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ABSTRACT

A review is given of integral formulations of a variety of
boundary value problems in abstract kinetic theory. Apart from the
introduction of the boundary value problems and their equivalent
integral formulations, we pay special attention to their most im-
portant applications. In the first place we shall discuss represen-
tations of solutions in genmeralized H-, X~ and Y-functions. In the
second place we shall develop the projection and semigroup forma-
lism using only the integral formulation and not using selfadjoin-
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tness of the scattaring operators. In the third place we shall
discuss the impact of the equivalence theory in combination with

the Fredholm alternative on the existence and uniqueness theory.

We conclude this work with a discussion of methods of proving exi-
stence and uniqueness of solutions of stationary transport eguations.

1., Introduction

Integral formulations of boundafy value problems in kinetic
theory have been known since 1921, when Milnel derived an integral
equation of Wiener—-Hopf type fo study radiative transfer in a stel-
lar atmosphere. For isotropic scattering these equations were tho-
roughly analyzéd by Hopfz. They have triggered the development of
the theory of Wiener-Hopf aquationsB. A systematic study of these
eguations and of the closely related H-, X- and Y-equations was made
by Busbridgek. Her virtually complete analysis of the isotropic
scattering case was extended to anisotropic scattering by Maslen—
nikovs and Feldman6’7, who were primarily interested in the asymp—
totic behavior of the solution deep inside a semiinfinite atmosphe-
re (or reactor, if one considers the parallel example from neutron
transportj,;ﬁsing come preservation techniques criticality proper-—
ties of'neﬁtron transport processes, also for inhomogeneous media
and non—plane-parallel reactors, were studied by Nelsong.

The present interest in integral formulations of transport
processes stems from the recently developed theory of abstract ki-
netic equations, which was built up to & large extent by Beals - s
Greenberglz’i? van der Meelz-ls, Protopopescu11 and Zweifeilz, as a
far fetched generalization of the work of Hangelbroek and Lekkerker-—

16,17
ker

on the half-space problem of isotropic neutron transport.
On restricting ourselves to models where integral formulatioms are

apparent, we consider the abstract vector differential equation
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(TP ' (x) = -(I-B)e(x) , O=<x<T, L

where T 1is an injective selfadjoint operator and B a compact
operator, both defined on a Hilbert space H. We make the regila-

rity assumption
o 1+a
Ja>0: Ran B < Ran IT| o DCIT]™ ) . )

In this way we obtain a repertoire of boundary value problems, both
for finite slabs (T finite) and half-spaces (T = «), both without
reflecting walls and with reflection taken infto account on one or
two surfaces. It is then possible to prove rigorously that each
boundary value problem is equivalent te a vector-valued integral
equation, which is of convolution type if boundary reflection is
neglected (seé Refs. 14, 15 and 19), and to cut down the dimensio=-
nality of the space on which the integral equation is defined to
the rank of the compact operator B (see Refs. 15 and 19). In most
applications B has finite rank.

Having in stock a rigorous proof of the equivalence of bound-
ary value problem and integral equation, there are various tasks
that can be perfofmed with relative ease. In the first place, on
generalizing a method used for two-group neutron transport by Bur-—
nigton et a1.2O and extended to a huge class of multigroup and con-—
tinuously energy-dependent equations by KelleyZI, one can solve the
half-space problem without reflecting boundary explicitly in terms
of generalizations of Chandrasekhar's H-functions (see Refs. 15 and
19) and obtain formulas also cbtainable with much . more effort using
resolvent integrationzz. The results can be extended to finite slab
problems without reflecting boundaries (see Ref. 19). In the second
place, one may exploit the equivalence to obtain existence and uni-—

queness results for the boundary walue pfoblem from those for the



532 VAN DER MEE

integral equation. (It should be noted that the explicit formulias
referred to dbove require a priori knowledge of the existence and
uniqueness result for the boundary value problem, in order for the
generalized H-equations to be solvable). In this way one may obtain
existence and uniqueness for half-space problems with spr(B) <1,
where spr(B) stands for the spectral radius of B 23. In the third
place, one may exploit such equivalence to develop thé projection
and semigroup formalism accompanying the study of the boundary value
problemsz4 in cases where the nonsélfadjointness and inexplicitness
of B prevent one from using fa generalization of) the Spectral
Theorem for sélfadjoint operators. The projéctions thus constructed
may then be applied in the proof of the existence of suitable
Wiener—Hopf factorizationsls. Finally, the equivalence can be exploi-
ted to derive existencé results for the boundary value problem
quickly from uniqueness results whilé using (a genmeralization of)
the Fredholm.alternativezs.

In Section 2 we introduce boundary value problems and their
equivalent integral formulations. Im Sections 3 and &4 we obtain the
explicit solution formulas and the projection and semigroup forma=
1ism, respectively. In Section 5 we discuss the impact of the
Fredholm alternative. We conclude the paper with a discussion of
methods for obtaining well-posedness of stationary kinetic equations.

