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The unique solvability of the time-dependent and stationary Spencer-Lewis equations is
established under natural assumptions on the solution and the data of the problem. The
strategy used is the method of characteristics followed by perturbation and monotone
approximation arguments. The evolution operator in the time-dependent Spencer—Lewis
equation is proved to generate a strongly continuous contraction semigroup.

I. INTRODUCTION

In this article we prove that the Spencer-Lewis equa-
tion, originally derived in the 1950’s by Spencer' and Lewis’
to describe the continuous slowing down of electrons of in-
termediate energy in a semiconductor or metallic slab medi-
um when the distribution function of the electrons at the
upper end of the considered energy range is known, is
uniquely solvable. In its present form the equation was for-
mulated by Bartine e al.* (see also Arkuszewski er al.*),
who replaced the original term S du/JdE by the mathemat-
ically more convenient term d( Su)/JE. Here f = B{(x,E)
represents the stopping power. Both the time-dependent and
the stationary problem will be considered under natural ini-
tial and boundary conditions (see below).

The solution u = u(x, u,E,t) of the Spencer-Lewis
equation describes the electron distribution as a function of
position xe[0,a], direction cosine of propagation
uel — 1,11, energy Ee[E, ,E\,]C(0,0) and, when the
problem is time dependent, time f€[0, ). The equation
takes account of the fact that incoming electrons may un-
dergo elastic scattering of electrons by atomic nuclei, inelas-
tic scattering by atomic electrons, and bremsstrahlung pro-
ducing collisions with atomic nuclei and atomic electrons.
Inelastic scattering between an incident electron and an
atomic electron may cause ionization and thus add to the
free electron population. However, the relatively small con-
tribution to the electron distribution by the electrons stem-
ming from the interaction of photons with matter, through
the photoelectric effect, Compton scattering, and pair pro-
duction, is neglected when deriving the Spencer-Lewis
equation. The contribution of the so-called “soft” electron—
electron and electron—atomic nuclei collisions leading to an
energy transfer of the order of or less than the binding energy
of the target electrons is described as a continuous slowing
down so that the energy loss per unit distance due to such
collisions rather than their cross sections appears in the

equation.
In the time-dependent case the equation has the form
du du a( Bu)
—— X, 7E’t) + —— X, ,E,t —— X »E’t)
% (x, i (x, u,E\t) 9E (x, 1

+ ol(x, w,E)u(x, p,E,t)
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1
=J o, (x, w, ' Eyu(x, u' . Et)du’ + f (x, u,E,t),
-1
(1)

where o = o (x, u,E) is the total scattering cross section that
usually does not depend on u, o, = o, (x, i, u',E) the (azi-
muthally integrated) scattering cross section, and
S (x, u,E,t) the distribution function for the internal elec-
tron sources of intermediate energy. Equation (1) is en-
dowed with the boundary conditions
u(x=0)/~l"E,t) =g0( #’Eyt)’ )u'>0, EE[Em,EM] ’

(2a)
u(x=a,u,Et) =g, (u,Et), u<0, E€[E,.Ey,],

(2b)
specifying the distribution of the incident electrons of inter-
mediate energy, the boundary condition
xe[O’a]’ ,ue[ - 1)1] ’

(2¢)

specifying the distribution of the electrons incident at the
higher end of the energy range, and the initial condition

u(x, u,Et =0) = ho(x, u,E),

u(x),u)Ez EM’t) =g,‘(x5 #,t),

xef0,a],

uel — 1,1], E€[E,Ey,]. (3)
In the stationary case we have the boundary-value problem
a d
,u_u (x9 ,u’E) - (ﬂu) (x’ ,.l,E) + U(x) ,u)E)u(x’ﬂ,E)
ox JE

1
=J o, (x, i, fb ,EYu(x, ', Eydu' + f(x, t,E), (4)
—1

u(O’/-lf’E) =g()( ﬂyE)’ ,u'>01 EE[EmyEM] » (Sa)
u(ay,-l/,E) :ga(,U’E), ,u<0) Ee[Em’EM] 3 (Sb)
ulx, w,Ey) =g:(x, 1), x€[0a] pe[ —1,1]. (5¢)

Contrary to the situation of neutron transport theory, the
integral term describing the gain of electrons due to colli-
sions with the host medium does not involve an integration
over energy but only over the direction cosine of propaga-
tion. Another difference with neutron transport theory is the
presence of a term in the equation involving partial differen-
tiation with respect to energy. Natural assumptions on the
model are to require «, f; ,, &., &;» and Ay as well as 3, o, and
o, to be non-negative Borel functions and to adopt the hy-
pothesis
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1
a(x,,u’,E)>f o, (x, u, ', E)du,
-1

(xa ,u’,E)E[O’a] X[ - 171] X [Em,EM] >
(6)

where the equality sign holds true if (and only if) there is no
electron absorption at intermediate energies.

