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ABSTRACT KINETIC EQUATIONS WITH ACCRETIVE COLLISION OPERATORS 

Alexander IL Ganchev I, William Greenberg 2 and C.V.M. van der Mee 3 

We consider the class of abstract kinetic equations (T~b)'(x) = --AS(x) on 
the half-line x 6 (0,co) where T is an injective self-adjoint operator and A is an ac- 
cretive compact perturbation of the identity, both of them defined on a Hilbert 
space. Half-range boundary conditions are imposed. If Re A ~ 6~I for some 6 > 0, 
we establish the unique solvability of the problem. If Re A ~ 0 and Ker A 
Ker (Re A), we prove that the problem has at least one bounded (in norm) solution 
and give a complete description of its measure of nonuniqueness. The result is ap- 
plied to derive the well-posedness of the equation of transfer of polarized light 
and some multigroup neutron transport equations. 

1. INTRODUCTION 

Since the seminal work of Hangelbroek and Lekkerkerker [H,HL] on the sub- 

critical neutron transport equation in a homogeneous half-space with isotropic scat- 

tering much effort has been spent in constructing a complete existence and unique- 

ness theory of abstract kinetic equations of the type 

(T~)'(x) = --Ar 0 < x < co, (1.1) 

Q§ = p+, (1.2) 

I]~p(x)ll H = O(I) (x ~ co), (I.3) 
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where  T is an i n j e c t i v e  s e l f - ad jo in t  o p e r a t o r  on a complex Hi lber t  space  H, Q+ is 

t h e  o r thogona l  p ro j ec t i on  o f  H on to  t h e  maximal subspace  on which  <T. , .>  is posi-  

t i v e  and A is some o p e r a t o r  on H. Rough ly  speaking,  t h e r e  a re  two famil ies  o f  ab- 

s t r a c t  k ine t i c  t heo r i e s ,  each  per ta in ing to d i f f e r e n t  t y p e s  o f  o p e r a t o r s  T and A. 

One of  t h e s e  t h e o r i e s  was deve loped  to a large e x t e n t  by Baals. In t h i s  me- 

thod  one ex t ends  t h e  g iven  Hi lber t  space  se t t i ng  and seeks  t h e  so lu t ion  in t h e  com- 

plet ion,  FIT, o f  t h e  domain of  T,  D(T), wi th  r e spec t  to t he  inner  p roduc t  <[TIT>. 

It  can be applied s u c c e s f u l l y  when A is nonnega t ive  bounded se l f - ad jo in t  wi th  t h e  

nul l  space of  A, Ker A, f in i te -d imens ional  (see [B1]), or  when A is a nonnega t ive  

s e l f - ad jo in t  S t u r m - L i o u v i l l e  d i f f e r e n t i a l  o p e r a t o r  and T is t he  mul t ip l ica t ion  by an 

indef in i t e  weight  f unc t i on  (see [B2]). 

T h e  o t h e r  branch of  abs t r ac t  k ine t ic  t h e o r y  deals  with o p e r a t o r s  A which 

a re  compact  p e r t u r b a t i o n s  of  t h e  iden t i t y .  Here  no ex tens ion  of  t h e  so lu t ion  space  

f rom H to  H T is needed. In fac t ,  t h e  method  re l i es  on an appl icat ion of  t h e  F red -  

holm a l t e r n a t i v e  such  as t h e  one ca r r i ed  o u t  in [HL] fo r  neu t ron  t r a n s p o r t  wi th  

i so t rop ic  sca t t e r ing .  Using th i s  method Van der  Mee [M1] s e t t l ed  t h e  wel l -posed-  

ness  i ssue  when T is bounded and A is a nonnega t ive  s e l f - ad jo in t  compact  p e r t u r b a -  

t ion of  t h e  iden t i t y .  T h e  r e s u l t  was s u b s e q u e n t l y  genera l ized  by  Greenberg  e t  al. 

[GMW] to t h e  case  when T is unbounded.  In t h e s e  publ ica t ions  t h e  s e l f ad jo in tnes s  

p rope r t i e s  o f  T -1 and T-1A were used to  p r o v e  a ce r t a in  decomposi t ion  of  H which 

is e q u i v a l e n t  to  t h e  un ique  s o l v a b i l i t y  of  Eqs. (1.1)-(1.3). Here,  as  in t h e  method  

used by  Beals,  t h e  p o s i t i v e  s e l f - ad jo in tnes s  o f  A p lays  a seemingly  essent ia l  role.  

T h e  cons ide ra t ion  o f  o p e r a t o r s  A which are  compact  p e r t u r b a t i o n s  of  t h e  

i d e n t i t y  al lows one to p r o v e  the  e q u i v a l e n c e  of  Eqs. (1.1)-(1.3) to a v e c t o r - v a l u e d  

Wiene r -Hopf  equa t ion  o f  t h e  form 

~(x) --  I ~  To(x--y)B~(y)dy = t0(x), 0 < x < co, 

where  B = lI - -  A is  a compact  opera to r ,  

(1.4) 

+ I :  t- le-Z/*c~(dt) '  z > O, 

~ ( z )  = - - J ' : .  t - le-~/*cr(dt) ,  z < O, 
(1.5) 

and ~oCx) = I :  e-=/Z<rCdt)~P+" Here  ~p+ E Q+[D(T)] and <7(-) denotes  t h e  r e so lu t i on  of  

t h e  i den t i t y  o f  T.  T h e  equ iva l ence  o f  t h e  boundary  v a l u e  problem (1.1)-(1.3) and 
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the  v e c t o r - v a l u e d  Wiener-Hopf  equa t ion  (1.4) under  the  minor r egu l a r i t y  condi t ion  

3 ct > O, /~ > 1: R a n B  C RanrI ' l  ~ D(ITI a) (1.6) 

was in fact established by Van der Mee [MI,M3]. Here and in the sequel Ran S de- 

notes the range and D(S) the domain of an operator S. It turns out that the opera- 

tor governing the left-hand side of Eq. (I.4) is a Fredholm operator on one of (and 

hence each one of) the Banach spaces Lp(H)~ (I ~ p ~ oo) of Bochner Lp-integrable, 

