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Summary. A structural analysis of the phase matrix relevant to
the scattering of light by a small volume-element in a plane-
parallel atmosphere is presented. This 4 x 4 matrix transforms
the Stokes parameters of an incident beam into those of a
scattered beam when planes of reference through the direction of
propagation and the normal to the atmosphere are used for the
definition of the Stokes parameters. First, relations between
elements of the phase matrix and those of the scattering matrix
are derived under fairly general assumptions. It is further shown
that there are 8 basic equations which only involve elements of
the phase matrix and are valid for arbitrary directions. A number
of inequalities for the elements of the phase matrix is presented.
Finally, relations involving elements of the azimuth decomposed
phase matrices are given.
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1. Introduction

Virtually all theoretical studies of the transfer of polarized light in
a scattering and absorbing atmosphere utilize a set of four
parameters to describe the intensity and state of polarization of
the radiation. The most commonly used parameters are the so-
called Stokes parameters (e.g. Chandrasekhar, 1950; Van de
Hulst, 1957, 1980; Hansen and Travis, 1974; Hovenier and Van
der Mee, 1983). In such a description a plane of reference is
needed for each beam of light. If only single scattering is con-
sidered an obvious choice is the plane of scattering, both for the
incident and scattered beam. The scattering process may then be
described by means of a 4 x 4 matrix which transforms the Stokes
parameters of the incident beam into those of the scattered beam.
We call this matrix the scattering matrix. In general it consists of
16 different functions of the directions of incidence and
scattering. A comprehensive study of general conditions for these
16 functions was made by Hovenier et al. (1986).

In astrophysics (including planetary physics) we are mostly
interested in multiple scattering, since a single scattering treat-
ment seldom suffices to provide a satisfactory interpretation of
the observations. The scattering planes of successive scatterings
will, in general, not coincide. Considering plane-parallel atmos-
pheres we may then obtain useful concepts by adopting the plane
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through the direction of propagation and the normal to the
atmosphere as the plane of reference for the Stokes parameters of
a beam. Scattering of light by a small volume-element in such a
medium is then described by a 4 x 4 matrix which we call the
phase matrix. It is obtained from the scattering matrix by pre-
and postmultiplication by rotation matrices.

The phase matrix plays a fundamental role in theoretical
studies and computational methods concerning the transfer of
polarized radiation. It occurs, for instance, as the kernel of the
equation of transfer for polarized light. A number of symmetry
relations exists for the elements of the phase matrix (Hovenier,
1969) which have many useful applications. These symmetry
relations provide equations involving elements with different
values of the arguments. A deeper analysis of the structure of the
phase matrix is presented in this paper. A variety of properties of
the elements is derived by elementary means without even using
expansions in generalized spherical functions (e.g. Kuscer and
Ribari¢, 1959; Herman, 1968; Domke, 1974; Siewert, 1981;
Hovenier and Van der Mee, 1983). These properties may be used
at the formulation of analytical and numerical solution methods
for radiative transfer problems, for checking purposes and exten-
sions to reflection and transmission matrices and other matrices
relevant to multiple scattering theory.

2. The relationship between the scattering matrix and the phase
matrix

The phase matrix may be constructed from amplitude and ro-
tation matrices. We shall first give a short discussion of this
construction. For details we refer to Van de Hulst (1957),
Hovenier and Van der Mee (1983), and Hovenier et al. (1986).
The scattering of a simple wave by an arbitrary particle may
be described by means of a 2 x 2 amplitude matrix satisfying

[ - L) !
E, Ay A LEo] "
Here E, and E, represent the electric field components of the
scattered wave parallel and perpendicular to the scattering plane,
respectively; in a similar way E,, and E,, relate to the ingoing
wave. The elements of the amplitude matrix generally are com-
plex functions of the directions of incidence and scattering. On
expressing the Stokes parameters I, Q, U and V of the scattered

beam and the Stokes parameters I,, Q,, U, and ¥V, of the
incident beam in the electric field components and their complex
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conjugates and making the Stokes parameters elements of
column vectors, we obtain from Eq. (1)

I=F(6)I, 2

where F(6) is the so-called scattering matrix transforming the
Stokes vector of the incident beam, I, into the Stokes vector of
the scattered beam, I, with the scattering plane as the plane of
reference of the Stokes parameters. When dealing with an as-
sembly of independently scattering particles, we add the corres-
ponding elements of the scattering matrices of the single particles
to obtain the scattering matrix of the assembly. Symmetries will
then lead to a simplification of the scattering matrix for an
extensive class of assemblies. We consider a scattering matrix of
the following block diagonal form

a@® b® 0 0
| b® w® 0o 0
FO=1"% 0 o 50 | G)

0 0 —by(0) a.(0)

where 0<0 < is the scattering angle, i.e. the angle between the

directions of the incident and scattered beams. This matrix

contains 6 real functions and is valid in various situations, such

as

(1) scattering by an assembly of randomly oriented particles each

of which has a plane of symmetry, like optically inactive ellip-

soids, spheres and cylinders;

(ii) scattering by an assembly having particles and their mirror

particles in equal numbers and with random orientation;

(iii) Rayleigh scattering (with or without depolarization effects)

by an assembly of randomly oriented optically inactive particles.
Let us now consider a plane-parallel layer of scattering partic-

les illuminated at the top. We specify directions by means of

—1<u<1 (cosine of the angle with the downward normal) and
0< ¢ <2n (azimuth measured clockwise when viewing upward).
Using the meridian plane as the plane of reference for the Stokes
parameters of a beam, the light scattered by a volume-element
from a direction (v, ¢') into a direction (u, ¢) is described by the
phase matrix Z(u,u',¢—¢’). This matrix follows from the
scattering matrix by pre- and postmultiplication by rotation
matrices. In fact, we have

