Conditions for runaway phenomena in the kinetic theory of particle swarms
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The velocity distribution of a spatially uniform diluted guest population of charged particles
moving within a host medium under the influence of a D. C. electric field is studied. A
simplified one-dimensional Boltzmann model of the Kaé type is adopted. Necessary conditions
and sufficient conditions are established for the existence, uniqueness, and attractivity of a
stationary non-negative distribution corresponding to a specified concentration level.
Conditions for the onset of the runaway process are established.

I.INTRODUCTION AND STATEMENT OF THE PROBLEM

In this paper we are concerned with some mathematical
aspects of the behavior of a population of charged particles
under the influence of a spatially uniform D. C. (i.e., time
independent) electric field. Problems of this type appear in a
number of distinct scientific areas, e.g., in the theory of
swarms of charged particles in a neutral background gas,">
in the study of “runaway” electrons in fully ionized plas-
mas,>~ in the calculation of D. C. conductivity in biological
membranes,® and in semiconductor theory. In many of these
cases the charged particles of interest are electrons; however,
in some instances ions or positive vacancies are considered as
well.

Let us consider a spatially uniform dilute population of
charged particles that are initially at thermal equilibrium
with a neutral environment. Suppose that for times >0 a
uniform D. C. electric field is applied to the system. The
charged particles are accelerated by the electric field but re-
turn some of the acquired kinetic energy to the host medium
via some interaction process {collisions). The heating of the
host medium is assumed to be negligible enough for the tem-
perature of the background host medium to remain approxi-
mately time independent. Further, we assume the existence
of a balance between ionization of host particles and recom-
bination of charged particles, so that the total number of
charged particles appears to be invariant.

Two main physical situations may occur: (i) the colli-
sion process is sufficiently effective to force the velocity dis-
tribution of the charged particles towards a steady state non-
zero profile, which is usually a heavily distorted Maxwellian
at a temperature exceeding the reference temperature of the
background gas, or (ii) the collision process is not effective
in removing kinetic energy from the population of charged
guest particles, so that no relaxation of the distribution func-
tion towards a nonzero steady state distribution occurs. On
the contrary, a “travelling wave in velocity space” is genera-
ted (the so-called runaway case). In case (i) the contribu-
tion to D. C. conductivity of the guest particles is the ratio of
the magnitude of the current due to their motion (in steady
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state conditions) to the intensity of the D. C. field; in the
runaway case (ii) one does not have a (finite) D. C. conduc-
tivity, since the speed of the charged particles increases in-
definitely. In the Appendix we present two simple model
problems, based on the BGK approximation, to illustrate
the two kinds of behavior. A more sophisticated model prob-
lem has been presented by Corngold and Rollins.’

The physical aspects of the picture sketched above have
been well understood for a number of years.>* For instance,
it is recognized that the key ingredient in determining
whether a given process will involve “relaxation” [case (i) ]
or “runaway” [case (ii)] is the dependence of the collision
frequency v(v) upon the speed v of the charged particles for
large values of v. Indeed, if v(v) drops towards zero too
rapidly as v— oo, the collision process can be shown’ to be
unable to slow down the most energetic charged particles.
As a consequence, these particles “runaway.”

In spite of this body of existing knowledge, we feel that
the mathematical aspects of the runaway process—as op-
posed to the strictly phenomenological physical ones—still
require some study. For one thing, the approximations
adopted in the literature are often so drastic* as to make one
wonder about the reliability of the results (beyond, maybe,
an order of magnitude level of precision). On the other hand,
at a more fundamental level, even the physical outline given
above is open to some criticism. In fact, one could consider
intermediate cases {besides the cases (i) and (ii) given
above]. For instance, one could construct an ad hoc model
according to which the charged particle distribution func-
tion relaxes towards an asymptotic profile whose first (or
second) velocity moment is unbounded; then, the drift ve-
locity (or the temperature) would diverge even under case
(i) conditions. Conversely, under case (ii) conditions one
could envisage, as an alternative to the travelling wave in
velocity space, a distribution function which relaxes (uni-
formly with respect to velocity) towards zero as time grows;
under such conditions the velocity moments may or may not
converge to finite values as 7— . Thus there are cases in
which the distinction between the runaway and the “absence
of runaway” situation becomes blurred.
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Other instances of confusion can be encountered. For
instance, one author has erroneously presented estimates of
the D. C. conductivity even in cases when the steady state
distribution fails to exist (see the cases p< — 1 in Ref. 6).

These questions have motivated the present introduc-
tory study on some mathematical aspects of the behavior of a
collection of charged particles under the influence of an elec-
tric field. At this point we would like to present some addi-
tional remarks. First of all, we recall that—as observed by
Corngold and Rollins’——much of the literature in the field
deals with the problem of a steady state population of
charged particles generated by a time independent source of
cold particles. It should be noted that the two cases men-
tioned above for the sourceless problem—namely, case (i) of
no runaways and case (ii) where runaways are present—
correspond to the impossibility or the existence of a steady
state population, respectively, when the source is present.
The sourceless point of view taken in this paper has been
described above. Another question concerns the choice of
the mathematical model to employ in the description of the
collective dynamics of the population of charged particles.
In this preliminary study we assume, somewhat artificially,
that charged particles move on a straight line parallel to the
electric field (cf. the celebrated Ka¢ model® of the Boltz-
mann equation); moreover, we usually assume that the colli-
sion process is described by a collision integral; the differen-
tial counterpart has been studied by Corngold and Rollins.”
Finally we would like to mention that one of the problems we
face is that of deciding upon the mathematical environment
to adopt. On the one hand, we may introduce an L, space of
distribution functions with at all times a finite total number
of charged particles. On the other hand, we may adopt an L,
space of distribution functions with at all times a finite num-
ber of collisions between the charged particles and the host
medium. In part for reasons of mathematical convenience,
we have made the former choice, especially as the general
solution of the time dependent problem will turn out to have
both a finite total number of charged particles and a finite
number of guest-host interactions at all times. For the steady
state problem we will be in the same rather fortunate situa-
tion, provided we assume the charged particle cross section
v{v) >0 to be nonintegrable with respect to velocity [in the
sense that ¥ *v(v)dv = + o ]. On the other hand, if the
cross section is integrable with respect to velocity [i.e., if
ST 2v(v)dv< + oo ], we will have the rather unphysical sit-
uation of a “steady state” with finite total number of colli-
sions but a nonzero particle density for infinite speed. We
will make our assumptions more precise below.

