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Multigroup transport equations with nondiagonal cross-section matrices are studied using the
Wiener-Hopf method. Formulas for the solution and the exit distribution are given in terms of the
factorization of the symbol of the Wiener—-Hopf equation. Unlike the formulas for a diagonal
cross-section matrix, these formulas involve derivatives of the H-functions. For the case of two

groups, the H-functions are computed explicitly.

I. INTRODUCTION

Multigroup transport equations with nondiagonal and
possibly nondiagonalizable cross-section matrices have been
proposed as a model of, for example, neutron transport in
reactors.”? In this paper, transport equations with nondia-
gonalizable cross-section matrices are studied by making use
of the Wiener—Hopf method. In Sec. II an integral equation
equivalent to the transport equation is derived along with
expressions connecting the solutions of the integral equation
to the solutions of the transport equation. In Secs. III and IV
we outline the Wiener-Hopf method. In Sec. V the Wiener—
Hopf factorization is constructed explicitly for the two-
group case. For the general N-group problem, we are not
able to construct the factorization; the best that we are able
to do is derive the generalized Chandrasekhar H-equations
and to set up a numerical scheme for computing the H-func-
tions. This work will be published in another paper, where
we consider a more general scattering matrix. Finally, in
Secs. VI and VII we determine the exit distribution and the
solution in terms of the H-functions. In these two sections we
do not limit ourselves to the two-group problem; instead we
consider the N-group problem in anticipation of the above-
mentioned generalization.

Briefly, transport equations with nondiagonal cross-sec-
tion matrices occur when the energy dependence of the cross
section is expanded in terms of orthogonal functions, and
then the method of weighted residuals is applied to deter-
mine equations for the coefficients of the expansion. The
method of weighted residuals is discussed by Stacey' and by
Ames,? where different choices of the orthogonal functions
and the weights are considered and the physical reasons be-
hind the choices are given. If this procedure is followed for
the problem of radiative transfer with the assumption of a
uniform or picket fence model,* then the resulting vector
equation has the form
+1

1
pno, Fxu) + ZF(x.u) =-—2—-C F(xu')dy', (n
—1
where the matrix C is noninvertible. A derivation of these
results can be found in Siewert and Zweifel,* the only differ-
ence being that the cross-section matrix = is no longer neces-

sarily diagonal. If 2 is diagonalizable, then a similarity trans-
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formation will reduce Eq. (1) to the problem considered in
Ref. 4. More generally, Eq. (1) is solvable for the case that
the matrices 3 and C are simultaneously upper triangulari-
zable. In such a case, the problem reduces to a system of
uncoupled inhomogeneous scalar Wiener—Hopf equations.

In the following, the simplest equation of the form (1)
that does not satisfy either one of the two above conditions
will be studied. In particular, the two-group equation de-
fined by

i €12
3y =

1 a‘
, C=
0 1

, (2)
€ C22
will be studied with a#0 and c,,#0. A similarity transfor-
mation can always be applied to set & = 1, but for bookkeep-
ing purposes it is convenient to keep a as a parameter so that
the limit a—0 is apparent. A direct calculation shows that,
for a0 and c,,#0, 2 and C are not simultaneously upper
triangularizable, whence the conditions @ #0, ¢,, #0. In this
paper we will study Eq. (1) with £ and C defined by Eq. (2),
along with half-space boundary conditions given by

F(x,u)—0, x—oo. (3b)
Equation (3b) holds true for each component separately.

