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ABSTRACT KINETIC EQUATIONS WITH ACCRETIVE COLLISION OPERATORS

Alexander H. Ganchev!, William Greenberg? and C.V.M. van der Mee®

We consider the class of abstract kinetic equations (T9)(x) = —AP(x) on
the half-line x € (0,00) where T is an injective self-adjoint operator and A is an ac-
cretive compact perturbation of the ideniity, both of them defined on a Hilbert
space. Half-range boundary conditions sre imposed. If Re A > 61 for some § > 0,
we establish the unique solvability of the problem. If ReA > 0 and Ker A =
Ker (Re A), we prove that the problem has at least one bounded (in norm) solution
and give a complete description of its measure of nonuniqueness. The result is ap-
plied to derive the well-posedness of the equation of transfer of polarized light
and some multigroup neutron transport equations.

1. INTRODUCTION

Since the seminal work of Hangelbroek and Lekkerkerker [H,HL] on the sub-
critical neutron transport equation in a homogeneous half-space with isotropic scat-
tering much effort has been spent in constructing a complete existence and unique-

ness theory of abstract kinetic equations of the type

(TYY(x) = —AY(x), 0 < x < oo, (1.1)
Q.90 = o, (1.2)
Gy = O(1) (x — o), . (13
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where T is an injective self-adjoint operator on a complex Hilbert space H, Q, is
the orthogonal projection of H onto the maximal subspace on which <T.> is posi-
tive and A is some operator on H. Roughly speaking, there are two families of ab-
stract kinetic theories, each pertaining to different types of operators T and A.

One of these theories was developed to a large extent by Beals. In this me-
thod one extends the given Hilbert space setting and seeks the solution in the com-
pletion, HT’ of the domain of T, D(T), with respect to the inner product <[Tl,>.
It can be applied succesfully when A is nonnegative bounded self-adjoint with the
null space of A, Ker A, finite-dimensional (see [Bl1]), or when A is a nonnegative
self-adjoint Sturm-Liouville differential operator and T is the multiplication by an
indefinite weight function (see [B2]).

The other branch of abstract kinetic theory deals with operators A which
are compact perturbations of the identity. Here no extension of the solution space
from H to HT is needed. In fact, the method relies on an application of the Fred-
holm alternative such as the one carried out in [HL] for neutron transport with
isotropic scattering. Using this method Van der Mee [M1] settled the well-posed-
ness issue when T is bounded and A is a nonnegative self-adjoint compact perturba-
tion of the identity. The result was subsequently generalized by Greenberg et al.
[GMW] to the case when T is unbounded. In these publications the selfadjointness
properties of T~! and T~ 'A were used to prove a certain decomposition of H which
is equivalent to the unique solvability of Egs. (1.1)-(1.3). Here, as in the method
used by Beals, the positive self-adjointness of A plays a seemingly essential role.

The consideration of operators A which are compact perturbations of the
identity allows one to prove the equivalence of Egs. (1.1)-(1.3) to a vector-valued
Wiener-Hopf equation of the form

o0

P(x) — I Bx—yIBY(y)dy = w(x), 0 < x < oo, (1.4)
4]

where B = I — A is a compact operator,

+I: g™ ta(dt), z > 0,

(z) = { (1.5

—Io_ t™ e **s(dt), z < O,

and w(x) = I: e ta(dt)¢+. Here ¢, € QID(T)] and o(-) denotes the resolution of
the identity of T. The equivalence of the boundary value problem (1.1)-(1.3) and
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the vector-valued Wiener-Hopf equation (1.4) under the minor regularity condition
3a >0 8>1: RanB C Ran|T|" N DAT) (1.6)

was in fact established by Van der Mee [MI,M3]. Here and in the sequel Ran S de-
notes the range and D(S) the domain of an operator S. It turns out that the opera-
tor governing the left-hand side of Eq. (1.4) is a Fredholm operator on one of (and
hence each one of) the Banach spaces Lp(H); (1 < p < o) of Bochner Lp-integrable,
C(H); of bounded strongly continuous functions ¥: [0,00)—~H and Cy(H); of bounded
strongly continuous functions ¥: [0,00}~H with (o) = 0, provided T 'A does not
have zero or purely imaginary eigenvalues, irrespective of whether A is self-
adjoint or not. This opens the way to proving the well-posedness of Egs. (1.1)-(1.3)
for certain classes of non-selfadjoint A by taking the following path:

(i) to prove that Egs. (1.1)-(1.3) with ¢, = 0 have the zero solution only,

(i) to prove that the operator governing the left-hand side of Egq. (1.4) is a

Fredholm operator of index zero, and
(iii) to exploit the Fredholm alternative and the equivalence of Egs. (1.1)-(1.3)

and Eq. (1.4) to obtain the unigque solvability of Egs. (1.1)-{1.3}

This path, a key observation was made by Willis et al. [WZM], was taken before
when studying Eg. (1.1) with x in the bounded interval (0,7) where T is injective
self-adjoint and Re A > 0 with Ker A = Ker (Re A). However, the fact that in this
case the boundary wvalue problem (1.1)-(1.3) is eguivalent to & vector-valued convo-
lution equation on the finite interval (0,7) and this convolution operator is known
to be compact, settled step (ii) in an almost trivial manner. When working on the
half-line (0,0), however, the second step of the above procedure is more difficult
to implement.

Many of the topics sketched above may be found in two monogrephs. The
first one, by Kaper et al. [KLH], deals mainly with applications in one-speed neutron
transport theory and emphasizes the expansion of the solution with respect to the
(singular] eigenfunctions of the evolution operator T~!A, which can be done ri-
gorously if A is positive self-adjoint. The second monograph, by Greenberg et al.
[GMP], gives a theory of abstract boundary value problems of the type (1.1)-(1.3)
and vector-valued convolution equations of the form (1.4) and applies it to a host
of applications in neutron transport theory, radiative transfer, rarefied gas dyna-
mics and other fields. In [GMP] a number of problems with non-selfadjoint A was

treated by first developing some bisemigroup perturbation theory and then apply-
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ing this theory to the problem under consideration. One of the cases considered
was the situation in which A has a positive real part, which were actually results
obtained by Ganchev et al. (see [Ga,GaG), also [GaGM]). In this article we supply a
new proof of these results which does not hinge on the rather cumbersome con-
struction of the analytic bisemigroup generated by T 'A. Instead we follow the
path described above and circumvent the problem of how to define certain projec-
{ions and semigroups altogether.

In Section 2 we settle the case when Re A > 61l for some § > 0. In Section
3 we extend our results to the case when Re A > 0 and Ker A = Ker(Re A) > 0,

while Sections 4 and 5 are devoted to applications and a discussion.

2. STRICTLY ACCRETIVE COLLISION OPERATORS

Throughout this section T will be an injective self-adjoint operator and A a
compact perturbation of the identity satisfying Re A > §1 for some § > 0, both of
them defined on the complex Hilbert space H. We will assume that condition (1.6)
holds true. The effect of condition (1.6) will be that the operator function %(-)B
occurring as the convolution kernel in Eq. (1.4) as well as the operator function
TH(:)B are Bochner integrable functions from R into L(H), the Banach algebra of
bounded linear operators on H. As a result, the convolution operators

(LpP)x) = I T(x—y)BYyHy, (L)) =J H(x—y)TB¥(y)dy
0

1]
are bounded on E(H); where E(H); denotes one of the spaces Lo(H)] (1 < p < o),
C(H); and Cy(H), defined in the introduction. Moreover, if ¥ € E(H);, then
(£g¥)(x) € D(T) for almost every (and, if E(H); = C(H); or Cy(H);, every) x € [0,)
and T(LBw)(x) = (LTBw)(x). The necessary background information on convolution
operators can be found in [GK] (generalized in [Fe3] to an infinite-dimensional
setting) and in Chapters VI and VII of [GMPl. We will go through the three steps
pointed out in the introduction to establish the unique solvability of Egs. (1.1)-
(1.3).

LEMMA 2.1. Let T be an injective self-ad joint operator on H, and let p, € Q,[H]L
Then the vector function w: [0,00)+H defined In the Introduction belongs to L(H)y I
and only if @, € DITI'?).
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Proof: Using the Speciral Theorem we find that I: llw(x)||H2dx =1 T 2<p+IIH,

which establishes the lemma. O

LEMMA 2.2. Under the general hypotheses or this section, there Is at most one
solution of Egs. {1.1)-(1.3).