Thus let us consider the simplified linear Boltzmann
equation

9
at

/4

=(,2) + v(v)flvt)
v

(v,t) +a

+ o
=f k(o )v(0 ) f(V,0dv'. (1.1)

This equation describes the electron distribution f(v,) in a
weakly ionized host medium as a function of the velocity
ve( — o0, + o) and time £>0. The electrostatic accelera-
tion a is assumed constant and positive. Recombination and
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ionization effects are assumed to balance each other. The
expressions v(v) and k(v,v') denote the collision frequency
(between an electron and the host medium) and the corre-
sponding scattering kernel; accordingly, k(v,v")dv is the
probability that an electron entering the collision with veloc-
ity v will come out of the collision with its velocity in the
interval (v,v + dv). We have

k(v,v') >0,

+ o
f k(v,v")dv=1.

(1.2)
(1.3)

The electron distribution f(v,¢) and the collision frequency
v(v) must, of course, be non-negative. By reciprocity sym-
metry, we also have

v( —v) =v(v), (1.4)
k( —v, =) =k(v'). (1.5)

In connection with Eq. (1.1), we will study two math-
ematical problems. In the first place we will prove the unique
solvability of the time-dependent evolution equation (1.1)
under the initial condition

S(0,0) = fo(v) (1.6)

in a suitable functional setting, as well as the non-negativity
of the solution for a non-negative initial condition, and es-
tablish the appropriate semigroup properties and bounds on
the solution. In the second place we will establish necessary
and sufficient conditions for the existence of a (unique) non-
negative solution of the corresponding stationary equation

of T NN ot
051; ) +v()f(v) = k(v 0" )v(v')f(v')dv'.
- (1.72)

We add the plausible requirements of a finite electron con-
centration and a finite collision rate (per unit volume);
namely, we require

+

SfWdv< + «,

— o0

J ) v(v)f(v)dv< + .

(1.7b)

(1.7¢)

An additional plausible requirement is that in velocity space
there should be no electrons entering or leaking out from the
system. Since the acceleration a takes the role of “velocity”
in velocity space, we require

lim af(v) = lim af(v) =0. (1.7d)
V- — oo v— + oo
Hence
f—o)=f+x)=0. (1.7e)

Along with it we will establish under which conditions the
stationary solution can be obtained from the solution of the
time-dependent problem at t— .

In this paper we will investigate both the stationary and
the time-dependent problem, as well as the decay to equilib-
rium of the solution in the time-dependent case. The time-
dependent problem was already solved in Sec. XII1.4 of Ref.
9 as an application of the theory of time-dependent kinetic
equations of Beals and Protopopescu (see Ref. 10; also Ref.
9, Chap. XI and Sec. XI1.1-2). Here we shall give a direct

Frosali, van der Mee, and Paveri-Fontana 1178

Downloaded 15 Aug 2002 to 129.74.199.113. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



proof based on semigroup considerations, which does not
rely on this theory. In part we shall recover a well-known
result. Note that, if the collision frequency is unbounded, the
initial-value problem cannot be treated directly within the
framework of Refs. 9 and 10; however, our proof will extend
to this case. In fact, we will develop one of the few theories of
kinetic equations where the usual cutoff leads to an un-
bounded collision frequency and an unbounded gain part of
the collision operator. Different theories of this type were
recently developed, for linearized Maxwell-Boltzmann
equations by Arlotti'' and for Fokker-Planck type equa-
tions by Cosner et al.'?

Prior to developing the proper functional formulation of
the problem, we make a number of assumptions on a, v(v),
and k(v,v'). Concerning @ and v we have:

Assumption (i): the acceleration a is a fixed positive con-
stant;

Assumption (ii): the collision frequency v(v) is a Lebes-
gue measurable, non-negative, and even function of v on
( — o, + ), which is almost everywhere nonzero and
Lebesgue integrable on every bounded Lebesgue measurable
set.

It is more complicated to formulate proper conditions
on k(v,v"). On the one hand, we shall consider measurable
functions k(v,v’) on R satisfying (1.2), (1.3),and (1.5); on
the other hand, we would like to include
k(v,v") = 6(v — av’) in our description. For this reason we
shall consider the Banach spaces L, (R,dv) and L,(R,v dv)
with the norms

1A= 1w,

1= [ vl Al

and postulate the following assumption.
Assumption (iii): The operator K which is formally rep-
resented as

(Kf)(») =f k(w2 )v(' ) f(v)dv

is a positive linear operator K: L, (R,v dv) - L,(R,dv) satis-
fying

KAl = N £l if feL,(R,v dv) and f >0,
as well as the reciprocity principle
(Kf)(v) = (Kg ) (—v),

if flv) =g(—v) and fEL,(R,v dv).
(1.8b)

If we define the (distributional) derivative f” of a func-
tion fin L,(R,dv) by

+ +

S(ngwydv= —

for every geC ! (R), where C ! (R) is the set of continuously
differentiable complex functions on R of compact support,
by a solution of the stationary equation (1.7a) we mean a
Junction @ satisfying

@' (v) = — (V/a)v(w)p) + (1/a) (Kp) (v),

(1.8a)

f(v)g (v)dy,

veR,
(1.9a)
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@l (R,vdv). (1.9b)

Since such a solution obviously has its derivative in
L, (R,dv), each solution of the stationary problem will be
absolutely continuouson [ — b,b] forall b > 0. We have seen
above that a physically acceptable solution ought to be non-
negative and to obey requirements (1.7b), (1.7¢), (1.7d),
and (1.7e). Accordingly, among the possible solutions of
problem (1.9) we shall be mostly interested in those non-
negative solutions ¢ which also belong to L, (R,dv) and sat-
isfy@( — 0) =@( + =) =0. Thefollowing theorem gives
a necessary condition for the existence of a non-negative so-
lution of (1.9) in L,(R,dv).

Theorem 1: Let a, v, and K satisfy the assumptions (i),
(ii), and (iii) stated above. Then a necessary condition for
problem (1.9) to admit a nontrivial non-negative solution
@€eL,(R,dv) is that

+ o
f v(v)dv = + .