Z(u,v', o — ¢")=Ln—0,) FO)L(—0,), Q)

where the rotation matrix L(ax) has the form

1 0 0 0
0 cos2a sin2a O
L(x)= 5
(@) 0 —sin2ax cos2a O )
0 0 0 1

and the variables u,u’,(p—¢’), 6, o, and o, are related by the
equalities

cosf=uu'+(1—w?)"*(1—u?)' cos(p—¢) ©)
cos oy =(—u+u cos)/{(1 —u'?)(1 —cos? §)}'/? ™
sing, =(1 —u?)"*sin (¢’ — @)/(1 —cos? )*/2 ®)
cos g, =(—u'+u cos 0)/{(1 —u?)(1 —cos> ) }}/? )

sin o, =(1—u'2)"/2sin (¢ — p)/(1 — cos? ) !/2. (10)

The phase matrix can also be written as

Z(“! ul7 ®— (P’) =
a(0) b (0)C,
bi(0)C, Cra,(0)C,—S,a5(0)8,
b.(0)S, S,a,(0)C,+C,a;(0)S,
0 —b,(0)S,
—b,(0)S, 0
—C2a,(0)S, —8,a;(0)C; —b,(0)S, 11
—8,a,(0)S, + C1a;(0)C,  by()C, |
—b,(0)C, a,(0)
where
C,=cos20,, C2=008262} 1)
S, =sin2s,, S, =sin2a, J

The elements of the phase matrix will be denoted by
Zj(u,u',o—¢') with i,j=1,2,3,4. From hereon we shall not
always write the dependence on u,u’ and (¢ — ¢’) explicitly.

So far we have summarized some well-known material. We
will now investigate relations between elements of the phase
matrix and elements of the scattering matrix. We will group them
into relations for the corner elements, relations for the non-
corner elements along the boundary and relations involving the
middle block. First of all, for the corner elements of the scattering
matrix of Eq. (3) we have the trivial identities

Z,,=aqa, (13)
Zya=a, (14)
Z,,=0 (15)
Z4,=0. (16)

Secondly, for the noncorner elements of the first and fourth row
of the scattering and phase matrices we find the 4 equations

Z2,+Z%,=b? 17
Z%,+Z%,=b3 (18)
23243+ Z3Z43=0 (19)
Z13Z43—2Z3Z4,=—b1b,. (20)

Similarly, for the noncorner elements of the first and fourth
column we have the 4 equations

VAT VAT X 21
Z34+2Z3,=b3 22
231224+ Z31Z54,=0 (23)
Zy1Z34—2Z31Z2,=b,b,. (24)
Finally, we obtain the 2 equations

Z3,+Z3:+Z3,+ Z33=a3 +ad} (25)
233233~ 23323, =0,0;5. (26)

Equations (13)+26) may be derived by using Eq. (11) and alge-
braic manipulations. They hold for arbitrary values of u,u’ and
(@ —¢') in the allowed ranges. Other equations may be derived
also, e.g.

(Z22+Z33) +(253—Z3,) =(a, +a3)?, (27
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which follows from Egs. (25) and (26). We may also write down
equations expressing the invariance of the determinant and the
sum of the squared elements of the entire scattering matrix under
pre- and postmultiplication by rotation matrices. In this way we
find

detZ=detF

4
=1

(28)

(29

TUR

4 4

2 __ 2

Zi=% Y Fi.
i=1j=1 j=1

i

Jj 1

i

Special situations occur for forward (§=0) and backward
scattering (0 =m). The scattering matrix then has the additional
properties (cf. Van de Hulst, 1957)

b,(0)=b,(0)=0 (30)
a3(0)=a;(0) (€29)
b(m)=b,(m)=0 (32
ay(n) = —ay(m). (33)

For §=0 we have u=u', ¢ —¢’'=0 and the rotation matrices
reduce to unit matrices [cf. Egs. (6)«(10)] yielding

Z(u,u,0)=diag {a,(0), a,(0), a5(0), a,(0)}. (34)

Similarly for == we find u= —u/, ¢ —¢’'=mn and the rotation
matrices to reduce to unit matrices so that

Z(“s —u, 7{) = dlag {al(n)9 az(n), - 02(7[), a4(7r) } . (35)

3. Relations for the elements of the phase matrix

In this section we shall consider relations for the elements of the
phase matrix and study their independence and completeness
properties. We have met some relations of this type already in the
preceding section. Since the 16 elements of the phase matrix
depend on 8 quantities, namely a,, a,, a3, a,, b, b,, 6, and o,,
we expect the existence of 8 basic relations involving elements of
the phase matrix only.

3.1. The boundary elements

For the 12 elements on the boundary of the phase matrix we have
first of all the trivial equalities (15) and (16) as well as Egs. (19)
and (23). From Egs. (17) and (21), and from Egs. (18) and (22) [or
from Egs. (11) and (12)] we easily obtain

Z3,+723,-2%,-2%,=0 (36)
Z3,+2722,-272%,—-723%,=0. 37
From Eq. (11) we have directly

2323, +Z4,Z,,=0 (38)
Z,,Z3,+7Z,,Z,3=0 (39)
Z,Z,4—Z4,Z43,=0 (40)
Z,3Z34—2Z5,2Z4,=0. 41)
Finally, from Egs. (20) and (24) we have immediately
Z3Z43—Z 324y +Z 32y — 25, Z,,=0. 42)

From these simple equations we may easily derive more compli-
cated equations. For example, from Egs. (36), (37) and (42) we
find
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Z02F 20l +(Z131Z24))* —(Z51 £ Z234) (231 F Z24)* =0.(43)

Here and in the sequel, a relation containing + or F will be
viewed as two relations, where one carries the upper signs and the
other one the lower signs. Other identities resembling Eq. (42)
may be found by adding or subtracting two of the Egs. (19), (23)
and (38)41).