Il. AN EQUIVALENT INTEGRAL EQUATION

Equation (1) is studied using the Wiener—Hopf meth-
od. To carry out the procedure, an equivalent integral equa-
tion is sought. If G is defined by

+1

F(xu)du, 4)

-1
then an integral equation for G can be derived analogously to
the one-speed case.’ The result is

G(x) =

G(x) = U(x) +-%—Jm Eis (|]x — 5|)CG(s)ds, (5a)
(]
where
1
U(x) =f e *Erd(u)du. (5b)
0

The function Eiy is defined in terms of the exponential inte-
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gral® and its derivative by
E(z) azE|(2)

0 E\(2)
(5¢)

Once G is known, F can be computed using the formulas

1
Ei}:(z)zf ﬂ—le—xZ/#d'u= l
0

F(xu) = —if e~ *=O¥eCG(s)ds, pu<O,

(6a)
and, for u >0,

F(xu) =e " d(u) + Z—L— Lx e~ X=9uCG(s)ds.
(6b)
The matrix-valued function e ~ */* is easy to compute if the
Jordan decomposition of X given by
I=I+M, M>=0, (7
is used. It is easy to check that

e—xz/y= '1 axl/#| e—x/y.

0 (8)

lil. THE WIENER-HOPF METHOD OF SOLUTION
Following the standard notation, define the functions
G*and U* by
G(x), +x>0,
+ =
and similarly for U +. With these definitions, Eq. (5a) can
be written as a convolution equationon ( — 0, ), namely

G (x)+ G (x)
+ oo

—U+(x) +% Eiz (Jx — 5|)CG * (s)ds. (10a)

The Fourier transform of Eq. (10a) yields
WG *(A) +G~(A) =T+ (A). (10b)

A
Here the Fourier transform of a function F is denoted as F,
where

A +eo

F) = f e F(x)dx.
The matrix-valued function # is the symbol of the Wiener-
Hopf equation (10a) and is given by
W(A)=1—((1/A)tan"'A)C+ [1/(1 +A2)IMC. (11)

The nilpotent matrix M has already been introduced in Eq.
).

IV. FACTORIZATION OF THE SYMBOL

The crucial step in the Wiener—Hopf method is the con-
struction of the Wiener—Hopf factorization of the symbol.
This paper will only consider the canonical Wiener—Hopf
(WH) factorization. A canonical WH factorization is a pair
of functions W * such that

WAY=W (W), AR, =RW{t »}, (12)

where the matrix function W (W ) is analytic in the open
upper (lower) half-plane, and continuous and invertible in
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the closed upper (lower) half-plane. As in the one-speed
case, a factorization of the form (12) does not exist for all
possible choices of = and C. In fact, in the one-speed case, a
canonical factorization exists only for ¢ < 1 (see Ref. 5). A
necessary condition for the existence of W * is that W(A) is
invertible for A€R , , i.e., det W(1) + Ofor AeR_ . For this
reason one should study the zeros of det W. Explicitly,
det W is given by

det W(A) =1—tr C[A ~"tan" ' A] + ac,, [1 + 12] L
(13)

Here, tr C denotes the trace of C, and the assumption that
det C = 0 has been used. Observe that the dispersion func-
tion has branch points at + /. We will always choose the
branch cuts to be the lines z = iz, |t | 1. Therefore, the dis-
persion function is analytic in the region C\{zeC: z = i,
|t|>1, teR}. Note that

lim det W(4) =1, (14)

holds inside the region of analyticity. Furthermore, det W
satisfies the symmetries

[det W(A)]* =det W(A*), (15a)
det W( —A) = det W(A). (15b)

The superscript * denotes complex conjugation. These sym-
metries imply that A, is a zero of the dispersion function if
and only if both A § and — A, are zeros of the dispersion
function. Therefore the dispersion function must have an
even number of zeros. The symmetries [Egs. (15a) and
(15b)] along with the behavior of det W at infinity [Eq.
(14)] allow one to compute the number of zeros of the dis-
persion function by computing the change of the argument
of det W along the branch cuts, the so-called Nyquist meth-
od,’ just as is done in the one-group case.”> We apply the

|4 |,

Im Z

L
Re Z
FIG. 1. Contour for computing A arg det W.
B. L. Willis and C. V. M. van der Mee 1634