Proof: Suppose P is a solution of Egs. (1.1)-(1.3) with ¢, = 0. Then, by definition,
P [0,00)~H is & bounded (in H) strongly continuous vector function such that T#{x)
€ D(T) for all x € (0,), Ty is strongly differentiable with derivative —Ayp and
Q4¥%(0) = 0. Thus % belongs to the null space of I — Ly in C(H); and therefore
to its null space in L(H)g, because the Fredholm characteristics of I — Lp are in-
dependent of the particular choice of E(H);. Let us write Q_ = I — Q,; then Q_
is the orthogonal projection of H onto the maximal subspace on which <T--> is ne-

gative. Using that Re A > 0, we easily compute

02—-21-
o

- ] 4 CTP0BI>dx = —<TROWOD> + lim <THDHTI>,
D

<(Re ANp(x),p(x)>dx = —I [<ACBE> + <B(x)ABR)>) dx =
0

where the limit is easily seen to exist. In fact, this limit vanishes. In order to see
this, we note that <T¥(),¥()> € L,(R,), because the vectors ¥ € L(H);, T(¥—w) =
—&p( ﬂ—-LB)"w € L(H); Icf. Lemma 2.1} and hence Ty € L(H);. Since, by assump-
tion, Q,¥(0) = 0, we obtain

0> -2 jm <(Re AWp(x),p(x)>dx = —<T¥(0),%0)> > 0.
0
But the integrand in the last expression is nonnegative and Re A > 0, so that
{Re AY(x) = 0.
Because Re A > 61l for some § > 0, we conclude that ¥ = 0, as claimed. O
In order to establish the next lemma, we make two observations. First, if

Re A > 61 for some 6 > O, then T—!A cannot have any zero or purely imaginary ei-
genvalues. Indeed, if A = ATE for some A with Re X = 0, then
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((Re A),E) == (AT 4+ (E,ATE) = MTE,E) + MTEE) == )\{(T&E) — (G,TE)} == 0,
(2.1
whence 0 < &iEI° < ((Re A),£) = O and thus € = 0, The second observation, due to
Feldman {Fe], is that the convolution operator

o0

(NP)x) = j W(x—y)p(y)dy
o
is bounded on L,(I1); with unit norm. In fact, N is a projected restriction of the o-
perator (N :i:w)(X) = I:o H(x—y)p(y)dy on the Hilbert space L,(H)”_ of strongly
measurable L,-functions ¥: R — H, which is unitarily equivalent (through the
Fourier transform) io the operator (N j:w)(x) = (I — ixT) '9(x) defined on L,(H)”_,

and the last operator has unit norm.

LEMMA 2.3. Under the general hypotheses of this section, the operator I — ‘t'B
Is boundedly invertible on any of the Bansch spaces E(H);.

Proof: Consider the Hilbert space Ly(H)” . Then J = sgn(T), B and its adjoint B*

can be viewed as bounded linear operators on L,(H)”_; then J is a unitary operator
on L,(H)”_ such that J* = 1. Since '!‘B == NB on L,(H)”_, we easily obtain

*
Lp = J.JB*J.N.J,

which is similar to the operator

o0

(Lclﬁ)(X) = I H(x—y)Co(y)dy
(1]

on L,(H)”_ where C = JB*J. Now note that both 1l — B and I — C have their real
part > 61l for some 6§ > 0. According to Lemma 2.1, the equivalence of Egs. (1.1)-
(1.3) and Eq. (1.4) on C(H), and the equality of the Fredholm characteristics of I
— &p on L,(H); and C(H)7, both for A = I — B and for JA*J = I — C, we may
conclude that I — Lp and I — L~ have zero null space. However, the latter
operator is similar to the adjoint of the former while both of them have closed
range. Thus both of these operators are invertible on LZ(H):.

Finally, since the Fredholm characteristics of I — Ly are the same on any

of the spaces E(H), mentioned above, we find I — Lp to be invertible on each one
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of the spaces E(H);. 0O

THEOREM 2.4. Under the general hypotheses of this section, the boundary-value
problem (1.1)-(1.3) has a unique solution ¥: [0,00) = H for every @, € Q.ID(T)],
which satisfies both of the conditions [p(x)ly = o(1) and Iszb(x)IIH = o(1) (x —~ o).

Proof: From the above lemmas and the equivalence of Egs. (1.1)-(1.3) and Eq. (1.4)
on C(H); it is immediate that for every ®, € QID(T)] there exists a unique
bounded (in H) strongly continuous vector function ¥: [0,00) - H such that ¥(x) €
D(T) for all x € (0,0), TP is strongly differentiable on (0,00) with derivative
—AP(x) and Q,¥(0) = @,. Furthermore, the invertibility of Il — Ly on Co(H)g and
w € CyH), imply Wy = ofl) (x—00). Since ¢, € D(T) and TR-w) =
——LTB(]I—LB)_I(:J, we also obtain II'I‘tb(x)llH = 0o(1) (x—), which completes the proof.
o

Under the assumptions of Theorem 2.4, we have in fact ®(0) € D(T)
whenever ¢, € QID(T)). Indeed, since in this case {w,Tw} C C(H);, we have ¥ €
C(H); end T(@—w) = —Lppll—2p)'w € C(H) and hence Ty € C(H);, which
implies ¥(0) € D(T), as claimed above.