Let us point out a set of four basic equations which are
independent and complete for the 8 elements Z,,, Z,5, Z,,, Z;,,
Z4zy Z43, Z,4 and Z4,. By independent we mean that none of
these equations can be derived from the others, and by complete
that all other equations for the same elements which stem from
Egs. (11) and (12) can be derived from them. Assuming Z,, #0 we
first note that it is straightforward to derive Egs. (23), (37), (38),
(41) and (42) from Egs. (19), (36), (39) and (40). The last four
equations are independent, since in the consecutive sequence
consisting of Eq. (36) and the three equations

Zy= _213243/212 (44)
Za4=_221243/212 (45)
Zz4=Z31Z43/le, (46)

which are modifications of Egs. (19), (39) and (40), there always
appear quantities that did not appear in any of the preceding
equations in the sequence. A rigorous proof of the completeness
of Egs. (19), (36), (39) and (40) runs as follows. Suppose we have 8
quantities satisfying Eqgs. (19), (36), (39) and (40). We first assume
Z,,+#0 and define

b, =+(Z2,+23%;)"? 47)
Ci=Zy,/b, (48)
C,=27,,/b, 49)
Sy=—Zy3/b, (50)
S,=2Z4, /b, (51)
by=—2Z4/Cy, (52

therewith taking for granted a common sign indeterminacy in
b,,b,,Cy,C,, S, and S,. Equations (47), (48) and (50) imply that
an angle (20,) can be chosen so that C; and S, are its cosine and
sine, respectively. Similarly C, and S, can be made the cosine
and sine of the angle 20,, because of Egs. (36), (47), (49) and (51).
We now use Egs. (19), (39) and (40) and find our 8 quantities Z, ,,
Zi3, 251,25, Z4s, Z43, Z,4 and Z,, to be exactly of the type
given by Egs. (11) and (12). This reconstruction evidently implies
the completeness of Egs. (19), (36), (39) and (49). As a result all
equations for the above 8 elements of the phase matrix stemming
from Egs. (11) and (12) can be derived from these four equations if
Z,,#0.1f Z,,=0 but one of the other 7 elements is nonzero, the
unique set consisting of the 4 equations among Egs. (19), (23), and
(36)«41) that contain the selected nonzero quantity may be
chosen as the basic set. We note that in this case C,; may vanish
while b, #0. We should then replace Eq. (52) by

b,=—2Z,,/S, (53)

when reconstructing b,. On the other hand, if Z,,=Z,,=Z,,
=Z,,;=0and thus b, vanishes, one should replace Egs. (47)+52)
by equations where the roles of b, and b, have been inter-
changed. If all 8 elements vanish, Egs. (19), (23) and (36)—(42)
reduce to tautologies of the type 0=0 and the choice of a basic set
of equations is immaterial. This situation occurs, for instance, for
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forward (0=0) and backward (6 =) scattering [cf. Egs. (34) and
(35)], or if polarization is neglected, i.e. if all elements of the
scattering matrix except a, vanish.

3.2. Relations involving elements of the middile block

To obtain equations involving the elements Z,,, Z,;, Z3, and
Z 5 of the middle block of the phase matrix, we first express
a;S,C, and a,S,C, in these elements [cf. Eq. (11)]. To illustrate
how a;S,C, is obtained, we use Eq. (11), and (i) multiply Z,, by
C,S, and Z;, by —C,C, and add the resulting expressions, or
(i) multiply Z,5 by S,S, and Z;; by —S,C, and add the
resulting equations. It is then readily verified that

ZZZ
[zl t, t{l Zyy | _ [OJ 54
ty —t3 —I 4 Zs, 0
Zss
where t;, i=1, 2, 3, 4, are given by
t,=cC,S,
t,=—cS,5, (55)
ty=—cC,C,
t,=cS$,C,

for c=1. If we multiply both equations of this system of
equations by b? we obtain from Eq. (11)

(ZIZZSI)ZZZ+(ZISZ31)ZZ3_(ZIZZZI)Z32

—(213221)233=0 (56)
(2132310222 +(Z1,2,0)Z23—(213231) 25,
+(Z13,Z4,)Z33=0. (57)

In an analogous fashion we may multiply both equations of the
system by b2 to obtain the pair of equations

(Z43224) 222 —(Z42224) 233+ (2432 34) 23, —(Z42Z34) Z33=0
(58)

_(Z42234)Z22 _(243234)223 +(Z42224)Z32

+(Z43Z24)Z53=0. (59

A third pair of equations is obtained by applying the above
procedure with b? or b? replaced by b,b,. As a result we find

(231243)222_(ZSIZ42)ZZ3_(ZZIZ43)Z32
+(Z31242)Z33=0 (60)
(Z21Z42)Z 23+ (221 Z43) 233+ (Z31Z42) 23, +(Z 31 Z43) Z33=0.
(61)
However, since a product of the type b,b,C,S, can be de-
composed alternatively as (b, C,)(b,S,) or (b,S,)(b,C,), each one
of the equations (60) and (61) can be written in 16 equivalent

forms.
Using the identities

C282—C3S2=82—§2=C2— (2
C3C3-8383=C3-853=C}-5%,

(62)
(63)

we may eliminate one of the variables Z,,, Z,5, Z5, and Z;,
from Egs. (54) and (55) and obtain the following four equations