Downloaded 15 Aug 2002 to 129.74.199.26. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



aC21

four real
zeros

no zeros four complex

zeros

two real
two complex
zeros

trC
two imaginary
zeros

two real zeros

FIG. 2. The zeros of det W in the tr C, aC,, plane.

argument principle to the contour in Fig. 1. This problem
divides into three special cases: (i) tr C =0, (ii) ac,, =0,
and (iii) both tr C #0 and ac,,#0. The case tr C=0 is
solved easily by algebra, and the dispersion function for
ac,, = 0isidentical to the one-group dispersion function so
that the number of zeros is known.” These results are sum-
marized in Fig. 2. Case (iii) requires special attention. Un-
like the one-group dispersion function, i.e., the case
ac,; =0, the dispersion function now has poles at the
branch points due to the term ac,,[1 +42]~" [see Eq.
(13)]. For this case, the change in the argument when
rounding the branch points is now important. For this rea-
son, the change in the argument of the dispersion function
(denoted by A arg det W) along the contour in Fig. 1 will be
considered in the limit as € and &10. First we study
A arg det W along the straight lines ", by taking the limit
€10 while keeping & a constant, then we study A arg det W
along the circle C; by taking the limit as §10. Along the lines
I, the real and imaginary parts of the boundary values of
det W are given by

. trC 1+y| ac,,
Redet( 40 =1 1n| s
edet( +0+iy) % 1_y+1_y2
(16a)
Imdet W(+0+iy)= + (mtr C)/2p. (16b)

[Note that Eq. (16b) proves that det W is nonvanishing on
the contour I' as required by the argument principle.] With
these formulas, the Nyquist diagram for the contour I', can
be sketched; for the case ac,, >0 and tr C> 0 the result is
shown in Fig. 3. The diagrams for the other possible choices
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det W(=)

contour of T, contour of C{S

FIG. 3. Nyquist diagram for aC,, >0and tr C>0.

of signs of ac,, and tr C are similar. To complete the Nyquist
diagrams, the contour C; must now be considered. Along
the C;, the pole term (1 + A %) ~! dominates, and the con-
tour approaches a circle at infinity as §10. With this informa-
tion, the Nyquist diagrams can be sketched (see Fig. 3), and
the number of zeros of the dispersion function can be de-
duced. Now that the number of zeros of the dispersion func-
tion is known, the remaining task is to determine whether
the zeros are purely real, purely imaginary, or neither. The
graphs of the real and imaginary parts of the dispersion func-
tion are easy to sketch, so it is easy to determine if the disper-
sion function has a real zero. These results are also summar-
ized in Fig. 2. Thus we can conclude that W(4), AeR_, is
invertible for 1 + ac,, >tr C, and tr C> 1. As we previously
mentioned, these conditions give a necessary condition for
the existence of a WH factorization. In the next section,
these conditions will be shown to be sufficient by explicit
calculation of the factorization of W.

V. CONSTRUCTION OF THE WIENER-HOPF
FACTORIZATION

The matrix valued function to be factorized is
WA)=I— (A "tan~'A)C+ (1+A%)~'MC;  (17)
the matrix M has been defined in Eq. (7). In general it is not
known how to construct the Wiener-Hopf factorization of
matrices, but Cebotarev® has shown how to factorize any
upper triangular matrix. The matrix (17) can be made upper

triangular by a similarity transformation with constant ele-
ments. One possible transformation is given by

S=
ey Ollo 11” (18a)
where
A=cy,(trC)7Y, iftr C #£0,
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and

A=0, iftrC=0. (18b)
The matrix S is always invertible, because det S = — ¢,
which is nonvanishing by assumption. The particular choice
for S has been made with forethought, so that the trans-
formed matrices MC and C are especially simple. Explicitly
the transformed matrices are

0

ST+ M)CS= , trC=0, (19a)
0 acy
and, for tr C #0,
0 —ac(trC)!
S“(I+M)CS=| aca (tr €) (19b)
0 tr C+ ac,,

The transformed matrix .S ~'CS is given by the same expres-
sion, but with @ = 0. It is tempting to think that the similar-
ity transformation [Eq. (18a)] applied to the original equa-
tion will result in a similar simplification, but this is not the
case. The reason is that although C and MC are simulta-
neously upper triangularizable, C and ¥ are not.

