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For a class of generalized kinetic equations on the half line with nonreflective half 
range boundary conditions and modeling various equations from radiative transfer, 
neutron transport, and gas kinetics, we express the internal field solution in 
generalizations of Chandrasekhar’s H-functions. Contrary to the case of computing 
the solution at the boundary, an analysis has to be made of the behavior of the 
dispersion function near the right half plane spectrum of the evolution operator 
appearing in the equation. Both submultiplying and conservative media are 
considered. Three instructive examples are worked out and various generalizations 
are discussed briefly. 0 1989 Academic Press, Inc. 

1. TNTRODUCTI~N 

In this article we study the problem of finding explicit representations for 
the solutions of half space boundary value problems of the type 

W’(x) = -4GL o<x<co, (1.1) 

Q+lC/(o)=c~+, (1.2) 

Ilvw)llH = Wl) (asx+ co), (1.3) 

where T is an injective self adjoint operator and A is a compact 
perturbation of the identity, both defined on a complex Hilbert space H. 
Further, Q + is the projection of H onto the maximal T-positive 
T-invariant subspace and 11 .IJH denotes the norm in H. Under the 
assumption that Eqs. (l.l)-(1.3) are uniquely solvable, we shall obtain a 
closed form expression of the solution $(x) in terms of the solution of a 
coupled set of nonlinear integral equations. 
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The main problem of this article is one of the traditional topics in the 
theory of neutron transport, radiative transfer, rarefied gas dynamics, and 
related areas. To illustrate the problem under consideration, we discuss the 
elementary example 

r~(x,io+ljl(x,li)=~~l,i(x,I(.)dj(., o<x<co, (1.4) 

VW4 PI = cp f(P), p > 0, (1.5) 

’ 1 
112 

W(x, PL)12 4 =0(l) (asx-+cO), (1.6) 
-1 

where c E (0, 1). This problem describes steady neutron transport or 
radiative transfer in an absorbing medium with isotropic scattering and has 
been studied in a multitude of articles ranging from engineering studies 
to rigorous mathematics. Among the methods for computing explicit 
solutions we mention in particular the invariant imbedding approach of 
Ambarzumian [2] and Chandrasekhar [9] and the singular eigenfunction 
expansion method of Case [S] and Van Kampen [ 131. Both of them lead 
to explicit formulae for $(x, p). For x = 0 we have, in particular, 

ww=;Jl,& H(-~LHH(v)cp+(v) dv, p <o, (1.7) 

where H( .) is the unique solution of the so-called H-equation 

1 -= 
H(P) 

1 -c I--!!-- H(v)dv, s 2 op+v 
P>Oo, (1.8) 

which is analytic on the right half plane. Equation (1.8) is the well-known 
H-equation introduced by Ambarzumian [ 1 ] and studied systematically 
by Chandrasekhar [9]. Equations (1.4k(1.6), which are known to be 
uniquely solvable (cf. [4] and several later works), lit into the framework 
of Eqs. (l.lk(1.3) if we take H=L,[-1, 11, (Th)(~)=$z(~), (Ah)(p)= 
h(~)-(cP)jL, W)&‘, (Q+~)(PL)=WP) for P>O, and (Q+h)bL)=O for 
p <o. 

Let us return to the abstract boundary value problem (l.lk(1.3). In a 
previous article (cf. [20]; also [ 12, Sect. 8.11) we have derived an explicit 
formula for the solution of this boundary value problem under the sole 
assumption that it is uniquely solvable. The solution was written in terms 
of the spectral function of the self adjoint operator T (something easy to 
get in most applications) as well as the solutions of a coupled set of non- 
linear integral equations which generalize the H-equation (1.8). From this 
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expression one may, in principle, derive the solution $(x) as follows. First 
we observe that $(O) belongs to a subspace which is TP’A-invariant and 
on which the semigroup exp{ -XT- ‘A > makes sense and is bounded and 
analytic. We may then use the spectral representation c,( .) of the operator 
T-‘A to find $(x) from 1+5(o) with the help of the representation 

$(X1 = ep.'T-'A$(0) = 1 eC"'a,(dt) Ii/(O), 

where the vector integral is taken over the spectrum of T-‘A in the right 
half plane. Such a method, however, requires the explicit computation of 
the spectral representation of T-‘A and the computation of a double 
integral. In order to do so rigorously, we would have to go through a 
detailed spectral analysis of Tp ‘A and to simplify a complicated expression 
involving repeated integrations. It is this type of analysis we seek to avoid 
in this article as much as possible. 

A basic assumption underlying the representation of the solution is the 
unique solvability of Eqs. (l.l)-( 1.3). At present, there is a compehensive 
existence and uniqueness theory of such problems, covering the cases when 
A is strictly positive self adjoint, II -A is a strict contraction or A has a 
strictly positive real part. The theory is more complicated if A is positive 
self adjoint (or has a positive real part) as well as an isolated eigenvalue at 
zero, but for this case we also have a comprehensive theory. The theory at 
date covers one-speed and symmetric (and certain types of nonsymmetric) 
neutron transport in nonmultiplying media, radiative transfer with and 
without polarization, and linearized Boltzmann equations under BGK con- 
ditions or for hard and Maxwellian interactions with angular cut-off. For 
these results, which were gradually developed by various authors, and their 
history, we refer to [ 12, Chaps. 2, 3, 4, and 91. 