Proof: Let @ be a nontrivial non-negative solution of
problem (1.9). Then ¢ is continuous on R and there exists
veR such that ¢(v,) > 0. However, since X is positive, Eq.
(1.9a) yields

@) =exp[ — -‘-II—J. v(v”)dv”]cp(vo)

0

+ if exp{ — lf v(v”)dv"](an)(v’)dv’
a Jv, a Jv

>exp{ — —E-J v(v")dv"]¢>(v0),

so that

lim inf¢>(v)>exp{ —if v(v")dv”]:p(vo).
a Jy,

v— + oo N

Then @eL,(R,dv) only if f7v(v")dv" = + «, i.e., only if
JIZv)d" = + . a

Il. THE STATIONARY PROBLEM

In this section we shall discuss the stationary problem
(1.9). Throughout this section, with the exception of the
final part, we shall also make the additional assumption

+
f v(v)dv = + o, (2.1

whose motivation is given by Theorem 1 above. Note that, as
a consequence of assumption (ii), Eq. (2.1) characterizes
the frequency behavior of v(v) as v — «. As observed above,
(2.1) is equivalent to

+ o
J v(v)dv = + o, for some acR.

Our first step is to convert the integrodifferential equa-
tion (1.9) into an (equivalent) integral equation. To this
purpose, we define the following operator:

L: L,(R,dv)-L,(R,vdv),
(LfY(v) =f iexp[ — LJ v{(v" )dv" ]f(v’)dv’.
—w a a Jv
On integrating Lf with respect to the measure v(v)dv and
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changing the order of integration we obtain

LAY,

+ oo v
=f (1 — lim exp{ — —l—f v(v”)dv”])f(v')dv’,
— V= + oo a Jy
f>0, (2.2)
which implies that L is a positive contraction from L, (},dv)
to L,(R,vdv) and hence LK is a positive contraction on
L,(R,vdv). Under our assumptions, if v(v) obeys (2.1),
then [|Lf}|, = || f}|, for all non-negative feL,(R,dv).
Theorem 2: If (2.1) holds, then every solution of the
integrodifferential equation (1.9a) in L (R,v dv) is a solu-
tion of the linear stationary problem

el (R,v dv), (2.3)
and conversely. Moreover, for every solution ¢ of the two

equivalent problems we have ¢( — o) = @( + «) =0.
Proof’ Let @ be a solution of problem (1.9). Setting

H®w) = cxp{—l— Jw v(v')dv'],
a Jy

o

¢ =LKgp,

where v, is some real number, we obtain from (1.9),
(Hp) (v) = (1/a)H(v) (Kp) (v), veR,

which in turn implies

H0)p®) = p(v) + i—f H(') (Kg) (v')dv',

Here we observe that the integral on the right-hand side is
finite, because H(v) is bounded on every interval of the type
( — 0,4] with 4 < + «. As a result we find

vy = exp[ — %J v(v’)dv’]fp(vo)

5

+ —l—f exp[ — LJ‘ v(v")dv"] (Ke) (v")dv',
a Jy, a Jv
(2.4)

where velR. We now note that ¢ is of bounded variation on R,
due to the fact that ¢ 'eL, (R,dv) . This obviously implies the
boundedness of ¢ on R. Letting v, tend to — o and taking
account of (2.1) in combination with the boundedness of ¢,
we must have ¢( — o) =0 by dominated convergence.
Similarly, if v,— + oo, we get @( + o) = 0. Thus any solu-
tion ¢ of problem (1.9) obeys ¢ = LK@, with@( + « ) =0.

Conversely, directly from the explicit form of LKy,
every solution of Eq. (2.3) in L, (R,v dv) is absolutely con-
tinuous on [ — b,b] for all > 0 and of bounded variation on
( — o, + o). Moreover,

2 (LK) () = L(Kp) (1) — L v(0) (LKg) (v)
dv a a

and the right-hand side belongs to L, (R,dv); hence the solu-
tion @ of Eq. (2.3) satisfies Eq. (1.9a). O

Theorem 3: If condition (2.1) is satisfied, then the set of
all @ satisfying problem (2.3) is at most one dimensional
and, when nontrivial, contains a nontrivial non-negative
function.

Proof: Let us suppose that Eq. (2.3) admits solutions.
Then every such solution is non-negative, apart from a con-
stant factor. Indeed, if ¢ = LKg for some gL (R,v dv),
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one first chooses ¢ real. We then have
lg| =LKg <LK |p|,
while

+ oo

v {(LK |@ ) (v) — |@p(v)|}dv

=|ILK g Il — llell.

=|[Klelll —lell.

=lell. —llell, =0.

Hence|@ | = LK |@ | and theexistenceofanontrivial solution
of Eq. (2.3) in L (R,v dv) implies the existence of a nontri-
vial non-negative solution of Eqs. (1.9) in L,(R,vdv). In
fact, if the solution @ is real, then || LK{|¢ | + ¢}||, = 0 and
LK{|¢| + ¢} ={|@| + ¢} imply that ¢ does not change
sign.

Finally, if ¢ is a nontrivial non-negative solution of Eq.
(2.3) in L, (R,vdv) and @(v) =0 for some veR, then
(LK) (v) =0 yields (Kg)(v')=0 for v' <v and hence
p(")y=(LKp)(w")=0 for all v"<v. Putting v,
= sup{veR: p(v”) = Ofor all v” <v} we find ¢(v) > 0 for all
V> U, since otherwise ¢ (v) would vanish for some v > v,.
Thus if ¢, and @, are two different non-negative solutions of
Eq. (2.3) of unitnormin L, (R,v dv), then (¢, — @,) will be
a nontrivial real solution of Eq. (2.3), which must have con-
stant sign. Since both ¢, and ¢, have unit norm in

L,(R,vdv), we obtain |@; —@ll, =ll@ill. — llell. |,
which is a contradiction. Hence the solution space of Eq.
(2.3) is at most one dimensional. O

Let ¢ be a nontrivial non-negative stationary solution in
L,(R,dv). Then, apparently, either ¢(v) > 0 for all veR or
@(v) =0 for vy, and @(v) > O for v > v, where v, is some
real constant. In the latter case we have (Kg) (v) =0 for all
U < Vg, as a result of the equation ¢ = LKg. Since, by as-
sumption, v(v) does not vanish on a set of positive measure,
we must then have k(v,0') =0 for all v < v, and v’ > v,,.