To a comsiderable extent this paper is a review article. On
writing this article, certain parts of the literature have been
disregarded, in part because they do pot seem to f£it into the
adopted framework. In the first place, we mention the recent work

2 R . . R .
of Maslova on linearized Boltzmann equations with and without
reflecting boundaries, where an almost complete treatment was given
of the existence and unigueness theory for such problems, written

in integral form , though in a concrete setting. In the second place,
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we mention the work of Bardos, Caflish and Nikolaenko28 on statio—
nary linearized Boltzmann equations, where extensive use is made of
energy estimates and a close relationship to the corresponding time-
~dependent problem appears. For this work we refer to the contribu-
tion of B. Nikolaemko to this conference. Finally, we have avoided
the terminology of half-range completeness and orthogonality and
other Caseology type notions. In our opiniom the possibility of
making eigénfunction expangions is a nonéssential feature of the

existence and uniqueness theory.

2. Boundary Value Problems and Integral Formulations

Throughout this article, except in the last section, T will
be an injective selfadjoint operator and B a compact opefator de-
fined on the (real or complex) Hilbert space H, satisfying condi-
tion (2). YThroughout we put A = I-B. On denoting the resolution
of the identity of T by o(.) and writing Q+ = d([O,m))r and

Q_ = o((-~,01), we may define the propagator function H(z) by

-1
{ -1 -2T 7 -1 -z/t
i +T e Q+=+{ t eZ/ o(dt) for z>0
J
w-{
-1 -zT F -1 -zft
|—T g = - e an) for z<o
L - >
. . 7"'}':T_1
and similarly the semigroups e Q, for x>0.

We now discuss five boundary value problems conpmected with
Eq. (1). For semiinfinite media, <t = », wé have the half-space

problem without reflection

(TP '"(x) = —~(I-Byy(x) , O<x<ow (3a)
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Qu(0) =@ (3b)
Gl = o) (as % > =) , (3¢)

which is relevant to neutron transport and to radiative transfer in

haif-spaces, as well as to some idealized or special problems in ra-

refied gas dynamics. On ineorporating refiection by the wall, one

gets the usual gas dynamics situstion for a semiinfinite tube, i.e.

(T) ' (x) = —(I-Bu(x) , Q<x<e (4a)
Q (0 = RIQ ¥(0} + @, (4b}
itu(x) HH= 0{1) f{as x -+ =) . (4c)

Here J is a signature operator (J = = J_i) satisfying TJ=-JF
(i.e. JD(T)] =D(T)) =and JB = Bj, and R is a bounded operator
on B satisfying RID(T)] < D(T). By a solution to Eqs. (4) we

then mean a continuous function ¢ : [0,%) + D(T) ¢ H such that Ty¢
is strongly differentiable on (0,~) and Egs. (4a)-{(4c) are fulfil-
led. In a similar way one defines a solution to Eqs. (3). It is alse
possible, and sometimes physically reasonable, to study boundary
value problems, where the condition (3¢) or (4c) is replaced by ei-

ther the normal solution Ansatz
Ine WiV < ox™) (as x =+ ) , (3/4d)
or by the condition

Lim jj¢(x) I!H =0 {as x + =) . (3/4e)

X =
For finite layers, 7t ¢ (0,»), we can formulate three boundary

value problems of physical significance. On not accounting for
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reflection one has

(TW)"(x) = ~(T-B)y(x) , O<x<r (5a)
Q) = o (5b)
e ylt) =9, (5c)

relevant to radiative transfer with a totaily absorbing planetary
surface (® = 0), neutron transport, and Poiseuille and Couette
flow problems. In planetary atmesphere problems where the surface

is reflecting, one has the boundary value problem

(TN (x) = ~(I-B)i(x) , O<x<rt (6a)

Q) = o, ' (6b)

Q_y(n) = JRQ u(m) +q_ , (6c)
where usually ®_=0. In rarefied gas dynamics one usually studies
the problem

(TP '(x) = ~(T-BY(x) , O<xz<< (7a)

Q¥(0) = RIQ_y(0) + o, (7b)

Qu(r) = RIQ w(z) +q_ . (7c)

- In all cases, J and R are as above. It is possible to add an
inhomogeneous term f(zx) to the right~hand sides of Eqs. (3a), (4a),
(52), (ba) and (7a). For the last three problems we mean by a solu-
tion a continuous function ¥ ¢ [0,1] > D(T) <« H such that Ty 1is
differentiable on (0,1} and satisfies the boundary value problem,

At this specific point, and prior to discussing the equivalent

integral equations, we would like to justify why Ty was taken dif-



536 VAN DER MEE

ferentiable and not 1 ., This notion of differentiability has been
stressed in particular in previous conference contributions of R. J.
Hangelbroek and H., G, Kaper. In fact, such a notion is needed to get
a full equivalénce proof with a vector valued integral equation, but
then one must requiré 9., 9 ¢ D(T). On the other hand, if @,
@ ¢ B (rather than D(I)), one must require ¢ to be differentia-
ble in thé strong sense on (0,1} with derivative satisfying
P'{x) ¢ D(TY {(x ¢ (0,1)). Thé solution will still satisfy the in-
tegral equation, but the converse proof that every solution of the
integral equation satisfies the boundary value problem brezks down.
For bounded T, most important to neutrom transport and radiative
transfer, the two notions will lead to the same set of solutions.
If the compactness of B 1is dropped and a weaker solution concept
is warranted (sée Refs. 9-12), theré is no equivalént integral
equation.