C(H)~ of bounded strongly continuous functions D: [0,oo)-ff{ and C0(H) o of bounded 

strongly continuous functions ~#: [0,oo]-,H with ~(oo) = 0, provided T-~A does not 

have zero or purely imaginary eigenvalues, irrespective of whether A is self- 

adjoint or not. This opens the way to proving the well-posedness of Eqs. (l.l)-(l.3) 

for certain classes of non-selfadjoint A by taking the following path: 

(i) to prove that Eqs. (1.1)-(1.3) with ~+ ~ 0 have the zero solution only, 

(it) to prove that the operator governing the left-hand side of Eq. (1.4) is a 

Fredholm operator of index zero, and 

(iii) to exploit the Fredholm alternative and the equivalence of Eqs. (1.1)-(1.3) 

and Eq. (1.4) to obtain the unique solvability of Eqs. (1.1)-(1.3) 

This path, a key observation was made by Willis et aL [WZM], was taken before 

when studying Eq. (1.1) with x in the bounded interval (0,7") where T is injective 

self-adjoint and Re A ~ 0 with Ker A ~ Ker (Re A). However, the fact that in this 

case the boundary value problem (I.1)-(1.3) is equivalent to a vector-valued convo- 

lution equation on the finite interval (0,~') and this convolution operator is known 

to be compact, settled step (it) in an almost trivial manner. When working on the 

half-line (0,oo), however, the second step of the above procedure is more difficult 

to implement. 

Many of the topics sketched above may be found in two monographs. The 

first one, by Kaper et al. [KLH], deals mainly with applications in one-speed neutron 

transport theory and emphasizes the expansion of the solution with respect to the 

(singular) eigenfunctions of the evolution operator T-IA, which can be done ri- 

gorously if A is positive self-adjoint. The second monograph, by Oreenberg et al. 

[GMP], gives a theory of abstract boundary value problems of the type (1.1)-(1.3) 

and vector-valued convolution equations of the form (1.4) and applies it to a host 

of applications in neutron transport theory, radiative transfer, rarefied gas dyna- 

mics and other fields. In [GMP] a number of problems with non-selfadjoint A was 

treated by first developing some bisemigroup perturbation theory and then apply- 
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ing th i s  t h e o r y  to  t h e  problem under  cons idera t ion .  One of  t h e  cases  cons idered  

was t h e  s i t ua t i on  in which  A has  a p o s i t i v e  real  par t ,  which were  a c t u a l l y  r e s u l t s  

obta ined by Oanchev  e t  al. (see [Ga,GaG], also [GaOM]). In th i s  a r t i c l e  we supp ly  a 

new p roo f  of  t h e s e  r e s u l t s  which does  not  hinge on t h e  r a t h e r  cumbersome con-  

s t r u c t i o n  of  t h e  ana ly t i c  b isemigroup gene ra t ed  by T - I A .  Ins tead we fo l low t h e  

pa th  descr ibed  above  and c i r c u m v e n t  t h e  problem of  how to  def ine  ce r t a in  p ro j ec -  

t ions  and semigroups  a l t oge the r .  

In Sec t ion  2 we s e t t l e  t h e  case  when Re A > 611 fo r  some 6 > 0. In Sec t ion  

3 we ex tend  o u r  r e s u l t s  to  t h e  case  when Re A > 0 and Ker A = Ker  (Re A) > 0, 

while  Sec t ions  4 and 5 a re  d e v o t e d  to  appl ica t ions  and a d iscuss ion.  

2. S T R I C T L Y  ACCRETIVE COLLISION OPERATORS 

Throughout this section T will be an injective self-adjoint operator and A a 

compact perturbation of the identity satisfying Re A > 61[ for some 6 > 0, both of 

them defined on the complex Hilbert space H. We will assume that condition (1.6) 

holds true. The effect of condition (1.6) will be that the operator function %(.)B 

occurring as the convolution kernel in Eq. (1.4) as well as the operator function 

T%(.)B are Bochner integrable functions from l~ into L(H), the Banach algebra of 

bounded linear operators on H. As a result, the convolution operators 

(s ~ I ~  ~ ( x - - y ) B ~ ( y ) d y ,  (s = I~ %(x--y)TB~(y)dy 

are  bounded on E(H) o where  E(H) o deno tes  one of  t he  spaces  Lp(H) o (1 < p 5~ oo), 

C(H) o and C0(H) o def ined  in t h e  in t roduc t ion .  M o r e o v e r ,  i f  ~b E E(H) o, t hen  

(s C D(T) f o r  a lmost  e v e r y  (and, i f  E(H) o = C(H) o or  C0(H)o, e v e r y )  x ~ [0,| 

and T(LB~)(x) ~ (s T h e  n e c e s s a r y  background  in format ion  on c o n v o l u t i o n  

o p e r a t o r s  can be found in [OK] (genera l ized  in [Fe3] to  an inf in i te -d imens iona l  

se t t ing)  and in C h a p t e r s  VI and VII o f  [GMP]. We will go t h r o u g h  t h e  t h r e e  s t eps  

poin ted  ou t  in t h e  i n t roduc t ion  to e s t ab l i sh  t h e  un ique  s o l v a b i l i t y  o f  Eqs.  (1.1)- 

(1.3). 

LEMMA 2.1. Let T be an InJectlve se l f -adJoln t  o p e r a t o r  on H, and let  ~+ E Q+[H]. 

Then the vector  funct ion 60: [0,co)-,H def ined In the Int roduct ion belongs to L2(H) o I f  

and only I f  ~,+ E D(ITI1/2). 
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Proof: Using the Spectral Theorem we find that I: ll~J(x)l[H 2dx = ~ [IITI*/2~~ ' 

which establishes the lemma. [] 

LEMMA 2.2. Under the general hypotheses o f  this section, there Is at most one 

solution of  Eqs. (1.1)-(1.3). 