Our main lead in deriving representations of solutions is the integral 
form 

Ii/(x)- joE ~(x-y)B~(y)dy=e-‘T~‘~+, o<x<co, (1.9) 

of the boundary value problem, which may be proven equivalent to 
Eqs. (l.l)-( 1.3) under the minor regularity condition 

RanBcRan (TI”nD(ITIB), (1.10) 

where IX > 0, fi > 1, and B = II - A is compact on H. For the proof we refer 
to [ 17, 18, 203 (also [ 12, Chap. 61). Since in typical applications B has 
finite rank, it appears opportune to consider a closed subspace J.# of H, the 
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orthogonal projection R: H -+ A?, and the natural imbedding i: A? -+ H 
such that B = Bjn. We then find 

Il/(x)=e-“‘-‘cp, +/f H(x-Y)B~X(Y)& o<x<oo, (1.11) 

where 

x(x)-lo, r&(x-y) Bj~(y)dy=ne?=-‘q+, o<x<co. (1.12) 

Solving the latter in the “classical” way by Wiener-Hopf factorization of 
the “symbol” 

A(z)=1 -Ia e”“n~(x)Bjdx=II -j---rco(“)Bj, Rez=O, 
-cc 

(1.13) 

where c( .) is the spectral function of T, we find a closed form solution in 
terms of the Wiener-Hopf factors of the inverse of the dispersion function 
A(z)-‘. The factors satisfy generalized H-equations. So far we have been 
describing a method introduced by Burniston, Mullikin, and Siewert [3] 
for two-group neutron transport, applied by Mullikin [21] to radiative 
transfer with anisotropic scattering and Kelley [16] to a class of 
multigroup neutron transport type equations, and made abstract by 
Van der Mee [20] (also [ 12, Sect. 8.11). In this article, however, we shall 
go beyond these results for x = 0 by also computing the solution for x > 0. 
If T- ‘A has zero or purely imaginary eigenvalues, no Wiener-Hopf 
factorization is possible. Nevertheless, we will indicate how to obtain 
similar solution formulae in this so-called singular case. 

For x> 0 the solution is much more involved than for x = 0, since it 
contains a contour integral around the spectrum of A -‘T in the right 
half-plane. If this spectrum consists of a real interval plus finitely many 
isolated eigenvalues, the contour may be contracted to this interval leading 
to an integral plus finitely many terms arising from the residues at the poles 
of the contour integrand, provided no eigenvalues are imbedded in the 
interval. Such a procedure is well known from the singular eigenfunction 
approach (cf. [6]). We shall perform this contraction and obtain the 
explicit formula for the solution at x > 0. Hereafter we will adapt our 
method to the case when T-‘A has an eigenvalue at zero but no purely 
imaginary eigenvalues. Here we will utilize stability properties of solutions 
under perturbations of the collision operator A. 

In Section 2 we shall derive the solution of Eqs. (1.1 k( 1.3) in terms of 
contour integrals involving generalized H-functions for the case when 
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Eqs. (1.1 )-( 1.3) are uniquely solvable and T- ‘A does not have zero or 
purely imaginary eigenvalues. In Section 3 we will make the contraction of 
the contour to the spectrum of T-‘A in the right half plane, while in 
Section 4 we will discuss the necessary modifications for the case when 
Tp ‘A has an eigenvalue at zero but no purely imaginary eigenvalues. In 
Sections 5 and 6 we will discuss some illustrative examples and a variety of 
extensions of our approach. 

2. REPRESENTATIONS OF SOLUTIONS VIA CONTOUR INTEGRALS 

Throughout Sections 2 to 4 we assume that T is an injective self adjoint 
operator and B is a compact operator satisfying (l.lO), both defined on a 
complex Hilbert space H, and put A = 11 - B. Suppose Q + and Q _ are the 
orthogonal projections of H onto the maximal T-positive and T-negative 
T-invariant subspaces, respectively, and that Eqs. (1.1 )( 1.3) are uniquely 
solvable. In the present section we also assume that T-‘A does not have 
zero or purely imaginary eigenvalues. Under these hypotheses we will 
derive the solution of Eqs. (1.1 )-( 1.3) in terms of generalized H-functions. 
The expression for this solution will extend the formula 

~,?(o)=cp+ flu Srn~b(~v)BiH,(-~)H~(v)n~(~v)~+ 
-mov p 

(2.1) 

derived in [20] (also [12, Sect. 8.11). In this formula H,(z) and H,(z) are 
the unique solutions of the generalized H-equations 

H,(z)-‘=Q -z 
I $ (z+t)-lH,(t)xa(dr)Bj, (2.2) 