C38,Z,34+C8,Z3,+(C}—C3)Z;33,=0 (64)
C38:Z,,+(81—C3)Z3,+5,C,Z33=0 (65)

—C18,Z,,+(83—C3)Z33—8,C,Z53,=0 (66)
(S%—Sf)Zzz—SICIZZ3—S2CZZ32=O. (67)
Premultiplication by b? and using Egs. (11), (62) and (63) yield

231231233~ 21,2325, +(Z2},~Z31)Z33=0 (68)
23123120, +(23,~232)Z3,—Z21,2,3Z33,=0 (69)
~Z1,Z,325,+(23,— 230223+ 2125, Z53=0 (70)
(231-23)Z2,~ 21,2132 33+ 22125, Z5,=0. (71)

Each one of these equations may be written in two different forms
by using Eq. (36). In the same way one obtains 8 equations by
premultiplication by b2 and 32 equations by premultiplication
by b,b,.

We shall now prove that either Egs. (56) and (57), Egs. (58)
and (59) or Egs. (60) and (61) are independent, provided four
independent and complete equations for the 8 quantities Z,,,
Z3,Z5,,25,,2,4,,2Z43,2Z,, and Z,, are given. Indeed, the three
pairs of equations (56) and (57), (58) and (59), and (60) and (61)
can be written in the concise form of Eq. (54) where c=b?, b% and
byb,, respectively. This makes each t; a + product of two non-
corner elements along the boundary of the phase matrix. We
further have

B++t3+ti=c? (72)

(73)

It now follows from Eq. (11) that, if at least one of the elements
Zi3, 23,251,253y, 2Z4,, 245, Z,, and Z;, does not vanish, b,
and b, do not vanish simultaneously so that we can select a pair
of equations for which ¢#0. Owing to the conditions (72) and
(73) with ¢ #0, it will then be impossible to simultaneously violate
the three conditions

tita=tyls.

t2#£13 (74)
t3#£t2 (75)
tyty+t3t, #0. (76)

Since one of these conditions is sufficient to guarantee the
2 x 4-matrix of Eq. (54) to have rank 2, it follows that Egs. (56)
and (57) for b, #0, Egs. (58)«59) for b,#0 and Egs. (60)~(61)
for b,b, #0 are independent.

3.3. Independent and complete equations for all elements of the
phase matrix

Let us assume that at least one of the non-corner elements along
the boundary of the phase matrix does not vanish. Then one may
indicate 6 equations for the non-corner elements which are
independent and complete. Here independence means that no
equation from such a set of 6 can be derived from the other five.
Completeness means that every equation for the non-corner
elements of the phase matrix which is based on Eq. (11) may be
derived from such a set of 6 equations. If either Z,,, Z,, Z,, or
Z4, does not vanish, then the four equations among Egs. (19),
(23) and (36)41) containing a particular nonzero quantity plus
Eqgs. (56) and (57) will be proven to be a basic set. On the other
hand, if either Z,,, Z,5, Z,, or Z,5 does not vanish, a basic set
will be shown to consist of the four equations among Egs. (19),
(23) and (36)+41) containing a particular nonzero quantity plus
Egs. (58) and (59).
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Indeed, to prove independence we assume Z,,#0 and con-
sider the set of 6 equations (19), (36), (39), (40), (56) and (57). If
either Eq. (56) or Eq. (57) could be derived from the remaining
five, then the completeness of Egs. (19), (36), (39) and (40) as a set
of four basic equations for the non-corner elements along the
boundary would imply the linear dependence of Egs. (56) and
(57) for given values of the non-corner elements along the bound-
ary. The latter contradicts with the 2 x 4 matrix on the left-hand
side of Eq. (54) having rank two for ¢ =b? #0. On the other hand,
each one of Egs. (19), (39) or (40) is independent of the remaining
five from the above set of 6 equations, because each one of these
three equations contains a quantity (Z,,, Z;, and Z,,, re-
spectively) not present in any of the other five equations. Finally,
Eq. (36) cannot be derived from Egs. (19), (39), (40), (56) and (57),
because multiplication of Z,; and Z;, by, say, 2 and simultan-
eous division of Z,, and Z,; by 2 leaves those five equations
invariant but affects Eq. (36).

In Sect 3.1 we pointed out a set of four independent and
complete equations for the non-corner elements along the
boundary. If these elements and equations are given we can find
unique quantities b,, b,, C,, C,, S, and S,, apart from a
common sign indeterminacy. Suppose now we have four quan-
tities Z,,, Z,3, Z3, and Z55 obeying at least one of the pairs of
Egs. (56) and (57), or (58) and (59). On dividing by b? or b3 one
then arrives at the system (54) where t,, t,, t; and t, are given by
Eq. (55) with ¢=1. In addition, one finds Egs. (72) and (73) with ¢
=1. Two linearly independent solutions {Z,,, Z,3, Z3,, Z 35} of
the system (54) are then given by the column vectors {C,C,,
-8,C,,C,S,, —8,S,} and {—S,S,, —C;S,,5,C,, C,C,},as s
readily verified. Hence, we can find unique scalars a, and a; such
that

Zy C,\C, =515,
Zs —a, -5,C, +a, -GS, (77)
Zs, CiS, 5,C,
Zss -85, .G,

Consequently, Z,,, Z,3, Z5, and Z,; are exactly of the type
given by Egs. (11) and (12). This completes the reconstruction.
Summarizing, if at least one of the non-corner elements along the
boundary of the phase matrix is nonzero, there exists a set of 6
independent and complete equations for the 12 non-corner ele-
ments of the phase matrix. Together with Egs. (15) and (16) this
results in a set of 8 independent and complete equations for the
16 elements of the phase matrix valid for arbitrary values of u, '
and ¢ — ¢'. For instance, if Z,3+#0, one takes Egs. (19), (36), (38),
(41), (56) and (57), i.e. the 4 equations among Egs. (19), (23),
(36)41) containing Z , ; plus a pair of additional equations of the
type (54) for which c=b%#0.