Let us formulate the integral equations equivalent to the above
boundary value problems. Basically, in order to derive the integratl
equation from the boundary value problems one first writes the vec-

tor-valued differential equation in the form
(Tyd " (=) + §(x) = Bp{x) , O<x<T ,

and solves the latter using the boundary conditions. Implementing

this procedure for Egqs. (3) we obtain

(-] -1
f ~-xT
Wx) - | Hx-3)Bi(y)dy = e ¢, O<z<w, (8)
‘o
29 \

Conversely, every bounded ~ solutionm can be proven bounded and con-
tinuous on [0,»). Moreover, for such a solution 1 one can prove
Ty stromgly differentiable on (0,») and satisfying Eqs. (3a)~{(3c).

s . 14
This procedure was first followed by Van der Mee for bounded T,
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and later for unbounded T (see Refs. 25, 29). When dealing with
Egs. (4), one writes down Eq. (8) with @, replaced by RIQ_¥(0) o,
and the net résult turns out to be

I -1

P - | HEIBGEY = e [0 +RIQ O], O<x<w .

‘o
On premultiplying by Q_ and inserting x=0 , we get

o

QU = J H(~y)}Bi(y)dy ,
0

which on substitution yields the integral equation

i | - -1
B | B+ Qe ey =™ o, ()

¢}
OQ<x<om

As a result we have obtained an integral equation with a kernel
whose first term is of convolution type and whose second term is
separated. The equivaleace proof holds true if @, € Q+[D(T)].
The result can be extended in a straightforward way, if one adds a
term £(x) to the right-hand sides of Egs. (3a) and (4a) which is
uniformly H8lder continuous on [0,») and satisfies
[ UIECeX il /e)de <
J1 H

Next, let us turn to the finite layer problems. For Eqs. (5)

the method is entirely the same as for Eqs. (4} (see Refs. 14, 15,

19). One obtains the convolution integral equation

(T a1 el
w(x) _Ji H(x-y)By(y)dy = e xT © +e(T %) T ®

X s (10)
0

O<x<T .

On replacing ¢ by JRQ+tp(r)+(p_ » premultiplying by Q, eand

substituting x=1 , one obtains easily
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T —TT_i
Q0 = | Mm@y re T e,
0
whence
(T T
=) - | Hxy) + e(I DT R (t-y)Y] Byp(y)dy =
Jo
(1)
- T_l (‘l:--x)T_1 —T
= g x (p++e [(p_+JRe 194_] .

Finally, in order to convert Eqs. (7) to an integral equatien, we

replace

0,

and @ by RJQ_¢(0)-+¢+ and RJQ+¢(T)+-®_ , and

premultiply the expression (10) for x=0 by Q and for = =1

by Q+ , respectively. We obtain

and

_ -1 _ -1 l-T
RO R ORI g, | HEmBEY
0
T T [
Qv - ¢ RIQUD = @ +Jl H(-y)BU(y)dy -
0

These equations can be written concisely as

™ -
(I-e RN {Q ¥ (<) +Q P} =e

-1 fT
m-*J K{y)By(y)dy »

0

TiT

where ©= o, +o_ and K(y) = H(r=y) +H(y). 1f (T-exp(-11T] R

is invertible, which occurs, for instance, 1f IIRHH <1, and if

1IRHH <1 and T 1is bounded, we obtain the integral equation

-xT

-1

-1

T
Pix) = { [H(x-y) +
‘o

-1 -1
++e(T_X)T Q_}RJ(I—e-TiT‘ RT)LH(r-y)+H(=y) }IBp(3)dy =
- -1
]| RJ)_le T|T| 1

-1
o+ Qrreria-e o (12)
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where =x ¢ {0,71). It should be assumed that Q, € D(T) in order
to have equivalence. If an ichomogeneous term f£(x) is added to
Egs. (3a), (6a) or (7a), it should be uniformly Holder continuous
on [0,t]. 1In that case Eqs. (10), (11) and (12) "can be axtend;d
in a straightforward way.

In most applications where 3 is compact, B has finite rank,
In these cases one may reduce the dimensionality of the space on
which Eqs. (8)-(12) are defined to a finite number, namely the rank
of B. Let us choose a closed subspace M of H containing Ran B,
Let 7 :HE+M and j : M+ K be operators such that mi is the
identity on M and ju the orthogonal projection of H onto M.
On introducing x(x) = mp(x) and using Bjw = B, the solutions
of Eq. (8) may be expressed in terms of ¥{x) as

-1 @
—xT .
Wx) = e © @, + J( H{x-y}Bix(y)dy , (13)
0
where
. —XT_1

r
x(0) - | wHGy)Bix(y)dy = we @
J

, s O<x<e, (14)
0

is a Wiener-Hopf equation in the (usually finite-dimensional) spa-
ce M. Similar procedures may be followed for Egqs. (9)-(12).
Finally, in order to conclude this section, we discuss the
solution spaces on which to study Egs. (8)-(12). Let us denote by
L (H)g the (real or complex} Banach space of all strongly measu-—
rable30 functions ¢ : (0,t) > H that are bounded with respect teo

the norm

rT
{ {J llw(X)H;dx]l/p , l2p<e

Y
vl = T
L

ess sup{llw(x)iEH !/ xe (O,T)} s pPEoeo
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By C(H); we denote the {real or complex) Banach space of all com-
tinmuous functions % : [0,t1 =+ H if <t is finite, or all bounded
and continuous functkions ¢ : [0,»} +H if 71 = =, endowed with

the norm
I lbllc = sup{ilw(X)!iH [ xe (0,13} .