The natural functional setting for the above two prob-
lems is suggested by the fact that ¥ = u(x, u,E,t) is the elec-
tron distribution function for given incident electron fluxes
| t|go u,E,t) and | u|g, ( i,E,t). This means in particular
that one should analyze the above problems in the Banach
space A =L;(A), where A= (0a)X(—~11)
X(E,,Ey), consisting of the functions u = u(x, u,E),
which are finite with respect to the norm

a 1 Epy
Hu||1=J f f |u(x, u,E)|dE dy dx,
o J-1JE,

while f, hoe V', gV, 8,6V _, and gV, are given func-
tions. Here .47, is the Banach space of all functions
g = g( u,E) finite with respect to the norm

+1 pEy
lelh = + ¢l 18 u,E)|dE du.,
0 EI)'I

while %7, is the Banach space of all functions g = g(x, )
finite with respect to the norm

a 1
Ve =J f B(x,Ey) |g(x, 1) |du dx .
o J_1

Note that the stopping power at the higher end of the energy
range appears as a weight in the L, norm of 4",.

In recent years there has been renewed activity on the
Spencer-Lewis equation, in part because of the necessity of
proving the convergence of the existing finite difference
methods for solving Eqgs. (4) and (5). Nelson and Seth’
proved the convergence of certain finite difference schemes
under the assumption that Egs. (4) and (5) have a unique
solution. For a simple rod model the well-posedness of the
original problem was proved by Nelson.® After the emer-
gence of the abstract time-dependent kinetic theory of Beals
and Protopopescu,” which can also be found in the mono-
graph of Greenberg et al.,® these results have been extended
for the time-dependent and the stationary problem to the
case where (i) B = fB(x,E) is piecewise constant in energy
and Lipschitz continuous in position, (ii) o= o(x,E) is
bounded and independent of 4, and (iii) when treating the
stationary problem, condition (6) is replaced by

1
a(x,,u’,E)>5f o, (x, u, p',E)du,
-1

forall (x, " ,EYe[0,a]l X[ — L1I1X [E,.,.Ey], (T)

where 6e(0,1). Condition (i) was imposed to make the vec-
tor fields appearing in Eqs. (1) and (4) divergence-free so
that the theory of Refs. 7 and 8 goes through. Condition (ii)
implies the boundedness of the integral operator at the right-
hand side of Egs. (1) and (4) on .#", which is another pre-
requisite of the theory of Refs. 7 and 8. Condition (iii) im-
plies that the evolution semigroup of Eq. (1) is exponentially
decreasing in time, which makes the corresponding station-
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ary problem uniquely solvable. For these results we refer to
Sec. XI11.3 of Ref. 8.

Recently a number of new developments in abstract ki-
netic theory have taken place that will enable us to drop the
above rather artificial conditions (i)—(iii) from the theory of
Spencer-Lewis equations and to prove the unique solvability
of both the time-dependent and the stationary problem un-
der more natural assumptions. It has become clear™'° how to
treat non-divergence-free force fields and thus how to drop
condition (i). Furthermore, abstract kinetic theory has been
extended to the case where the integral term of the collision
operator is a (positive) contraction from .47,

= L(A;o(x, u,E)dx dudE) into A" = L,(A;dx du dE)
(see Refs. 9 and 10 for treatments of similar situations).
These novel developments will guide us in the construction
of an existence and uniqueness theory for the solution of the
Spencer-Lewis equation under the following assumptions.
(A) There exists a partition E, = E,<E, < '+ <E,
= E,,, possibly with r = 1, of the intermediate energy range
such that S is non-negative and Lipschitz continuous on the
closure of each set

A =(0a)X( - L)X(E,_,E), (8)

where i = 1,...,r.

