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Summary. Integral expressions are derived for the first two de-
rivatives of H-functions with respect to the directional variable.
Assuming isotropic scattering these expressions are used to de-
velop algorithms for numerical computation. Some results are
presented in figures and tables with five decimal accuracy. The
precise nature of the angular distribution of light emerging from
a homogeneous semi-infinite plane-parallel planetary atmo-
sphere is established. Several functions occurring in the asymp-
totic theory of isotropic scattering in spherical clouds are numeri-
cally evaluated. To clarify their nature when the albedo of single
scattering is close to zero or one, expansions for H-functions and
related functions are derived.
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1. Introduction

The so-called Chandrasekhar H-functions (Chandrasekhar, 1950)
play a prominent role in radiative transfer theory. In the context
of semi-infinite homogeneous plane-parallel atmospheres with
isotropic scattering the solutions of two basic problems can be
expressed in H-functions. These are (i) the Milne problem, also
referred to as the problem with a constant net flux, and (ii) the
problem of diffuse reflection. The first problem is primarily con-
sidered for stellar atmospheres, the second one for planetary
atmospheres. For details we refer to Chandrasekhar (1950), Bus-
bridge (1960), Ambarzumian (1960), Kourganoff (1952), Sobolev
(1963, 1975), Ivanov (1973), Van de Hulst (1980) and references
cited in these books. H-functions are also used to model the re-
flection of light by particulate surface material of celestial bodies
such as planets, moons and asteroids (See e.g. Hapke, 1981, 1984,
1986; Lumme and Bowell, 1981, and Simonelli and Veverka,
1986). Finally, H-functions are employed in studies of radiation
transport in spherical clouds (see e.g. Van de Hulst, 1987, 1988).
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A multitude of authors has contributed to creating an impres-
sive body of knowledge on properties of H-functions. Restricting
ourselves to isotropic scattering we mention the following aspects
of H-functions (cf. the books mentioned above):

(i) their physical meaning (see also Van de Hulst, 1948);
(i) tables with numerical values (see also Bosma and De Rooij,
1983; Domke, 1988);
(iii) integral equations, integral properties (in particular, moment
relations) and integral representations;
(iv) expansions in the directional variable as well as in the albedo
of single scattering.

Until now little attention has been paid in the literature to the
derivatives of H-functions (and related functions) with respect to
the directional variable, which we shall call u. Yet it is known,
for instance, that for isotropic scattering the first such derivative
generally has a singularity at u = 0. The theory of light scattering
in optically large spheres developed by Van de Hulst (1988) has
called for a better understanding and an increased knowledge of
these derivatives, since the first two derivatives of the H-function
with respect to u play an important role in this theory. Thus the
main purposes of this paper are (i) to establish certain differential
properties of H-functions and related functions, in particular for
isotropic scattering; (ii) to provide some computational proce-
dures along with tables of numerical results, and (iii) to present
some applications to plane-parallel atmospheres and spherical
clouds.

2. The H-function and its first two derivatives

H-functions depend on a directional variable p (0 < u < 1) and
the albedo of single scattering a (0 < a < 1). Not writing the latter
dependence explicitly we have

1 : 12 xP(x)
HEu—)_[l—z(!‘l’(x)dx] + !#_‘_XH(x)dx @

where ¥(x) is the so-called characteristic function depending on
the type of scattering considered (see e.g. Chandrasekhar, 1950,
Sect. 38; Busbridge, 1960; Sobolev, 1975, Sect. 5.1). It is a real
and continuous function of x on [0, 1] satisfying

2] P)dx < 1. b)
[
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If we take the derivative with respect to p on both sides of Eq.
(1) we find

dH(p) _

S =

du

xP(x)H(x)

(u + x)? 3)

mff

Similarly we find for the second derivative

d*H(p) ., xWP(x)H( x)
g =10 = 2HWH )f et
, ¢ XP(X)H(Xx)
which, on using Eq. (3), yields
2[H (1) ]? Y(x)H
a0 = A o f O i 5

From hereon we consider isotropic scattering. In this case

wm=g (6)

and Egs. (1), (3) and (5) take the form

1 ap
——=1—-a? + = 7
HG) 2! "

2
H'(y) = ()f( ®)
2[H ()] ¢ xH(x)

H'(p) = —=—— — aH(p)* dx . 9

W ="500 (”£w+w ©)
The moments of the H-function are defined by

1

o = g#'H(ﬂ)dﬂ (10)
where i =0, 1, 2,...