Then the convolutien equations (8) and (10), occurring because re-

flection processes are neglected, can be written as

-1y = o, (15)
rT
where (LTw)(X) = | H{z-y)By(y)dy 1is a bounded operator on all
‘0

spaces LP(H); and C(H}; (pefl,»], =7e (0,1}, An upper bound
for the norm of L  on all of these spaces is given by
T

rT
HLTH <. Ji IH(z)BIl dz (16)

=T
the finitenmess of the upper bound is guaranteed by condition (2)
(see Refs. 15 and 19). The right-hand side we C(H); c Lm(H); .
In extending the result to Eqs. (%), (11) and (12), where boundary
reflection processes come to the fore, we have to restrict oursel-

ves to the spaces LM(H)B and C(H); and write these equations as
(T - NT)$ = W s an

where NT is bounded and we C(H); S Lm(H);. We easily obtain

(T .
| YH(z)BIl dz {1+ |[RIK]} ,
T

N o=
T Ja
1

T Ty

where K = 1 for Egs. (9) and (11) and K =j|(1-e
for Eq. (12). One will bring about some technical trouble in

extending (17) to other function spaces.
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3. Representations of Solutions

In this section we review some of the methods for obtaining
representations for the soluticms of the boundary value problems,
in particular for the half-space problem, On departing from (14),

we first writé dovn the (modified) Laplace transforms

~ (E= \ =
X+(A) = 4 { ex/ ¥(x)dx , AR =T - f eX/AﬂH(X)BjﬁX .
- Jo J —co
roo
where y(x) = ! TH(x-y)Bix{y)dy for =x « (==,0)}, In this way we
‘o

convert Eq. (14) (in fact, its extension to the real line xe (-=,w))

to the Riemann-Hilbert problem
~ ~ -1
AR X, (0 + x_ () = aTGo-T) © , Rex=0, (18)

which can be solved in principle by Wiener-Hopf factorizatien of

the dispersion function AN . Let us assume, for the moment, the

existence of two functions HR(A) and Hr(l), which both of them,
together with their invérses, depénd continuously on A in the
closed right half-plane (including infinity) and analytically in
the opén right half-plane, satisfy H£(0+) = Hr(0+) =1 and obey

the factorization law
eV B -ME (), Rer =0 . (19)
We may then rewrite (18) as
H (—A)ﬂ" () + B (D% (A) = a1 (V) T()\—T)_l ReA=0
4 Xy pr RS = AR () Py ’

. ..o 15 A p .
It is then possible to compute x+(A) explicitly, substitute

the result in (13) and obtain
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I
vy =0+ | I

o J
(u) ?Y)

Y o(a)BiE (- (Yreldve, - (20)
-u £ T +

v

. . i9
For #$(x) with =x € (0,=) a more complicated expression arises .
1t can then be shown that HE and Hr satisfy the following non-

. . 15
linear integral equatilons

0

I-z [ (z+t)—1Hr(t)1w(dt)Bj (212)
J

FI’Q(Z)—1

<

8

f _
-z | (z+t) 1nc(—dt)BjH£(t) , (21b)
‘o

Hr(Z)m1

where o0(.) is the resolution of the identity of T. These equa-
tions genmeralize the H-equations of Chandrasekhar31

Tn order to obtain necessary and sufficient conditions for the
solution formula (20) to hold true, we first discuss the existence
of the factorization (19). A necessary condition for its existence
clearly is that A(A) is invertible for all extended imaginary X .

Since
-1 -1 .
A = T-xr(A—-T) "Bj = w(T-2) (T-2)7

it is necessary that T_lA does not have zero or imaginary eigen—
values. However, it is not a sufficient condition. However, OoR
assuming unique solvability of Eqs. (3), thefa is a unique cperator
that maps - o, ¢ Q+[D(T)] into $(0) e« D{I) and extends to a boun-
ded operator, say E+, on H. We may then write down the factors

R
Hg and Hr explicitly as

B, (-}) = I=hn(T- }\A)_ll::+Bj (22a)

B () = I- ATCL=E ) (T~ An) B (22b)
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H (-0 = L=k, (i =T) B (22¢)

Hr(A)_i = I-An(k-—T)_l(I-—ﬁ+)Bj , (22d)

where ﬁ+ = TE+T_1 can be proven bounded on H , and formula (20)
follows. In the case when the condition that T_lA has no zero or
imaginary eigenvalues is viclated, while there stili is a projec—
tion operator E+ singling out a solution 4 for each incident
"flux" ®_, one may write down Egs. (22), check (19} and (21) di-
rectly and obtain the solution formula (20). However, Hﬁ(—l) and
Hr(k) cannct be analytically continued to every extended imagina-
Tty A

At this point we would like to make some comments on history,
related problems and generalizations, The factorization formulas
(22) are more sophisticated versions of analogs ohtained by Van

26,14,32

der Mee using a previously developed cascade decomposition

2
3 ’33. Formulta (20) and its generalization to ca-

of linear systems
ses where T—lA has zero or imaginary eigenvalues — the correspon—
ding factors (22) do not follow using the method of Refs. 32 and
33 —were obtained in the above way in Ref. 15, Clearly, Eq. (20)
generalizes many similar expressions obtained previously by resol-
vent integrationzz. The method of obtaining a formula like Eq. (20)
has been uséd previously by Burniston et al.zo for two-group neu-
tron transport and by Kelley21 for multigroup and continuously
energy-dependent models. Recently, Eq. (20) has been generalized
to multigroup models with nondiagonal cross-section matrices by
Willis et 31.34; in this case T 1is not seifadjoint nor altows a
Spectral Theorem.

