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Transport 

The long-time behavior of the velocity distribution of a spatially uniform diluted 
guest population of charged particles moving within a host medium under the 
influence of a D.C. electric field is studied within the framework of scattering 
theory. We prove the existence of wave and scattering operators for a simplified 
one-dimensional model of the linearized Boltzmann equation. The theory is 
applied to the study of the long-term behavior of electrons and the occurrence 
of traveling waves in runaway processes. 

KEY WORDS: Scattering theory; traveling waves; electron swarms. 

1. I N T R O D U C T I O N  

The physics of particle swarms has been studied extensively in the past 
decades and we refer to the recent report by Kumar (1) for an introduction 
to a phenomenological analysis of the subject matter and the experimental 
results (see also refs. 2 and 3). In a recent paper, (4) the time-dependent and 
the stationary problem for the linearized Boltzmann equation for charged 
particles under the influence of a spatially uniform D.C. electric field in a 
weakly ionized gas have been investigated. In spite of the theoretical under- 
standing achieved in this area, some mathematical aspects pertaining to the 
long-term behavior of electrons require further study. 
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The linearized equation describing the evolution of the space-averaged 
electron distribution f(v, t) in a weakly ionized host medium as a function 
of the velocity v E ~ and time t/> 0 is as follows: 

Of t)+a of t)+ v(v)f(v, t)= f+ f  k(v, v')v(v')f(v', t)dr' (1.t) -g(v, 

It is endowed with the initial condition 

f(v, 0 ) =  f0(v) (1.2) 

The electrostatic acceleration a is assumed constant and positive. Recom- 
bination and ionization effects are assumed to balance each other so that 
the total number of charged particles is preserved. The expressions v(v) and 
k(v, v') denote the collision frequency (between an electron and the host 
medium) and the corresponding scattering kernel. 

In ref. 4 the authors have proved the unique solvability of the time- 
dependent evolution system (1.1)-(1.2) in LI(~, dr), as well as the non- 
negativity of the solution for a nonnegative initial datum. They have also 
established necessary conditions and sufficient conditions for the existence 
of a (unique) nonnegative solution of the stationary problem. In this 
analysis, a crucial role is played by the dependence of the collision fre- 
quency v(v) upon the speed v of the charged particles for large v. Under 
very minor assumptions on v(v), a necessary condition for the stationary 
problem 

•f + o o  

a~v(v)+v(v)f(v)= f k(v,v')v(v')f(v')dv' 

to admit a nontrivial nonnegative solution in LI(R, d~) is that 

f+~ v(v) dr= +oo (1.3) 
- - c o  

In ref. 4 the relaxation of the solution to the stationary solution has been 
proved whenever it exists in L~(N, dr). However, if instead of (1.3) we 
assume that 

f+~ v(x) dv< +~ (1.4) 

then the stationary solution does not exist in LI(N, dv), but it does exist in 
LI(N, v dr). In this case v(v) decays too fast as Ivl ~ oo and collisions do 
not sufficiently slow down the most energetic charged particles as to enable 
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relaxation to a nonzero steady state. (s~ We may then expect the so-called 
runaway phenomenon. The purpose of this paper is to study the 
asymptotics of the problem under assumption (1.4). We prove that in this 
case the collisions generate a traveling wave in velocity space with 
"velocity" a. 

In this paper scattering theory, a well-known tool for studying 
dynamical systems in many fields of physics, is used to investigate the 
large-time behavior of solutions to Eqs. (1,1) (1.2). Suppose Wo(t ) is the 
group describing the free dynamics and S(t) the semigroup describing the 
full dynamics of the electrons. Then wave operators are used to compare 
S(t) g for the initial datum g (the full dynamics) to Wo(t)h for a suitable 
initial datum h (the free dynamics). Such operators were introduced in the 
1940s by physicists (6/ and developed into a rigorous tool in the late 
1950s. (7'8) Here we define the wave operators as linear maps on velocity 
space and follow the approach of Simon (9) for classical particles in a 
Hilbert space setting, subsequently adapted to the neutron transport equa- 
tion by Hejtmanek (1~ (see refs. 11-13 for further developments). For  more 
general developments in mathematical scattering theory we refer to a 
number of monographs. (14 iv) 

Let us define the operators 

f2 + = s-lim S ( - t )  Wo(t), f2 = s-lira Wo(-t)  S(t ) (1.5) 
t ~  - o o  t ~  + : x 3  

as strong limits of operators on LI(R, dr). For s > 0  we multiply the 
first equation by S(s) and the second equation by Wo(s) to get the 
intertwining relation 

S(s) f2+u = s-lim S(s -  t) Wo(t-s)  Wo(s)u =f2  + Wo,(S)U 
t ~  - - ~  

i.e., Q+ connects the full dynamics with initial datum ~2+u to the free 
dynamics with initial datum u. A similar calculation gives 

Wo(s)f2-v = s-lim Wo(s- t) S ( t - s )  S(s)u =f2 S(s)v 
t ~  + o o  

which allows for an analogous interpretation. Assuming, for the moment, 
the existence of f2 § and s , we define the scattering operator ~ as 

S = f 2  f2 + 

Then we have for s > 0 

~ W o ( S ) = ~ - ~ + W o ( s ) = ~ - S ( s ) ~  + = W o ( S ) ~  ~ +  = Wo(S)S  

The equality of the leftmost and rightmost members will also be true for 
s < 0 due to the group structure of Wo(s ). Thus the scattering operator 
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= f 2 - ~  + transforms a free solution which starts out as u -  near t =  - o o  
into a free solution u + near t = +oo. 