The Wiener-Hopf factorization now can be computed.
If S ~'WS is denoted by W, then

~ 1 K(4)
W= ’0 det W(A) |’ (202)
where
K(A)= —cyd ~'tan™'4, trC=0, (20b)
K(A)= —ac,,(rO)"' (1447, trC#O0.
(20c)

The function W is an upper triangular matrix function of
second order and the procedure for getting its Wiener-Hopf
factorization when it exists has been developed by Cebo-
tarev.? Here we follow the method of Ref. 9. First we note
that the factors of an upper triangular matrix can be taken to
be upper triangular, so we set

W) =X(A)Y (L), (21)

with X (Y) analytic and invertible in the lower (upper) half-
plane. If the elements of the matrices X and Y are denoted by
X; and Y}, respectively, then the following system of equa-
tions results when Eq. (21) is substituted into Eq. (17) and
the corresponding matrix elements are equated:

1=X,Y),, (22a)
1—(rC)A " "tan™ ' A +ac, (1 +42%)27!
=X22(A) Yy (1), (22b)
and
— (€ —AtrO)A "'tan" ' A —o0c A(1 +42) 7!
=X (A Y1, (A) + X, Y5, (A). (22¢)

These equations do not uniquely determine X and ¥, since
XU and U 'Y satisfy Eqgs. (22a)—(22c) whenever XYand Y
do, where U is any invertible matrix. However, it is consis-
tent to impose the conditions

Xj(0) =Y;(0) =6y (23)
With these conditions, Eq. (22a) uniquely determines X,
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and Y, to be

X11(4)=Y11(/1)=1, (24
while the solution to Eq. (22b) is given by
X,,(1) = f.exp[-—l—TJ-+ ) +1/2Mdz] , (25a)
2 —wtin z2—A
where
B(z) =In[1 — [(tr C)/ z]tan"' z + ac,, (1 + 22) 1)
(25b)

The expression for Y,, is the same, except that the limits of
integration are replaced by « —}and — o — i/2. Finally,
we determine Y, and X,,. To do this, divide Eq. (22c) by
Y,,, and define the left-hand side of Eq. (22¢) to be L(A).
Then

L(A)/Yzz(/i) = le(/l)/Yzz(ﬁ) +X12(/{)- (26)

The left-hand side of this equation is known, while the right-
hand side is the sum of two functions, one analytic in the
upper half-plane, the other one analytic in the lower half-
plane. To solve for Y, it is only necessary to write LY ;; ! as
the sum of two functions:

L(A)/Yp(A) =L (A) +L ~(4), (27)

with L * (L 7) analytic in the upper (lower) half-plane.
Therefore

1 (7277 L(2)/Y(2) iz,

LtT(A)=— 28

@ 2mi ) — o —ir2 z—A (282)
+ o0 +i/2
L-)=- L@/ Y@ 4 (28p)
2miJ— o +in2 z—A
Now with the definitions
Y,(1) = Y (A)L *(4), (29a)
X, (A) =L~ (4), (29b)

the matrices X and Y have all the properties required of a
WH factorization.

VI. THE EXIT DISTRIBUTION

Once the canonical Wiener-Hopf factorization has been
computed, an expression for the exit distribution, i.e.,
F(O,u) for u <0, can be written in terms of the factors of
W(A). Unlike for the one-speed case, the exit distribution
will involve derivatives of the factors of W(1/i4). The meth-
od followed in this section parallels the one given by van der
Mee. ' First, the exit distribution for the two-speed problem
defined by Eq. (29) will be derived; then the formulas will be
generalized to the N-group problem.