COROLLARY 2.5. Suppose condition (1.6) Is satisfied as well as || — A”L(H) < 1.
T hen the boundary value problem (1.1)-(1.3) has a unique solution.

If is easily verified that, under the conditions of the corollary, Re A > 41l
with § = 1 — ||Bll > 0. In fact, as observed in [GMP], the corollary is also imme-
diate from the equivalence of Egs. (1.1)-(1.3) and Eq. (1.4) and the main result of
[GL2] on factorization of operator functions close to the identity, since the symbol

of the Wiener-Hopf equation (1.4}, i.e. the operator function
W) = 1 — r '™ M(x)Bdx = I — (I — iAT)™'B,
satisfies
sup |1 — Wool oy < 1.

AER

For later use we introduce the following two complementary closed subspa-
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ces of H. By Hp (resp. Hp) we denote the subspace of all vectors in H which can

be represented as d)(Oi') with ¥ being the solution of the Wiener-Hopf equation

e -t

Yx) F I I(x---y)B :tw(y)dy = »j:I X/t o(dthp + (2.2i)

0 0

in C(H) (resp. C(H)?,) for some ¢ € Q [Hl. Here B, == B and B_ = B*. (The u-
nique solvability of the equation on the left half-line is clear from the above
results when replacing T and A with --T and A*.) Since the right-hand sides form
a closed subspace, so do the solutions and hence the values of ¥(0), whence Hp and
Hn are closed subspaces of H. Moreover, if @ + €Q :i:[D(T)] and P | are the corres-

ponding half-space solutions, then
<Tll)+.(0+),7/),(0~)> = ——J a%; <TPx) 9 _(—x)> dx =
o
= j ([<Av.0p_(—x0> ~ <, (0,A%_(—x)>] dx = 0,
o

which proves Hp N D(T) and Hx N D(T) to be orthogonal with respect to the indefi-
nite inner product <T.>. A similar calculation shows that for a non-trivial solu-
tion ¥ +
4 ot E-
+ <T¢:t(0 ),Tbi(ﬂ > =42 [ <(Re A)wi(x),lb :i:(X)> dx > 0,
[¢]

so that Hp, N D(T) is positive definite and H,. N D(T) is negative definite with res-
pect to the indefinite inner product <T.,> and hence have trivial intersection.

It remains to prove Hp 4+ Hn = H. First note that (I - L(I;i) G I - Lg] ),
the direct sum of the two operators pertaining to the left-hand sides of E;s.
(2.2:t), is invertible on each one of the Banach spaces E(H)”, ~ E(H), @ E(H);.
Thus this operator maps the space of pairs of right-hand sides w_ @ w,
bijectively onto the space of solution pairs ¥_ @ ¥, so that Hy + Hna is a closed
subspace of H. Its adjoint, when defined on L,(H)”_, is obviously similar to
1 — L;]) ¢ I — LHi) on L(H)?. lcf. the proof of Lemma 3], which has the
analogou; property. Hence, Hp 4 Hn = H, as claimed.

We remark that Hy, and H, are invariant under T 'A and that the restric-

tions of T7'A to Hp and Hx have their spectra within the right and left half-plane,

respectively.
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3. NON-STRICTLY ACCRETIVE COLLISION OPERATORS

In this section we will make the same assumptions on T and A as in Section
2, except for the assumption Re A > §l, which will be replaced by the pair of
hypotheses Re A > 0 and Ker A = Ker (Re A), where Ker S denotes the null space

of an operator S. We now define
Zo =,,Ul Ker (TT'A")™

We impose the extra condition on T and A that Z, C DUTI?) for some B > 2, which
is fulfilled if (1.6) is valid for some o« > 0 and B > 3 [cf. Lemma 3.1(ii) belowl].

The subspace Z, was first considered in kinetic theory (in fact, conserva-
tive neutron transport with isotropic scattering) by Lekkerkerker [Lel. Below we
will reduce the present boundary value problem to a boundary value problem with
modified A satisfying Re A > 61l for some § > 0 and a finite-dimensional problem.
Such a reduction was made before in [M1,Be3,GMZ]. In dealing with the finite-di-
mensional problem, we will make frequent use of indefinite inner product spaces of
finite dimension. For the theory of such spaces we refer to [Bo,GLR].