(B) The stopping power is Lipschitz continuous on the
disjoint union U/ _, A, and has only finitely many zeros, all
of them in the interior of (0,a) X (E,,,E,,). Thus in defining
the stopping power one should distinguish between E ;- and
Ef fori=1,.,r—1ifry2.

(C) o and o, satisfy condition (6) and

a ~1 Ey
J J J o(x, u,EYdE du dx < .
o J-1JE,

Apart from this integrability condition, ¢ may be un-
bounded. When r>>2, we will also require the solutions u of
Egs. (1)—(3) and Egs. (4) and (5) to be continuous at the
energy jumps, ie., to satisfy w(E, ) =u(E), for
i{=1,..,r — 1. The physical meaning of this requirement is
that discontinuous jumps in the stopping power do not bring
about (positive or negative) electron sources. We will apply
the method of characteristics in such a way that this continu-
ity requirement is incorporated in the mathematical formu-
lation in such a way that it does not show up as a boundary
condition any more. In this fashion we will accomplish a
major simplification of the method of characteristics used in
Sec. XIII 3 of Ref. 8.

In Sec. IT we will solve the time-dependent problem us-
ing the method of characteristics. The stationary problem
will be the topic of Sec. II1. However, we will solve this prob-
lem by reformulating it as an initial-value problem and ap-
plying the method of characteristics in the usual way. Sec-
tion IV is devoted to semigroup properties and Sec. V to a
discussion of the results.

Remark: Recently E. Ringeisen (Centre de Mathémati-
ques Appliquées, Ecole Normale Supérieure, Paris) proved
the unique solvability of the stationary Spencer—Lewis equa-
tion under the assumptions that (i) the stopping power
B = B(x,E) is  continuously  differentiable  on
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[0,a} X [E,.,Ep], (ii) the cross sections o and o, are L,
functions, and

1
(iii) J o, (x,E, u, 1)
-1
_a(xy,u'aE)(”U“w +/{1)

| |

is bounded away from zero for some positive constant 4,.
Here 8(x, u,E) is the length of the maximal integral curve of
the vector field X (defined below) passing through (x, u,E).

dy’

Xexp[

Il. THE TIME-DEPENDENT PROBLEM

On the set A, = U/_, A; with the union thought of as
disjoint and endowed with the Lebesgue measure we intro-
duce the vector field

a a
X=pgr PR 35
which is clearly Lipschitz continuous on the closure A,
(when distinguishing between £, and E ", fori=1,...,r).
Using time ¢ as a parameter there is a unique integral curve of
X through each point of A, satisfying the characteristic

equations

dx _dﬁzo

dE _
ar " a T ar
In contrast to the practice of Refs. 7-9, we will identify all
points of the type (x, ¢, E ;7 ) with the corresponding points
(x, u,E ), thus obtaining the original manifold A, and con-
tinue the integral curves of X across the energy interfaces
E=E, (i=12,.,r—1). Thesets D, ofleft and right end
points of the integral curves of X passing through an interior
point of A, are then given by

D_ = [{0}X(0,1) X (E,,,Ep) ]
U{a} X ( = 1,0) X (E,.,Ep) ]
U[(0,a) X (— L) X{Ey,}],

D, =[{0}x (= 1,0) X (E,, .Ey)]
U [{a}x (0,1) X (E,,,Ep) ]
U[(0,@) X ( — 1,1)<{E, }].

Along the integral curves the energy E is steadily decreasing.
We now parametrize A as

A={(z1): zeD_, 0<t<I(2)},

where /(z) is the travel time along the entire trajectory of X
starting from zeD_. From nonzero g there is a maximal
travel time along a trajectory having u as a constant of mo-
tion which is bounded above by a/| u|. However, on the
trajectory with u = 0 and xe(0,a) as constants of motion the
total travel time

Eyy 1
I(2) =J dE
g, B(x,E)

because 5 (x,E,,) #0, B has only finitely many zeros on A,
and B is Lipschitz continuous. [Note that /(z) = + o if
B(x,E;) = 0 for some E,c(E,,,E,, ), because the Lipschitz

= + o0,
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condition on S implies |B(x,E)|<L |E — E,| with L>0.]
Similarly, one may parametrize A X [0,T] as

AX[0,T] ={(z5): ze[Ax{0}JU[D_x (0,11,
O0<s<max(/(z),T)},

where s is the travel time parameter along the trajectory of
Y =43/dt+ X from its left end point on either A X {0} or
D_x(0,7). To avoid confusion between ¢ as a variable ap-
pearing in the vector field Y and the parameter in the charac-
teristic equations of Y, we will use ¢ as the time variable and s
as the travel time parameter.