Following Gohberg and Krein,” there exists a resolvent
kernel ¢( -, - ) so that the general solution to the Wiener—
Hopf equation

G(x) = f K(x —y)G(»)dy + Utx) (30a)
(¢]
can be written as
6(x) = Ux) +f Y YU, (30b)
0
B. L. Willis and C. V. M. van der Mee 1636
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and the general solution to the transposed equation

G(x) =f G(PIK(y — x)dx + U(x) (31a)
0
can be written as
G(x) = U(x) +f U7 px)dy. (31b)
0

Note that the resolvent kernels for Eq. (30a) and Eq. (31a)
are identical. Returning to Eq. (30a), the exit distribution
can be written in terms of G by the formula

FOu)= — ijw e’**CG( y)dy, u<0. (32)
0

Introducing the resolvent kernel ¢( -, - ) this can be rewrit-
ten as

F(Ou) = _ﬁj” J‘“’ e YE/H
o Jo

XC[8(y—2)+v(y2)]U(2)dzdy. (33)

If the expression for U/(z) in terms of the incident flux is used
in Eq. (33), then

1 ) oo 1
FOp) = —— BC [8(y —
0 2”foj;foe [6(y —2)

+ ¥(p:2) e = 27D (s)ds dz dy. (34)

This equation relates the exit distribution to the incident
distribution by making use of the resolvent kernel. To write
Eq. (34) in terms of the factors of W, it is necessary to write

fwf e?*EC[8(y —2) +¥(y2)]e”>"dzdy (35)
0 (¢]

in terms of the factors of W. This will be accomplished in two
parts. First we have the following lemma.
Lemma 1:

J f e *C8(y—2) +y(yz2)le 2" dzdy
(1] 0

=H,(—u)[[su/(u—5)]1H,(s)
— s/ (u — ))H,(s) + (w—s)H [ (M ],
(36)
where

W'(1/ip) =H,(—p)H, (1)

is a canonical factorization with H; and H, analytic in the
open right half-plane and continuous and invertible in the
closed right half-plane. )

Proof: Let G(x;5) be a solution to the matrix Wiener—
Hopf equation

Glxs) = f K(x—p)G(ys)dy +e=7 (37
0

In this equation the variable s is considered to be a param-

J

J‘m on e [I+ iM] C{8(x—2) +y(x,2)le =" dzdx.
o Jo 7’
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eter. Note that the left-hand side of Eq. (36) is

f &G ys)dy = G+ (uss). (38)
0

IfEq. (37) is extended to the entire real line in the usual way
and the Laplace transform is defined by

G(A) = Jm dx €/*G(x), Re(l) =0, (39)

while Z(A) = W(1/id), then the Laplace transform of the
integral equation is

Z(AG*A)+ G~ (L)

=[sA /(A =) —s(A /(A —5)PM. (40)

The functions G * and G ~ have already been defined by Egs.
(40a)-(40d), and the matrix M was introduced in Eq.
(45a). Now assume that the factorization of Z(1) is given
by
Z Y u)=H,(—p)H, (1),

where the functions H, and H, are analytic and invertible on
the open right half-plane, and continuous and invertible on
the closed right half-plane. Using the above factorization,
Eq. (40) may be rewritten as

Hi'(=p)G*(u) + H, ()G ~ ()
=H,(u) [[sp/(u—)) —s/(n—s)PM]. (41)

If the right-hand side of Eq. (41) can be written as the sum of
two terms, one analytic and invertible in the right half-plane,
the other one analytic and invertible in the left half-plane,
then Liouville’s theorem can be invoked to solve for G * and
G ~.Due to the second-order pole in Eq. (41), it is necessary
to introduce the first derivatives of the H-functions into this
splitting. By inspection, the splitting is given by the sum of

[su/(p —$)1[H, (p) — H,(s)]
—s{u/(u — )P [H, () — H,(s)