Proof: Suppose ~ is a solution of Eqs. (I.I)-(].3) with ~+ = 0. Then, by definition, 

~: [0,o~)~H is a bounded (in H) strongly continuous vector function such that T~(x) 

E D(T) for all x E (0,oo), T~ is strongly differentiable with derivative --A~# and 

Q+~(0) = 0. Thus $ belongs to the null space of I[ -- s in C(H) o and therefore 

to its null space in L2(H) o, because the Fredholm characteristics of 1[ -- L B are in- 

dependent of the particular choice of E(H) o. Let us write Q_ ---- ]] -- Q+; then Q_ 

is the orthogonal projection of H onto the maximal subspace on which <T-,.> is ne- 

gative. Using that Re A > 0, we easily compute 

where the limit is easily seen to exist. In fact, this limit vanishes. In order to see 

this, we note that <T*(-),~(-)> E LI(I~+), because the vectors $ E L2(H)~, T(~--(o) 

--LTB(1[--LB)-I(~ G L~(H) o [cf. Lemma 2.1] and hence T~ E L2(H) o. Since, by assump- 

tion, Q+~O(0) ~ 0, we obtain 

I- 0 ~ - -2  < (Re  A)~(x) ,~(x)>dx = - - < T ~ ( 0 ) , ~ ( 0 ) >  2 0. 
0 

But the integrand in the last expression is nonnegative and Re A ~ 0, so that 

(Re A)~(x) ------- 0. 

Because Re A > 6]] for some 6 > 0, we conclude that ~ ~ 0, as claimed. [] 

In order to establish the next lemma, we make two observations. First, if 

Re A ~ 6]] for some 6 > 0, then T-IA cannot have any zero or purely imaginary ei- 

genvalues. Indeed, ~f At = ~T~ For some k with Re k ~ 0, then 
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((Re A)E,E) = (XTE,E) + (E,ETE) = kCTE,E) + k(TE,E) : k{(TE,E) -- (E,TE)} = O, 

(2.1) 

whence 0 ~ 61fEll 2 ~ ((Re A)E,E) = 0 and thus E = 0. The second observation, due to 

Feldman [Fe], is that the convolution operator 

(Ar~))(x) = I~ ~(x--Y)~(y)dy 

is bounded on 1.2(II)~ with unit norm. In fact, A r is a projected restriction of the o- 

perator (M• = I_~ ~E(x--y)IO(y)dy on the Hilbert space L2(H)_~= of strongly 

measurable L~-functions 10: R -, H, which is unitarily equivalent (through the 

H" Fourier transform) to the operator (~ I#)(x) = (11 -- ixT)-l~(x) defined on L2( )_~, 

and the last operator has unit norm. 

LEMMA 2.3. U n d e r  t he  g e n e r a /  h y p o t h e s e s  of  th i s  sec t ion ,  t h e  o p e r a t o r  II - -  2~ B 

Is boundedly Invert lble on any o f  the Banach spaces E(H) o. 

P_rgof; Consider the Hilbert space 1.2(H)~_.. Then J = sgn (T), B and its adjoint B* 

can be viewed as bounded linear operators on L2(H)~_.; then J is a unitary operator 

= = H " on L2(H)_~ such that j2 11. Since s B MB on L2( )__, wc easily obtain 

s  = J " J B ' J  �9 M �9 J, 

which is similar to the operator 

(s = I~ ~(x--y)C~(y)dy 

on L~(H)_ = .  w h e r e  C = J B ' J .  Now n o t e  t h a t  b o t h  1I - -  B and 11 - -  C h a v e  t h e i r  r ea l  

p a r t  ~ 611 f o r  s o m e  6 > 0. A c c o r d i n g  to  Lemma 2.1, t h e  e q u i v a l e n c e  o f  Eqs .  (1.1)- 

41.3) and  Eq.  41.4) on  C(H) o and t h e  e q u a l i t y  o f  t h e  F r e d h o l m  c h a r a c t e r i s t i c s  o f  1[ 

--  s B on L2(H)o and C(H)o,  b o t h  f o r  A = 1[ - -  B and f o r  J A ' J  = II - -  C, we m a y  

c o n c l u d e  t h a t  11 - -  ] 'B and 11 - -  s  h a v e  z e r o  nul l  space .  H o w e v e r ,  t h e  l a t t e r  

o p e r a t o r  is s im i l a r  t o  t h e  a d j o i n t  o f  t h e  f o r m e r  whi l e  b o t h  o f  t h e m  h a v e  c losed  

r ange .  T h u s  b o t h  o f  t h e s e  o p e r a t o r s  a r e  i n v e r t i b l e  on  L2(H) o. 

F i n a l l y ,  s i n c e  t h e  F r e d h o l m  c h a r a c t e r i s t i c s  o f  11 - -  s B a r e  t h e  s ame  on a n y  

o f  t h e  s p a c e s  E(H) o m e n t i o n e d  a b o v e ,  we f i nd  11 - -  L B t o  be  i n v e r t i b l e  on  e a c h  one  
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of t he  spaces  E(H)~. D 

TI tEOREM 2.4. Under the general hypotheses o1" this section, the boundary-value 

problem (1.1)-(1.3)  has a unique solution ~: [0,on) -~ H f o r  every ~ +  E Q+ [D(T ) ] ,  

which setls~les both o1" the conditions tl,(x)ll H = o(1)  and IIT,(x)II H = o(1)  ( x  - .  co). 

Proof :  From t h e  above  laminas and t h e  e q u i v a l e n c e  of  Eqs. (1.1)-(1.3) and Eq. (1.4) 

on C(H)~ i t  is immediate  t h a t  fo r  e v e r y  ~+ @ Q+[D(T)] t h e r e  ex i s t s  s un ique  

bounded (in H) s t r o n g l y  con t inuous  v e c t o r  f unc t i on  ~: [0joe) -4 H s u c h  t h a t  ~(x) ~_ 

D(T) fo r  all x E (0,oo), TI0 is s t rong ly  d i f f e r e n t i a b l e  on (0,00) wi th  d e r i v a t i v e  

--A~(x)  and Q+r = ~o+. F u r t h e r m o r e ,  t h e  i n v e r t i b i l i t y  of  II - -  L B on Co(H) o and 

co E Co(H) o imply H$(x)ll H = o(1) (x-coo). Since ~+ ~ D(T) and T(*--cO) = 

--s  we also obtain IIT~(x)ll H = o(1) (x-.co), which comple tes  t he  proof .  