Theorem 4: If condition (2.1) is satisfied and if, in addi-
tion, LK is a weakly compact operator on L, (R,v dv), then
the stationary problem has a unique non-negative solution in
L,(R,v dv) of unit norm.

Proof: If condition (2.1) is satisfied and fis non-nega-
tive, we have | LKf||, = || f|l- Consequently, the spectral
radius of LK, spr(LK), is one. Moreover, (LK)? is compact
as an operator on L, (R,v dv), because the square of a weakly
compact operator in L, is compact. Then the compactness of
(LK)? in combination with spr(LK) = 1 implies the exis-
tence of at least one non-negative geL,(R,v dv) of unit
norm such that Eq. (2.3) holds true (see Ref. 13, Chap. 2).
By the previous theorem this solution is unique. 0

Corollary 5: Let condition (2.1) be satisfied. If the oper-
ator

+ o
(Bf)(v)=J k(o) (0 v’

is weakly compact on L, (R,dv) then the problem (2.3) hasa
unique non-negative solution of unit norm.

Proof: If the above operator B is weakly compact on
L,(Rdv), then LK=LBv 1is weakly compact on
L, (R,vdv). Here we observe that v is a bounded operator
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from L,(R,v dv) into L,(R,dv). The result follows directly
from the previous theorem. (m]

We now consider some simple models for the collision
term. They satisfy the assumptions we formulated to ensure
the existence of stationary solutions.

Example 1 [ The Bhatnagar—Gross—Krook (BGK) mod-
el]: The idea behind this model is the assumption that the
average effect of collisions is to provide a “source” which is
proportional to the deviation of the distribution function
f(v) from a Maxwellian f,, (v). Thus the collision term is
assumed to take the following form:

+ o0
f k(v 0" )yv(0") A(v)dv

+ o
= v(v)Fm(v)J v(v')f(v')dY, (2.5)

where

S (V)
STV ), (V)Y

In this case, the operator K defined by (2.5) is a compact
operator from L, (R,v dv) to L, (R,dv). Hence, if condition
(2.1) is satisfied, the results of Theorem 4 hold true. In the
Appendix we will give a more elaborate account of the BGK
model. For a discussion of the reliability of the BGK model
in the transport theory of charged particles see, for instance,
the paper of Corngold and Rollins. ' a

Example 2: Consider a particular class of integral ker-
nels k(v,v'), which is a finite linear combination of functions
separated in the variables v and v'. A kernel of this type is
said to be degenerate and can be written in the form

F, ()=

k(') = v()f,, (0, () Y ag; (e, (v'), (2.6)
i=1

where ¥, and @, are given functions and the «; are suitable
positive accommodation coefficients. In the literature of the
kinetic theory of gases this model is known as the generalized
BGK model and is obtained by generalizing the linearized
BGK model. If we suppose the functions @; and ¢, to be
essentially bounded, the operator K defined by (2.6) and
(1.8) is a compact operator from L,(R,vdv) into

L,(R,dv). QO
Example 3: Consider the integral kernel defined by
1/2r, ve[ —rr], veR,
ooy = [V %
(009 0, otherwise.

Then the integral operator B defined by the above kernel has
the property that for every € > 0 there exists § > 0 such that

f I(BFY (v + h) — (B ) (v)|dv<e

for every fbelonging to a bounded subset of L,(R,dv) and
every h with |h|<d6. Moreover, there exists a subset
[ — r,r] CGCR such that

f _|(Kf)(v)|dv<e,
R\G

is trivially satisfied for every € > 0. From Theorem 2.1 of Ref.

15 it follows that B is compact on L,(R,dv). By virtue of -

Corollary 5, we have a stationary solution if

1181 J. Math. Phys., Vol. 30, No. 5, May 1989

ST2v()dv = + . More generally, we may replace
k(v,v') with a bounded continuous non-negative function
with supporton [ — r,7] X R. A sufficient condition for com-
pactness will then be the existence, for every € > 0, of a num-
ber § > 0 such that

+r
f k(v + AV') — k(v')|dv<e

for |k | <&, uniformly in ¢’ on R. O

In the remaining part of this section, we consider the
case when the behavior of the collision frequency v(v) at
infinity is such that condition (2.1) is not satisfied. In other
words, from now on in this section, we replace (2.1) by the
alternative assumption

+
f V(0)dv < + oo. 2.7)

If condition (2.7) is satisfied, then |Lf||,
< (1 — 8)|| £l for all non-negative feL,(R,dv) where

1 + o
6= exp[ — —-—f v(u’)dv’] >0.
aJ-o.
In this case dominated convergence applied to Eq. (2.4)
yields the existence of the continuous limits @( + « ),
whence the integrodifferential equation (1.9) can be put in
the equivalent form

g() — (LKp)(v) = exp{ — -};J v(v’)dv’]:p( — o).
B (2.8)

As a result we find that ¢( + «) are finite, while an easy
integration of Eq. (1.9) over Ryields ¢( — w0 ) = @( + o0).
Now the integral equation to be investigated is Eq. (2.8).
Equation (2.8) is uniquely solvable in L, (R,v dv), which is
easily seen from the norm estimate

LK |, <(1—-8)||Ke |, = (1-b)le].,

where 6€(0,1). We summarize the result as follows.

Theorem 6: If condition (2.7) is satisfied, then the sta-
tionary problem (2.8) has a unique non-negative solution ¢
in L, (R,v dv) of unit norm with ¢( — o) =@( + =) >0.

Remark: Note that the solution of (2.8) under assump-
tion (2.7), which is referred to in Theorem 6, is physically
irrelevant, since it corresponds to an infinite population lev-
el.

It is possible to give necessary and sufficient conditions
for the existence of a stationary solution in L,(R,v dv) in
terms of the spectral properties of LK. The stationary solu-
tion will be unique apart from a normalization factor. If con-
dition (2.1) holds true, the necessary and sufficient condi-
tion is that 1 is an eigenvalue of LK. The corresponding
eigenfunction will then be non-negative. In particular, if
(LK)" is compact for some neN, there will be a stationary
solution. On the other hand, if condition (2.7) is satisfied,
there always exists a unique non-negative stationary (un-
physical) solution in L,(R,vdv) of unit norm, because
spr{LK) < 1; its values at + oo are equal and positive.