H,(z)~‘=~ -z cL (~+t)~h+ddt)BjH,(t), (2.3) 

which are analytic on the right half plane and continuous up to the 
extended imaginary line. These solutions are exactly the unique functions 
which are analytic on the right half plane, are continuous up to the 
imaginary line, and satisfy the factorization formula 

A(z)-’ = H,( -z)H,(z), Rez=O, (2.4) 

as well as the equalities H,(O+) = H,(O+) = I. 
In order to find the generalization of Eq. (2.1) to the case x > 0, we 

consider the vector-valued Wiener-Hopf equation (1.9) write its unique 

409/137/2-9 
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solution as (1.11) with x(x) satisfying the uniquely solvable Eq. (1.12), and 
observe that 

x(x) = ne - uTm’cp+ + jox y(x, y)ne-d-“Tm’cp+ dy, (2.5) 

where ~(x, y) is the resolvent kernel of the integral equation ( 1.12). Here 
rc exp { -XT--‘} cp + may be replaced by any right hand side T(x) belonging 
to the Banach space L,,(M),” of strongly measurable L,-functions 
x: (0, co) + A!; the solution of Eq. (1.12) belongs to the same space (see, 
for instance, [ 12, Sect. 7.11, plus references therein). We then have 
(cf. [20]; also [12, Sect. 8.11) 

s 5 x dY 
0 

rdze-“pe~“‘.(S(y-z)+y(y,z)}=~H,(--p)H,(v). (2.6) 
0 

We first derive two propositions. 

PROPOSITION 2.1. Let Q(x) belong to L,(A),” n L2(~)g, and suppose 

G(p) = -i jf e”‘W(y) dy, RepGO. 

Then 

(2.7) 

Proof: Since Q(y) is an L,-function, G(p) is continuous in ,u on the 
closed left half plane. Its being L, allows for the substitution l/p = -ii and 
the application of inverse Fourier transformation to arrive at (2.7). 1 

PROPOSITION 2.2. Suppose a( .) is the spectral function of T. Then the 
forward and backward contributions to the solution $(x) of Eqs. (1.1~(1.3) 
are given by 

Q, Ii/(x) - eeXTmlq + = jam jam a(&)WCx, P, v)na(dv)cp +, (2.8) 

Q- W) = j" jm 4dp)BjF(x, p, v)no(dv)cp+, (2.9) 
-cc 0 
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where 

and 

w, /4 v)=- v~pH,(-PM(v) 

whenever p < 0 and v > 0. 

(2.10) 

Proof The solution $(x) may be written as (1.11) where x(x) is the 
unique solution of the Wiener-Hopf equation (1.12). Writing 

~(x-~)=S~e-‘.~~‘“‘a(dl), 

with the integration over (0, 03) if x > y and ( - co, 0) if x < y, as well as 

we obtain 

At this point we remark that @: (0, co) -+ L(H) belongs to 
L1(L(H))$ n L,(L(H)),” for Re v > 0, since 

@(y, v)=ep”‘“Q +jm y(y,z)e-““dz 
0 

(cf . [12, Prop. VIII 1.1)) and the integral operator with kernel y(y, z) 
maps the space of L(H)-valued &-functions into itself. Here L(H) denotes 
the Banach algebra of bounded linear opeators on H . Noting that 

x(x) = j= @(Y> vMdv)cp+ > 
0 
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substituting (2.5), and changing the order of integration we find (2.8) and 
(2.9), which completes the proof. 1 

From the above propositions we obtain the following theorem. 

THEOREM 2.3. Suppose a( .) is the spectral function of T. Then the 
forward and backward contributions to the solution It/(x) of Eqs. (l.l)-( 1.3) 
are given by 

Q+$(x)--e~"T~'~+ =jox jam a(d~)BjF(x,Kv)rro(dv)cp+, (2.11) 

Q-$(x) = j" j= 4dcL)BjF(x, PL, vMdv)cp+, (2.12) 
--XI 0 

where 

1 

I- 

s 
iz v e -- TIP _ e - -TIP 

zi -,a v-p P-P 
H,( -P)H,(v) dp, P>Oo, 

FIX, I*, v)= 
1 

I 
ia V 

2ni mmim (v-p)(p-~)~ 
-‘/“ff/( -p)H,(v) dp, p < 0. 