We have (cf. [M1,GMZ] for A > 0; [GMP] for Re A > 0)

LEMMA 3.1. The following statements hold true:

(i) Ker A = Ker A* = Ker Re A has finite dimension, m say,

(ii) Zy = Ker (T7'A) = Ker (T~'A*)? has finite dimension, n say,

(iii) Ker A N Ran (T™'A) = Ker A N Ran (T~!A*) has finite dimension, namely n—m.
(iv) Z, C D(T),

(v) T'A does not have purely imaginary eigerwalues.

Proof: Statement (i) is immediate from Ker A = Ker Re A. Now suppose Af = T7,
AN = T¢ and A¢ = 0. Then

= <CAE> + <ALE> = <ATGE> + <A =0,

by virtue of (i), whence T¢ = A7 = (Re A)7 = 0 and thus ¢ = 0. As the argument
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with A replaced by A* is the same, we obtain (ii) from (i). The statement (iii) fol-
lows easily from (i) and A and A* having closed range, while (iv) is immediate from
(ii) and Ker A C D(T) [cf. (1.6)l. To derive (v), we simply repeat the calculation dis-
played in (2.1). O

LEMMA 3.2. Consider the indefinite inner product <T-.> on Z,. Then the

rollowing statements hold true:

() Ir ¢ € Zyand <TEN> = 0 ror all 1 € Z,, then £ = 0, Le. Z, Is non-degenerate,

(i) %920 Ker A N Ran(T~'A) = {£ € Ker A: <T&,7> = 0 for all 7] € Ker A}, Le.
this subspace Is the neutral part of Ker A,

Gii) If N + is a maximal positive/negative definite subspace of Ker A, then %, &
N + is a maximal positive/negative subspace of Z,.

Proof: Suppose ¢ € Z, and <T§,7> = 0 for all 7 € Z,. Then certainly <T¢7> =
0 for all 7 € Ker A®* and hence Tf € [Ker A‘]’L = Ran A. Now write Tf = A¢.
Then ¢ € Ker A (cf. Lemma 3.1(i)) and

whence ¢ € Ker A and therefore £ = 0, thus proving (i). Next, suppose 0 € Ker A
and <TO,K> = 0 for all K € Ker A. Then T6 € [Ker A']“L = Ran A, thus implying 0
€ %, Conversely, if 6 € %, and AN = T0, then, for all K € Ker A, <T8,K> =
<AMK> = <MA*K> = 0, which proves (ii). Part (iii) follows by a simple counting
argument. Given maximal positive definite and negative definite subspaces N + of
Ker A, we have N, & N_ @ 3, = Ker A, while N + @ ¥, are positive and negative
subspaces of Z, whose dimensions add up to the dimension of Z,. Since Z; is non-

degenerate, we obtain (iii). 0O

For later use we define m, and m.. as the dimensions of a maximal positive
definite and a maximal negative definite subspace of Ker A, respectively, and m, as
the dimension of the neutral part of Ker A. All three numbers are independent of
the particular choice of subspace.

Now recall that Zo C D(T). Define Z, = TIZl, Z; = (2ol and Z, = (Zoih
Then Lemma 3.2(i) implies that Z, N Z, = {0} and Z, N Z, = {0}. A simple
dimension counting argument coupled with some manipulation of orthogonal

complements yields Z, @& Z, = 20 [43) 2, = H. Further, if £ € Z,, then, for all 1 €
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Zoy <ALTT> = <£A*M> = 0 (because A*7 € TIZ,)), so that A€ € Z,. Thus choosing
B to be an invertible positive operator on Z, and defining A, as the linear
operator on H which coincides with T8~ on Z, and with A on Z,, we may describe

Ag by the following diagram:

Zo ® Z, = H
A a
20 @ 21 = H

where both decompositions are <T->-orthogonal. Inner product arithmetic now

gives

<(Re Agl,6> = <TB 'ok0> + <(Re AXy,€:>,
which implies that Re Ag; > §1 for some § > 0. Here £ = £, + £, is the decomposi-
tion of £ according to Zg @ Z, = H. Then Ag satisfies condition (1.6), as a result

of the additional assumption Z, C D(T 1*) for some B> 2

THEOREM 3.3. Under the general hypotheses of this section, there is at least one
solution of Egs. (1.1)-(1.3) whenever p, € Q.[D(T)]L.