It Z,=Z3=2y)=23,=24,=243=25,=Z3,=0, no
equations for Z,,, Z,;, Z;, and Z;; can be found but tauto-
logies of the type 0=0. This is not surprising since in this case 10
of the 16 elements vanish and the remaining 6 are expressed in 6
quantities, namely a,, a,, a3, a,, 6, and o,.

3.4. Symmetry relations

Symmetry relations provide simple equations involving elements
of the phase matrix with different values of the arguments. A
basic set of symmetry relations is (cf. Hovenier, 1969)

Z(u,u',¢'—9)=DZ(u, v, 0 —¢")D (78)
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Z',u,0— @) =PZLu,u,p—¢")P (79)
Z(—u,—v,0o—@")=DZ(u,u',p— @)D (80)

where a tilde above a matrix signifies transposition and D and P
are diagonal matrices, namely

D=diag{1,1, -1, -1} (81)
and
P=diag{l,1,—1,1}. (82)

The symmetry relations may be combined with the relations for
elements having the same values of the arguments which were
considered earlier. We mention the following applications.

(i) Checks may be obtained on equations in Sect.2 and sub-
sections 3.1-3.3. For example, since according to Eq. (79)

Zy (W u,0—0)=Z,(u v, p—9¢") (83)
and
Z3 (W u,0— @)= —Z (v, 0—¢), (84)

the validity of Eq. (17) for all values of the arguments implies that
Eq. (21) must hold for all values of the arguments. Similarly
Egs. (23) and (41) may be derived from Egs. (19) and (40), re-
spectively. In fact, it is readily verified that all equations for
elements having the same values of the arguments can be checked
by using the symmetry relations.

(i) Equations of a new type may be obtained, such as

[Zy(wu, 0= +[Z5 v, 0—¢) > =25, u,0 — 9)]*
+[Zsl(“l,“v¢—‘l")]2« (85)

This equation follows from Egs. (36), (83) and (84) and corre-
sponds to the physically well-known fact that for incident un-
polarized light the degree of polarization of singly scattered light
only depends on the scattering angle.

4. Inequalities for the elements of the phase matrix

In this section we shall describe several methods for obtaining
inequalities for elements of the phase matrix and discuss the
relationships between the different methods. In doing so we shall
apply some of the methods and results of Hovenier et al. (1986)
relevant to the elements of the scattering matrix and employ
them to find inequalities for the elements of the phase matrix. It
should be noted that a certain inequality may sometimes be
obtained by different methods, but the amount of algebra may
depend considerably on the method used. We do not aim at a
comprehensive set of inequalities but only give some illustrative
examples.

4.1. Omitting terms in equalities

Equalities for the elements of the phase matrix may be turned
into inequalities by omitting terms that are never negative. Thus
Egs. (36), (37) and (43) yield for example

Z3,+Z23:>273, (86)
VATE W AT-VAN 87)
Z2,+723,>272%, (88)
(Z12F 243 +(Z131 242 2(Z51 £ Z30)% (89)
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4.2. Rotation of axes for the amplitude matrix

In Eq. (1) E; and E, represent the electric field components of the
scattered wave parallel and perpendicular to the scattering plane.
If we put the particle in a plane-parallel atmosphere we can write
for fixed directions of the incident and scattered beams

E, A, A E,
[ E’] =L2(%<n—a2))[ Ai Aj]Lz(—%ao[ E]

Here L, () is the 2 x 2 rotation matrix occurring as the middle
block of the matrix on the right-hand side of Eq. (5) and a bar
above a symbol means that instead of the scattering plane the
local meridian plane is used as the plane of reference. Performing
the matrix multiplications we can rewrite Eq. (90) in the form

H ke
Er ErO
where A is the amplitude matrix pre- and postmultiplied by

suitable rotation matrices. If we now use the definition of the
Stokes parameters we obtain

I=FI,.

(90)

©n

92

Since in general the elements of F are obtained from 7 quantities
(the complex elements of A minus an irrelevent phase; cf. Van de
Hulst, 1957) there are 9 basic relations between the 16 elements of
F. These are quadratic and exactly the same as those found and
discussed by Hovenier et al. (1986) for the elements of F, since for
the derivation of the equations it is immaterial whether Egs. (1)
and (2) are used or Egs. (91) and (92). In fact, F is the phase matrix
of a single particle. For an assembly of many independently
scattering particles we must add the Stokes parameters and
therefore the phase matrices of the individual particles to obtain
the phase matrix Z of the assembly. The quadratic interrelations
between the elements of the phase matrix of an individual particle
are, generally, lost in the summation process. As a result (cf.
Hovenier et al, 1986 for a completely analogous treatment of the
mathematics involved) we find