Proof: Applying Proposition 2.1 to the above expression for F(x, ,u, v), 
we find the present theorem, provided we evaluate one integral involving 
exponentials for p > 0 and one integral involving exponentials for p < 0. 
For p > 0 we compute 

which yields the desired expression for p > 0. For p < 0 we calculate 

1 N -- 
s e -- (.r -- J’)/Pe p?lP dy - ’ ( -X/P -e~W~eV~.~)/~), e 

PP -r P-P 

which tends to (p-p)) * exp{ -x/p} as N + co and yields the desired 
expression for p < 0. 1 

3. DEFORMATION OF THE CONTOUR OF INTEGRATION 

For x = 0 it is particularly simple to reduce the representation formulae 
(2.11) and (2.12) to their final fom. For p> 0 the first formula yields zero, 
as to be expected from the boundary condition (1.2). For p ~0 the 
exponential factor in the integrand disappears. One may then deform the 
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imaginary line to a closed contour in the left half plane and use the 
analyticity of H,( -p) in this half plane to derive (2.10). For x > 0, 
however, the presence of exponential factors forces us to deform the 
imaginary line to a closed contour in the right half plane, which is the 
wrong half plane for a complex analysis calculation which does not rely on 
specific information about the position of the singularities of H,( -p). In 
order to still implement such a deformation of the integration curve, we 
have to make additional hypotheses on the operators T and B. 

In this section we make the following assumptions on T and B: 

(i) T has purely absolutely continuous spectrum consisting of a 
finite number of mutually disjoint intervals. We write 9’ for the interior of 
a(T) (in Iw) and ~7~ =Y n (+ [0, cc)). We also write d(.) for the 
Radon-Nikodym derivative of a( .). 

(ii) B and n: have finite rank. We write p(t) = ~ld(t)j and assume p 
to be Holder continuous. 

(iii) T-l,4 has finitely many discrete eigenvalues. 
(iv) T-‘A does not have zero or purely imaginary eigenvalues. 

We now deform the union of the imaginary intervals [ -iR, - ic] and 
[k, iR], ordered from the left to the right endpoint, to the union ‘#(E, R) of 
finitely many nonintersecting curves in the right half plane consisting of the 
circular arcs {z E C: Iz] = R, Re z > 0, ]Im z[ > E} with counterclockwise 
orientation, the intervals [I’s, is + (R’ - s*)“*] ordered from the left to the 
right endpoint and [ - i.s, - i.s + (R2 - E*)‘/*] ordered from the right to the 
left endpoint, and negatively oriented circles around each isolated eigen- 
value of A - ’ T in the open right half plane. Here E and R are chosen in 
such a way that all isolated eigenvalues 1 of A -‘T satisfy IIm 11 > E and 
I,? < R. As E JO and R + cc we obtain the following live types of 
contributions to the integral defining F(x, ~1, v) for Re v > 0 and either of 
fRep>O: 

(I) the contribution of p = cc obtained by letting the radius R of 
the circular arcs tend to infinity, 

(II) the cut -K of the meromorphic function H,( -p), without the 
imbedded eigenvalues of A ~ ’ T, 

(III) the discrete eigenvalues of A -‘T in the open left half plane, 
whose opposites appear as the poles of H,( -p) in the open right half plane, 

(IV) the imbedded eigenvalues of -A - ’ T in the interior of - X . 

As a consequence of the Holder condition on p( .) we have 

A+(t)=~~A(t*k)=A(t)*intp(t), tE9, (3.1) 
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As a result, LI *(t) is invertible (or, by the same token, det /i ‘(t) # 0; here 
we use that ~2’ has finite dimension) if and only if t is not an imbedded 
eigenvalue of A ~ ’ T. Furthermore, 

H,(-P)H,(v)=~(P)-‘H,(P)-‘H,(v). (3.3) 

On the circular arc IpI = R, Rep 3 0, we have uniformly in v on the 
closed right half plane 

IIH,(-P)H,(v)ll.(,,~C,, 

where C, is a bounded function of R on [R,, co) with R, exceeding all 
discrete and imbedded eigenvalues of A -‘T in absolute value and L(A) 
denotes the algebra of linear operators on &‘. Here (3.3) plays a role, as 
well as the invertibility of LI *(p) for p 6 Y+ u Y- . The contribution of this 
circular arc to the integrals defining F(x, p, v) can then be majorized in 
absolute value by expressions of order O(R- ‘), which vanish as R + co. 

Using (3.1) and the identity 

which is valid to Holder continuous functions f, we obtain for the 
contribution to F(x, p, v) of the continuous spectrum the expressions 

e ~ .X/Y -e ~ X/P 
F,.(x, p, v) = v A f(v)-‘/l(v)/4 -(v)-’ 

V-P 

-9 - s vp e - -4P _ e ~ r/r 

-9- v-p P-P 

~A+(P)F’P(P)A-(P)-‘H,(~)~‘H,(v)dp, 

for ,u > 0, and 

FAX, p, v) = v -e-XIYA+(v)pl ;l(v)/l-(~)-~ 
V-P 

VP 
-3Lv- (v-p)(p-p) 

xe~“‘PA+(p)-lp(p)A-(p)-lH,(p)-lH,(v)dp, 

for p < 0, provided there are no negative imbedded eigenvalues of T- ‘A. 
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For every eigenvalue - v0 of A -*T in the open left half plane the 
contribution to F(x, p, v) can be computed by calculus of residues, which 
yields 

F,&x, p, v) = - Res, = y. v e 
~ X/P _ e ~ J/P 

mr’~r(P)r’~,(v)> P>Oo, 
V-P P-P 

and 

F,,(x, P, v) = - Res, = y. 
(v-P;;P-/de 

-“‘“A(p)-‘H,(p)-‘H,(v), PLO. 