Instead of Egs. (2.3) and (2.8) on L, (R,v dv), we may
also study the equivalent equations

¢— KLy =0, (2.9)
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Y- KLY =¢( — »)Ko,
on L,(R,dv), where

(V) =expl — —l-f v(v")dv”}.
a - o0

In fact, if @ is a (non-negative) solution of Eq. (2.3) in
L,(R,vdv), then K is a (non-negative) solution of Eq.
(2.9) in L,(R,dv); conversely, if ¢ is a (non-negative) solu-
tion of Eq. (2.9) in L,(R,dv), then Ly is a (non-negative)
solution of Eq. (2.3) in L, (R,v dv). Moreover, in this man-
ner nontrivial solutions of Eq. (2.3) in L,(R,v dv) corre-
spond to nontrivial solutions of Eq. (2.9) in L,(R,dv). A
similar connection exists between solutions of Eq. (2.8) in
L,(R,vdv) and solutions of Eq. (2.10) in L,(R,dv), but
now Ko is a solution of Eq. (2.10) if ¢ is a solution of Eq.
(2.8), while@( — o0 ) + Lypisasolution of Eq. (2.8) if #is
a solution of Eq. (2.10). However, since in general the oper-
ator K does not map absolutely continuous functions of
L,(R,v dv) into continuous functions, the solutions of Egs.
(2.9) and (2.10) need not be continuous. On the other hand,
if K (or the above operator B) has finite rank, it is much
easier to solve Egs. (2.9) and (2.10) than to solve Egs. (2.3)
and (2.8). Finally, it should be observed that the nonzero
spectra and eigenvalue spectra of LK and KL coincide.

(2.10)

ll. THE TIME-DEPENDENT PROBLEM

In order to study the time-dependent problem, we shall
analyze the operator

(TF) (v) = —ag—f — v)A) + (KF) ()

on the intersection .# of L,(R,dv), L,(R,v dv) and the set
of functions which are absolutely continuous on [ — b,b] for
all 5> 0, are of bounded variation and vanish at — «o. We
shall prove an extension of 7" to be the generator of a strongly
continuous semigroup on L, (R,dv) using the Hille—Phillips
theorem. For this purpose we solve the equation

A-D)f=g (3.1)
for fe_#, where g is an arbitrary function in L,(R,dv) and
A>0. We obtain

f=L,Kf+L,g,
where

(Lif)(v)
=lJ. exp[ - if [v(")y + 4 ]dv"]f(v’)dv’.
a - o0 a v

(3.2)

The derivation of Eq. (3.2) is the same as the derivation of
(2.3) with v(v) replaced by v(v) + A, since for 4 >0 the
integral § * *{v(v) + A}dv is infinite. As a result we obtain

ILAA Nl + ALl =1 flls f30. (3.3)

Here we have replaced v(v) by v(v) + 4 in the identity
ILANl, = |} £l for £ O. This is allowed, since L, f coincides
with Lfon replacing v(v) + A. Consequently,

\LLKf |l + AL Ef Ny = f]ls 20, (3.4)
whence L, maps L,(R,dv) and L, K maps L, (R,v dv) into
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the intersection of L, (R,dv) and L,(R,v dv). Hence for ev-
ery A >0and geL,(R,dv) thesolutions fof Eq. (3.2) belong
to this intersection.

Theorem 7: For every A > 0 and geL, (R,dv) there exists
a unique solution 7,g of Eq. (3.2), which belongs to
L,(R,dv). Then T, is the resolvent of a strongly continuous
positive contraction semigroup {S(#)}., on L,(R,dv)
whose generator G is a closed extension of T. Moreover, the
semigroup {.S(#)},., satisfies

ISflli= £l f>0,

if and only if G is the (minimal) closure of T.
Proof: Put

(3.5)

T/ng z (L/IK)nL/Ig: gELI(ER,dU)

n=20

Then for g>0in L,(R,dv) Eq. (3.4) implies
ALK Loglly = (L K)"~ ' Lygll,
— KL, KY" L gl
n=123,..,
and therefore for g0

1Tusll = 3 10K Liglh = I Lasl
n=0
+ i”LAg”v - iﬁ;. (L,8)
A A

I8l

1 1 1
== liells "Iﬁa(lf&g) <7|

Here

By (f) = lim [(L;K)"fll,, O<feL,(R,vdv),

extends uniquely to a positive linear functional of
L,(R,vdv). Thus there exists a non-negative function
@.€L  (R,vdv) such that

B () = f VO f0)@, 0)dv, feL\(Ryv dv).

Since obviously B, (L, Kf) =B, ( f) for all feL,(R,v dv),
we have (L;K)*p, = ¢,, where the adjoint is defined on
L_(Rvdv).

To prove that 1 is not an eigenvalue of L, K, suppose
¢(A) is an eigenvalue of L, K. If ¢ is a corresponding eigen-
function, then

lc(OHllell, +Alell} =LKl + AL Kp |,
<IL:Klelll, + ALK e |l

=lllelll, =lell..
which implies that |c¢(4)|<1. Moreover, |c(4)|#]1, since
otherwise |[@ ||, =0 and thus ¢ = 0. Thus f=T,g is the
unique solution of Eq. (3.2) in L,(R,dv).

Clearly, T, is the resolvent of a bounded strongly con-
tinuous positive contraction semigroup on L,(R,dv), i.e.,
T, =(1—G)"!, where G is the generator and
D(G) = Ran T, . Moreover,

T1g=f e-#S(t)gds, g>0in L,(R,dv),
0
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while

IT.gll, + (/) B (Lig) = (1/)|lgll,, £>0 inL,(Rdv).
Thus if 1¢0,(L,K), the residual spectrum of L;K, and
hence 1¢0,((L;K)*), we have B, (L, g) = Oand therefore

(T.gll, = (1/A4)||gll;, &>0in L,(R,dv).

Hence

ISl = llgll,, &>0in L, (R,dv).