The organization of the paper is as follows. In Section 2 we state the 
problem. In Section 3 we prove the existence of the so-called wave 
operators under the assumption of integrability of v(v) on R. In Section 4 
we provide a proof of the existence of traveling waves in velocity space. 

2. S T A T E M E N T  O F  T H E  P R O B L E M  

In this section we give the basic notation and state some well-known 
results on the Cauchy problem (1.1)-(1.2). Prior to the functional formula- 
tion of the problem, let us introduce the Banach spaces L~(N, dr) and 

+ c o  LI(R, v dr) with the norms ]lfJl~ = j" co If(v)t dv and Ilfllv = Ilvf[ll, respec- 
tively, and list the assumptions on a, v(v), and k(v, v'). 

Assumption (i): The acceleration a is a fixed positive constant; 

Assumption (ii): The collision frequency v(v) is a Lebesgue 
measurable, nonnegative, and even function of v on R which vanishes 
almost nowhere and is Lebesgue integrable on every bounded Lebesgue- 
measurable set. 

Assumption (i i i): The collision kernel k(v, v')>>.O appearing in the 
integral operator has the property 

f +~k(v,v ')dv=-l ,  v' e ~  
- - o o  

and, by reciprocity symmetry, we also have k ( - v ,  - v ' ) =  k(v, v'). 

We define T o t =  - a  af/av, A t =  - v ( v ) f ,  and (Kf)(v)= ~ +_~ k(v, v') v(v') x 
f(v ')  dr', where D(To) is the set of those f e  LI(N, dr) whose distributional 
derivative belongs to LI(R, dr), D(A) is the intersection of LI(R, dr) and 
LI(N, v dr), and K is a positive linear operator satisfying 

Ilgfllt=llfllu, f e L L ( ~ , v d v )  and f~>0  

All our results will be true for abstract operators K: L~(R, v dr) ~ LI(R, dr) 
which are positive and satisfy ILKfJll=Uf[l~ for all nonnegative 
f ~ L l ( N ,  vdv ). Using the preceding definitions, we can put problem 
(1.1)-(1.2) into the abstract form 

df Tot(t)  + At(t)  + Kf(t), t > 0 
dt 

f(O) = f o  
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where d/dt is the strong derivative, f :  N+ ---, LI(R, dr), and f0 is the initial 
datum. 

Let us denote by Wo(t) the strongly continuous evolution group 

[ W o ( t ) g ] ( v ) = g ( v - a t ) ,  t ~  

of isometries generated by the free streaming operator To, and by So(t) the 
strongly continuous contraction semigroup 

generated by the streaming operator T o - v .  Then So(t) is a group of 
positive operators, which is bounded if and only if v ~ LI(N, dr). Further, 
in ref. 4 we have studied the operator T =  To + A + K on the intersection JCL 
of L~(~, dr), LI(~,  v dr), and the set of functions which are absolutely 
continuous on I - b ,  b] for all b > 0, are of bounded variation and vanish 
at --o% and proved some closed extension of T to generate a strongly 
continuous semigroup S(t) on LI(N, dr) satisfying 4 

JpS(t)flll <~l[fH1, f>~O in L~(~,dv), t>~O 

From now on we will not distinguish between the operator T with domain 
JC{ and its closed extension in LI(R, dr) generating S(t). The full semigroup 
S(t) cannot in general be extended to a group of positive operators. 
However, such an extension is possible if v(v) is integrable, but also in 
many cases where v(v) is not integrable [such as v(v)-Vo constant].  