(Z33+ 24V +(Z34— 243V <(Z11+ 2,20 —(Z1,+ Z,,)? 93)
(Z31~Z32 +(Z4y ~ 24V <(Z 11— Z 12 —(Z31 =222 (99)
(Z13—Z33)* + (214~ Z24)* <(Z 11— 23 —(Z1,—Z,,)? 995)
(Zy3+Z 33 H(Z 14+ 220 S(Z11+ 25 —(Z12+ 250 (96)
(Zay+Z3))* H(Zay + 240 S(Z( + 215 (25, + 2,5 (97)
(Z33=Z4a) H(Z3y + 243V <(Z11~ 232 ~ (212~ 251 (98)

where the equality signs hold for an assembly of identical par-
ticles with the same orientation or for a cloud of identical spheres.
By adding Eqgs. (93) and (98), (94) and (97), and (95) and (96), we
find the three inequalities

2o+ 2o+ 23+ Z20,<Z3,+ 23,23, - 273, 99)
23+ 25+ 25, +25,< 23}, +23,-25,- 23, (100)
Zi 425+ 23+ 23,< 2}, + 25, -2}, - Z3,. (101)

Using Egs. (15), (16) and (36) we may greatly simplify Egs. (100)
and (101) and obtain

Z3,+Z35,+Z3,+25,<73,
Z2,+2%,+2%,+22,<73,.

(102)
(103)

By adding Egs. (99)«101) we obtain the interesting inequality

4 4
Y Y zi<4z3,

ij=
i=1j=1

(104)

which is the analog of an inequality for the scattering matrix.

4.3. Using the inequalities valid for the elements of the scattering
matrix

For a scattering matrix of the type given by Eq. (3) we have (cf.
Hovenier et al., 1986)

a; =20 (105)
(a3+a,)’ +4b3<(a; +a,)* —4b} (106)
las—a,| <|a,—a,| (107)
la; +by| <la;+b,l, (108)
which implies, for example,

a; 2max {|a,|, |as|, |a,l, b, [b,|} (109)
a?>b?+b2+a2 (110)
4 4 .

Y. Y Fi<4a}. (111)
i=1j=1

On the other hand, Eq. (11) provides

a, =27, (112)
by=+(Z},+2%3)*=+(Z3,+ Z3)'? (113)
by=+(Z3,+233)"? = +(Z3+Z3)'"? (114)

Ay=Zyy (115)
a2=§—2222+—§—j—:z32 (116)
as= %222—5—2232 (117)

where various alternatives are possible for the last two equations.
In these we must, of course, have Z,,#0 and Z;#0, respect-
ively. In addition, we had already found Eq. (29). Thus we may
use Eqgs. (105)111) to reestablish Eq. (104) and to provide, for
instance,

Z,,>0 (118)
VAVATE VASYVA
Z, > 21422t 43145, (119)
Z,
ZZy—2,,Z
11__3,M (120)
Zys
72} ~251-25,20 (121)
72} ~Z3,-254320 (122)
Z},—254—273,20 (123)
Z3, Zy Zy, Z3,
O T 7 Zal <12, =22 7, — 23 7 (124)
Zn 22 Z 32— Zaa 11 Z., 22 Z. 32
23, 2(Zyy £ 200 +(Z3y 2 Z 30 + Z3,. (125)

The last pair of inequalities follows from Eq. (110) if we substitute
each element of the phase matrix according to Eq. (11) and use
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that C2+S2=1 for k=1, 2. For the special cases §=0 and ==
Egs. (34), (35) and (107) yield

|Z33—=Z4al <1211 =25, (126)

4.4. The Stokes vector criterion

Another method for obtaining inequalities for elements of the
phase matrix is based on the observation that the phase matrix
transforms four-vectors I={1, Q, U, V'} satisfying

I>(Q*+U*+VH)2>0 127

into vectors of the same type. Mathematically, this property of
the phase matrix follows easily from the product representation
(4) and the analogous properties of the rotation matrices and the
scattering matrix. Physically, Eq. (127) follows from the fact that
the degree of polarization, p, of a beam of light always satisfies
0<p<1. On applying the phase matrix to the vector {1, 0, 0, 0}
we obtain {Z,,,Z,,,Zs,, Z,,}. In combination with Egs. (13)
and (16) we then find the positivity condition (118) and the
quadratic inequality (121). A similar application of the phase
matrix to the vectors {1, +1,0,0}, {1,0, +1,0} and {1,0,0, +1}
yields the respective inequalities

(Z 112 Z )22y 225 H(Z3 £ 25 +(Zy £ Z4,)F (128)
(21 2 Z3) 22y 2 253 +(Z3 £ Z33)* +(Zgy £ 245 (129)
(Z11 22 2(Zy 2250 +H(Z31 £ 230 +(Zyy £ 244)7. (130)

Equation (128) coincides with the pair of Egs. (94) and (97), which
imply Egs. (100) and (102). Adding the + inequalities (129)—(130)
we obtain

23+ 723273 + 723423+ 23,4+ 22+ 23, (131)
(132)

With the help of Egs. (15), (16) and (36) one may simplify
Egs. (131)«132) to obtain

VATV APE VA PR VAT VAN
23225+ 25+ 25, + 254+ 22,

2423225+ 25+ 25 + 23+ 25+ 2.

(133)
(134)

In Eq. (134) we may simultaneously replace Z,, and Z5, by Z,,
and Z,,5, and Z,, and Z,, by Z,, and Z,, [cf. Egs. (36)«37)].
From Egs. (15), (16), (102), (103), (118), (133) and (134) we obtain

Z,>|Z;) (135)
where i,j=1,2, 3, 4.

