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ABSTRACT

The guestion of unique solvability of “an abstact linear kinetic equation in a half

he methods utilized include perturbation of ana.lyt.lc blselmgroups and an

space is settled. T

analysis of the Krein space struciure of certain finite dimensional subspaces.

L INTRODUCTION

Numerous stationary kinetic processes in neutron transport, radiative transfer and

rarefied gas dynamics are described by linear kinetic equations, such. as

vew flvr) = - v(v)i{v,r) + (J1)(v,r}
_.\.vit.h appropriste bo.un(_lary conditions. Such boundary value problems in plane parallel haif
space geometry cé.n .be modeled by the abstract boundary value problem {BVP} {eg. [16},
g | | |

TW{x)—-—-Aw x}, x>0, - [ Y
(L.2)

ng(ﬂ)wi,_ 1p(x) ! =0(x") as x—>oo,




126

for some nelN, where the +/- sign stands for the right/left half space problem, @,

is the incoming flux, ¥(x) is a vector in a Hilbert space H, T is a self adjoint injective

operator on H, amd the collision operator A typically has the form “identity plus a

compact® or "Sturm-Licuville plus a compact”, In studying this BVP one proceeds in wo
: steps: (i) prove that T A generates a holomorphic bisemigroup E{x,T‘lA) with separating

projectors P (see below), (i) prove that H=Q HeP H. Having (i) it is easy to check

that each solution of {1) (ai times we will talk about the right half space problem only to

make the notation elearer) has the form ¢(x)=exp(ﬁxT—1A}h, x>0, for heP H such that

Q+h¥go+, the solvability of which -is equivalent to (#). This is in line with the general

procedure of analyzing 'a BVP on a manifold X, where one reduces it to a problem on .

XUBXX snd a problem on 8X. In our case the spatial dépend.ence is very simple but thé
diﬁiculties arise [rom the coefficients which are operators.

A recur;ent theme in the study of BVP’s is the Wiener—Hop{ (WH) proklem (eg,
[9]) “The original scalar WH-equation was derived to model radiative transfer in 2 stellar
_a.t.mospl;lere. The study of the matrix valued WH-equation is commected with the work of
Gohberg, XKrein, Feldman, Ma.s.len.nikov, ete. (see [12];[24],E11},{10}). The WH—equation
equi\}alent. Fo the "BVP (1) has an operator valued integral kernel. = Set
H)=TIEFTY) and | (L¢){x)'=j°° W(x=7)By(y)dy, where ~$eC(RH)" and BoI-A:

—o0

Write P_ for the ratural  projectors GRH)-C{R, H) and L, =P LP,. Then
(1) is equivelent to the WH-equation, (I-L J=w, where w(x}zE(x,Tpl}(@++§_). The.
steps analogous to {i-ii) above are: {i) invert the full line comvolution operator (I-0), (i
obtain a canonical WH-factorization of the symbol W(A\) = (T_l—.\)'_l(T_—IIA.—)‘)_.l,

Rer=0, of {I-L).




L -PERTURBATIONS OF BISEMIGROUPS
To show that T Ia generates a bisemigroup, we proceed as follows. We view

> W(.) as an element of an appropriate algebra of Wiener type, whence the invertibility of

W(X) for each X on the imaginary axis implies, by a theorem of Bochner-Phillips ([5],
also [1, [13]), that {I-L) is invertible as an operator on C(RH). From this one shows
that 1A generates a bisemigroup.  The development of the perturbation theory of

bisemigroups with applications to matrix equations is due largely to Gohberg and his school

(eg, [2]), with applications in systems theory. Bisemigroup theory in the ‘infinite
dimensional setting is in =z relatively embryonic state. Here we prove a theorem for
perturbation of bisemigroups, which generalizes [2] and extends [26], [27)
A Gy bisemi.group E{t) on His a fur_1.ction from R {0} to L{H) with the properties:
(BS1) E(t}E(s)=+E(t+s) if sgn(s)=sga(t)=+ and E(t)E(s)=0 if sgn(s) = sgn(t),
(BS2) E{-} is strongly continuous,
(BSS), 411 =1,
where H:t = s=lim{+E{t)} as i&lﬂ, are the sgpai‘ating projectors for the bisemigroup.