If a = 0 Egs. (7)—(9) show that H(x) = 1 and thus H'(u) and
H"(y) vanish for every value of u. Henceforth, unless stated
otherwise, we shall assume a > 0. For every a the H-function is
monotonically increasing in u from H(0) = 1 to H(1) (See Fig. 1).
Close to u = 0 the slope is large and Eq. (8) shows that H'(u)
tends to + oo as u — 0, which becomes apparent by adding and
subtracting (u + x)~ ! under the integral sign on the right-hand

side of Eq. (8). The result is
1
Hi 1
H'(p) = 2 H(py? [ f= ) kX e n <1 + —)]
2 Iz
which yields in particular [cf. Van de Hulst, 1980, Sect. 8.3]

i LA 1
) e h

C[HwW-1 a 1\] _a pH) -1

i [ (1) |5 e

=aln H(1). (12)
From Egs. (8) and (9) we easily derive the two identities
1
. a . uxH(x)
lim pH'(x) = = lim H(p)? (13)
u=0 2u-0 of (1 + x)?
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Fig. 1. Dependence of the H-function for isotopic scattering on the
angular variable, p, for various values of the albedo of single scattering,
a

lim g 2H"(4) = lim [2[—“%(")‘)—]2

n—0 u—0

1 2 I{
— aH(uy* | f#’; i’)‘z dx] -0.
0

(14)

Here we have used the principle of dominated convergence (See
e.g. Rudin, 1964, Theorem 10.32) and the fact that the integrands
in Egs. (13) and (14) are dominated by H(x). In fact, we may
generalize Eq. (13) to find that y*H'(u) vanishes as y — O for
every a > 0. Using this observation we easily prove the identity

mewwr

11m uH"(p) = lim
"= H()

n=0

- ux?  H(x)—1
— H(ﬂ)zz!‘(/l-f-x)s x

rox a
— apH(p)? ! TEEE dx:l =3

since the second integrand is dominated by [ H(x) — 1]/x. Hence
H"(u) tends to —oo as u tends to zero. Furthermore, it is clear
from the shape of H(u) that H'(u) is monotonically decreasing
and thus H”(u) < 0 in the entire range of u.

Equations (8) and (9) show that two integrations over the di-
rectional variable suffice for the numerical evaluation of H'(u)
and H"(p) provided H(p) is known. Several methods for the
numerical computation of H(y) by iteration have been discussed
by Bosma and De Rooij (1983). We used their second method
which is an iterative procedure for solving Eq. (7) starting the
iterations with H(x) = 1 and dividing each iterate by its value
at p = 0 before starting the next iteration step. Therefore the
basic job is to evaluate integrals of the type

; xH(x) .
o (u+ x)

dx

(15)

(16)
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with j = 1, 2, 3. For this purpose we used Gaussian quadrature
either with N division points in the entire interval (0, 1) or with
Ng, points in (0,0.1) and Ng, points in (0.1,1) with Ng, > Ng,.
In our calculations we used Ng, Ng,, Ng, € {8,16,32,64,128,
256}. Values of H(yu) in non-Gaussian division points were ob-
tained by one additional integration after computing H(y) in the
Gaussian division points (cf. Eq. (7)). A similar procedure was
used for H'(u) and H"(p).

Some results of our calculations are shown in Tables la—1c.
We expect the numbers to be accurate within one unit of the last
decimal given. To assess the accuracy of our numerical results
we have not only varied Ng, Ng, and N, but also performed
a number of checks in some of which alternative approaches
were involved. For example:

(i) H(u) was checked by comparison to numerical data in the
literature (See Van de Hulst, 1980, and Bosma and De Rooij,
1983, and references cited by these authors).

(i) H'(p) was also computed by numerical integration from

H'(p) = (17)

HW[HW — 11 _ap ¢ H)
- ., "7 H(pw? Of m d

which is found by differentiation from (cf. Chandrasekhar, 1950,
Sect. 37)

_ ap F H(x)
Hw=1 +7H(,u)!mdx. (18)

Our numerical experiments suggest that employing Eq. (11) or

Eq. (17) instead of Eq. (8) does not yield a generally better method

for computing H'(u). Another check on H'(u) was obtained from

the obvious relation
I3

H(p) =1+ | H(x)dx (19)
0

by numerical integration of H'(x) over the interval [0, u].