In the case when the finite-slab problem (5) without reflec-—
tion is uniquely solvahle, one may proceed by invariant imbedding

and obtain a generalization of Eq. (20), in fact, formulas for
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P(0) and Y(T), which contain four X- and four Y-functions rela-

ted by nonlinear integral equations (see Ref. 19). These functions

generalize the X- and Y-functions of Chandrasekhar31. It should be

remarked that the generalized H-equations (21), as well as the ge-

neralized X- and Y-equations, may be nonuniquely solvable. For sim—
plified radiative transfer problems where these functions are sca-

lar, Mullikin35 has indicated constraints that should specify the

physically relevant solution uniquély. Tt 1s not clear sofar how

this work should be generalized to the présent setting.

4. The Projection and Semigroup Formalism

In Refs. 24, 14 and 32 the factorization formulas (22), or
rather certain less sophisticated versions, were obtained by in-—
terpreting E_ asa projection onto a suitable invariant.subspace
of T_lA along the invariant subspace Ran Q_ of Tﬁi. This in-
terpretation enabled us to derive these formulas using the cascade

. 32,33
decomposition method of Bart et al.” ’

. Such an interprétation
is apparent if A = I-B 1is a strictly positive selfadjoint ope-
rator, since T-iA then is selfadjoint with respect to the inmer
product (h’k)A,= (Ah,k) (see Refs. 9-17; the innér preduct goes
back to Ref. 16). In this section we shall find a way of extending
this interpretation to the general case.

Let us first discuss the case when A is strictly peositive

. -1 s . . .
selfadjoint. Then A T is selfadjoint with respect to the (equi-

valent) inner product
(h,k)A = (Ah,k) , (23)

and we may then define P+ and P as the projections, orthogonal
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with respect to (23), onto the maximal positive and negative {with
respect to (23)) A_lT—invariant subspaces. In this way we have
used the Spectral Theorem. It can then be shown that the operator
V = Q+P+-+Q_P_ is invertible36, whence E+ = V_1Q+ is the bounded
projection of H onto the range of P+ along the range of Q .

In order to write down Egqs. (22), let us assume that T_lA
does not have zero or imaginary eigenvalues. Since (23) no longer
is an inner product if A is nonselfadjoint, we must find another
way of defining P+ and P_. For this reason we consider the
convolution équation

o0

,
qu(x) - J H(x—y)sz(p(y)dy = w(p(X) » O0FfxzeR, (24)

—o

where
{
+
w (x) =4 -1 (25)
L

On solving Eq. (24) on the space L (H)foc s we take (modified)

Laplace transforms on both sides and abtain the algebraic equation

WO (M) =6 (), Rea =0,
® ©

where
N re " ®
v () = f-m ex/k¢w(x)dx , Qu(l) = ]_w ex/lﬁm(x)dx
and
= /A ' -
W) =I-1 e "Hx)Bdx = (T-2) (T - 2A)
J

0

In the case where A 1is strictly positive selfadjoint, it is

straightforward to check that
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{  —xT A
{+e ™ Po, x>0
By () =4 -1 (26)
-xT A
@ | ~e ™ Po, %<0
] _
r 37,38

However, since I UHGOBl dr <=, it is possible to prove that
T

{xe]

-1 {

Wy =1+ e

i

—_00

A
=/ f{x)dx , ReX = 0 ,

L]

‘
for some strongly measurable functien £ satisfying I ote)il de<e,
J

—0

whence ¢ (x) 1s bounded and continuous on (=w,w) except for a

jump discontinuity with
@ @Y - v ) = @ @) -6 ()
- = {w - = .
P ® ® o @
One may now use (26} to introduce P+ and P_ by

+
Po= iw@(o .

15,19

It can then be shown that P+ and P are complementary

. . . . -1
bounded projections of H commuting with T A and that

FICE S p ) 10 {xe€/*Rer > O}

.. -1
Also, the restriction of =T A to BRan P+ generates a bounded
strongly continuous semigroup {V+(x)} 20 ? which can also be
* X

defined by
Vi(x)Piw = iww(ix) , xe(0,=)

We may then go on proving that the boundary value problem (3) is

uniquely solvable if

Ran P+ ® Ran Q_ =H .
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If the latter condition is satisfied, we define E+ as the projec-
tion of H onto Ran P+ along Ran Q , and obtain for the solu-
tion of Egs. (3)

-1
-xT A
p{x) S E+(p+ . Ogx<eo | (27}

. -1
Next, let us consider the more general case when T “A has
either zero or imaginary eigenvalues. On defining, for some opara-

tor S and some e €, the A-root manifolid ZA(S) by
n
z = U -
;\(S) a Ker (S )\) 3

wWe assume that T_lA has at most finitely many zero or imaginary
eigenvalues, all of finite algebraic multiplicity. (If T 1is boun—
ded, the assumption holds true automatically). We then introduce
the finite-dimensional manifolds Z0 and 20 by

-1 . -
Z = _ & Z (T L= _ @ Z_ (AT .
0 Rei=0 l( A s 0 Rei=0 k( )

Then A{ZO] « EO and T[ZGJ = 20. On defining the maximal T_lA
and AT invariant subspaces of H on which the restrictions of
these operators do not have zero or imaginary eigenvalues by Zi
and 21, respectively, we ohtain

[N B
>
[\
]
2]

z,®z =8,

as well as

T[ZO] = ZO s szlj = A[Zij =Z .