Conversely, if the last two equations are true, 5, (L, g) =0
forallg>0inL,(R,dv). Since {L, g: g¢L,(R,dv) } isdense in
L,(R,vdv), we get ¢; = 0and hence 140, (L;K).
If Eq. (3.5) is true and lé¢o,(L;K), then 1 — L K
maps L,(R,v dv) into a dense subspace of L,(R,v dv) and
Eq. (3.2) can be solved in .# for all ge&, where & is a
suitable dense subset of L,(R,dv). For every geL,(R,dv)
and €> 0 we then choose g,€Z such that ||g — goll, <€l /
(A + 1) so that
T, [g*‘go]“1<€/(/1 +1).
Therefore f = T, geD(A — G) can be approximated by some
Jo = T,8.,# such that
| f=Kolli + A = G f — (A — Df,

= ”f‘fo”l + lig — gl <€

Consequently, (4 — G) is the closure of (1 — T). On the
other hand, if (A — G) is not the closure of (4 — T, there
exist geL, (R,dv) and € > 0 such that

IT.g— Sl + lg— (A = Dflli>e fetkt.
Hence if f=3Y_,(L,K)"L,g, we have
7% (KLA)N+1g||l + ||(L/1K)N+lg”1>€-

By choosing NV large enough, the first term can be made arbi-
trarily small, because the series defining T'; g converges abso-
lutely in L,(R,dv). But then

Bi(®) = lim (LK 'gll 1>

whence leo, (L, K). O

Remarks: (1) If there exists a nonzero stationary solu-
tion @, then @ >0 apart from a constant factor, S(#)p =g and
AT, p=¢. But then 3, (L, @) = 0 and hence £, = 0, which
implies that 1¢o, (L, K) for all 4 > 0. Consequently, the exis-
tence of a nonzero stationary solution implies (3.5).

(2) Another case when (3.5) is true occurs if v(v) is
essentially bounded. In that case ||g||, <||v|., ||g]}, for all
geL,(R,dv) CL,(R,vdv) Thus if {@, }=_, is an increas-
ing sequence in (0,1) with limit 1, then
fon=1 —a,L,;K) 'L,geD(T), increases with m if g0
and satisfies

A-Df,=g— 1 —-a,)Kf,.

Asaresult, || f— f,.||,—0 as m— . On the other hand,
lg — (4 —Df Iy

= (l _am)llemlll<(1 - am”Vm” v

<(1 —a,, )“V”m “fm”l’

which vanishes as m— oo. Consequently, JSED(G) and
(A — G)f=g. Moreover, G=T.
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(3) If v(v) is integrable, then ||L,K||<||LK]| <1 on
L,(R,vdv). Then leo, (L, K) and Eq. (3.5) must be satis-
fied. This is also the case if KL, is weakly compact on
L, (R,dv) [or L, K is weakly compacton L,(R,vdv)]. The
reason is that power compact operators do not have a residu-
al spectrum.

(4) In general, T'is not a closed operator and hence G is
a proper extension of 7. This is, for instance, the case if
k(v,v') = 8(v —v') and v(v) is not essentially bounded. In
this case (Tf)(v) = — a(df/dv ) defined on .# while .#
does not coincide with the (generally) larger domain of the
generator of the semigroup {S,, _, () },50 on L, (R,dv) de-
fined by (S;.-0(8)g)(v) =g(v—at). However, if
spr(L;K) <1 [which occurs, for instance, if KL, is weakly
compact on L, (R,dv) or if v(v) is integrable], we can easily
prove that T, maps L,(R,dv) into .# and therefore that
G=T.

Suppose there is a nontrivial non-negative stationary so-
lution @ in L, (R,dv) Then, as known, either ¢ (v) > 0 for all
veR or @ (v) = O for vy, and @(v) > 0 for v> vy In order to
derive some properties of the semigroup {S(#)},,, in the
latter case, we consider the free streaming semigroup
{So(t)},>0 on L,(R,dv) generated by the operator
Ty,= — (a(d /dv) + v(v)) on the domain D(T,) =.#.
Then {S,(#) },, is a contraction semigroup whose generator
satisfies

(/'L—TO)_‘g=L,1g=f e~ MS,(t)gdt, Re A>0.
[0}

(3.6)
It is possible to write down S4(#) in closed form. In fact,
(So()g)(v) = M(t,v)g(v — at), (3.7)
where
M(ty) = exp[ — lf v(v’)dv’]. (3.8)
a Jv—ar

Hence ||S,(2)|| = ess sup {M(z,v): veRr}, so that the type
wy(S,) of the semigroup {S,(#)},., is given by

@o(Sy) = lim (1/1)log ess §up M(ty). (3.9)
{— o0 ve

Since in an L, space the type and the spectral bound of a

positive semigroup coincide (see Ref. 16), we may extend

(3.6) to all Re A > wy(S,). Writing (R, g) (v) = expliav/

a}g(v) we have for A = o + ir with o, Telt
L,=R,7'L,R,,

while ||L,g||, increases monotonically as o decreases from

+ o to — oo for all non-negative geL,(R,dv). Hence
0(Ty) = {AeC:Re A<wy(S,y) }

whenever @y(S,) > — w0, while o(7T,) = whenever
@o(S,) = — . We now observe that

[(A-G)"'—(A~T) " 'lg
=[T,—L,]g= i (L,K)"'L,g

n=1
implies that, for all ReA>0, [T; — L, ]g =0 for all g of
support within [vg, 0 ). Since
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[T, —L4]8=J e M[S(t) —Sy(t)1gdt, Rei>0,
0

we find that [S(¢) — Sy(t) 1g = O for all g of support within
[ves 20 ). For later use we also mention that

lim|[Sy()gll, =0, geL,(R,dv)

as a consequence of (3.7), (3.8) and the nonintegrability of
v(v).

We call {S(#)},,, mean ergodic if for every
geL,(R,dv) there exists a vector PgeL,(R,dv) such that

17,18

lim (3.10)

l— w0

1
—l—f S(t')gdt’—Pg“ =0.
t Jo t

It then follows that P is the (bounded) projection of
L, (R,dv) onto the fixed space

F = {geL,(R,dv): S(t)g = g for all >0}
of the semigroup {S(#)},,, along the space
g= span{{1 —S(#)]g: >0, geL,(R,dv)}.
Theorem 8: Suppose there is a nontrivial stationary solu-
tion @ in L, (R,dv). Then the semigroup {S(#)},,, is mean

ergodic and the limit Pg is a one-dimensional projection of
the form

(Pg)(v) = a(g)p(v), veh, (3.11)
where

a(g)=j Y(u)g(v')dv
for some non-negative function el (R,dv) with

l#ll., < + 0 and § £ 2 (0@ )dv' = 1.