For every ueL (Z) with 2 = A X (0,T) one may define

du du du
Yu="" 4 xu, Xu=p% _p",
U= TAw Xu=p o —BoE

as distributional directional derivates by
J [(Yu)v—l— u( Yv) +%uv]dxd,u dEdt=0
s JE
and
aB
(Xu)v + u(Xv) + —=uvidx du dE =0,
A JF

where v belongs to the test function space ®, of all real Borel
functions on X (resp. A) that are bounded, are continuously
differentiable along the trajectories of Y (resp. X) with
bounded directional derivative Yv (resp. Xv), vanish at the
end points of each trajectory and have the property that the
lengths of the trajectories meeting the support of v are
bounded away from zero. The latter means in particular that
| 1| is bounded away from zero on the support of each ve®,,
Note that 93 /JE exists almost everywhere as a result of the
absolute continuity of £.

Below we will employ the spaces .#, .# _ , and 4.
These spaces are defined in the same way as the ./ spaces,
i.e., again as L, spaces but with Freplaced by F X (0,7) and
the underlying measure replaced by its product with the
Lebesgue measure on (0,7"). These spaces may also be repre-
sented as the spaces of all Bochner integrable functions from
(0,7) into the corresponding ./ space endowed with the L,
norm (cf. Ref. 11).

Lemma 2.1: Suppose hoe V', g4 ., 8.€H# _, 8.4 ,,
and fe.# . Then there exists a unique solution « of the initial-
boundary-value problem

g
Yu + {a(x,,u,E) ———(?%} u=f, 9)
u(x, w,Et=0) = hy(x, u,E), (10)
u(x=0,u,Et) =g ( i, Et), u>0, (1)
u(x=a,ukEt)=g,(uEt) pu<o, (12)
u(x, u,E=E,. 1) =g;(x, u,1). (13)

The solution u and the left-hand sides of Egs. (10)-(13)
have the following properties.

(1) ue.# while the left-hand sides of Eqgs. (10)-(13)
belong to .#, .# ,, # _, and .4 ,;, respectively.

(ii) Together with u(x, u,E = E,, t), which belongs to
the space L,(M;B(x.E,)dxdudt) with M= (0a)
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X ( — 1,1)X%(0,T), and u(x, u,E,;t = T) in .4, these func-
tions are related by the Green identity

ow 9 )
ou  ,0u 9 dx dy dE dt
L(c?t th o T gg (W) |Axau

=f (B(x,E, ) u(x, u,E,, 1)
M
— Bx,Ey)u(x, u,Ep,t))dx du dt

T pEy pl
+ J f J p{u(a, p.E)
o JE, J-1

— u(0, u,E,t) Ydu dE dt
+ J {u(x, 1, E,T) — u(x, 1,E,0)}dx du dE. (14)
A

Here the functions u(x = 0, u,E,#) and u(x = a, u,E,t) be-
long to the L, space L,((—1,1)X(E,,Ey)X(0,1);
| |du dE dt).

(iii) oue # and

lloull » <WSI» + Aol + llgoll ~

+ “ga“.//, + ”gi”.//, . (15)
Proof: Writing
B
h ) ;E = ’ 1E E—
(x, u,E) = o(x, n,E) 35

and using the above parametrization of ¥, we reduce Eqs.
(9)-(13) to the initial-value problem °

du

= h(z,s)u(z,;) = f(zs), (16)
S

(17)

where, modulo the parametrization, g(z) coincides with
ho(x, 11, E) on AX{0}, g(uEt) on {0}x(0,1)
X (EEx) X (0,1, g, (wEt on {a}x(—10)
X (E,,E\y) X(0,T), and g;(x, pu,t) on (0,a)X(—11)
X% (0,T). Since B is (piecewise) absolutely continuous on A,
it has an almost everywhere defined derivative df /JE,
which belongs to L,(A); hence, by assumption (C),
heL,(A). As the unique solution we find