D 

Under  t h e  assumpt ions  of  T h e o r e m  2.4, we h a v e  in f a c t  ~(0) @ D(T) 

w h e n e v e r  ~+ E Q+[D(T)]. Indeed, s ince in th i s  case  {c0,TCO) C C(H)o, we h a v e  ~ E 

C(H)~ and T($--W) = - -s  6 C(H)~ and hence  T ~  6 C(H) o, which 

implies 1#(0) E D(T), as claimed above.  

C O R O L L A R Y  2.5. Suppose condition (1.6) Is satisfied as well as [Ill - -  AIIL(H) < 1. 

Then the boundary value problem (1.1)-(1.3) has a unique solution. 

If is eas i ly  v e r i f i e d  tha t ,  under  t he  condi t ions  of  t he  co ro l l a ry ,  Re A ~ 61I 

wi th  6 = 1 --  [IBll > 0. In fac t ,  as obse rved  in [GMP], t h e  co ro l l a ry  is also imme- 

dia te  from the equivalence of Eqs. (1.1)-(1.3) and Eq. (1.4) and the main result of 

[GL2] on factorization of operator functions close to the identity, since the symbol 

of the Wiener-Hopf equation (1.4), i.e. the operator function 

W ( k ) =  l I - - I ~  e t ~ X ~ ( x ) B d x =  l I - - ( l l - - i h T ) - l B ,  

s a t i s f i e s  

8up~ll- X~r(k)k(H) < 1. 
k~R 

For  l a t e r  use  we in t roduce  the  fol lowing two complementa ry  closed subspa-  
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ces of H. By Hp (resp. Hm) we denote the subspace of all vectors in H which can 

be represented as ~(04-) with ~ being the solution of the Wiener-Hopf equation 

in C(H) o (resp. C(H)~ for some ~4- 6 Q:~:[H]. Here B+ == B and B_ = B*. (The u- 

Nique s o l v a b i l i t y  of the  equa t ion  on the  l e f t  half- lane is clear  from the  above 

r e s u l t s  when replacing T and A with - - T  and A*.) Since the  r i gh t -hand  sides form 

a closed subspace,  so do the  so lu t ions  and hence the  va lues  of lO(0), whence Hp and 

Hm are  closed subspaces  of  H. Moreover ,  if ~-b 6 Q i | D ( T ) ]  and Y2_{_ are  the  cor res -  

ponding ha l f - space  so lu t ions ,  then  

<TY2+(0+),~_(0-)> =~--I: ad <TY2+(x),~ (--x)> dx = 

which p roves  Hp N D(T) and Hm N D(T) to be or thogonal  with respec t  to the  indef i -  

n i te  inner  p roduc t  <T.,->.  A similar  ca lcu la t ion  shows t h a t  for  a non - t r i v i a l  solu-  

t ion ~4- 

4- <Ttb4-(0• h(04-)> = 4- 2 <(Re A)10.4 (x),10• dx > 0, 
0 

so t ha t  Hp fl D(T) is pos i t ive  de f in i t e  and Hm N D(T) is nega t ive  de f in i t e  with res-  

pect  to t he  indef in i t e  inner  product  < ' r . , .>  and hence have  t r iv i a l  in te rsec t ion .  

It  remains  to p rove  I-I~, -t- Hm . . . . . .  H. F i r s t  note t ha t  (11 ZB_)H (9 (11 s 

the  d i rec t  sum of the  two opera tors  per ta in ing  to the  l e f t -hand  sides of Eqs. 

(2.2-t-), is i n v e r t i b l e  on each one of  the  Banach spaces E(H)_ ~ .  ~ E(H)_.~ (9 E(H)~. 

T h u s  th i s  opera to r  maps the  space of  pairs  of r igh t -hand  sides co_ (9 60+ 

b i j e c t i v e l y  onto  the  space of  so lu t ion  pairs  $_ (9 !04, so tha t  Hp q- H~ is a closed 

subspace  of H. I ts  ad jo in t ,  when def ined on 1.2(H)_~, is o b v i o u s l y  similar  to 

(ll s  (9 (ll t+J - -  B+ - - l t B _  ) on L2(H): ~ [cf. t he  proof  of Lemma 3], which has the  

analogous p rope r ty .  Hence, Hp + H= = H, as claimed. 

We remark  t h a t  Hp and H~ are  i n v a r i a n t  under  T-*A and t h a t  t he  r e s t r i c -  

t ions  of T-~A to Hp and H~ have  the i r  spec t ra  wi thin  the  r igh t  and l e f t  hal f -plane,  

r e spec t ive ly .  
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3. NON-STRICTLY A C C R E T I V E  COLLISION OPERATORS 

In this section we will make the same assumptions on T and A as in Section 

2, except for the assumption Re A ~ 611, which will be replaced by the pair of 

hypotheses Re A > 0 and Ker A = Ker (Re A), where Ker S denotes the null space 

of an operator S. We now define 

Zo = ~ K e r ( T - 1 A ' )  ". 

We impose the extra condition on T and A that Z0 ~ D(ITI ~) for some /~ > 2, which 

is fulfilled if (1.6) is valid for some cc > 0 and /~ > 3 [cf. Lemma 3.1(ii) below]. 

The subspace Z 0 was first considered in kinetic theory (in fact, conserva- 

tive neutron transport with isotropic scattering) by Lekkerkerker [Le]. Below we 

will reduce the present boundary value problem to a boundary value problem with 

modified A satisfying Re A ~ 611 for some 6 > 0 and a finite-dimensional problem. 