An operator § is the generator of the bisemigroup E{t,S) if Ili commute with S and

E(t,5) zexp{-tSIE,, =t>0. The two—sided Laplace transform of E(t,8), if it
exists, is the resolvent of 5 aleng the imaginary axis. The bisemigroup will be called

bounded, holomorphic, strongly decaying or exponentially decaying if the semigroups

: _.iE(ﬁ)Ht, +1>0, have the respective property. .

For an angle O0<#<m/2 we denote the two-sided sectors about the real axis of

'-Opgnipg # by T,  Assuming that S is a spectral operator of scalar type on H,

g{s}cﬁg for some 0<d<7/2 and that zero is either in the resolvent set or in the

Clol\t.muoua spectrum, one has immediately that S generates a strongly decaying holomorphic

_b’s?"f”_gl‘_oup with separating projectors Il equal to the maximal positive/negative spectral
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projecters.  If S_1 is bounded, then E(s,8) is exponeatially decaying. .Our aim i to
_establish sufficient conditions so that = pertur.hat.ion S¥=SA will again generate =
bisemigroup, Assume one of the following (either (a) or (2" )):

(a) B=I-A is compact and RanBcD(18) D[]f'lFLanISP’B, for some o,8>0

(') B is trace class
as well as

“{b) the spectrum of $¥ is contained is a sector arcund the real axis

{c) Ker A = 0.
Condition (c) is taken fo simplif)_r this exposition. = Its removal, which leads to a mﬁre
complicated existence and uniqueness theory, involves a reduction of the operator T__IA in
terms of iis zero root linear manifold and an appropriate complement. For details, .see
[14][15] -We remark that the range condition in (a} assures the B;:chner integrabi}ify of
H(-)B. Also, S¥-8 is S-—relatively compact, so in checking condition (b) one need worry
only about isolated eigenvalues of finite algebraic multiplicity, because of a Weyl type of
argumeni, 1f we assume ReA>0 and Ker A=Ker(ReA)=0, where ReAz(A-t-A*)/Z, then i$
is easy.to. check that T_lA has no eigenvalues on the imaginary axis.
Theore-m..'. With the abov.e. ass.umption.s oﬁ-'S ‘and B, g* g.enerat.es a hOlOH;(‘)l“p‘hic Bisei"rﬁg'roup'

E*(t) with separating projectors Hi. For any te¢R™0} we have that E(t)—Ex(tj and

Hi—Hi are compact.,  The - bisemigroup E*(t) is strongly decaying. H OE[t) is
exponentially decaying so is E*(s).

Proof. F;il;st we deal with the case {(a), where ome easily checks tha.t; £{t}=8SE(t)B is
_Bochnér integrable. ~ Then [, the operator representing convoh;tion by £, i1s a bounded
operator orn C(RH) and on LP(RH), the space of H-valued- Bochner LP—integrable
functions.  Also, W{.) -b.elongs to the algebra of operator valued Bochner integrab[e.

functions, which is a Banach algebra of Wiener type. Thus, by the Bochner-Phillips
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theorem, - the inverse of {I-L) is in the form (I+Lx) whez.'e ¥ is again a convolution
operator. We ¢laim 1;hat EX{t)h=(1+L¥}E(t}h for heH, is t.};e bisemigroup generated by 8%,
i Because L is bounded on C(RH), E*(t) is strongly continuous. To check that
Hi+ﬂf=l one uses the smoothing property of convolutions, so the jump of E* ab zero
is equal to the jmp of E at zero, hence (Hi+ﬁf)h=(l—[++ﬂ_}h=h. Taking a two—sided
Laplace transform of E*, we immediately get (SX-—}.)_l, thus S¥ is the generator of EX
If we take an angle y inside the séctor assumed in. (b), we can apply the same reasoning
to the operators ei¢S and ei¢Sx, ie., einx generates a bisemigroup. Therefore, by.a
theorem  from  [20} S*¥  pgenerates a  holomorphic bisemigroup. Because
Ex(t)—E(t.)=wai(t—s)Ex(s)As, the compactness of ‘this diff.erence will follow from the
compaciness of B, since the Bochner integral of a compact operator valued funciion is’
compact. Finally, D((Sx)_l)=D[S_]‘) dense implies that zero is either in the resolvent set

or in thé continucus spectrum of g% so E® is strongly decaying.