Proof: First, if G is the generator of {S(7)},,,, then
F = {@eL,(R,vdv): Gp = 0}. Thus, if G = T, then # co-
incides with the set of stationary solutions in L, (R,dv). Now
recall that @ is continuous and suppose that ¢ does not have
(finite) zeros. Then 0<S(#)@ = @ for all £>>0, and the mean
ergodicity of {S(#)},,, is immediate from Ref. 18 (Corol-
lary 1 of Theorem V 8.4).

Next, suppose ¢ has a finite zero. Then there exists voeR
such that @(v) =0 on ( — o0,¥] and @(v) >0 on (vy, ).
Then (K@)(v)=0 on (— o, U], and therefore
(Ku)(v)=0on ( — oo,0,] and for all characteristic func-
tions u of compact support within (v,, 0 ). Since every non-
negative function in L, (R,v dv) of support within [vy, o0 ) is
the monotone limit of a sequence of finite linear combina-
tions of characteristic functions of compact support within
(vg,0), we have (Ku)(v}=0 on (— oo,v,) for all
ueL (R,v dv) of support within [v,, 0 ). Thus K leaves in-
variant the closed invariant ideal in L, (R,v dv) of functions
with support in [v,, o0 ). Then, by the second paragraph fol-
lowing the proof of Theorem 7, this must also be the case for
S(t). We may now restrict S(¢) to L([v, « ),dv) and apply
the same corollary in Ref. 18 to get the ergodicity of the
reduced semigroup. From the ergodicity of the reduced se-
migroup and the special form of @ we immediately have the
ergodicity of the full semigroup {S(#)},.,.

Finally, as the stationary problem has at most one lin-
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early independent solution in L,(R,v dv), we easily obtain
the specific form (3.11) of the projection P. O

IV. DECAY TO EQUILIBRIUM

In this section we shall prove that under certain quite
natural conditions the solution of the time-dependent prob-
lem converges in the norm of L, (R,dv) to a solution of the
stationary problem. Obviously, one of these conditions is
that there exists a nontrivial stationary solution in L, (R,dv).
The other condition is that the generator G of the time evolu-
tion semigroup {S(#)},,, of Eq. (1.1) does not have purely
imaginary eigenvalues. Of course, the second condition is
suggested by the fact that if icr is a2 purely imaginary eigenval-
ue of the generator G and g is a corresponding eigenfunction,
then the solution of Eq. (1.1) with initial condition g has the
form

S(t)g =g
and therefore does not converge at — .

More specifically, if the generator G of the semigroup
{S(#)},., has purely imaginary eigenvalues, then under cer-
tain conditions one may prove that every solution S(z)g of
the time-dependent problem converges in the strong topol-
ogy of L, (R,dv) to a periodic function (cf. Ref. 19, Theorem
C1V 2.14). Indeed, suppose that A = O is an isolated eigen-
value of G and that iaco, (T) for some nonzero real a. Let us
also suppose that the distribution kernel k(v,v’) does not
vanish on a set of positive measure, so that the semigroup
L,(R,dv) isirreducible (i.e., does not have nontrivial closed
invariant ideals). Then the spectrum of G on the imaginary
line consists of a sequence {ina}?_ _ _ of simple eigenval-
ues. On denoting by Q a suitable projection of L, (R,dv) onto
the closed linear span of the corresponding eigenfunctions,
we obtain

lim S()g — e Qgl], =0

for some period y > 0.

Assume now that there are no purely imaginary eigen-
values and that a nontrivial stationary solution exists.

In order to establish the decay to equilibrium we shall
apply the 0-2 law for positive semigroups in L, spaces (see
Ref. 19, Theorem C IV 2.6 plus corollary), which may be
formulated as follows. Let {S(#) },, be a positive semigroup
on the Banach space L, (E,2,u) and let e(x2) be a non-nega-
tive function in the kernel of its generator which does not
vanish on a set of positive 4 measure. Then for every >0
there exists a partition of E into two u-measurable subsets
E,, and E,, with the following properties:

(1) For every t> 0 the closed ideals of all functions in
L,(E,Z,;s) having their support on E,, and E,_,
respectively, are invariant under S(r).

(2) |S() —S(t+ 7)|ey, 10as t> .

(3) {S(t) — S(t+ 7)|e,, = 2e,, for all t30.

Here ¢,, = ey,, and e,, = ey,., where y,, and y,, de-
note the characteristic functions of E,_and E,,, respective-
ly.

Moreover, if the point spectrum o, (G) of the generator
G of {S(1)},,, satisfies 0,(G)N{Re A =0} = {0}, then
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S(2)g converges in L,(E,2,u) strongly as ¢t— e for all
gel,(E,Z,u) that vanishon E,, .

Theorem 9: Suppose there is a nontrivial stationary solu-
tion @ in L, (R,dv), while G does not have purely imaginary
eigenvalues. Then

3im||S(t)g—Pg||, =0, geL,(R,dv), (4.1)
where P is the projection given by (3.11).
Proof: As a result of the previous section we may write

0

T,8= E (L,K)"L;g, Re A>0.

n=0

From this equality we easily derive that the closed invariant
ideals of T, in L,(R,dv) are ideals of all functions in
L,(R,dv) that have their support in [v,, 00 ) for some v,eR.
This in turn implies that for all 7>0 one of the sets E,, and
E,. in the 0-2 law has zero measure.

First suppose E,. =R. Then ¢,, =0 and e¢,, = ¢ and
hence

IS(1) —S(t+ 1)@ =20 =1{S(2) +S(t+ N}p, ©0,

which is impossible. Indeed, there is a sequence of functions
g.€L,(R,dv) with |g,|<@ such that for every €> 0 there
exists n,eN such that for n>n, and for >0

({S) + St + 7 }p)w)
<({S(t) =St +71)}g,)(v) +€ veR.
Writing g = sup ( + g,,0) we have
(SO [@—g. 1N +(S(Hg, )(w)
+(SC¢+ 1) [@—g., ])W) +(S(t+ g} )(v)<e.