(ii)) H"(n) was also calculated from

AHW] | H H
H() = [H((uu))] +2 ;Eﬂ)_z H(ﬁt)

1
H(x)
+apHW? [ ———
apH(w) Of Ut
which easily follows from Eq. (17). Employing Eq. (20) rather
than Eq. (9) did not yield an overall improvement. Further we
checked by numerical integration whether
1

[H(w —1]

(20)

[ H'(x)dx = H'(1) — H'(1) 21
and

1

(f) w1l — w?H'(m)dp =1 — 4oy + 60, . (22)

Equation (22) is readily verified by partial integration and using
Eq. (8). The last check has the advantage of being independent
of H'.

Table 1a. The H-function and its first two derivatives with respect to p for isotropic scattering and albedos of single scattering
0.20, 0.40 and 0.60. Three moments of the H-functions are given on the bottom line

ALBEDO IS .20 ALBEDO IS .40 ALBEDO IS .60

u H H' H'! H H' H'! H H' H'!

0.000 1.00000 o - 1.00000 (s =) - oo 1.00000 < -
.005  1.00273 .44695 -19.70328 1.00565 .93329 -39.15043 1.00886  1.47681 -58.20027
.010  1.00478 .37898  -9.75201 1.00994 .79832. -19.35372 1.01568  1.27647 -28.68753
.015 1.00657 33960 ~6.44264 1.01373 .72019 -12.78698 1.02175 1.16074 -18.92984
.020 1.00819 31192 -4.79101 1.01718 .66522  -9.51602 1.02734 1.07937 -14.08252
.025  1.00969 .29062  -3.80158 1.02040 .62290  -7.55956 1.03258  1.01674 -11.18990
.050  1.01605 .22587  -1.8289% 1.03416 .49368  -3.66843 1.05532 .82506  -5.46214
L1000 1.02562 .16450  -.85005 1.05536 .36948  -1.74066 1.09135 .63858  -2.64414
.200 1.03892 L1091 ~.36930 1.08578 25411 -.78559 1.14516 .45994  -1.24648
.300  1.04830 .08098  -.21524 1.10790 .19338  -.47228 1.18587 -36179  -.77898
.400  1.05546 .06350  -.14204 1.12517 L15455  -.31963 1.21860 29672 -.54495
.500 1.06118 .05154 -.10062 1.13919 L12737  -.23120 1.24581 24973 -.40550
.600  1.06588 .04287  -.07470 1.15088 L10727 -.17469 1.26892 .21405  -.31395
.700  1.06982 .03632  -.05737 1.16080 L0918  -.13619 1.28887 .18603  -.24999
.800 1.07319 .03122  -.04522 1.16935 .07966  -.10874 1.30631 .16348  -.20334
.900  1.07610 .02716  -.03638 1.17681 .06985  -.08848 1.32170 L14498  -.16819
1.000  1.07865 .02387  -.02977 1.18338 .06180  -.07313 1.33541 .12958  -.14105

a_ = . a, = =
0 1.05573 1= 53315 az .35679

CL0=1.12702 Qq= .57621

Qo= 38747 (10 =1.22515 Q4= .63663 Ay= . 43092
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Table 1b. As Table 1a but for albedos 0.80, 0.90 and 0.95

ALBEDO IS .80 ALBEDO IS .90 ALBEDO IS .95

H H H' H'! H H' H'! H H! H'!

0.000 1.00000 oo - o 1.00000 [« =} - oo 1.00000 oo -
.005 1.01255 2.12082 -76.53455 1.01480 2.52432 -85.13581 1.01618 2.77963 -89.08317
.010 1.02242 1.85819 =37.47978 1.02660 2.23308 -41.41093 1.02923 2.47573  -43.07129
.015 1.03131 1.70731  -24.62430 1.03732 2.06680 -27.06217 1.04115 2.30320 -28.00268
.020 1.03957 1.60164 -18.26298 1.04735 1.95092 -19.98197 1.05235 2.18356 -20.58152
.025 1.04736 1.52049 -14.48055 1.05688 1.86231 -15.78353 1.06303 2.09247 -16.18913
.050 1.08191 1.27296  -7.04906 1.09968 1.59419 -7.58719 1.11151 1.81961 -7.65311
.100 1.13881 1.03124  -3.45623 1.17214 1.33525 -3.69198 1.19523 1.56102  -3.65011
.200 1.22864 79312 -1.70750 1.29143 1.0797M -1.85175 1.33734 1.31013 -1.81190
-300 1.30059 . 65546  -1.12266 1.39135 92842 -1.25431 1.46045 1.16158  -1.23927
.400 1.36109 .55951 -.82361 1.47850 .81951 -.95159 1.57095 1.05307 -.95779
.500 1.41326 48699 ~. 63980 1.55603 . 73435 . 76441 1.67179 . 96645 -. 78673
. 600 1.45899 . 42962 ~.51484 1.62588 66473 ~.63514 » 1.76471 .89397 -.66927
.700 1.49954 .38289 -. 42438 1.68935 .60621 -.53955 1.85092 .83160 -.58213
.800 1.53583 34401 -.35608 1.74740 .55610 ~.46560 1.93129 77691 -.51407
.900 1.56854 3117 -.30292 1.80079 .51260 -. 40656 2.00650 . 72835 -.45896
1.000 1.59822 .28307 -.26057 1.85010 47443 -.35831 2.07712 .68481 -. 41318