u(z,s) = exp{ — 'r h(z,a)da]g(z)
0

u(z,s =0) =g(z2),

+J exp[ —f h(z,a)da]f(z,r)dr.
(4] T

Here the uniqueness, with the derivatives in Eq. (16) taken
in distributional sense, follows from the Green’s identity ap-
plied to Egs. (16) and (17) with g =0 and /= 0. Hence
u(x, u,Et=0), u(x=0uEt), ulx=a, u,Ezt), and
u(x, u,E = E,,t) have the appropriate properties and satis-
fy Egs. (10)-(13). Further, u(x,u,E=E, 1), u(x,
wEt=T"T),u(x=0,ukEL!),and u(x = a, u,E,t) also have
the appropriate properties and Eq. (14) is satisfied. In fact,
Eq. (14) can be written as

f (Y— a—B)u dx du dE dt
b3 JF

=f u*dv*(z)—f u dv(z),
D' D

161 J. Math. Phys., Vol. 30, No. 1, January 1989

(18)

where D =[Ax{0}U[D_%X(0,7)] and D%

= [AX{THU[D, x(0,7)] for appropriate positive
Borel measures dv * (z) which are weighted Lebesgue mea-
sures with | i| as the weight on {x = 0} and {x = a}, 1 as the
weight on {t = 0} and {t = T}, B(x,E,,) as the weight on
{E=E,}, and B(x,E,,) as the weight on {x,E,, }. Finally,
to prove (15) it suffices to restrict onself to non-negative g,
g0 84> 8i» and f. For non-negative data we have

o= 1+

8ﬂ)
= - —==u
1= |(r-2
= A1+ ™l = N <A1+ Qe
= 1/l + Aol + ligoll + llgall + lls:l »
which proves the lemma. O

We now define the positive operator

(Ju) (x, u,E) =f o (x, ppt ,Eyu(x, 1’ ,Eddu’, (19)
A

which satisfies
\Jull., <||lou|.,, wuet",=L,(AsodxdudE). (20)

We will denote the norm of J as a contraction from .4, into
N0y |V [ly-
Lemma 2.2: Suppose ||/ ||, < 1, i.e., suppose

1
O'(X, ,u',yE) >6 J as(x, wp' \E) d:u”
-1

for some 8€(0,1). Then there exists a unique solution « of the
initial-boundary-value problem

B

Yu+{a(x,,u,E) ——a—E]u=Ju +f, 21)
u(x, u,Et =0) = ho(x, u,E), (22)
u(x=0,u,Et) =g,(u,Ezr), u>0, (23)
u(x=a,w,Et) =g, ( u,E1), p<O0, (24)
u(x, i, E = Ep t) = g, (x, u,t). (25)

The solution % and the left-hand sides of Eqs. (22)-(25)
have the properties (i) and (ii) in the statement of Lemma
2.1, while (iii) is replaced by (iii') ou belongs to .# and

loul < = W1~ AL+ lAoll - + ligoll

+ I8l o +ligill o)) (26)

Proof: Let us write Egs. (21)—(25) as
(Y+hu=Ju+f, 27)
u =g, (28)

where g is defined as in the proof of Lemma 2.1. Denoting
the solution of Eqs. (16) and (17) as u = S( f,g), we repre-
sent the solution of Egs. (27) and (28) as u =S(f*,g).
Then f*e.# satisfies the equation

1+ LYy *=7+JS0.8), (29)
where
Lf*= —JS(f*0).
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Then

ILA*I <INl oSO, <R llS*N s s
so that Eq. (29) has a unique solution f* satisfying

(IS ZOHJ g 1l.f+ JS(0.8) ]

<A =AU+ IV s gl -
Hence

lloull = lloSC =</ *I + llgll

<A =V~ AL+ liglDs

which proves the lemma. O
For non-negative data we directly obtain from Eq. (27)

(Y + b)ull + [Ch — byull + llgll = Mull + |.F1l + llgll,

where b = — (JdB /JE) and all norms are L, norms. Using
the Green’s identity (18) we have

™| + lloul] = [Jull + LF)] + ligll,
whence

lu*ll + A= [l lou|I<[| A1 + lgll- (30)
Here

ut = (u(t= T)’u(E= Em )’

u(x =0, 2 <0),u(x = a, u>0))
on a direct sum of L, spaces with certain weights.