Such a reduction was made before in [MI,Be3,GMZ]. In dealing with the finite-di- 

mensional problem, we will make frequent use of indefinite inner product spaces of 

finite dimension. For the theory of such spaces we refer to [Bo,GLR]. 

We have (cf. [MI,GMZ] for A :> 0; [GMP] for Re A > 0) 

L E M M A  3.1. The following statements hold true: 

(i) Ker  A = Ker  A*  = Ker  Re A has finite dimension, m say, 

( i i )  Z o  = Ker  ( T - I A )  2 = Ker  (T -1A* )  2 has f inite dimension, n say, 

( i i i )  Ker  A N Ran (T -~A)  = Ker  A N Ran (T -~A  ") has f inite dimension, namely n--m. 

( iv)  Z o C__ D(T), 

(v )  T-IA does  not have purely Imaginary elgenvslues. 

Proof: Statement (i) is immediate from Ker A = Ker Re A. Now suppose AE = TT/, 

ATI = Tf and At = 0. Then 

2 < (Re  A)T/,T/:> = <AT/,T/:> -Jr <:T/,AT/> = <Tf ,T />  + <T/ ,Tf>  = 

= <f,A~> + <AE,~> = <A*f,E> + <~,A*f> = 0, 

by virtue of (i), whence T~" = AT/ ~ (Re A)T/ ~ 0 and thus ~ = 0. As the argument 
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with  A rep laced  by  A * is t h e  same, we obta in  (ii) f rom (i). T h e  s t a t e m e n t  (rio fo l -  

lows ea s i l y  f rom (i) and A and A * h a v i n g  c losed  range,  whi le  ( iv)  is immediate  f rom 

(it) and Ker A ___ D(T) [cf. (1.6)]. T o  d e r i v e  (v), we s imply r e p e a t  t h e  ca lcu la t ion  dis-  

p layed  in (2.1). n 

LEMMA 3.2. Consider the Indef ini te Inner  p roduc t  <T. , .> on Zo. Then the 

fo l lowing statements hold true: 

(i) I f  E E Zo and <Ts = 0 f o r  al l  77 E Zo, then s = O, I.e. Zo Is non-degenerate, 

(it) ~;o def" K e r A  n R a n ( T - 1 A )  = (s E K e r A :  <Ts = 0 f o r  all 77 E KerA},  I.e. 

this subspace Is the neutra l  pa r t  o f  Ker A, 

(iii) I f  3#-t- Is a maximal poslt lve/negatlve def in i te $ubspace o f  Ker A, then %o (~ 

JC-F Is a maximal positive~negative subspace o f  Zo. 

Proof :  Suppose  E E Zo and <T~,IT> = 0 fo r  all  77 E Zo. T h e n  c e r t a i n l y  <TE,r]> = 

0 f o r  all  /7 E K e r A  ~ and hence  T E E  [ K e r A ' ]  l = R a n A .  Now wri te  T~ = h r .  

T h e n  ~ E Ker A (cf. Lemma 3.1(i)) and 

2 <(Re A):,f> = <Af,:> -~ <~,A~> == <TE,~> q- <f,TE> = 0, 

whence f E Ker A and t h e r e f o r e  E = 0, t h u s  p rov ing  (i). Next ,  suppose  0 E Ker  A 

and < T 0 , K >  ~ 0 f o r  all  K ~ K e r A .  T h e n  TO ~ [KerA~ A- = R a n A ,  t h u s  implying 0 

%0- C o n v e r s e l y ,  i f  0 E %0 and A~ ----- TO, then,  f o r  all  /~ ~ Ker  A, <T0 ,K>  

<Ak ,K>  = <k,A*/r = 0, which p r o v e s  (it). P a r t  (iii) fo l lows  by  a simple count ing  

argument .  G iven  maximal p o s i t i v e  de f in i t e  and nega t i ve  de f in i t e  subspaces  g •  of  

Ker  A, we h a v e  J~+ ~ g _  ~ %0 = Ker A, while  J~q_ (~ %o are  p o s i t i v e  and nega t i ve  

subspaces  o f  Zo whose  dimensions add up to t h e  dimension of  Zo. Since  Zo is non- 

degenera te ,  we obta in  (riO. n 

For  l a t e r  use  we de f ine  m+ and m._ as t h e  dimensions of  a maximal p o s i t i v e  

de f in i t e  and a maximal n e g a t i v e  de f in i t e  subspace  o f  Ker A, r e s p e c t i v e l y ,  and m0 as 

t h e  dimension of  t h e  neu t r a l  pa r t  of  Ker A. All t h r e e  numbers  a r e  independent  of  

t h e  p a r t i c u l a r  cho ice  of  subspace.  

Now reca l l  t h a t  Z o C D(T). Def ine  Zo = T[Zo], Z1 = [Zo] A" and Z1 ~ [Zo] A-- 

T h e n  Lemma 3.2(0 implies  t h a t  7 0 n Z~ ~ (0} and Zo f~ Z1 ~ {0}. A simple 

dimension count ing  a rgument  coupled  wi th  some manipulat ion of  o r thogona l  

complements  y ie lds  Zo (]~ ZI = Zo (~) Z l  = H. F u r t h e r ,  i f  E E Z u  then,  f o r  all 77 E 
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Z0, <AE,F/> = <~,A'FI> = 0 (because A'T/ E T[Z0]), so that AE E Zl. Thus choosing 

/3 to be an invertible positive operator on Zo and defining A~ as the linear 

operator on H which coincides with T/3 -I on Zo and with A on Z~, we may describe 

A~ by the following diagram: 

Zo ~ Z1 = H 

T/3-1 A1 
Zo ~) Z1 = H 

where both decompositions are <T-,->-orthogonal. Inner product arithmetic now 

gives 

<(Re A~)s = <T/3-1Eo,s + <(Re A)E1,EI>, 

which implies that  Re A~ ~ 61I for some 6 > 0. Here ~ = Eo + I~1 is the decomposi- 

tion of ~ according to Z0 (~ Z1 = H. Then A~ satisfies condition (1.6), as a resul t  

of the additional assumption Zo ~ D(rFI ~) for some /3 > 2. 