Proof: Let us replace Egs. (1.1)-(1.3) by the boundary value problem

(TPgl(x) = —Aghglnt), 0 < x < o0, 3.1)
Q136(0) = @4, 3.2)
sl = O(1) (x — o), (3.3)

where the maximal B-invariant subspace M of Z; such that o(ﬁl‘)n)) C R, is con-
tained in Ker A. According to Lemma 3.2(iii) such a choice of 8 is possible. If I,
and I7, denote the complementary projections of H onto Z, and Z,, respectively,
then
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w(x) = ﬂowﬂ(o) + -”1#’5(")

is a solution of Egs. (1.1)-(1.3), because /T ¥4(0) € Ker A. O

THEOREM 3.4. Under the general hypotheses of this section, the number of linear-
ly Independent solutions of the boundary value problem

(TYPY(x) = —AP(x), 0 < x < oo, 3.4)
Q. ¥(0) = 0, (3.5)
Ilw(x)llH = o(1), or O(1), or O(x) (x — oo), (3.6)

is zero In the o(1)-case, m_ in the O(1)-case and m_ + mqy In the O(x)-case.

Proof: Following the decomposition procedure given in the proof of Theorem 3.3,
we may decompose Eq. (3.4) in an equation on Z, and an equation on Z,. The latter

has a trivial general solution, which is of the form [cf. Lemma 3.1(ii)]
Po(x) = [ — xT7'AJ Po{0). 3.7

Thus in the of(l)-case we miust have P,(0) = 0, in the O(1)-case Py(0) € Ker A and
in the O{x)-case Yo(0) € Z,. In the o(1)-case any solution of Egs. (3.4)-(3.6) will be
a solution of Egs. (3.1)-(3.3) with ¢, = 0. Thus in the o(l)-case Egs. (3.4)-(3.6) only
have the trivial solution [cf. Proposition 2.2 in combination with Re Ag > 0

Next, consider a solution of Egs. (3.4)-(3.6) in the O(x)-case (resp. O(1)-case).

Define
Hl,p = Hp N le Hl.m = Hm N Z"

where Hp, and Hw correspond to Egs. (3.1)-(3.3). Then H,, and H, , are independent
of the choice of B, are positive definite and negative definite, respectively, ortho-
gonal with respect to the <T.>-inner product and add up to all of Z,. Exploiting
various orthogonality and positivity properties we find a one-to-one correspon-
dence between the solutions of Eqs. (3.4)-(3.6) in the O(x)-case (resp. O(1)-case) and

their I -projections, which must belong to the negative definite subspace Ab_ =
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Hyp, @ H.1 N Zg of 7 (resp. N_ = [H;, ¢ H_1N Ker A of Ker A). Here Hd: =
Q i[H]‘ Since obviously the orthogonal complements of H,, H_, Z,, Ker A, H,,, and
H,  under the <T-.>-inner product are given by the respective subspaces H_, H,,
Zy Z, & %o Hyn & Zg and H,, @ Z,, we find that the <T-,>-orthogonal
complement of A_ in Z, (resp, N_. in Ker A) is given by A, (resp. N, @ %K)
where M, = [H,, @ H ]l N Zg and Ny = [H,, @ H;] N Ker A. Because the latter
space is positive definite (resp. positive) with respect to the <T. . >-inner product,
the original subspace A (resp. N_) must have been maximal negative definite in
Zo (resp. maximal negative definite in Ker A). Thus dim 4. = m.. 4+ my and

dim N_ = m_, which completes the proof of the theorem. [

THEOREM 3.5. Under the general hypotheses of this section, the vectors ¢, €
Q.ID(T)} ror which the boundary value problem

(TYY(x) = —AP(x), 0 < x < =, (3.8)
Qu¥(0) = ¢, 3.9
Mgy = o(l) (x — ), (3.10)

has a solution, make up a linear subspace or Q,ID(T)] of co-dimension m, + my /f

a solution exists, it Is unique.