When ||/ ||, = 1, we cannot apply the same perturbation
arguments as in the proof of Lemma 2.2. Instead we approxi-
mate u monotonically by the unique solutions «, of the ini-
tial-boundary-value problems

(Y+ mu, =8,Ju, +f 31
(u,)” =g (32)

where { 8,}_, 11. These solutions are non-negative, are
nondecreasing with #, and satisfy

lae, |l + (1 =B lou, I<|| £l + igll-
Hence there exists ¢+ such that

lim |lu* —u,||=0 (33)

in the norm of %", and Eq. (28) is satisfied. On the other
hand,

s (Y=ZL)u, = ou, - B,Ju,

while

as k,n— oo. Hence there exists we.# such that

lim ||ou, — B,Ju, — w| =0. (34)
Then we also have
m ||(v-22) |
lim ( ——u, - [f—w =0. (35)
Lim 3E [f—w]
162 J. Math. Phys., Vol. 30, No. 1, January 1989

We now solve the initial-boundary-value problem
(-5

and find a solution ue_# having the properties (i) and (ii) in
the statement of Lemma 2.1. We will show that « is a solu-
tion of Egs. (22)—(25), but in a rather weak sense.

Indeed, from (30) and |3,/ ||s = B, 1tis clear that

(1 —B)Ju,lI<(1 = B)|low, II<|| £ + llgll,
so that { (o — J)u, }*_, is a bounded sequence in .# . Since

lim ||[ f— (¢ —B,Nu,] — [ f—wl||=0,

n— o0

we have
Hm ||lu —u,||=0.
n— oo

To establish the uniqueness of the solution, we assume
that u is a (real) solution of the homogeneous time-depen-
dent problem

(Y+b)u+ (0 —JNu=0,

where b = — JB /JE. Then u = sgn(u)|u| and hence
(Y+b)u+ (0 — D) |u| + {J|u| —sgn(u)Ju} =0,
|lu|~ =0.

Integrating over position—velocity—energy—time phase space
and using ¥~ = 0 we get

e} + ff” (o —J)|u|dx du dE dt

+ |{J |u| — sgn(u)Jul|| = 0.

u- =0,

The second term on the left-hand side is non-negative [cf.
Eq. (6)],sothatu™ =0, (¢ — J) |u| has a zero integral over
phase space, and {J |u| — sgn(u)Ju} = 0, so that || is a so-
lution of Eqs. (27) with f= 0. Thus without loss of genera-
lity we may assume #>0. We then find

u(z,s) = J expl — J (o + b) (z,T’)a'T] (Ju) (z,7)dT.
0 T

For s = I(z) we get u™, which vanishes. Moreover, Ju>0.
Hence Ju=0 and =0, which settles the uniqueness issue.

We have therefore established the following.

Theorem 2.3: There exists a unique solution u of the
initial-boundary-value problem (21)-(25). The solution u
and the left-hand sides of Egs. (22)—(25) have the proper-
ties (i) and (ii) in the statement of Lemma 2.1,
(ou — Ju)e # ,but ou and Ju themselves need not belong to
M.

Corollary 2.4: If g,=0, g,=0, g,=0, and f=0, the
unique solution of Egs. (22)—(25) can be represented as
u(t) = S(t)hy, >0, where {S(2)},,, is a positive contrac-
tion semigroup on ¥ This semigroup satisfies
IS () Ag|| = ||Ao||> for all non-negative hyc#" and all £>0, if
and only if ||Ju|| = ||ou|| for all non-negative ue.4",.

Proof: The first part is clear from the estimates

llu(z =Dl I<I SN + liglh = Iloll-
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The second part is a simple consequence of the Green’s iden-
tity for non-negative data. O

lIl. THE STATIONARY PROBLEM

The stationary problem is given by Eqs. (4) and (5) and
can thus be written as

Xu+(a—%§—)u=.fu+f, (36)

u, =g, 37)
whereg = (g,, £, &;)- We have to find a function ue#"such
thatu_e#"_e 4", o4, and Egs. (36) and (37) are satis-
fied. Here we assume that fe 4 and ge V"_o V", & .7,
As in the previous section we distinguish between the cases
/1l <1and [J{|y =1.