THEOREM 3.3. Under the genera/ hypotheses o f  thls section, there Is at /east one 

solution o1" Eqs. (1.1)-(1.3) whenever ~o+ E Q+[D(T)]. 

Proof: Let us replace Eqs. (1.1)-(1.3) by the boundary value problem 

(T~#)'(x) = --A~#Cx), 0 < x < co, (3.1) 

Q+~(O) = ~+, (3.2) 

IIW~(x)ll H = O(1) (x -~ co), (3.3) 

where the maximal /3-invariant subspace ~ of Z o such that cr(/3Jjl ~) C i~+ is con- 

tained in Ker A. According to Lemma 3.2(iii) such a choice of /3 is possible. If //o 

and H1 denote the complementary projections of H onto Zo and Z1, respectively,  

then 
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~O(x) =//o~0~(0) +//lt0#(x) 

is a so lu t ion  o f  Eqs.  (1.1)-(1.3), because  //oSB(0) E Ker A. [] 

T H E O R E M  3.4. Under the general hypotheses o f  this sect/on, the number of I/near- 

ly Independent 8olutlons of  the boundary value problem 

(T@)'(x) = --A@(x),  0 < x < co, (3.4) 

Q+~(0) = 0, (3.5) 

II~(x)ll H = o(1), o r  O(1), or O(x) (x  - .  co), (3.6) 

Is zero In the o(1)-case,  m_ /n the O(1)-case and  m_ + m o  In the O(x)-case.  

Proof :  Fol lowing the  decomposi t ion  p rocedure  g iven  in t h e  p roof  o f  Theo rem 3.3, 

we may decompose Eq. (3.4) in an equa t ion  on Zl  and an equa t ion  on Z0. T h e  l a t t e r  

has  a t r i v i a l  general  so lu t ion ,  which is of  t h e  form [cf. Lemma 3.1(ii)] 

~O0(x) = [II -- xT-IA] ~00(0). (3.7) 

T h u s  in  t he  o(1)-case we m ius t  h a v e  ~o(0) = 0, in t h e  O(1)-case ~o(0) E Ker  A and 

in t h e  O(x)-case ~0(0) E Zo. In t h e  o( l ) -case  any so lu t ion  of  Eqs.  (3.4)-(3.6) will be 

a so lu t ion  of  Eqs. (3.1)-(3.3) wi th  ~o+ ~ 0. T h u s  in t h e  o(1)-case Eqs. (3.4)-(3.6) only  

have the trivial solution [cf. Proposition 2.2 in combination with Re A s ~ 0]. 

Next, consider a solution of Eqs. (3.4)-(3.6) in the O(x)-case (resp. O(1)-case). 

Def ine  

Hl,p = Hp ~ Zt,  Hi.= = H= CI Z ,  

where  Hp and Hm cor respond  to Eqs. (3.1)-(3.3). T h e n  Hl,p and HI,,~ are  independent  

o f  t h e  cho ice  o f  /~, a re  p o s i t i v e  de f in i t e  and nega t i ve  def in i te ,  r e s p e c t i v e l y ,  o r t h o -  

gonal with r e s pec t  to  t he  <T- , .>- inner  p roduc t  and add up to all o f  Zl .  Explo i t ing  

v a r i o u s  o r t h o g o n a l i t y  and p o s i t i v i t y  p rope r t i e s  we f ind a one- to -one  co r re spon-  

dence be tween t h e  so lu t ions  o f  Eqs.  (3.4)-(3.6) in t he  O(x)-case (resp. O(1)-case) and 

t h e i r  Ho-pro jec t ions ,  which must  belong to  t h e  n e g a t i v e  de f in i t e  subspace  o41,_ = 
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[Him ~]~ H_] VI Z o of  Zo (resp. M_ = [H1, v ~ H_] fl Ker A of Ke rA) .  Here HA: = 

Q:E[H]. Since  o b v i o u s l y  t h e  o r thogona l  complements  o f  H+, H_, Zo, Ker  A, H~,~ and 

HI,~ under t h e  <T-,->-inner product are  given by t h e  respective subspaces H_, H+, 

ZI, Zt (~ %o, Hj,,~ (~ Zo and Hl,p (~ Zo, we find that the <T.,->-orthogonal 

complement of Jll,_ in Z0 (resp. J~_. in Ker A) is given by ~+ (resp. g+ if) %0) 

where  .A~+ ~ [I-11, ~ (]~ H+] CI Z 0 and At. t = [l{1, m (~ H+] A Ker A. Because  t h e  l a t t e r  

space is positive definite (resp. positive) with respect to the <T.,.>-inner product, 

the original subspace J%_ (resp. 3r must have been maximal negative definite in 

Zo (resp. maximal negative definite in Ker A). Thus dim .41,_ = m_ q- me and 

dim Jr = m_, which completes the proof of the theorem. VI 

THEOREM 3.5. Under the general hypotheses o1" this section, the vectors ~+ E 

Q+[D(T)] f o r  which the boundary value problem 

(TlO)'(x) = --AC)(x), 0 < x < co, (3.8) 

Q+~(0) = ~p+, (3.9) 

It~(x)ll H = o(1) (x -- c~), (3.10) 

has a solution, make up a linear subspace or Q+[D(T)] of co-dlmenslon m+ + mo. Ir 

s solution exists, It Is unique. 

Proof: Given ~o+ E Q+[D(T)], there is a solution of Eqs. (3.8)-(3.10) if and only if 

~o+ E [HI,~ Jr H_] fq Q+[D(T)]. Since ~#(0) E D(T) also, there is a solution of Eqs. 