Ag=1.38197 Q4= .73582 Ay = .50322  G=1.51949 Oy= .82532 Gy= .56945  O=1.63451 = .90188 o,= .62679

Table 1c. As Table 1a but for albedos 0.99 and 1.00

ALBEDO IS .99 ALBEDO IS 1.00

u H H! H'! H H' H''

0.000 1.00000 < - co 1.00000 < - oo
.00s 1.01775 3.07656 -91.66380 1.01875 3.27573  -91.56476
.010 1.03226 2.76523 -43.88668 1.03426 2.96606 -43.42059
.015 1.04561 2.59017 -28.27792 1.04863 2.79361 -27.71760
.020 1.05825 2.46984 -20.60838 1.06229 2.67618 -20.01350
.025 1.07036 2.37899 -16.07923 1.07544 2.58835 -15.47060
.050 1.12607 2.11243  -7.32587 1.13657 2.33707 -6.72070
.100 1.22488 1.87166  -3.28878 1.24735 2.12552  -2.72360
.200 1.39977 1.65424  -1.50805 1.45035 1.96165 =-.99784
.300 1.55871 1.53307 -.99392 1.64252 1.88955 -.52080
-400 1.70750 1.44658 -.76119 1.82928 1.84887 -.31726
.500 1.84860 1.37754 -. 63048 2.01278 1.82295 -.21134
. 600 1.98336 1.31895 ~. 54663 2.19413 1.80516 -.14938
. 700 2.11262 1.26739 -. 48767 2.37397 1.79232 -.11019
. 800 2.23700 1.22094 =.44333 2.55270 1.78270 -.08396
-900 2.356%4 1.17842 -.40828 2.73059 1.77527 -. 06563
1.000 2.47279 1.13907 =.37949 2.90731 1.76941 -.05238

A =1.81818 a4=1.02718 Qo= .72196 a0=2.00000 (!-‘:1.15470 Qo= . 82035
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Table 2. The numbers of Gausspoints which are sufficient for
5-decimal accuracy for the values of u and a of Tables la—1c

Hp  Hu  H'W
Ng 32 64 128
Ng, 8 32 32
Ng, 8 16 16

The values of N listed in Table 2 were found to be sufficient
to yield the numbers in Tables la—1c by numerical quadrature
of the integrals in Eqs. (7)—(10). The same accuracy was reached
by the combinations of Ng, and Ng, listed in Table 2. We thus
see that splitting the interval at u = 0.1 is computationally pref-
erable. N = 8 sufficed for the computation of a,, o; and «,.

If the albedo of single scattering is close to zero or one, H(u),
H'(x) and H"(u) may be obtained from series expansions which
are discussed in the Appendix.

In Figs. 2 and 3 we have plotted H'(1) and H"(u) as functions
of p for various values of the albedo of single scattering. It is
clear from these plots that both functions vary strongly for 4 < 0.1
and a > 0.2.