4.5. Miscellaneous methods

First of all, we obtain a class of inequalities by omitting terms in
Eqgs. (93)98). This yields

maX{|ZuiZu', |Z33iZ44|, |Zs4¢Z43|}SZnizzz (136)
max {|Z,;+Z5,|,1Z3, £ Z5,1, 12451} <Z 1+ 2y, (137)
max {|Z,,+Z550,1Z13 22530, | 24|} <Z £ Z,,, (138)

where Egs. (15), (16) and (135) have been used also. Following the
reasoning of sub-section 4.2 we may also derive Eqs. (136)—(138)
from inequalities valid for the elements of the scattering matrix
given by Hovenier et al. (1986) (cf. their Egs. (206)~212) and
(236)]. By omitting only one term from Egs. (93)«98) we may
obtain still other inequalities, such as

293

(2332 Z0aP H(Z30F Z43)* < (211 £ Z55)%, (139)

in analogy with Eq. (213) of Hovenier et al. (1986).

Another method is to use the inequality a®+b*>2|ab| to
replace the sum of two squares by a double product. From
Eq. (121) one then obtains

Z3,222,,Z5,) (140)

We can further employ the well-known inequality

iyi+x2y+ x5y, <G+ Ax)i L )
(141)

for real numbers x,, y;, k=1,2, ..., n, where the equality sign

holds if and only if x,/y, is constant. Taking |y,|=|y,|= "

=|y,|=1 we find that

Y xE<r (142)

k=1

implies

Y Ixl<(rm)t2. (143)

k=1

Here the equality sign holds if and only if it holds in Eq. (142) and
all | x, | are the same. Applying this rule to Egs. (133) and (134) we
obtain

|Z N+ Z o531+ Z33| +1 2451 <224, (144)
1 Zoi| 41 Zoal #1231 | +1 Zasl +1Zaal < Z1,/5 (145)

where we have used Eq. (118). Equations (15), (16) and (104)
provide

i i |Zij'SZ11(1+\/§9—).

i=1j=1

(146)

The symmetry relations expressed by Eqgs. (78)—(80) can be
employed to obtain checks on the preceding inequalities or to
obtain new inequalities.

5. Relations for the azimuth components of the phase matrix

In this section we shall derive equalities and inequalities for the
Fourier components of the phase matrix. Such relations are of
interest, since many calculations are based on Fourier compo-
nents of the phase matrix rather than on the phase matrix itself.
In order to derive such relations, we consider the Fourier decom-
position of the phase matrix in azimuthal angle

Zu i, 0 — ) =Zu,u)+2 Y, [Z9u,u)cos {j(9—¢)}
; . . ’ =t

+Zu,u)sin{jl@—¢")} ],

whose components satisfy various symmetry relations, such as

(cf. Eq. (78))

(147)

Z(u, u') =DZ(u, u')D (148)
Z5(u,u')=DZ(u,u')D (149)
Z5i(u, u') = — DZ%(u,u')D. (150)

On defining the matrices (cf. Siewert, 1981; Hovenier and Van der
Mee, 1983)

Wiu,u')=Z (u,u')— DZ%u, u') = Z(u,u’) + Z5 (u, u')D (151)
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we find the relations

[Z9(u,u')],4, (P, ) € UL or LR
[Z*(u,u')],q. (P, 9 € LL
—[Z5(u,u)], (P, 9) € UR.

[Wi(u,u)],,= (152)

Here UL={(1,1), (1,2), (2,1), (2,2)}, LR={(3,3), (3,4), (4,3),
4,49}, LL={(3,1),(3,2),(4,1),(4,2)} and UR={(1,33), (1,4), (2,3),
(2,4)} are the index sets of the upper left, lower right, lower left
and upper right corners, respectively. We shall derive from
Eqgs. (19), (23), (36)142) and (56)61) a set of equations for the
elements of W/(u,u’). Below we shall write Wi, for the (p, q)
element of W/(u,u'), without displaying its dependence on
uand '

A major tool in subsequent derivations is the product formula
for Fourier series, viz. if one has the product representation

ool
¢©+2Y (¢ cos jx+cVsinjx)=
j=1

= [a“’ +2 Y (a%cosjx+asin jx)] x

j=1

[b‘°+2 Y (b9 cosjx+b%sin jx)], (153)

ji=1

one has the following relations between the coefficients:

cc0=ac0bc0+2 i (acjbcj+asjbsj)
j=1

(154)

ch=acjbc0+ac0bcj:+_ Z (acibck_asibsk)

i+k=j
i k>1
+ Y (@b*raibt) (155)
EY e

csj=asjbco+ac0bsj+ (acibsk+asibck)
itk=j
1

+ Y sgn(i—k)(—ab™+abk) (156)

li=k=jl
i, k>1
where sgn(i—k)=1 if (i—k)>0, sgn(i—k)=0 if (i—k)=0 and
sgn(i—k)= —1if (i—k)<0. From Egs. (153)«156) it is immediate
that the product of two cosine series or the product of two sine
series is a cosine series and the product of a cosine series and
a sine series is a sine series. By definition, the series
L
a®+2Y {a%cosjx+a”sinjx} is a cosine series if a¥=0 for
j=1 )
j=1, and a sine series if a”=0 for j>0.