When we abandon assumption (a), the dif ficulty consists of showing that L is

bounded on C(RH), since N(-) by itsell is only. Gelfand integrable. That is to say,
)a’ELl(lR)®£L{H), the injective tensor product of Ll(R] and the bounded operators on
“H (see (8] Note that it is not clear whether LI(R)®€L(H} is a Banach algebra. For a

fixed trace class operator B it is easy -to check that LI[R)®EL{H)B is. a Banach algebra

and L is a bounded operator thai is smoothing [14]. Hence, everything follows as before,
with .the exception of the compactness of E(t)-E*(t).  To obtain compactness we
:_'a_pproximate'B by a sequencé Bn so that the range condition of (i) is satisfied. Then

& E_{t)-—Ei(t) are compact and converge in norm to E(t)-E*(t), so the latter is compact.

BOUNDARY VALUE PROBLEM

:. Applying the above theorem with S=T—l,' we ‘get a bisemigroup E[x,T_lA) with
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‘separating projectors Pj:‘ Set V:Q+P++Q_P_ (this operator ;ava.s first introduced in‘
{19][23]). It is immediate that step (i) for the BVF is e_quiva]ept. to the invertibility of
V. There are two ways of showing the invertibility of V.

In the first, one has. the implications:

Pi—Qi=comﬁact = ]-V=compact = V Fredholm of index zero.
Next, assur_ning that A is positive [or accretive in the nonsymmetric case), one shows thai
PiHI“lQ;H:O, so KerV=0 and therefore V is invertible. If A has a nontrivial null
space, one separates off the zero root linear manifold ZO(T“lA)=u°:=1Ker(T’1A)” and
uses the above argument on its complement. Then, the unique solvability. of the BVP
" depends oh. the structure of the finite dimensional root Iinea.r. manifoid ZO(T_IA}. This
.program_was fally developed in {25] for T bounded and A positive self adioint of the form
"identity plus a compact”. (We note that the exisr;ence of the bisemigroup E(x,T—lA} is
trivial in- this case.) It was expanded to unbounded T in [17} The case of unbounded T
and nonsymmetric A was developed in |15}

The second method seeks "weak" solutions in spaces larger than the initial Hilbert
space. It was initiated in [3], and extended to unbounded positive self adjoisit A in [18]
and [4] The indefinite Sturm-Liouville problem is investigated in [4], {21}

’ We propose a modification . of the m.eI;}.md of weak sblutioﬁs, where v;'e extensively
use the Krein space structure of the enlarged space {14] This not only allows us to deal
with operators.A of the type *"Sturm-Liouville plas a nonsymmetric compacét” {for an
example of such a model see [28]) but also gives a new way of ]oﬁking at the case of self
adjoint A making it simpler and meore fransparent, For brevity we will limit curselves to
.the case of bo_undéd T and Ker A = Ker{ReA)=0. .

Let HT be the completion of H with respect to the scalar product {17T1-,-)

‘Endowed with the indefinite scalar product (T-,-) this becomes a Krein space, with
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fundamental decomposition HT=Q+HT®Q_HT and fundamental symmetry Q=Q+-Q_. One

easily extends T_IA to a closed, densely defined operator in HT which is positive in the

T—_scalar product {T-positive). Because T is bounded the only ecritical point of 7714 s

at infinity. For a Sturm-Liouville operator A it follows from [4] and [7] that infinity is a
regular critical point.  Using the spectral theorem for definitiza.b.le opera.t,oré' {22] one
immediately gets &that 714 generates a helomorphic bisemigroup {exponentially decaying,
because T is bounded) =and that the separating projectors Pi give maximal
T—positive/negative definite subspaces.  Step (i), Whi.Ch is et.;uiva,lenb to Q,i mapping
RanPi bijectively onfo RanQi; will follow from the next pmposit..ion (see [B]).
Proposition. A T—positive subspace M of HT is maximal T-positive iff Q+M+=Q+HT.

