserva-
tion laws (of mass and energy). To apply Theorem 3.6 one has to represent the ses-
quilinear form on Z, as a diagonal matrix. One obtains a matrix with 1, —1, g and
—g on the diagonal. Thus, solutions to the boundary value problem of order x as
X — oo have measure of non-uniqueness 2. The corresponding Kramers or slip-flow

problems has a two-dimensional manifold of solutions.
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