(3.8)-(3.10) if and only if 

~o+ E [H1, p -I- H_] fl  Q+[D(T)] = (Hl,p f-I Q+ID(T)]) q- (H_ fl Q+[D(T)]). (3.11) 

We now make two observations: (i) Q+[D(T)] -~ Q_[D(T)] ~ D(T), and (it) [HI. p fq 

D(T)] -I- [H_ fq D(T)] -]- Z0 ~ D(T), the latter following from the existence of a 

solution of Eqs. (1.1)-(1.3) with (1.3) replaced with [ID(x)I[ H =. O(x) (x-.co) for any ~+ 

Q+[D(T)]. We now apply the linear algebra statement .A/(JtN?B) ~ (.A.q-~B)/~B 

twice, first for .A = Q+[D(T)] and �9 = [HI,p q- H_] fq D(T) and next for .A. ----- Z o 

and the same ~B, and conclude that the vectors r E Q+[D(T)] for which Eqs. (3.7)- 

(3.10) have a solution, make up a subspace of Q+[D(T)] whose co-dimension coincides 
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with  t h e  co-dimension of  ~ _  = [H~.p -b H_] N Z 0 in Z ~  Since  .&_ is a maximal ne- 

g a t i v e  de f in i t e  subspace  o f  Zo and Zo is non-degenera te ,  i t s  co-dimension in Z0 

must  be t h e  same as t h e  dimension of  a maximal p o s i t i v e  subspace  in Zo, which e-  

qua ls  m+ q- too. T h e  un iqueness  par t  o f  t h i s  t heo rem is c lea r  f rom T h e o r e m  3.4. [] 

T h e  homogeneous  boundary  v a l u e  problem (3.4)-(3.6) in t h e  O(x)-case,  when 

applied to rad ia t ion  p rocesses  in a s t e l l a r  a tmosphere ,  is known as t h e  Milne p ro-  

blem (cf.  [Ch,Sob]). In fac t ,  in t h i s  case  we ea s i l y  obtain  t h a t  f o r  e v e r y  e 6 Ker A 

__fl <T~(x),e> = --<Al~(x),e> = --<10(x),A'e> = 0, 
dx 

which co r re sponds  to  t h e  r a d i a t i v e  f l u x  being independent  of  op t ica l  depth .  Thus ,  

fo r  e v e r y  e 6 Ker  A, ~e0P) de~f '<T~(x),e> is  a l inear  func t iona l  on t h e  se t  o f  Milne 

so lu t ions .  When  e is ranging o v e r  a basis  (el,...,em_} of  some maximal n e g a t i v e  def i -  

n i te  subspace  o f  Ker  A, t hen  f o r  e v e r y  ~o+ 6 Q+[D(T)] t h e r e  is a un ique  so lu t ion  of  

Eq. (1.1) wi th  bounda ry  condi t ions  (1.2), (1.3) and 

~ey(~) = fJ = given, j = I, ..-, m_. (3.12) 

Indeed, i f  one were  to  cons ider  t h e  so lu t ion  of  t h i s  problem f o r  ~+ = 0 and f ,  = 

. . . .  fro_ = 0, l e t  7 be a < T - , . > - p o s i t i v e  i n v e r t i b l e  o p e r a t o r  on Z o mapping t h e  ma- 

ximal n e g a t i v e  subspace  [Hl,p q- H_] N Z0 of  Zo onto  span (e,,..-,em_}. T h e n  710(co) 

can be wr i t t en  as a l inear  combinat ion o f  el, . . . ,em �9 Since  t h e  mat r ix  

( < T T - l e , e j > } i i ~ l  is non-s ingular ,  we mus t  h a v e  ~p(oo) = 0 and t h e r e f o r e  ~(x) ~ 0. 

4. APPLICATIONS 

In th i s  sec t ion  we will apply  t h e  t h e o r y  of  Sec t ions  2 and 3 to  po la r i zed  

l igh t  t r a n s f e r  and mul t ig roup  neu t ron  t r anspo r t .  

4.1. Po la r i zed  ~ t r a n s f e r  

T h e  equa t i on  of  t r a n s f e r  of  po la r ized  l igh t  in a homogeneous  ha l f - space  me- 

dium has  t h e  fo rm (cf. [HM]) 
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iI i2x = Z(u,u',~--~o')l('r,u',~o') d~o'du', (4.1) 
o 

where ~ E (O,eo) is the  optical depth (measured from the surface), (u,~o) E [-1,1] X 

[0,27] specifies the direction of propagation of the light, a ~ (0,1] is the albedo of 

single scattering and i = {I,Q,U,V} is the Stokes vec tor  whose f i rs t  component is 

the specific intensity and where Q/I, U/I and V/I specify the state of polarization 

of  the light. We impose the boundary conditions 

where 

l(0,u,~) = I+(u,~), (u,@) E [0,1] X [0,2~r], (4.2) 

V I2" [ , l (%u '6o ' ) i l zZd~ 'du '=O(1)  ( , -~oo ) ,  (4.3) 
-1 o 

(11112 2 ---- III z -]- IQI 2 + IUI 2 -{- IVI 2. The so-called phase matr ix is given by 

Z(u,u',(p--(p') : L(';T--o'2)F(O)L(--ul) 

with the scattering matrix F(0) and the rotation matrix L(oc) given by 

F(O) == 

and 

I al(O) bl(O) 0 0 

bl(O) a2(O) 0 0 
o ~ 0 a3(0) b2(0) 

0 --b~(O) a4(O) 

I 
1 0 0 0 | 

0 cos 2a sin 2a 0 

L(oc) ~ 0 --sin 2a cos 2oc 0 ' 

0 0 0 1 

respect ively,  and ~o'--~, cr 1 and ~2 forming the angles and 0, @ end ~" the opposite 

sides of a spherical triangle, where u = --cos @ and u '  = --cos OL The scattering 

f matrix consists of Borel functions of 0 with at(0) nonnegative with -i a1(8)d(c~ 0) 

= 2 and leaves invariant the cone of real vectors | satisfying I ~ (QZ+U2-~V2)I/2 

for almost every g C [0,w]. As a result, on choosing H to be the (complex) Hilbert 

space of vector functions H: [-1,1] X [0,27] -* C 4 with the usual L2-norm, we find 