Now assume that A:A1+A2 with Al Sturm-Lioaville strictly positive and AIIAZ
trace .cla.ss. After extending everything to HT we proceed as above to define the
bisemigmup E(x,T—lA;) and separating projectors P, psing the spectral theorem for
definitizable operators, MNext we use the theorem for perturbation of bisemigroups with
S=T_‘1A1 and B=A11A2 to get the bisemigroup E(x,T—lA) with separating projectors.
"Lemma If A is accretive then PiHT are T-positive/negative definite.
Proof. If K=T ‘A and K” s the T-adjint of K we get that K+K_#:i5' a strictly
T_—positive operato.r. Takew:;ny. geIP+HT and seb f(x) = exp(»;(.Kjé, x>0, ]-3e.<7:ause‘ Kf’+
we * have

generates a  holomorphic  semigroup  [{x}eD(K) for  x>0. So

0> —{T(K+K#)f(x),f(x))=a‘i£(Tf{x),E{x)). Integrating we obtain

T
0> ~lim| (TEAEFH(A(x))dx = 1im(TI(x)i(x))~(Te) = - (Tg)
: . Fo00 Y 0 T —+oo
'_Sir_n_il_a_-rly for P_Hp. This trick appears in another guise in {29] =
From the fact that P++P_=I and PzHT are T-positive/negative definite, it

- IO_HOWS'that Pd:HT are maximal T—positive/negative spaces. Putting the above together
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and using the propositioh once more we have shown the unique solvability of BVP {1) in

Hrp

ACKNOWLEDGEMENT

Thi.s work was supported in part by the Department of Energy grant no. DE—ASGS

80ER10711-1 and National Science Foundation grant no. DMS-8312451.

REFERENGES
1. G.R Allan, J. London Math. Soc. 42, 463 (1867).

2. H Bart, I Gohberg, MA. Kaashoek, J. Funct. Apal, to appear.

3, R. Beals, J. Funct. Anal. 34, 1 .(1979}.

4. R Beals, J. Diff. Equat. 58, 391 (igss).

5. 8. Bochner, R.S. Phillips, Annals of Math. 43, 409 {1942),

6. J. BOgI]{.;.I‘, Indefinite Inner Product Spaces, Springer, New York {1874).
7. B. Curgus, Int. Eq. O};er. Theory 8, 462 (1985).

8. J. Diestel, J.J. Uhl Jr,, Vector Measures, AMS., Provide.nce (1877).

9. GI. Eskin, Boundary Value Problems for Elliptic Pseudodiffersntial Equations, AMS.,
Providence {1981). '

10. LA. Feldman, Matem. Issled. 8, 101 (1973). }

111G Gohberg, LA Feldman, Convolution Equations and Projection Methods for their
Solution, AMS., Providence (1974).

12. LC. Gohberg, MG, Krein, Amer. Math. Soc. Transl. 14, 217 (1960).

18. LC. Gohberg, J. Leiterer, Math. Ne;.c;hrichten 52, 259; 54, 41 (1872); 55, 33 (1973).

14. . AH. Ganchev, PL.D. thesis, VPI&SU, Blacksburg, VA (1988).

i5. . AH G:;.nchev, W Greenberg, O.VM van der Mee, Int. Eq. Oper. Theory, tc appear.

16.  W. Greenberg, C.VM. van der Mee, V. Protopopescy, Boundary Value Problems in
Abstract Kinetic Theory, Birkhauser, Basel (1986).

W. Greenberg, CV.M. van der Mee, W. Walus, SIAM J. Math. Anal, to appear.




13.
19.
240,
21.
22.
23.

24.

25.

27.

28.

133

W. Greenberg, C.V.M van der Mee, P.F. Zweifel, Int. Eq. Oper. Theery 7, 60 {1984).

R.1. Hangelbroek, Transp. Theory Stat. Phys. 5, ¥ (1976).
T, Kato, Perturbation Theory of Linear Operators, Springer, Berlin (18686).
M. Klaus, C.VM van der Mee, V. Protopopescu, J. Funct. Anal, to appear.
H. Langer, Lect. Notes in M.a.th. $48, Springer, Berlin (1982}

cG ijekl.(erkerker,. Proc. Royal Soc. Edinburgh ‘754, 250; 283 (1975/76).

MV, Masiennikov, The Milne Problem with Anisotropic Scattering, Proc. Steklov Inst.

Math. 97 (1988} .

C VM van der Mee, Ph.D. thesis, Free University, Amsterdam (1981}

C VM van der Mee, Int. Eq. Oper. Theory 6, 405 (1983).

CVM van der Mee, Transp. Theory Stat, Phys. 13, 341 {1084).

K. Praybylski, I. Ligou, Nucl. Sci. Eng. 81, 92 {1982},

BL. Willis, PF. Zweifel, OVM van der Mee, Transp. Theory Stat. Phys. 14, 669

(1985).