Lemma 3.1: Suppose ||/ |l <1. Then Egs. (36) and
(37) have a unique solution u such that cue. 4" and

louli<Ct =7 lly) = LA+ ligll3- (38)
The solution is non-negative for non-negative data f and g.

Proof: Writing h = 0 — (dB /JE), we solve Egs. (36)
and (37) for J = 0 and obtain

u(zs) = exp[ —j h(z,a)da]g(z)
0

+f exp[ —f h(z,a)da}f(z,r)dT,
Q T

which has the desired properties. The Green’s identity for X
gives as before

lloull<llA1l + ligll-

We write u = S( f,g).

As in the previous section we represent the solution of
Egs. (36) and (37) as u=S(f*g), where
(1+L)f*=f+JS(0,g) and ||L||<||/|ly <1. We then
find a unique £ * 4", which is non-negative for non-negative
Jfand g because ( — L)>0. A simple estimation then gives
(38). a

To pass to the case ||/ ||y = 1, we use monotone approxi-
mation by the solutions u,, of the stationary problem

B

Xu, + (a—ﬁ) u, =p,Ju, +f, 39)

U, _ =& (40)
where ( 8,)7_,11. Using the Green’s identity for X we find
e, — || + (1 =B low, |I<I[£1] + llgll,

so that {u, _}7_, converges monotonically to some
u_e N _eoN &N in the strong sense. Then

implies that {(X — dB/3E)u,} _, converges in ./ to
some limit w. We then have

<“un, Uy ||

lim ||(ou, — B,Ju,) — (f—w)|| =0.

n— oo

(41)

Letting u be the unique solution in.#” of the trivial station-
ary problem
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u_=g,

which depends continuously on ( f — w) and g, we find from
(41) that

lim ||u, — u|| =0.
n

— oc

(42)

The uniqueness issue is settled in the same way as for the
time-dependent problem with ||/ ||, = 1.

We have the following theorem.

Theorem 3.2: Suppose ||/ ||, <1. Then Egs. (36) and
(37) have a unique solution u such that (X — dB3 /dE)ue V"
and (ou — Ju)e ", This solution is non-negative for non-
negative data fand g.

IV. SEMIGROUP FORMULATION OF THE TIME-
DEPENDENT SOLUTION

We have proved the unique solvability of Egs. (1)—(3)
in an L, space of functions # on A X [0,7]. We have proved
these solutions to have L, traces on each hyperplane ¢ = ¢,
with 7,€[{0,7]. This follows from the inclusion
(t=T)CD™, the finiteness of ||u*]|, and the arbitrariness
of T (so that we may replace Tby ¢,). Nevertheless, we have
not studied their continuity properties as a function of ¢. In
this section we intend to do so. In order to apply the Hille-
Yosida theorem (cf. Ref. 12) we will first study the station-
ary equation

oFE
with boundary conditions
u, =8 (44)

i.e., Egs. (36) and (37) with ¢ replaced by o + A, where
A>0. According to Lemma 3.1, Egs. (43) and (44) havea
unique solution u, €4 such that (¢ + A)u, €4 and

(o + Dyull<@ = I NI+ Nlell}

whenever ||/ ||4 < 1, and this solution #;, is non-negative for
non-negative data f and g. Thusif f and g are non-negative,
then u, satisfies Eq. (38) as well as the estimate

laall<A =1 = (111> LA + gl
Hence if we define the operator # by

F = —X—(U(x,u,E)—j—i),

D(fF)= [ue/V:( ——j%)ue/lf, oue V', ul, =0,
then for g=0 there exists a unique solution 1, €D(_# ) such
that

(A — / —Nu,; =4,
which satisfies

luall<A =1 =V {le) LA -
Thus for ||/ ||, < 1 the operator # + J with domain

D(fF +))=D(f)
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generates a bounded strongly continuous semigroup on ./,
which we will denote as {S(#)},,, -

Let us apply Lemma 2.1 to Egs. (10)-(13) for non-
negative data. We obtain immediately

1= [ (2t xut o~ 2 -

= llut | = e || + lloull — [|Jul|> [l — "],
so that
lu(t = D[<||u(t=0)||

whenever =0, g,=0, g, =0, and g, =0. Hence the semi-
group {S(#)},., is a contraction semigroup.

We have the following theorem.