(TI)(u,~) = ul(u,~) to be bounded, injective and self-adjoint on H and (Al)(u,~o) = 
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j~ j 2 ,  Z ( u , u ' , ~ - - ~ O l ( u ' , r  d~o/du ' t o  be  a c o m p a c t  p e r t u r b a t i o n  o f  H(u,~) -- (a/4~) -~ 0 

t h e  i d e n t i t y  s a t i s f y i n g  R e A  ~ 0 and  K e r A  = K e r ( R e A ) .  I f  a < 1, we h a v e  R e A  

61[ f o r  6 = 1 - -  a > 0, w h i l e  f o r  a = 1 we h a v e  d i m K e r A  = 1 and d i m Z 0  = 2, 

except for the exceptional case a~ ~ a4 where these dimensions are 2 and 4. For 

the statement on the nonnegativity of Re A we refer to Section IX.2 of [GMP]; for 

the statements on the structure of Zo we refer to [M4]. Moreover, condition (1.6) 

is satisfied if a~ ~ Lr[--l,1] for some r > I (see [GMP], Sec. IX.2). From Theorem 

3.4 it is then clear that Eqs. (4.1)-(4.3) are uniquely solvable when stated on the 

Hilbert space H, provided a~ E L~[--I,I] for some r > I. In this way we recover the 

result of [M4] for the L~-setting, but without applying cone preservation arguments 

as in [M4]. 

4.2. Multigroup neutron transport 

For isotropic scattering and a homogeneous half-space medium the N-group 

neutron transport equation has the form (cf. [DuM], [CaZ]) 

/~ ~ -  (x,/2) + ~#~(x, /~)  = c ~  ~ ( x , ~ ' ) d / ~ ' ,  (4.4) 
J = l  - - I  

w h e r e  x E (0,co) is  t h e  d i s t a n c e  f r o m  t h e  s u r f a c e  (in u n i t s  o f  t h e  l a r g e s t  mean  f r e e  

p a t h  among  t h e  N e n e r g y  g r o u p s )  and /~ is  t h e  d i r e c t i o n  c o s i n e  o f  p r o p a g a t i o n .  T h e  

m a t r i x  C ~ {ct#}uN z h a s  n o n n e g a t i v e  e l e m e n t s  o n l y  and  cr z > . .-  > cr N > 0. W e  u s e  

t h e  s h o r t - h a n d  n o t a t i o n  L" = {ty,6tj}ljN 1= and i m p o s e  t h e  b o u n d a r y  c o n d i t i o n s  

~i(o,/z) = ~i(~) ,  # E [0,I], (4.5) 

{ I  I ^,i/2 
I~t(x,/~0l~d/~ ' ]  = 0(1)  (x- .co) ,  (4.6) 

--1 

w h e r e  i = 1, ---, N. W e  w r i t e  1// ~ c o l  {~bt},= N and  �9 = co l  {~ot},=Nr One  g e t s  an  app l i -  

c a t i o n  o f  S e c t i o n s  2 and  3 b y  d e f i n i n g  t h e  o p e r a t o r s  (Tte)~(/z) ~ crt-l/~tbl(#) and  

(Ag0t (a )  = ~,(/~) - -  ~ [Z ' - zC  11 #( /z ' )d# ' ] t .  T h e n  T i s  b o u n d e d ,  i n j e c t i v e  and  s e l f -  
-1  

a d j o i n t  and  A i s  a c o m p a c t  p e r t u r b a t i o n  o f  t h e  i d e n t i t y  s a t i s f y i n g  (1.6), b o t h  

d e f i n e d  on  t h e  H i l b e r t  s p a c e  H g i v e n  as  t h e  w e i g h t e d  L 2 - d i r e c t  s u m  o f  N c o p i e s  o f  

L2[--1,1] w i t h  w e i g h t s  cri, - . . ,  gN" 
it ~(#')d#" and %: D e f i n e  ~B on  C N as  L ' - I C ,  A: H -~ C N b y  (A#) i  ~ ~ - t  -~ C N 

H b y  ( ~ ) t ( / z )  ~ (~B4~) v T h e n  A = 1[ - -  ~ A  and  J t  d e f .  1[ - -  ~ ~ 1[ - -  A ~ ,  so  t h a t  
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A and Jt have the same nonzero eigenvalues. Moreover, Re A ~ 0 if and only if 

Re (W--C) ~_ 0, while Ker A ~ Ker (Re A) holds true if and only if Ker s 

Ker (Re (s We may then apply the theory of Sections 2 and 3 and derive 

some existence and uniqueness results. In particular, if [[X'-~C[[ < 1 in the 

Euclidean norm of C N, then the boundary value problem (4.4)-(4.6) is uniquely 

solvable. The last result was found before by Bowden et aL [BSZ] using 

"Caseology". 

S. DISCUSSION 

A number of topics has not been treated in Sections 2 and 3, for the simple 

reason that we did not need them to prove the (non-) unique solvability of the 

main boundary value problem. In order to fit in our work with some of the pre- 

vious research, we will briefly outline these topics. 

First of all, under the general assumptions of Section 3, the subspaces H1,p~ 

H1,m and Z0 are invariant under T-IA and the restrictions of T-~A to these sub- 

spaces have their  spectrum in {Re k > 0) U {0}, (Re k < 0) U {0} and {0}, respective- 

ly; only the restr ic t ion to Z0 has eigenvalue spectrum at zero. Moreover, the • 

restr ic t ions of T-~A to H~,v and Hl,m generate bounded analytic semigroups which 

are s trongly vanishing as x-.co. One way to prove it  proceeds by estimating the 

resolvent  of T-~A restr icted to these subspaces and applying the appropriate re- 

su l t  from semigroup theory.  

Secondly, it is possible to drop the regular i ty  assumption (1.6) from the theo- 

ry  of this paper. Instead we have to assume (i) Ran B C D(T) and (ii) Z0 ___ D(T2). 

Basically, all we need condition (1.6) for is for the operators s and s to be 

bounded on C(H) o. This  will be shown in a fu tu re  publication (cf. [GM]). 
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