One advantage of having tables of H'(u) and H"'(u) along with
H(y) is that it enables rapid and simple interpolation, which is
a frequently occurring problem in radiative transfer. Writing for
p>0and 0 < |hj <p

H(u + h) = H(u) + H'(wh + 3H"(wh* + - -~ (23)

we find e.g. from Table 1c for a =1 that H(0.015 + 0.005) =
1.06225. Direct linear interpolation between the values for 0.015
and 0.025 would have given 1.06204 which is further removed
from H(0.020) = 1.06229 as tabulated in Table 1c than the value

0 02 04 06 08 10

Fig. 2. As Fig. 1 but for the first derivative of the H-function with respect
tou

-2
-10 1 L 1 1

3
-10 T T T T
0 02 04 06 08 10

5

Fig. 3. As Fig. 1 but for the second derivative of the H-function with
respect to p

obtained by interpolation based on Eq. (23). Van de Hulst (1980,
Sect. 8.3) tabulated 4-decimal numbers for H'(1) and 3-decimal
numbers for 1H”(1) which he obtained by numerical differen-
tiation of tables for H-functions published by Stibbs and Weir
(1959). Van de Hulst’s table for 2H"(1) would need some minor
corrections to make it accurate within one unit of the last deci-
mal given.

3. Plane-parallel atmospheres

The differential properties of H-functions may be used to under-
stand the angular dependence of the radiation emerging from a
star or planet. Some aspects of this topic will be considered in
this section.

Let us consider a planetary atmosphere modeled as a semi-
infinite homogeneous layer illuminated at the top by a parallel
beam of radiation making an angle arccos u, with the normal
(0 < po < 1) and having a flux nF per unit area perpendicular
to the beam. For isotropic scattering the emergent intensity may
be written as

Ho
+a H(p)H (po)

0

10)=5F ; (24)

where y = arccos u is the angle between the outward normal and

the direction of the emergent radiation. From Eq. (24) we find

A0 1y = ~2F o Huy) [H'(m - ]sinv- 29
h+u

dy T4 0

Assuming u, # 0 it is clear from Eq. (25) and the properties of
H(u) and H'(p) that the first derivative of I(y) with respect to y
always vanishes if y = 0 and tends to —oo as y — 4n. Figures

4-6 show the dependence of I(y)/F on y for a = 0.6, 0.99 and 1.0,
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T(y)IF

0.204

0.15

0.10 4

0.05 -

Fig. 4. The angular dependence of light reflected by a semi-infinite iso-
tropically scattering atmosphere which is illuminated by a parallel beam
of radiation. The angles of incidence and emergence with respect to the
normal are y, and 7, respectively. Here a = 0.60

0804— 0+ &+ 0
a=099 vy, =0°
20°
1Y) IF] r
060- 40° !

|

0404 60 L

020+ F
80°

0.00+—F—+—————

(o

0° 20° 40

Fig. 5. Same as Fig. 4 but for a = 0.99

respectively, and various values of y,. It is clear from these fig-
ures that the slope at y = r can easily be misjudged especially
when the intensity increases for increasing y but the correspond-
ing curve shows no maximum for 0 <y < 4rn. To understand
why some of the curves show a maximum for 0 <y < 4z and
others do not we must investigate whether for given u, € (0,1]

199
‘!25 1 1 L 1 L i L -
a=10
Ley)/F
Y Yoz 0°
1.00 - r

0.751

=

20°
40°
0504 — 7}

60°
025 L
80°
000 ——
0° 20°  40°  60° 80°
Y

Fig. 6. Same as Fig. 4 but for a = 1.00

the expression between square brackets on the right-hand side
of Eq. (25) has a zero p € (0, 1). Introducing the function

H(a, 1)
Gla,p) = —; — 26
Hia, ) 29
it is clear that u is such a zero if
Ho = Gla, . 27

Here we have written the dependence on a explicitly. The func-

tion G(a,p) is monotonically increasing from G(a,0) =0 to
G(a, 1) > 0, since
H(wH"(p)
Glapw=— o 28
[H P .

Thus for given 0 < p, < 1 Eq. (27) can be satisfied for precisely
one 0 < p < 1, provided p, < G(a,1). To investigate whether
G(a, 1) < 1 we first note that

G(a,1)=[— 1)IXH“1’)‘2) ] 1

[cf. Egs. (8) and (26)]. Since H(a, u) increases monotonically with
a [as follows directly from the first integral expression given by
Van de Hulst (1980) in Sect. 8.3.1], G(a, 1) decreases monotoni-
cally with a. Further, we find from Tables 1a-1c that G(0.99, 1) ~
1.17089 and G(1.0,1) ~ 0.64338. Consequently, there exists a
unique a, with 0.99 < g, < 1 satisfying G(a,, 1) = 1. More de-
tailed computations provided a, >~ 0.99508. We therefore con-
clude that for 0 < a < a, the graphs of I(y)/F have precisely one
maximum at some 0 < y < 47 irrespective of the choice of u, €
(0,1] whereas for a, < a <1 there is such a maximum only if
Uo < G(a,1). This behaviour is in agreement with Figures 4-6.
For some of the curves the maximum lies so closely to y = 90°
that it cannot be seen. For a =1 we have a maximum only

(29
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if p, < 0.64338, ie. if yo = 49°57". As a result the upper three
curves in Fig. 6 show a monotonic decrease.