If A-IT does not have generalized eigenvectors at the eigenvalue -vO, 
one must compute residues at a simple pole yielding the elementary 
contributions 

F,,,(x, p, v) = -v e 
~ .dvo _ e ~ -4r 

P > OY(3.4) v - vg vo-P 
~“,fw0)-‘~,(v)~ 

F,o(x,Pvv)= -(v-vo~vo~p)e --%vyoHr(VO)- l H,(v), P < W3.5) 

where 

N,, = lim (p - ~,)/i(p)~‘. 
P - yo 

4. REPRESENTATION FORMULAE FOR KINETIC EQUATIONS 
IN CONSERVATIVE MEDIA 

In the present section we make the same assumptions on T and B as in 
the previous two sections, except for the fact that we allow A to have an 
eigenvalue at zero. However, we still exclude T- ‘A from having purely 
imaginary eigenvalues. We assume T-IA to have a finite dimensional root 
manifold 2, at the eigenvalue zero which is contained in D(T) and consists 
of all vectors h E H satisfying ( Tp ‘A)“h = 0 for some n E N. For positive self 
adjoint A we always have n =2, but in general n may exceed 2. The 
existence and uniqueness theory of Eqs. (1.1 t( 1.3) is now much more 
complicated, since there may now exist solutions $ of Eqs. (1.1 t( 1.2) such 
that ll+(x)ll H = 0(x”) (as x -+ cc) for some n E N but not for any lower 
n E N u (0). For a comprehensive theory of such half-space problems as 
developed through the joint efforts of various authors we refer to [12, 
Chaps. 3, 4, 7, and 81. In this section we shall study Eqs. (1.1~(1.2) with 
such a boundary condition at infinity as to make the problem uniquely 
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solvable and to force all solutions + to satisfy Illl/(x)ll H = O(xn) (as x + cc ) 
for some n E N. 

Under the above hypotheses there exists a bounded operator E, which 
maps every cp + E Q + [H] into the initial value $(O) of the solution $ and 
satisfies E, Q- = 0. As shown in [20] (also [ 12, Sect. S.l]), one may write 
$(O) in the form (2.1) where the H-functions H, and H, satisfy 
Eqs. (2.2)-(2.3) as well as the factorization formula (2.4) are analytic and 
invertible on the right half plane, have continuous boundary values on the 
imaginary line but may fail to be continuous at infinity. The behavior of 
the H-functions at infinity is difficult to describe, since it depends on the 
boundary condition at cc. In any case, these functions are O(z’) (as z + co, 
Re z 3 0) for some n E N, but this property alone usually does not specify 
them uniquely. Here we shall consider them as given. 

In the present situation we may start our derivation of representations 
for the solution of the half space problem from Eqs. (1.11) and (1.12). 
Following the proof of Proposition 2.2 and Theorem 2.3 and using the 
well-known expression (2.1), we again obtain Eqs. (2.11)-(2.12). The 
expression for F(x, CL, v), however, cannot always be given as in the 
statement of Theorem 2.3, since the integral over the imaginary line 
may not converge and the assumptions of Proposition 2.1 (used in its 
derivation) may not be satisfied. For this reason it is hazardous to repeat 
the analysis of Section 3. 

There are two principal ways of deriving the desired expression for the 
solution of the half space problem using the results of Sections 2 and 3. 
One way is to interpret the operator E, mapping q+ into +(O) as the 
“albedo” operator of a modified but uniquely solvable half space problem 
of the type (l.l)( 1.3) where T-‘A does not have zero or purely imaginary 
eigenvalues, using a method detailed in [ 12, Chap. 31. This may be 
attained by replacing A with a finite rank perturbaton A, so that 
Eqs. (l.l)-(1.3) with A replaced by A, are uniquely solvable and +(O) 
remains unchanged. The part of the solution corresponding to initial values 
belonging to the root manifold 2, will change, but the solution of the 
modified problem can easily be replaced by the solution of the problem of 
interest, because Eq. (1.1) with $(O) E Z, is a trivial problem to solve. 

The second method consists of the application of stability properties 
under perturbation of the operator A. In many cases of interest it is 
possible to view the problem of interest as the limiting case of a sequence of 
half space problems (l.lt( 1.3) where T-‘A does not have zero or purely 
imaginary eigenvalues. One must then know that the solution of the 
approximating problem converges to the solution of the problem of 
interest. One such case is provided by positive self adjoint A where 
(Th, k) = 0 for any pair of vectors h, k E Ker A (see [ 191 if dim Ker A = 1, 
[23] in general). When such a stability property holds true, it also holds 
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true in the uniform sense (i.e., in L(H)) for the corresponding albedo 
operators E, and the operators mapping cp+ into $(x) as well as for the 
corresponding H-matrices, provided one chooses the auxiliary space A? in 
such a way that R is stable under the perturbation. 