Theorem 4.1: Suppose ||J||; <1. Then the operator
— X — (0 — dB/JE + J) generates a strongly continuous
contraction semigroup {S(#)},,, on.A#".

Suppose ||/ ||, = 1 and let us approximate J from below
by B,J, where {8,}>_,11. Denoting the corresponding
contraction semigroups on %" by {S,(#)},,, we use that
S, (£)<S, (1), for n<m, as well as the upper bound
IS, ()]}<1. We thus obtain the family of contraction opera-
tors {S, (#)},,, on ./ satisfying

}u)dx du dE dt

lim ||[[S() —S,(2)]gl| =0, >0,

as well as the semigroup property. If we now define

R(/l)g=Jwe-"S(t)gdr, (45)

(¢]
for Re A0, we obtain

IR(A)gl|<[1/(ReA)]jg], Red>O0.
On the other hand,
“A-1r +an])_|g=f e S (t)gdt
0

Thus by dominated convergence we obtain

lim |[R(A) = (A= [F +B.J]) '1gl =0, Rei>0.

n— oo

We then find the resolvent identity

R(A) —R(pu) = — (A —p)R(AR(p). (46)
Using (46) we find that Ker R(4) and Ran R(A), the ker-
nel and range of R(A), do not depend on A. Since every
geKer R(A) satisfies S(¢)g=0and ¥ =S5(r)g is a solution of
Egs. (1)-(3) in .# for f=0,g,=0,g,=0,g;=0, and, given
u(t =0) = g, we obtain g=0 by the unique solvability of the
time-dependent problem so that Ker R(A) = {0}. By asimi-
lar argument on the adjoint semigroup we get the density of
Ran R(A) in 4" Hence R(A) ={(1— ¥)~! for some
closed and densely defined operator & . Thus, by the Hille—
Yosida theorem and the uniqueness of the Laplace trans-
form, ¥ is the generator of a strongly continuous semigroup
of .¥" that must necessarily coincide with {S(t)},>0. Thus
{S(2)},,, isastrongly continuous contraction semigroup on

We have the following theorem.
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Theorem 4.2: Suppose ||/ ||, = 1. Then the closure of
operator — X — (0 — dB/JE + J) generates a strongly
continuous contraction semigroup {S(#)},,, on 4"

Proof: Clearly the generator 4 of {S(1)},,, is a closed
extension of — X — (o — dB /3E + J). It remains to prove
its minimality. Indeed, observe that

D(9)={R(A)g: g1},
where Re A > 0. Then for every heD(¥ ) we have

lim ||k, — 4| =0,

where k, = (1 — # — f3,J) " 'g and g is the unique vector
in.#"such that R(4)g = h. Note that k,eD(_# + J), which
is true because D( 7 ) C./", so that J is well-defined on
D( #). Moreover,

A= =Dk, =g+ (1-,)k,,
where {ok,) is bounded; hence (1 — ¢ — J)k, —g. Thus
every h belongs to the domain of the closure of ,# + J while
(F +J)h=g Butthenwemusthave ¥ = # +J. O

V. DISCUSSION

We have established the unique solvability of the time-
dependent and stationary Spencer-Lewis equations under
natural assumptions on the stopping power and the cross
section and in natural function spaces. These results are far
more general than the existence and uniqueness results given
by Nelson® and Greenberg et al.* On the other hand, Nelson
and Seth® have established the convergence of a number of
finite difference schemes for solving the stationary Spencer—
Lewis equation numerically under the assumption that the
corresponding stationary Spencer—Lewis equation is
uniquely solvable. If we combine their conditional conver-
gence proof with our well-posedness results, we obtain a con-
vergence proof for the numerical schemes used by Nelson
and Seth.’

The section on the stationary problem was very concise,
because it appeared possible to treat both the time-depen-
dent and the stationary problem by the method of character-
istics as introduced in transport theory by Beals and Proto-
popescu.” Certain peculiarities of the Spencer-Lewis
equation, however, forced us to go off the path followed by
Ref. 7. The one rather artificial assumption left, assumption
(B) on the number and position of the zeros of B(x,E), may
be dropped in the time-dependent case, provided one does
not seek a restatement of the time-dependent result within
the framework of semigroup theory. When adopting the se-
migroup framework or sticking to the stationary problem,
assumption (B) is a necessary tool to avoid the intricacies of
a singular vector field.
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