Cn choesing an iavertible B on Z0 without imaginary eigenvalues,

we may put
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where PO and P1 are the complementary projections with ranges

ZO and 21 , respectively. Then AB is invertible, BB is com—

pact and

Al -ge D
B Z1

does not have imaginary eigenvalues. If condition (2) is fulfilled,

we have

+
3 a>0: Ran BB c Ran!iT|® n D(le1 0L)

. s 39 ;
under minor additional hypotheses on B . We then define P+ 8
¥

-1
8 as the operators P+ and P_ connected with AB T .
*

Tn terms of these we then define the f-independent projections

and P

If there is a subspace N+ of ZO satisfying the two conditioms

Ran P, @N @RanQ_ =H

3

and

-1
N 53] K T - A
' c Rer=0 er { A Y © ZQ ,

we may define E_ as the projection of H onto Ran P1,+ ® N+
along Rap Q_ , whence (27) provides a solution to Egs. (3). For
details we refer to Ref. 19.

At this point we would like to make some remarks of a histo-
rical nature. For ome-speed neutron transport in non-multiplying
media and in an Lp—space setéing, the above projection and semi-
group formalism was developed by Van der Meeza. It generalizes

the formalism for positive selfadjoint A that can be developed

, : 9,17 .
using the Spectral Theorem. i The above more general formalism
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has been worked out in detail in Refs. 15 and 19. Recentiy, Bart

et 31.40 have developed a Hille~Yosida type theory of generators

of exponentially decaying bisemigroups, i.e. of expressions of the
type (25) or {(26) that decrease exponentially in the norm as x-— o,
If T_iA does not have zero or imaginary eigenvalues and if T is
bounded, the expressions (25) and (26) are bisemigroups of the type

they studied.

5. The Fredholm Alternative

Recently, Willis et a1.25 have proposed a merhod for abtaining
existence results for transport equations from uniqueness results,
by using the Fredholm alternative, The Fredholm alternative can be
phrased as follows: If I~-K isa Fredholm operator of index zero
(for instance, if K or some power of K 1is compact), then the

equation
(I -Ryp = w (28}

has precisely ome solution ¢ for every vector g in the underly-
ing Banach space, if Ker(I -K) ='{¢f(I-K)m = 0} = {0} . Thus,
uniqueness of solutions to Eq. (28) implies existence.

Because B is a compact operator on H and (T||H(X)B||dx-<w 41,
it can be shown that the convolution operator o

rT

(LT¢)(x) - Hiz~y)Bu{y)dy , xe(0,7) ,

‘o
is compact on the Banach spaces L (H); (l1£p<w) and C(H); .
P

in view of the equivalence of the finite-slab boundary value pro-

blem (5) and tﬁe convolution equation (I0) on Lm(H); (which is
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rhe vector equation (13) om Lm(H);), it suffices to prove that
Egs. (5) with zero incident "fluzes" @ = ©_ = 0 have only the
zoro solution in order to have existence and uniqueness of Egs.
(5). However, on extending these results to Eqs. (6) and Egs. (7),

one should remark that the operators

. r't _ -1
‘(Ni“m)np)(x) = j gy + e T TRH (-y) 3B () dy
0
and
) (T ol ot
PPy = | ey e 5 g+ 7T g
0
_ 1T1—1 1
«(I-e ' RI) TLH(t-y) + H(~y) 1By () dy

T .
can be shown to be compact on Lm(H)T and C{H} also, provided

. . bi -1
R is bounded on H and, in the case of NE i , (I~exp(-t|T! ")R3)}
.. . i bi .
is invertible. Indeed, both Niunl) and Ni D can be written as
the sum of LT and of MT , where
rT
o W) = k(x) | z()BU(y)dy , Osx<t,
T JO
where k(x) is strongly continuous on lo,t1 , =z(y) is almost
T
everywhere bounded and continuous, and J [lz(y)Bii dy <= . One may
4]
i bi
then go on to show that MT , and therefore Niuﬂl) and NE ) s

are compact on Lw(H); and C(H)g . Hence, Eqs. (6) and Egs. (7N
are uniqué solvable, if the corresponding problems with zero inci-
dent “fluxes" 0, =0_= 0 have the zero solutiom only, R is
bounded on H and, in the case of Egs. (7, (I-exp(—TlTl—i)RJ) is
invertible on H.