5. EXAMPLES 

In this section we discuss some illustrative examples which exhibit 
different aspects of representing solutions of the half space problem. The 
first sample problem, radiative transfer with isotropic scattering, can be 
solved by straightforward analysis (cf. [S, 13,6], for instance). The second 
example, the scalar BGK equation, displays an imbedded infinite zero of 
the dispersion function (cf. [7, 14]), a phenomenon typical of equations in 
gas dynamics. The last example, another neutron transport model, is a 
problem where T-‘A has an imbedded eigenvalue at the endpoints of the 
continuous spectrum; for this reason it was studied in [22]. In all these 
cases the half space problem (l.l)-( 1.3) is known to be uniquely solvable. 

a. Radiative Transfer with Isotropic Scattering 

Radiative transfer with isotropic scattering is described by 
Eqs. (1.4)-(1.6) where the corresponding operators T, B, A, Q, and Qp 
are given in the Introduction. For this example Eqs. (1.1 )-( 1.3) are 
uniquely solvable if c E (0, 11, while the solution for c = 1 is the limit (in 
the &-sense) of the solution for CE (0, 1) as ct 1. Introducing e(p) = 1, 
A=span(e},j(<e)=[ e, and nh = qe with q = f j\ i h(p) dp, and identifying 
all vectors and operators on A%! with scalars acting on e, we obtain the 
well-known expression 

A(Z)=l-sj:l&Y 24 C-L 11. 

This function has two simple real zeros +v,, if c E (0, 1) (using the conven- 
tion v,, > I), a double infinite zero if c = 1, and two simple imaginary zeros 
f v0 if c > 1, while imbedded zeros are absent. For c E (0, 1 ] let H(p) be the 
(unique) &-function on (0, 1) which satisfies Eq. (1.8) and is analytic on 
the right half plane. Then the unique solution 1,9(x, p) in Eqs. (1.4)-( 1.6) is 
given by the formulae 
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where 

F(x, p, v) = v e 
~ X/Y _ e -x/p 4v) 

V-P n+(v)n-(V) 

-~bf~~e-‘~~~~-x’~~+(p~~-(p)~dp 

v e-~/~o-e-‘lP 
-- N H(v) 

v - v(J vo-P “O WV,) 

for p > 0, and 

F(x, p, v) =v ep-‘/’ A(v) 

V-P A’(v)K(v) 

VP 
-wol (V-p)(p-p)e 

~ -YIP 
1 H(v) 

A +(PM -(PI H(P) dp 

-(v-vo;vo-P)e 
- +o N H(v) 

“‘H(vo) 

for p < 0. Here N,, = 1/,4’(v,). For c = 1 one finds the same expressions for 
F(x, ,u, v) where the terms involving v. are to be replaced by 

v 3 H(v){ 1 - cpk P)> 

with cp(x, 11) = 0 for p < 0 and cp(x, p) = e- ‘lp for p > 0. This is easly seen 
using the asymptotic formula 

vo(c) -J- 
J5 

(1 -c)-“2 

(see [24, Eq. (1.2.24)]), the formula s: tH( t) dt = 2/$ for c = 1 (see [24, 
Sect. 8.3.31) and the identity 

-v eex”O- c&x, p) N H(v) 
v - vo vo-CL ‘O WV,) 

vi- 1 

=v (vo-v)(vo-PL) 
(e--y’vO- cpk PI> g(vo)Wv) 

with 

NV0 

g(vo)=(v~-l)N(vo)=l-(l?~)v~ 
(l-c)‘/‘+; j;zdt). 
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In the latter expression we take the limit as c 7 1 and obtain 

l$y’“.‘=1 ( ‘+‘I1 tH(t)dt 2 $ 20 
)=;(-$+;-$p, 

which settles our claim. 

b. The Scalar BGK Equation 

This equation has the form 

w cc 
u~(X,u)+~(X,U)=CZ-l’* Ii/(x, w) e-“* dw, o<x< 00 (5.1) ~Jc 

with boundary conditions 

Il/(O,u)=cp+(u), u > 0, (5.2) 

1 
I/2 

11)(x, u)l’ epo2 du =0(l) (asx-t co), (5.3) 

where c = 1. We will study the physically relevant c = 1 problem as the limit 
of the physically irrelevant c < 1 problem. 