— (u—s5)H [ (s) M, (42a)

which is analytic in the right half-plane, and the expression

K H,(s)—s( ad
u—s U—s

2
) (2.6 + w—9H: 1M,

(42b)

which is analytic in the left half-plane. An application of
Liouville’s theorem then proves Lemma 1. Note that, for
M =0, Eq. (42b) reduces to the result given in Ref. 9. Using
Lemma 1 it is now possible to write Eq. (35) in terms of the
H-functions. To do this it is expedient to define

I'(u,s) = right-hand side of Eq. (36). (43)

Now substitute the explicit formula for exp( — y=/u) into
Eq. (35). The result is
(44)
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The contribution due to the term ¢** gives CT (u,s), while
the term (x/u)e™* gives rise to first derivatives of the func-
tion I'. It is easily checked that

f f ie"”‘C[:S(x—z)+7/(x,z)]e“‘2/“dzdx
o Jo

=uCd,T(us).
Therefore,

(45)

1 1
FOu)= — z— [{—pd.M ]CJ- T(u,s)®(s)ds.
0
(46)
It is routine to generalize the exit distribution formula [Eq.
(46)] to the N-group problem. If 3 = D + M is the Jordan

decomposition of 2 with D the diagonal matrix given by
diag{o;}"_,, then the right-hand side of Eq. (40) is replaced

by
N-—-1 u m+1\N
z ( — )™diag {s( ) ] M™ (47)
m=0 Mo —§ i=1
Now it is necessary to write
N-1 u 2N
H@'S (~1)mdig [s( ) ] M™ (48
m=0 MO —S) )iz

as the sum of two terms, just as was done for the two-group
case. Note that Eq. (48) has poles at 4 = s/0;, which are in
the right half-plane. Denoting the ith column of a matrix 4
by [4 ], and noting that

[ s s () ]
MHO; —S§ )

= [H, (1) ] sle/ (uo, -8+, (49)

Eq. (48) can easily be written as the sum of two terms, one
analytic in the right half-plane, the other one analytic in the
left half-plane. This is accomplished by writing Eq. (49) as
the sum of

[@.F (u9)]
-—[H( )—Nil—l-( o —ﬁ)mm"”(i)]
= r/-" o HO; R r o)l

Xs(p/(po; — "+,
which is analytic in the right half-plane, and

_ —N—IL _ﬁ)m (m)i]
[@r (9]0 = ,..E=o m! (Pai s H# ( ) &

o;

Xs(u/(po, —))"*, (51)

which is analytic in the left half-plane, where H (™ and H {™
are the mth derivatives of H, and H,, respectively. Therefore
the generalization of Lemma 1 to the N-group problem is

N-—1

Plps)=H(—p) 3 Q. (psIM™, (52)
m=0
and the exit distribution { F(0, )], is given by
N—1 m
_ 1 L(ﬁ) @)"
2[1 m=0 m! g;
(53)

1
Xf [M"‘I‘(i,s) d(s)ds.
0 ag; 5
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Not only can the exit distribution be written in terms of
the factors of the symbol, but the solution for any value of x
can also be written in a similar fashion. This can be done by
making use of Eq. (30b), which relates F(x, z) to G(x),
and the results of this section. First we note that

~ 1
G+ =j T( ) ®(s) ds. (54)
0

From this expression it is possible to recover the function G.
Now that G is known, the solution F(x, 1) for x <0 can be
computed by making use of Eq. (30b).

VIl. CONCLUSION

Formulas for the exit distribution and the solution to a
multigroup transport equation with a nondiagonal cross-
section matrix have been derived in terms of generalized
Chandrasekhar H-functions. For the special case of two
groups with a noninvertible scattering matrix, the H-func-
tions were computed explicitly. Unfortunately, for N> 2 we
are not able to construct the factorization explicitly, so we
are forced to derive a nonlinear integral equation which the
H-functions satisfy and to set up a numerical scheme for
solving them. This work will be published elsewhere.
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