There is one important special case where uniqueness can be

proved. Let us first consider the unilaterally reflective slab
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problem {6), where

ReA=—§-(A+A*) >0, Ker (Re A) = Ker 4 . (29)
Under conditions of zero incident "fluxes" O =@ =0, we have
T T
02-2 | ((Re A)¢(X),¢(X))de = J {((Tw)'(x),w(x))H'P(w(X)s(T¢)'(X))H}dX=
‘0 0

(T, 9(0)) - (T4(0),3(0)) = (TQ (1), Q y()) - (TQ_y(0),q_u(0)) +

+

(TIRQ, ¥(7),JRQ ¥ (1)) = (Q#(2),Q,0(0),, - (RQ, () ,RQ (1)),
where
(holdy = (T] byl = (T(q, - )A,k) . (30)

Hence, if R 1is bounded on ¥ and satisfies the intertwining for-

mulas

~

RID{(T)] e n(T) , TR = g7 (31)
for some bounded R on H, while
IthIIT s!thT s helT) , (32)

then Eqs. (6) are uniquely solvable as =2 result of the Fredholm al-
ternative., Indeed, on assuming (31) and (32), one obtains

T

0> =2 | ((Re MG, 000) ax 3 0 ,

J H

0
and consequently [ecf. (2931 (Re M v(x) = 0 ana AP(x) = 0. As a
result of (6z) we then get $(x) = h ¢ Ker A sy Wwhence, on recal-

ling .= o =0,

h = Q+¢(0}'*Q_¢(T) = JRQ+¢(1) = JRQ+h ¢ {Ker A) n Ran Q
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Next, we easily compute, since Xer A € Ran B « D(T) [ef. (2)],

0 = IInl7 = llQnlly = liQ_¥(o 112 = 1R ¥ 11

1A

lQu(o ) = il =0,

whence h =0 and ¥(x) = 0. For the bilaterally reflective slab
problem (7) one proceeds in the same way, provided conditiens (31)
and (32) are satisfied and (I-—exp(—TIT!_i)RJ) is invertib1e42.
The net result will then be y{x) = h ¢ Ker A , whence, on using

the Ansatz ® "o = 0,
h = Q¥(0) +Q_¥(r) = RIQ_$(0) +RJQu(x) = RIh .

For scattering laws where

m

IRnil,, < IIhEIT » b e DINKOY, (33)

we then obtain h =0 and (x) = 0 , and therefore42 existence and
uniqueness. In this way one may rétrieve the existence and unique~
ness theory for the equation of transfer of polarized 1ight43’44
in finite optical layers, since in this case conditions (29), (31)
and (32) are satisfied.

In order to deal with applications of the Fredholm alternative
to the half-space problem (3), where A satisfies condition (29),
we first show that undér condition (29) the operator T_lA cannot

have nonzero imaginary eigeavalues., Indeed, if Ah = ATh for

Rer = 0 , then

0 < 2((Re AYh,h) = (Ah,h) + (h,Ah) = (ATh,h) + (b,ATh) = O ,

because A = -A ; since Re A=0 , we have (Re A)h = 0 , whence

Ah = 0 and therefore A =0 or h = 0. Hence, if condition (29)
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is satisfied and A is invertible, then

WQ) =T - [ EXMH(x)de = (T-A)_l(T—AA), Red = 0,
J

is invertible for all exteaded imaginary X, and therefore the

" Wiener-Hopf operator (me)(x) = {w H(x—y)By(y)dy has the property
that (I-—Lm), i.e. the operatorlgélevant to the left-hand side of
Eq. (8), is a Fredholm operator. We may now répeat the previous
uniqueness argument.. [for ==, E=0, for B and for B sepa-
ratély] aad show that Eqs. (3) and the corresponding adjoint pro-
blem [i.e. with B replacéd by B*] have at most one solution.
Thereforeés, (I-—Lm) is a Fredholm operator of index zero. The
Fredholm alternative then yields the unique solvability of Egs. (3).
In order to obtain the same result for Egs. (&), one assumes that A
satisfies (29) and is invertible, and that R satisfies (31) and
(33). The uniquéness argument then yields that Egs. (4) have at most

one solution. On introducing the operator

re -1
~ -xT
(N ¥)(x) = | [H(x-y) +e Q,RIH(~y) IBu(y)dy ,
‘o
it can be shown that (ﬁm-—Lm) is a compact operator on Lm(H)g
@ , —xT1 . .
and C(H)O , since e Q+ 1s strongly continuous and bounded on

[0,2}, RJ is bounded on H, B is compact and {WEIH(hy)BIIdyezm .
In combination with the fact that (I-—Lw) ig a Figdholm operator
of index zero, we have available the Fredhoim alternative. As a
tonsequence, under the above hypotheses Egs. (4) are uniquely sol-
vable, The above method breaks down in the following cases:

(i) 4 1is s&ill invertible, but R satisfies (32) instead of (33),
since in this case the umiqueness argument breaks down, and

(ii} Ker A # {0} , because in this case (I-—Lm) , and therefore

(I-N;) , ig nota Frédholm,operator.
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Research on the Fredholm alternative method by A.H. Ganchev and

W. Greenmberg, for half-spaces with invertible and noninvertible A, it

. 46
in progress .

6. Discussion

We conclude this article with a discussion of four strategies for
developing an existence and uniqueness thecry of stationary kinetic
equations. For these four situations we shall point out in particu—
lar the limitations of the method, and we shall discuss some open
problems.