4. Spherical clouds

Recently Van de Hulst (1988) found an expression in closed form
for the spherical reflection function of a homogeneous sphere
with isotropic scattering if the radiation field is spherically sym-
metric. On developing the asymptotic theory (the dominant de-
viation for optically large spheres from the well-known theory for
spheres with an infinitely large optical diameter) he introduced
a linear differential operator of the second order, L, as follows.
If f(u) is an arbitrary function of g, the cosine of an angle, then

dw) 1 )
Lf—HW—E(l -ﬂz) d,uz
14 )
-5 [(u2 i W] (30)

The function LH is of particular importance. It occurs, for
instance, in the asymptotic expression for the radiance leaving
the cloud under the angle arccos u with the normal if this cloud
is exposed to the uniform incident radiance 1. Rewriting Eq. (30)
we find

LH = [LH]()

= pH() + Qu* — DH'(4) + 3u(® — DH" (). @31

Thus LH = pifa = 0. For a > 0 we computed LH from Eq. (31)
using the methods of Sect. 2 for the calculation of the derivatives.
Results are shown in Table 3 for various values of the albedo
of single scattering. We expect the numbers to be accurate
within one unit of the last decimal given, for which either Ng =
64 or N, = 32 and N, = 16 were found to be sufficient. It may
be shown that LH tends to — oo if a > 0 and u — 0 [cf. Egs. (31)
and (13)—(15)]. To check the numerical results we verified the
simple relations

1

g LHdp =14 (32)
and

1

[ uLH dp = a, (33)
0 .

by numerical quadrature. These equations are readily checked
by integration by parts and using Eq. (13). Complete agreement
was found with some 4-decimal numbers for u = 1 obtained by
numerical differentiation and reported by Van de Hulst (1988).
In Fig. 7 the dependence of LH on y is plotted for various values
of the albedo of single scattering. The Appendix contains series
expansions for LH if a is close to 0 or 1.

The asymptotic expressions for the spherical reflection func-
tion itself contain the function

O, o) = LR® + R™L (34)

Table 3. LH as a function of u for various values of a, the albedo of single scattering

n a= .20 a= .40 a= .60 a= .8 a=.%
0.000 - o - 00 - 0O - oo -0
.00s -.39265 -.83034 -1.32620 -1.92432 -2.30628
.010 -.32010 -.69131 -1.12266  -1.66022  -2.01534
.015 -.27604 -.60878 -1.00294 -1.50643 -1.84739
.020 -.24361 -.54922 -.91720 -1.39701 -1.72867
.025 -.21752 -.50217 -.84986 -1.31151 -1.63638
.050 -.12833 -.34802 -.63196  -1.03672 -1.34203
.100 -.01657 -. 17039 -.38579 ~-.72566  -1.00857
.200 .14285 .05879 -.07445 -.32002 -.55728
.300 27747 .23826 . 16542 .00594 ~-.17268
.400 .40287 .39867 37722 .30233 . 19400
.500 .52368 .54926 . 57407 .58310 55417
. 600 . 64187 .69403 .76170 . 85395 .91135
. 700 .75839 . 83503 . 94311 1.11777 1.26673
.800 .87380 97345 1.12010 1.37626 1.62068
.900 .98844 1.11000 1.29380 1.63051 1.97328
A1.DDD 1.10252 1.24518 1.46498 1.88129 2.32453

a= .9 a=." a=1.00
-co - o - oo
-2.5517 -2.84216  -3.04157
-2.24961 -2.53494 -2.73804
-2.07658 -2.36129 -2.56879
-1.95503  -2.24070 -2.45274
-1.86104  -2.14840 -2.36496
-1.56409 -1.86288  -2.10095
-1.22959 -1.54894  -1.82346
-. 7639 -1.09717  -1.41885
-.34520 -.65383 -.98559
.07320 =-.17279 -.47222
.50018 .35375 13454
. 93701 .92566 .8397M
1.38292 1.54054 1.64560
1.83659 2.19530 2.55341
2.29667 2.88678 3.56381
2.76194 3.61187 4.67722
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Fig. 7. Functions arising from letting a differential operator L act on H-
functions for various values of the albedo of single scattering a > 0. For
a = 0 the curves tend to the straight line LH = u (not drawn)