Proof: Given ¢, € Q.ID(T)], there is a solution of Egs. (3.8)-(3.10) if and only if
oy € H,, + H.1 N QID(T). Since P(0) € D(T) also, there is a solution of Egs.
(3.8)-(3.10) if and only if

@4 € [H,, + H.1 N QDT = (Hy, N QDTN + (H. N QID(TD.  (3.11)

We now make two observations: (i) Q. ID(T) + Q_ID(T)] = D(T), and (i) {H,, N
DTN + H_ N D(T)) 4+ Z, = D(T), the latter following from the existence of a
solution of Egs. (1.1)-(1.3) with (1.3) replaced with Ilw(x)iIH =: O(x) (x—o0) for any @,
€ QuID(T)). We now apply the linear algebra statement A/(ANB) =~ (A+4B)/B
twice, first for 4 = QID(T)] and B = [H,, + H.1 N D{T) end next for 4 = Z,
and the same B, and conclude that the vectors ¢, € Q.ID(T)] for which Egs. (3.7)-

(3.10) have a solution, make up a subspace of QID(T)] whose co-dimension coincides
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with the co-dimension of M_ = [H, , + H_.]1 N Z; in Z,. Since A_ is a maximal ne-
gative definite subspace of Z; and Z, is non-degenerate, its co-dimension in Z,
must be the same as the dimension of a maximal positive subspace in Z,, which e-

quals m; + my. The uniqueness part of this theorem is clear from Theorem 3.4. O

The homogeneous boundary value problem (3.4)-(3.6) in the O(x)-case, when
applied to radiation processes in a stellar atmosphere, is known as the Milne pro-
blem (cf. [Ch,Sobl). In fact, in this case we easily obtain thai for every e € Ker A

d

ax <TP(x)he> = —<AP(x),e> = —<P(x),A%> = 0,

which corresponds to the radiative flux being independent of optical depth. Thus,
for every e € Ker A, Fg¥) def ‘<TP(x),e> is a linear functional on the set of Milne
solutions. When e is ranging over a basis {ey, --ye_} of some maximal negative defi-
nite subspace of Ker A, then for every @, € Q,ID(T)] there is a unique solution of

Eq. (1.1) with boundary conditions (1.2), (1.3) and

ge,@’) = f; = given, j=1, .-, m_. {3.12)
Indeed, if one were to consider the solution of this problem for ¢, = 0 and f, =
o= fm_ = 0, let ¥ be a <T,->-positive invertible operator on Z, mapping the ma-
ximal negative subspace [H;, 4+ H_1 N Z; of Z, onto span {e;; ey ). Then Y(eo)
can be written as a linear combination of ey -epy . Since the matrix
{<’I"‘(‘‘e,,e‘,>}:'r::‘l is non-singular, we must have (o) = 0 and therefore P(x) = 0.

4. APPLICATIONS

In this section we will apply the theory of Sections 2 and 3 to polarized

light transfer and multigroup neutron transport.
4.1. Polarized light transfer

The equation of transfer of polarized light in a homogeneous hailf-space me-
dium has the form (cf. [HMD)
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1 2%
u 'aa""i (u,T,‘P) + I(u;T:‘P) = 4%_ I j Z(u.u’,lp-—v’)l('l',u’,(p’) d(p‘du’, 4.1
-1

o

where 7 € (0,00) is the optical depth (measured from the surface), (u,p) € [-1,1]1 X
[0,2x] specifies the direction of propagation of the light, a € (0,1] is the albedo of
single scattering and I = {L,Q,U,V} is the Stokes vector whose first component is
the specific intensity and where Q/I, U/] and V/I specify the state of polarization
of the light. We impose the boundary conditions

10,u,p) = L (u,p), (up) € (0,11 X [0,27], {4.2)
1 2%

I I (7w, 0" l,% de’du’ = O(1) (7 — ), (4.3)
1 do

where [lll,%2 = P + QP + IUI® 4+ IV, The so-called phase matrix is given by

Z(u,u’,0—p’) = Lix—o )F(0)L(—0o,)

with the scattering matrix F(8) and the rotation matrix L(a) given by

a,0) b8 0 0
by(0) ax(8) O 0

FO=1 5 a5(8) by(0)
0 0 —b,{B) a o)
and
1] 0
cos 200 sin 200
L(U.) == J

—sin 20 cos 2a
0 0

O O O =
-0 O ©

respectively, and ¢’—¢, o, and o, forming the angles and 6, ¥ and ¥’ the opposite
sides of a spherical triangle, where u = —cos ¥ and v = —cos ¢¥’. The scattering
matrix consists of Borel functions of 8 with a;(8) nonnegative with Ii‘ a,(0)d(cos 9)
== 2 and leaves invariant the cone of real vectors I satisfying | > (Qz—ivU"’A»»Vz)l/2
for almost every 0 € [0,x]. As a result, on choosing H to be the (complex} Hilbert
space of vector functions I: [—1,1}1 X [0,2x] — €* with the usual L,-norm, we find