If g+ =0, then |g,| =g,7 <@ yields ¢(v)<e for all veR,
which is a contradiction for sufficiently small €. Consequent-
ly, E,, =R for all 7>0, which implies that for every

geL,(R,dv)
tlim |S()g — Qg =0

for some vector Qg (cf. Ref. 19 Corollary to Theorem C IV
2.6). But then the inequality

IS(7) — Qgll,<[IS(7) — 1| ||S()g — Ogll,
+ |LS(t+ 7) — S gl

implies Q = P, which completes the proof. a

Remarks: (1) If the generator G # T, then there are no
nontrivial stationary solutions (see Remark 1, after
Theorem 7). On the other hand, if G = T, then T, is bound-
ed as an operator from L,(R,dv) into L,(R,v dv). Then

T/l =L,{ +LAKT,{, /1>0, (4.2)
implies the Duhamel formula
S(1) = S,(1) +J So(t — T)KS(7)dT. (4.3)
(4]

Now, if @ is an eigenfunction to the imaginary eigenvalue id
of T and hence S(¢)p = e*'p and S(¢)|p | = |@ | (see Na-
gel,'® Corollary 2.3 on p. 297), we find, following an argu-
ment by Arlotti,°
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t

etp =Sy (e + f e*'So(t — 7)Kp dr
0
and

@] =So(t)le | + f Solt — DK | |dr.
0

A simple comparison of the L, norms yields ¢>>0and A = 0.
Hence if G = T [ which occurs if v(v) is integrable or if L ; K
is weakly compact on L,(R,v dv)], G does not have purely
imaginary eigenvalues. Finally, if v is essentially bounded,
then ||Kg||,<||¥|l.. l|g|l; implies Egs. (4.2) and (4.3). We
may then repeat the above reasoning and conclude that
G =T does not have purely imaginary eigenvalues.

(2) If we consider the case k(v,v') = 8(v — v') where
[S(t)gl(v) =g(v—at) and hence G= T, we see that
@(v) = exp{ — ilv/a} seemingly is an eigenfunction of S(#)
corresponding to the eigenvalue e*’. However, &L, (R,dv),
though el (R,v dv) if v is integrable.
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APPENDIX: AN ILLUSTRATIVE EXAMPLE

The object of this Appendix is to illustrate—with the
help of two simple model problems—the typical patterns of
behavior that one may expect from a population of charged
particles moving through a host medium under the influence
of a D.C. electric field. We shall consider two distinct ver-
sions of a simplified one-dimensional BGK model. A paral-
lel and more sophisticated treatment has been proposed by
Corngold and Rollins’ who have adapted a one-dimensional
Fokker-Planck model.

One simplified model is represented by the kinetic equa-
tion

Fo) +aLwn = v(){e()f,, (v) - flv,n },
at av
veR, >0, (A1)
where
z d
c(?) = 52 o v()fv,n)dv

52 v, (v)dv

is a normalization parameter, and f, (v) =JB/7
X exp( — Bv?) is the normalized Maxwellian with

W) = fx v, (v)dv=(2B8) "
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We consider the two following cases:

(1) v(v)=v>0,

Vo — WLULKW,

0, |v|>w,

where w and v, are positive constants. Note that

(i) v(v) = [ (A2)

f v(v)dv= + o
in case (i) whereas
O<f v(v)dy = 2vw < + oo

in case (ii). Moreover, note that in case (ii) assumption (ii)
is violated. We shall study the typical problem of the time
evolution of a swarm of guest particles following the switch-
ing-on of the acceleration field at time ¢=0, with
S(0,0) = £, (v).

It is easy to establish the following results.

Case (i): Here f(v,t) relaxes towards a steady profile. In
fact, one can show that

fot) =f. ) + Lexp(—r) L £, (w—an),
Yo dv
where
£ 0) = (vo/2a)exp{ — B(v* — A ) }erfc(A VB ),

with A = — v+ (vo/2a8)

and f(v,t) »f_ (v),ast— + .
Now we introduce the normalized velocity moments
1y (2) which are defined by

() = fm ukf(v,z)duUm f(v,t)dv) T k=012,
Then it is ea:y to show that i
X)) =p, (1)
= (a/vp){1 — exp( — vot) } ~a/vy,

Further
W) (1) = u,y(0)

= (1/48) + (a/ve) {1 — (1 + vo1)

Xexp( — vot) Y~ (1/48) + (a/vy)?, ast— + .

ast— 4 oo.

Accordingly, for thermal agitation (relative to average ve-
locity) we have

(D) () — ()2 (D)~ 1/48 + J(a/vy)?, ast— + oo.

In this case there is no runaway process.

Case (ii): For problem (A1) subject tc (A2) and to the
initial condition f(v,0) = f,, (v), it is obvious that, within the
quadrant v>w, >0, the solution f(v,) remains constant
along the characteristics v =0 + as, t =5 (5>0). Accord-
ingly, we can write
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f(§+at,t) :gl (5) — [fm(v)y U}w

flw,(w-—-"0)/a), w—at<v<w,

where 0. Therefore,
SO+ att)y~g_(V), as t— + o, UVeR,

i.e., there is convergence towards a travelling wave. Note
that this is not an explicit expression.

We can summarize the results as follows. Under case (i)
conditions [for which §* _v(v)dv= + «] there are no
runaways and the distribution function relaxes towards an
asymptotic profile f_ L, (R,dv) NL,(R,v dv) whose veloc-
ity moments are finite. Note that, in this case, if cold charged
particles were fed continuously into the system, then the dis-
tribution function would not relax towards a steady state
value. However, in both situations the velocity moments
would relax towards finite values.

On the contrary, in case (ii) [for which
O0<f= _ v(v)dv< + ] f(v,t) converges towards a “‘tra-
velling wave™ and all velocity moments diverge as t— + oo.
Under steady feeding, the velocity moments would diverge
as t— + oo, whereas f(v,t) would converge to a steady pro-
file belonging to L, (R,v dv); however, this profile would not
belong to L, (R,dv).
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