For c E (0, l] the boundary value problem is uniquely solvable when 
stated in the Hilbert space H = L2( R; rc ~ ‘I2 exp{ -u’} do) and the solution 
depends continuously on c. Now define the operators (Th)(u) = uh(u), 
(Bh)(u) = cx -‘I* jEm h(w) exp{ -w’} dw, (Q, h)(u) = h(u) for +u > 0 and 
(Q, h)(u) = 0 for fu < 0, the vector e(u) E 1, the subspace A? = span(e), 
and the operators rch = c- ‘Bh and j([e) = te, and identify scalars and 
matrices on A’ with scalars acting on e. We then find as the dispersion 
function 

A(z)= 1 -“Jm h pm-&-e-“‘dw, z+!R, 

where 

A*(u)=A(u)*icujl;;e-“‘, 

,(u)=l-~,~~~~e~“‘idil, 

and the H-equation 

1 cc H(w) -,,.2 
-= 
H(u) 

l-Z!- &lo v+we dw, u>O, 

has a unique solution depending continuously on c. 
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Now observe that Tp ‘A has an eigenvalue at zero and A( .) has a double 
zero at infinity, while for c < 1 there are no discrete eigenvalues and zeros. 
We may then approximate the solution of Eqs. (5.1)-(5.3) for c = 1 by the 
solution of the same problem for c E (0, 1). For c E (0, 1 ] we obtain 

~(x,v)-ee-““cp+(u)=cn-“2 z F(x, 0, w)e-“‘2q+(w)dw 
I 0 

for v>O, and 

m I+@, u)=cz-“2 s F(x, v, w)e-“.2q+(W)dw 
0 

for II < 0, where F(x, v, w) depends continuously on c. 
In computing F(x, U, w) from Eqs. (2.11)-( 2.12) we have to take care at 

the infinitely long cut along the real line and, for c = 1, the singularity at 
infinity. For c E (0, 1) we easily find 

F(x, v, w)=we 
- .x./w 

-’ 
~ .X/L 

J(w) 
w-v A+(w)A-(w) 

-1129 __ 

I 

m wp e-.~lP-e--‘/” 1 
-0-C 

f-f(w) p”‘dp 
0 w-p P-U ~+mmJ)Hoe ’ 

where v > 0. and 

F(x, v, w)=we ~ r/a A(w) 
W-V A+(w)A-(w) 

1 
-CT 

- 1129 
I 
5 WP 

0 (-PKP-4e 

~ .dP H(w) -“‘dp 

nf(pw(P)Hoe ’ 

where v < 0. For c = 1 the dispersion function has a zero and the 
H-function a pole at infinity, which complicates taking the limit as c 7 1. 
We obtain the same expressions apart from an additional term at each 
right-hand side of the form 

v$ (1 -dx, v))Ww), 

where cp(x, v) = 0 for v < 0 and cp(x, u) = e-.‘/’ for v > 0. Here we use the 
fact that for c = 1 
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so that 

,im Wz) 
-=fi. 

;-I- z 
I=1 >E 

c. A Neutron Transport Equation with an Imbedded Eigenvalue 

This equation has the form 

X 
s 

’ (1 - v~)“~$(x, v) dv, o<x<co, (5.4) 
-1 

where we impose the boundary conditions 

’ 
112 

Ill/(x, p)I’dp 1 =0(l) (asx+oo). 
-I 

For c E (0, 1) this problem is uniquely solvable when stated in the Hilbert 
space H=L,[ -1, 11. Here we define the operators (Th)(p)=ph(p), 
(Bh)(p)=ac(l -p2)“* x!L, (1 - v’)“‘h(v) dv, (Q,h)(p)= h(p) for +p>O 

and (Q f h)(p) = 0 for fp < 0. Moreover, if e(p) = 1 fi (1 - p2)“*, we take 
A’ = span(e), Tth = c- ‘Bh, and j(ge) = te. Identifying A with @ in the 
natural way we find 

A(z)=1-~czj’,1_12 z+l 
dt = 1 - ; cz* + ; cz(z’ - 1) log z-1, 

wherez~[-1,1]andlog1=O,sothat~(oo)=1-cand/i(f1)=1-~c. 
Thus A(. ) has no discrete or imbedded zeros for c E (0, $), one pair of 
imbedded zeros at z = f 1 for c = 3, and one pair of simple real zeros If: v,, 
with v0 > 1 for CE (3, 1). For CE (3, 1) the solution is given by 

$(x, /~)=+c(l -/L~)‘!~~; F(x, p, v)(l -v’)“‘cp+(v)dv, p < 0. 

Here F(x, p, v) is given by 
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r/r, 

F(x,/L,Y)=/ -’ 
~ x:,1 

4v) 
v - p A+(v)A-(v) 

3 
s 

, vp e TIP _ e----lI’ 
--c.9 - 

1 -p2 WV) 
4 - 4 0 v-p P-P A +(P)A -(PI H(P) 

v 
-- 

e-“““-e-ciL~N H(v) 

v - vo vo - P “’ H(v,) 

for p > 0, and 

F(x,p, v)=ve r/v 4v) 

V-P A’(v)A-(v) 