where
w _ GHWH (o) (35)
4(u + o)
aH(po) | po(l + pug)
LR® = [LR®](g, po) = H
(LR J(ks o) = — [ TR )
1+ 2P0 —po L R —1) ]
H H 36
Gt O g e

and R*L is obtained by interchanging u and u, in Eq. (36).
Consequently, Q(u,po) =0 if a=0. For a >0 we calculated
O(u, o) from the above equations employing the numerical
techniques of Sect. 2 for the derivatives. The numbers shown in
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Tables 4a—4c are estimated to be correct within one unit of the
last decimal given. For this purpose we found either N = 32 or
Ng, = 16 and N, = 16 to be sufficient. As a check we have also
computed the moments

1
[ON](w) = (I) Q1. o) dpto (37)

[eU](w = g 2410Q(1s o) dptg (38)

by direct numerical integration of Q(u,u,) and compared the
results with the right-hand sides of the explicit expressions

[ON](w) =

a
8u

[QU](w = [ﬂ(l —a)'? + g al]H(u) —(1—a)'?[LH](). (40)

1 1
H(w) + 5 pH () = 7 (1= w2)H" (W) (39)

The last two equations are readily obtained from Egs. (34)—(38)
using integration by parts. For a = 0 we have

[ON](w) = [QU](w) = 0. (1)
If a = 1 [QU](w) simplifies to

H(w
[QU](w) NG (42)

The entries in the last two columns of Tables 4a—4c have
been computed from Eqgs. (39)-(40). We found complete agree-
ment with 4-decimal numbers for QU with u = 1 as tabulated
by Van de Hulst (1988) and based on numerical differentiation.
The entries in Tables 4a—4c for y = 0 require special care. They
have been obtained as follows. Using Egs. (13)—(15), (34) and
(36) we readily obtain

(0, o) = Quo,0) = —o0, o >0. (43)
From Egs. (13), (14) and (39) we find immediately

lim [QN](p) = + 0. (44)
n—0

Equation (40) yields for 0 < a < 1

lim [QU](1) = + 0 43)
w0

Table 4a. The functions Q(u, ), [QN](1) and [QU](u) for an albedo of single scattering 0.20

ALBEDO IS .20
B Ho = .1 .2 .3 .5 .7 .9
0.0 -oo -co - 00 -0 -oo -oo
.1 1.30868 .59341 .33313 .15275 .08677 .05588
.2 .59341 34753 .22922 .12263 .07712  .05341
.3 .33813 .22922 . 16633 . 10045 .06823 .04995
.5 .15275 .12263 .10045 .07170 .05452  .04339
.7 .08677 .07712 .06823 .05452 04494 .03801
.9 .05588 05341 . 04995 .04339  ,03801 .03369
1.0 .04628 .04559 .04362 .03921 .03523 .03186

1.0 QN &)

- 00 QO oo

04628  .47502  .16124
.04559  .22941 11347
.04362  .14847  .08900
.03921  .08481 .06275
.03523  .05823  .04853
.03186  .04384  .03953
.03037 .03890 .03616
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Table 4b. As Table 4a but for albedo 0.80

ALBEDO IS .80
3 Ho = .1 .2 .3 .5 .7 .9 1.0 QN eV}

0.0 - -co - oo - - -oo -0 @ (e}

.1 5.79976 2.71842 1.5629NM 69215 .37215  .22002  .17255 2.04579  .71063

.2 2.71842 1.73506 1.20623 .68722 .44652 .31370 .26834 1.10343 . 61463

.3 1.56291 1.20623 . 94975 .63789  ,46367  .35542  .31580 .78725 @ .55463

.5 .69215  .68722  ,63789  .53273  .44739 38139  .35412 .52436 .47121

.7 .37215 . 44652 . 46367 44739 .41289 .37688 .35981 . 40234 .41090

.9 .22002 .31370 .35542 .38139 .37688 .36147 .35214  .32870 .36380
1.0 . 17255 . 26834 .31580 .35412  .35981 .35214 3459 .30136  .34380
Table 4c. As Table 4a but for albedo 1.00

ALBEDO IS 1.00
[ Ho = 1 .2 .3 .5 .7 .9 1.0 QN [« 1]