Let us derive equations for the elements of W/(u,u’) from
Eqgs. (15), (16), (19), (23) and (36){42). Here we use (152), the
product formulae (153)156) and the fact that the Fourier series
of Zy1, 215,251, Z33, Z33, Z34, Z45 and Z,, are cosine series
and those of Z 3, Z 4,253, Z34, 231, Z3,, Z4, and Z,, are sine
series [cf. Eq.(78)]. On computing the Fourier components for
j=0 we use Z°®=W? and obtain (apart from tautologies)

W= W3 =0 (157)
(WP 423 (Wi + (Wi =W 423 (W)
ji=1 j=1

+H(Wi)?} (158)

WP 42 3 ((WiaP + (Wi = (W2,

J

+2,~§1 HUZNEIUENS (159)
iO{W{aWiw WiiWi}=0 (160)
=
j;io Q=0 )WL Wi+ Wi Wi3}=0 (161)
5 0do)(WhWha W Wi

-2 i {(W{sWih+ Wi wi}=0. (162)

=

In a similar way equalities stemming from Egs. (15), (16), (19),
(23) and (36)142) may be obtained by computing the other
Fourier components, but the formulae thus derived are quite
complicated.

In order to write down the equations for the Fourier compo-
nents stemming from Egs. (56)-(61), which consist of terms that
are products of three elements of the phase matrix, one must
generalize Eqs. (153)156) to a product of three Fourier series.
Since in Eqgs. (56)(61) each term consists of a product of three
Fourier series which are either two cosine series and one sine
series or three sine series, one may restrict oneself to generalizing
Eqgs. (153)H156) to such a situation only. As a result of the fact
that the resulting Fourier series is a sine series, the j=0 compo-
nent equations stemming from Egs. (56)+(61) are tautologies of
the type 0=0.

A second way of generating equalities for the Fourier compo-
nents is to consider the cases ¢ —¢'=0 and ¢ —¢'=m, using the
identities
Z(u,u',0)=ZCu,u)+2 Y, Z9(u,u’)

j=1
=F(uu’+(1 __ul2)1/2(1 _u12)1/2)

(163)
Z(u, o', m)=Z(u, u') + 2 i (= 1) Zu, u')
j=1
=F(uw' —(1—u?) (1 —u'2)!/2) (164)

and the special form (3) of the scattering matrix. This yields

WHA2Y (2D WH=W3+2} (1)) Wi, (165)

j=1 j=1

We+2Y (2D W= —{W24+2 (= 1)’W§4} (166)
j=1 ji=1

It is also clear that

Wo+2Y (£1)/W},=0 (167)
j=1

whenever (p, q) belongs to either the upper right or the lower left

corner.

Inequalities for the Fourier components of the elements of the
phase matrix may be obtained exploiting the linearity of some of
the inequalities considered in Sect. 4. From Egs. (136)138) we
easily derive

max {| W0, + W3, |, IWS £ Wil | WSLTWHI < WL EWY,
(168)

WS EWSI< Wi+ W?, (169)
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(Wt W< Wi W3, (170)

where the last two relations are equivalent. Their derivation runs
as follows. Let us consider just one of the inequalities, e.g.
|Zy1+2Z,5|<Z,+Z,,, viewed as the two linear inequalities

Z+Z,%(Zy+Z,,)20. (171)
Integrating Eq. (171) over azimuth we easily find by linearity
WO +Wh+(Wh +W3,) =0, (172)
which implies the desired inequality
(W + W< W+ W9, (173)
By a similar derivation we obtain

W3l < W, (174)
foralli,j=1, 2,3, 4 (cf. Eq. (135)) and, for example, (cf. Eqs. (104),
(133), (134), (142) and (143))

4 4 o
Y YW= wi(+/21)

i=1j=1
| WO+ W+ W] < W9,/3
[ WS+ W Sal +I W3l < W3,/3.

For the other Fourier components such a derivation is not
possible since cos j(p — ¢’) and sinj(¢ — ¢') change sign if j>1.

175)

(176)
(177)

6. Conclusions

The main conclusions of the present work will be summarized in
this section.

The essentials of the relationship between the scattering
matrix and the phase matrix were brought to light for many
realistic types of light scattering [Sect. 2]. It was further shown
that it is not necessary to treat the elements of the phase matrix
for the same values of the arguments as if they were 16 unrelated
quantities. Indeed, in Sect. 3 eight basic relations have been
derived which may be divided into (i) two relations for the corner
elements (Eqs. (15) and (16)), (ii) four relations for the non-corner
elements along the boundary (Egs. (19), (36), (39) and (40) if the
element Z,,+0), and (iii) two relations for the elements of the
middle block (Egs. (56) and (57) if Z,,+0). The degrees of these
equations are one, two and three, respectively. In addition to the
basic equations a selection of others has been presented. Sym-
metry relations, which involve elements with different values of
the arguments, were used to check the preceding results and to
show how relations of a new type may be created. In Sect. 4 a
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number of ways to obtain inequalities for the elements of the
phase matrix has been expounded together with many illustrative
examples. Perhaps the most elegant one of these methods is the
one based on first performing the rotations on the amplitude
matrix of each individual particle and then constructing the
phase matrix per particle followed by summation over various
particles. Equalities and inequalities for the azimuth components
of the phase matrix have been considered in Sect. 5 with emphasis
on the azimuth-independent term which usually is the most
difficult one to handle in multiple scattering calculations.

In this paper we have restricted ourselves to a representation
of polarized light in terms of Stokes parameters. However, since
we have not only given results but also explained the ways and
means utilized in our treatment the translation into another
representation of polarized light (e.g. one based on two oppo-
sitely circularly polarized states) may always be made if desired.

The light shed in this paper on the structure of the phase
matrix and its relationship to the scattering matrix provides new
insight into the nature of transfer of polarized light in plane-
parallel atmospheres. In particular, the methods and results may
be used to devise or improve analytical and numerical solution
strategies for radiative transfer problems as well as for checking
purposes and extensions to other matrices involved in scattering
theory.
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