The first method originates from Hangelbreoek and Lekkerkerker
16’17. On stating the half-space problem (3) in the form of the
boundary value problem (3a)-(3c), the major effort consists of
constructing the total boundary "flux" ¢(0} from the incident
flux® ® - Since the boundedness condition (3¢) holds trué, one
must have ¥{Q) ¢ Ran P+ (if T_lA does not have zero or imagi-—
nary eigenvalues) or ¢(0) ¢ Ran P1,+ o O {Ker(TwiA-l)/Rek = 0}

(more generally). The solution is then written as

=1
A0y, osxcw,

${x)

where P+¢(0) = @+ . Existence and uniqueness of the solution then
amounts to proving that

[Ran ?1 . 0 ] {Ker(T_lA-l)/Rek = 0} @ Ran Q =1, (34)

s

In the most typical cases when T—1A does not have zero or imagi-
nary eigenvalues, one has to prove the existence of the bounded
projection of H onto Ran P+ along Ran G_ . Most typicaliy,
this is done by proving that V = Q+P+'+Q_P_ is invertible and by

. =1 s . s .
putting E+ =V Q+ for this projection. Twc strategies have emer-
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ged to prove the invertibility of V. The first one consists of
proving that EKer V = {0} and (F-V) 1is compact. It requires the
compactness of B , conditica (2} and the strict positive self=~
adjointness of A 36. The seceond strategy comsists of proving thét
V is invertible on an extension of B(T), namely the completion
of D(T) with respect to (30)9’10, where the strict positive
selfadjointness of A isg réquired.

The second method consists of writing the boundary value pro-
blem in integral form and studying the spectral radius of the in-
tegral operator. This method has proven itself quite effective if
B leaves invariant the positive come of H (which then is a Ba-
nach lattice) and spr (8) < 1. For multigroup neutron traasport
the Ansatz spr (B) < 1 is sufficient to prove the unique solva-
bility of Eqs. .(6) for the multigroup caselg, using monotonicity.
This method has bheen used in a variety of situations, also for re-
flective boundaries, inhomogeneous media and non-plane-parallel
spatial domains4

The third method consists of applying the Fredholm alternative
to the integral formulatiom of =z problem with at most one solution,
in order to obtain ﬁnique sotvability. It is most effective for fi-
nite spatial domains and dissipative reflection by the boundaries.
The method has been discussed extensively in Section 5.

The fourth method cousists of viewing the transport eguation

as a vector equation
Ay = f (35)

on L (DxV), where D is the spatial domain, V the velocity
p
domain, £ the inhomogeneous term {accounting for internal sour-

ces) and p e [1,=), Eguation (35) is augmented by a reflective
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boundary condition of the form

Y, =Kv_+aq ., (36)

where ¢+ and ¢  are the incoming and outgoing traces of ¢ on
the boundary and o, ig the incident "flux". The existence of
"traces" of functions in the domain of the free stréaming operator
(i.é. A if external forces and scattering are neglected) under
various hypotheses on K has been studied thoroughlyby'Voigt48
and these results have been generalized by Beals and Protopopescu49
to motre general transport operators. The method of showing unique
solvability consists of three steps: (i) solving Eq. (36) for some
Lp-traces E+ for given @, (11) extending $+ and $- to a
fupetion $ e LP(D1<V) satisfying AE € Lp(D><V), and (ii11) solv-
ing the equation Ap = A$4-f under the boundary condition

$+ = K@_ : the solution will then be @ = @4'$ . In order to prove
uniqué solvability for Egs. (35) and (36) it is sufficient to prove
that O ¢ U(AK), where AK iz defined by

A = Ab, DAY = (ulAy el OXW, ¥ =Ky} .

Under reasonable assumptions on A and K , the latter operator
will genmerate a strongly. continuous semigroup on LP(D><V) [ef.

Ref., 49 and the references quoted there]. However, one must assume
HK]l <1 in order to have Lp—traces of solutioms YeL (DxV). For
HK]l = 1 there exist a number of examplesés, where solEtions

] ELP(D xV) of the corresponding time—dependent transport problem
do not have Lp—traces.Anmthod as sketched above has been worked

out by C. Bardos and various co—authors for the linearized Boltzmann
equation with K = 0, din finite plane-parallel media and in

combination with or in anticipation of the investigation of nonlinear
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preblems, For work of this nature we refer to their contributions
to these proceedings.

Summarizing, it seems obvious that the first method is enti=-
rely restricted to plane-parallel homogeneous media. For the bulk
of the proofs to go through one must also assume that the scatte-
ring term is sélfadjoint and the medium is not multipiying. The
other three methods are not limited to plané—parallel homogeneous
media. A1 three of them require somé sort of ponmultiplying medium
assumption, for the second method to apply the contraction princi-
Ple to the integral équation, for the third one to prove unigueness
of the solution, and for the fourth method to derive O £ U(AK)
from the (strict) contractivity of the time evolution semigroup.
For all four méthods there is considerable difficulty in proving
existence and uniqueness for conservative media and {|K}| = 1.

While the first three methods, especially the first one, allow
various abstract genéralizations if the spatial domain is plane-
—parallel, thé'last method allows an easier incorporation of
external forcés and a more transparant route to a joint treatment

of stationary and time-dependent preblems.
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