0.0 - - -0 -0 -co -co -0 [e o) .57735

.1 7.02726 3.14753 1.69024  .62996  .29298  .18150 .16486 2.33955 .72016

.2 3.14753 2.02709 1.41643 . 85092 . 64041 57311 .56813 1.34212 . 83736

.3 1.69024 1.41643 1.19543 - .95194 . 86441 .85757 .87260 1.08630 .94831

.5 . 62996 .85092 .95194 1.07658 1.18727 1.30503 1.36737 .99856 1.16208

.7 .29298 . 64041 .86441 1.18727 1.44487 1.67631 1.78691 1.06529 1.37062

.9 .18150 57311 .85757 1.30503 1.67631 2.00835 2.16487 1.18124 1.57651
1.0 . 16486 .56813 .87260 1.36737 1.78691 2.16487 2.34319 1.24818 1.67883
and Eq. (42) fora =1 The resulting formulae give an impression of the nature of the

! relevant fgnctions near a = 0 and a = 1 and may also be useful

lim [QU () = — ~ 0.57735. (46)  for numerical computations.
u—0

NG

The Appendix contains series expansions for Q(u, io) and its
moments which may be useful if a is near zero or one.
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Appendix

In this appendix we discuss the behaviour of H-functions, related
functions and their moments as the albedo of single scattering
approaches 0 or 1. Isotropic scattering and u > 0 are assumed.

A.1. Expansions in a, useful near a = 0

We observe that H(u) is an analytic function of a near a = 0, so
that we may expand it in a power series in a. From Eq. (7) or
Eq. (18) we easily get

H( = 1 +”7"1n <1 +%>+ 0(@?). (A-1)
Differentiating both sides of Eq. (A-1) yields
oy a 1 1 2
H(y)—2<ln(1+;> 1+N)—i—O(a) (A-2)
a
H'(1) = ———— + 0(a?). A-3
) =~ 0@ (A3

With the help of Eq. (31) we obtain

3 3 1 1
LH=u+a|:Z—u+<§u2—§>ln(1+;>]+O(a2) (A-4)
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while Eqgs. (34)—(36) provide

a 1+ ppo
4 (1 + po)

a? 1+;4,u0< ( 1) 1
+—|——uln|1+—]+uIn{l+—
8[(#+ﬂ0)2 g p) Ho
3 2 _ 1 1
+Lﬂozﬂo(ln<l+ﬁ>___>
(1 + 1o) ) 1+u

3 2, 1 1
+uo+2uou2u<ln<1+_>_ )
(1 + po) ko) 1+t

O, o) =

1 l—p 1- m;)] 3
+ + + 0(a”). (A-5)
2(u+uo)(1+u 1+ po
From Egs. (39)-(40) we have immediately
N =14 20214+ 1) -
[ON](n) = 8 n 2T
1—u )
A-6
A #] + 0(a”) (A-6)

[QU](w) = a[/x - % — (,uz — %> In (1 + %):I +0@?. (A7)
A.2. Expansions in (1 — a)?, useful near a = 1

According to Yanovitskii (1968) and Van de Hulst (1980) we
have the expansion

H(w) = H(w) — tu/3H (1) + 0()

where H (u) is the H-function for conservative scattering (a = 1)
and t = (1 — a)V2. By differentiation we find

H'(n) = Hy(w) — t\3(H (1) + nHAw) + 0(t?)
H(1) = Hi(1) — t</3QHL) + nHL(W) + 0(?)

which implies

LH=LH,— 13 (W — DH(p) + p(3u® — 2)Hy(u)

(A-8)

(A-9)
(A-10)

+ P — I)H'c’(u)> +0(t?). (A-11)

From this identity and Eqgs. (34)—(36) we obtain after some
algebra

3
Qs o) = Quls po) — t—\4£ (H {WILH (ko) + Hopo)[LH c](ﬂ))

+ 0(t?) (A-12)
where Q.(u, 1) is the value of Q(u,uo) at a = 1. Using Egs.
(39)-(40) we readily find

3/1
rovn = [0V~ L ({10 + (1130

+0(t?) (A-13)

203
L
V3

In deriving Eq. (A-14) we have used the identity

[QUI(W) = —= Hou) — t<quc(#) + [LHc](#)) +0(%) (A-14)

2
1= =~ 24,0 + 00
V3
where g, ~ 0.710446 is Hopf’s constant (cf. Van de Hulst, 1980,
Sect. 8.3.3).

K

(A-15)
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