(TD(u,) = ul(u,?) to be bounded, injective and self-adjoint on H and (AD(u,p) =
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I(up) — (a/4m) Jd_] J‘z’ Z(u,u’, o9 YKu',0') dp’du’ to be a compact perturbation of
the identity satisfying Re A > 0 and Ker A = Ker{Re A). If a < 1, we have Re A
> 6 for § = 1 — a > 0, while for a == 1 we have dimKer A = 1 and dim Z, = 2,
except for the exceptional case a, = a4, where these dimensions are 2 and 4. For
the statement on the nonnegativity of Re A we refer to Section IX.2 of [GMP]; for
the statements on the structure of Z;, we refer to {M4]. Moreover, condition (1.6)
is satisfied if a, € L. {—1,1] for some r > 1 (see [GMP], Sec. IX.2). From Theorem
3.4 it is then clear that Egs. (4.1)-(4.3) are uniquely solvable when stated on the
Hilbert space H, provided a, € L/[--1,1] for some r > 1. In this way we recover the

result of [M4] for the L,-setting, but without applying cone preservation arguments
as in [M4l

4.2, Multigroup neufron transport

For isotropic scattering and a homogeneous half-space medium the N-group

neutron transport equation has the form (cf. [DuM], [CaZ])
ap N !
i a—x‘ ) + o Wdx,u) = %sz Cyy j ¥alx,u)du, 4.4)
= -1

where x € (0,00) is the distance from the surface (in units of the largest mean free
path among the N energy groups) and u is the direction cosine of propagation. The
matrix C = {cu)mg1 has nonnegative elements only and o, > --- > oy > 0. We use
the short-hand notation X = {0‘6”}1.12 and impose the boundary conditions

1/-’1(041) = ‘Pi(ﬂ), “ € [051]) (4-5)
! 1/2

[J lwa(x,u‘)lzdu'] = 0(1) (x—e0), (4.6)
-1

where i = 1, ---;, N. We write ¥ = col {w,}hﬂ and @ = col (fp*}iyl. One gets an appli-
cation of Sections 2 and 3 by defining the operators (TW)(u) = o, ‘up(u) and
(AW (1) = ¥l — % r-'c Il_l ¥(u)du'l, Then T is bounded, injective and self-
adjoint and A is a compact perturbation of the identity satisfying (1.6), both
defined on the Hilbert space H given as the weighted L,-direct sum of N copies of
L,[—1,11 with weights oy, -+, N

Define B on €N as Z7'C, 4: H » €N by (¥} =} [ w(uau’ and %: €N
H by (%#)(u) = (BF). Then A = Il — %4 and 4 9" 1 — B = 1 — 4%, so that
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A and A have the same nonzero eigenvalues., Moreover, Re A > 0 if and only if
Re (X—C) > 0, while Ker A = Ker (Re A) holds true if end only if Ker X—C =
Ker (Re (X—C)). We may then apply the theory of Sections 2 and 3 and derive
some existence and uniqueness results. In particular, if |X7!C| < 1 in the
Euclidean norm of CN, then the boundary value problem (4.4)-(4.6) is uniquely
solvable. The last result was found before by Bowden et al. [BSZ] using

"Caseology”.

5. DISCUSSION

A number of topics has not been treated in Sections 2 and 3, for the simple
reason that we did not need them to prove the (non-} unique solvability of the
main boundary value problem. In order to fit in our work with some of the pre-
vious research, we will briefly outline these topics.

First of all, under the general assumptions of Section 3, the subspaces H, ,,
H;, and Z, are invariant under T 'A and the restrictions of T 'A to these sub-
spaces have their spectrum in {Re X > 0} U {0}, {Re » < 0} U {0} and {0}, respective-
ly; only the restriction to Z, has eigenvalue spectrum at zero. Moreover, the 4
restrictions of T™!A to H,, and H, , generate bounded analytic semigroups which
are strongly vanishing as x—o0. One way to prove it proceeds by estimating the
resolvent of T 'A restricted to these subspaces and applying the appropriate re-
sult from semigroup theory.

Secondly, it is possible to drop the regularity assumption (1.6) from the theo-
ry of this paper. Instead we have to assume (i} Ran B C D(T) and (ii) Z, C D(T?.
Basically, all we need condition (1.6) for is for the operators LB and I‘TB to be
bounded on C(H);. This will be shown in a future publication (cf. [GMI).
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