3 ’ 
--CP 

I 
vp 

0 (V-P)(P-de 
rip 

1 -p* H(v) 
4 - 4 

A +(p)n-(P) H(P) 

for p < 0, where N,, = l/n’(v,). For c E (0, 3) we have the same expressions 
for the solution and its resolvent kernel F(x, p, v), except for the fact that 
we must now omit the terms involving vO. For c= $ we have imbedded 
eigenvalues at z = + 1. Although in this case the solution may also be 
obtained by taking the limit of the above expressions as c + +, the 
derivation is so computational that we prefer to obtain it directly from 
Eqs. (2.11) and (2.12). Indeed, for this value of c we have 

where 

A(z) = (1 -z*)&(z), z4 E-1, 11, 

n,(z)=l-~z~‘,~=l-~zlog~, 24 c-1,11, 

is the dispersion function for the c = 1 case of isotropic scattering. Starting 
from Eqs. (2.1 l)-(2.12) and applying the partial fractions identity 

1 1 1 1 --=- 
v-pl-p ( 

1 
--- 5 v-l l-p v-p > 

we obtain 

F(x, PL, vJ=&’ 
~ .X/1’ _ e ~ x/r no(v) 

V-P A,+(v)&(v) 

VP 
-+,‘: (v-l)(p-v) 

e - -4P _ e r/P 1-P H(v) 

P-P G(P)&(P) H(P) dp 
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for p > 0, and 

F(x,Kv)=(l-v”r(v-~)e 
~ xjr lo(v) 

4(v)4T(v) 

-+f (p l)(pYPv)(p-p)e-~x~pA+(~~~-(p)~dp 
0 0 

for p < 0. Here we have disregarded the contribution of the integration 
around the singularity at p = 1, since it vanishes. In order to justify this 
assertion, we denote by G?e the positively oriented circle about z = 1 with 
radius E and prove the limit 

limLj A- 
l ePYIP-ee-“” 1 H(v) 

elO27li C&v-lp2 
--dp 
A,(P) H(P) P-P 

(5.7) 

to be zero whenever p > 0. The limit in (5.7) vanishes, because 

1 e~\-‘p-e-r’~ 
limL---- 

1 H(V)=O 

clOV-lp+l P-P mm . 

For p < 0 we find the same result if we replace the fraction containing the 
exponentials by e -“lp/( p - 11). 

It is readily verified that in all these cases the H-function satisfies the 
equation 

This equation is uniquely solvable, provided we impose one constraint for 
c E [f, l] amounting to H(p) being analytic at p = vo. 

6. GENERALIZATION AND DISCUSSION OF THE RESULTS 

We have obtained a closed form expression for the solution of 
Eqs. ( 1.1 )-( 1.3). In deriving this expression we have avoided using the 
method of singular eigenfunction expansion (as expounded in [6]) and 
various “rigorizations” of this method. Nevertheless, though the problem 
was solved in integral form via the classical Wiener-Hopf method, certain 
“full-range” characteristics of Eq. (1.1) appear in the solution. These 
characteristics necessitate a study of both the discrete and the imbedded 
eigenvalues. The advantage of our method, however, is that it provides a 
way of finding the internal field solution of Eqs. (1.1 )( 1.3) without 
first obtaining the full-range orthogonality and completeness of the 
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corresponding eigenvalue problem. In fact, an analysis of the eigenvalue 
spectrum suffices. 

Various generalizations of our approach can be made rather easily. In 
the first place, we may drop the Hilbert space setting of our problem by 
assuming T to be an injective scalar-type spectral operator with real spec- 
trum and resolution of the identity a( .), and I3 to be a compact operator, 
both defined on the same Banach space, which satisfy the regularity 
assumption (1.10). (For the theory of spectral operators we refer to 
[ 10, 111.) As explained in [ 121, one may obtain an equivalent vector- 
valued integral equation of convolution type and a similar derivation of the 
formulae (2.1)-(2.4) as in a Hilbert space setting, provided Eqs. (l.l)-( 1.3) 
are known to be uniquely solvable. Thus all examples treated in Section 5 
are also solved in the corresponding L,-spaces with 1 <p < a3 by the same 
expressions. In particular, for neutron transport with isotropic scattering 
the integral operators with kernels F(x, kpL, v) are compact operators on 
L,[O, 1] for JJE [1, co) and XE [0, co), as a result of the Holder continuity 
of the functions n ‘( .) and H( .) on [0, 1] with arbitrary Holder index 
a E (0, 1). 

In the second place, it is worthwhile noting that Theorem 2.3 already 
provides a closed form expression for the solution of Eqs. (l.l)-( 1.3). 
Additional assumptions on T and B are only required for the deformation 
of the integration over the imaginary line appearing in the expression for 
F(x, p, v). We have implemented this deformation for the most common 
case of absolutely continuous spectrum along (part of) the real line and 
finite eigenvalue spectrum. A problem of an entirely different scope, 
however, was studied by Cercignani [S] (see [15, Chap. S] for a related 
problem). In this problem the spectrum of the operator T has a nonempty 
interior. In this case the theory of generalized analytic functions has to be 
applied in order to obtain the necessary deformation of the integration 
curve. 

In a future publication we hope to extend the analysis of the present 
article to boundary value problems of the type (l.l)( 1.3) on a finite inter- 
val x E (0, T). Here we expect to be able to draw on the representations for 
the reflection and transmission operators derived in [12]. 
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