If we consider S(t) as a perturbation of So(t), we may derive the 
so-called Duhamel formulas. For  their Laplace transforms 

l. :x? r ~ 
L,. g = o e-;"So(t) g dt, T~, g = Jo 

we have the identities (4~ 

e-~JS(t) g dt, Re 2 > 0 

T ; - L ~ , =  T~KL~., T; -L~=L~,KT~. ,  Re 2 > 0  (2.2) 

The first relation is true for every v(v), but the latter only if T (with ,,,r as 
its domain) is closed in Ll(~i, dr), which is the case if v(v) is integrable on 
~. In that case the operator  L;. can be defined for Re 2 < 0 as the resolvent 
of To + A [because So(t) then is a bounded group];  we may then use the 

4 If the generator of S(t) is the closure of T on ~h', then !]S(t)f]l 1 = Ilfrll, .f>~0 in LI([R, dr). 
This is true, e.g., if v(v) is bounded or if (1.4) holds true. 
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positivity of L~ for Re 2 < 0 [-due to the positivity of So(t ) for t < 0] to 
prove that, for Re 2 < 0, KLx is bounded on L~(~, dr) and L) K is bounded 
on Lx(R, v dv), which allows us to generalize the relations (2.2) for 
Re )~ < 0. For  integrable v(v) we then find the (bounded) group property of 
S(t) as well as the Duhamel formulas 

S(t) = So(t) + S ( t - s )  KSo(s) ds, t e ~ (2.3) 

S(t) = So(t) + SoU - s) KS(s) ds, t e ~ (2.4) 

Again the former [i.e., (2.3)] is true for any v(v), while the latter [i.e., 
(2.4)] is only true for integrable v(v). 

In ref. 4 we have established the following result. 

T h e o r e m  1. Suppose there exists a nontrivial solution ~0 of the 
stationary problem in L~(R, dr). Then the semigroup S(t) generated by T 
is mean ergodic, i.e., for every g e L l ( R ,  dv ) there exists a vector 
Pg ~ LI(R, dr) such that 

1 fl dt' - Pg lim t S ( t ' )g  = 0  
t ~ o o  1 

The limit Pg is a one-dimensional projection of the form 

(Pg) (v )  = ~(g)  ~o(v), v ~ 

where ~ ( g ) = S ~ _ ~ ( v ' ) g ( v ' ) d v  ' for some function O s L ~ ( R ,  dv) with 
~>~0, ~+~O(v ' )q~(v ' )dv '=l ,  and L1r If, in addition, the 
generator of S(t) does not have purely imaginary eigenvalues, then 

lira t lS ( t )g-Pgl[ l=O,  g e L l ( ~ , d v  ) 
t ~ cg; 

The assumption that T, the generator of {S(t)},~o, does not have 
purely imaginary eigenvalues can be dropped in many cases, e.g., if v(v) is 
bounded or if (1.4) holds true. (~8'4) 

3. T H E  E X I S T E N C E  OF T H E  W A V E  O P E R A T O R S  Q -  A N D  Q+ 

In this section we prove the existence of the wave operators defined by 
(1.5) under the sufficient condition of integrability of v(v) on N. Condition 
(1.4) on the behavior of v(v) as Ivl ~ oo will be sufficient to ensure the 
existence of t2- .  We have the following result. 
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Theorem 2. If the collision frequency v(v) satisfies Assumption (ii) 
and the additional assumption (1.4), then s =s- l im,+ +~ Wo(- t )S ( t )  
exists strongly in LI(R, dr) and is a bounded positive operator. 

Proof. Because ~ v(v - as) ds <~ (M/a) for all t E ~ +, we have, for all 
positive ge LI(N , dr), 

E 1 [S(t)g](v)>>.exp - j o V ( V - a s ) d s  [Wo(t)g](v) 

> ~ e x p ( - M ) [ W o ( t ) g ] ( v )  

and consequently, for a.e. v s N and t>iO, g(v)<~ [S(t)g](v+at)exp(M/a). 
Replacing g by S(s)g and t by t -  s with t >/s i> 0, we obtain 

IS(s) g](v) ~< IS(t) g] Iv + a ( t -  s)] exp(M/a) 
Hence, 

coo ( ~ )  foo "9 (1)) dlj M exp ( M )  ,,g][ 1 Ir S(s ) gri ~ ds <<. exp II S( t ) gN1 
Jo -oo a a 

< + o o  

(3.1) 
We first compute 

- v(v + a ( t - s ) )  ds g(v) [ Wo(-  t) So(t)g](v) = [So(t)g](v + at) = exp Jo 

so that in the strong operator topology of L I ( ~  , dr) 

f2o-g= lim W o ( - t )  So(t)g, 

which is a positive operator with a bounded positive inverse. 
Next, we premultiply Eq. (2.4) by So( - t )  to obtain 

S o ( - t ) S ( t ) g = g +  So(-s )  KS(s)gds 

Using that the norm of So(-S) on Lt(N, dr) is bounded above by 
exp(M/a), we find that the integral ~[  dPSo(-S)KS(s)gHldS is finite [cf. 
(3.1)]. Hence, we have in the strong topology of LI(N, dr) 

t 2 2 g =  lira S o ( - t ) S ( t ) g = g + j  
t ~ q-z~o 0 

which is a bounded positive operator. 

So(-s )  KS(s) g ds 
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Finally, we see that 12- can be defined by 12- = 12os and satisfies 
(1.5). II 

For the existence of 12 no other condition on v(v) apart from its 
integrability is necessary. This is reasonable from the physical point of 
view, because in our case S(t) is an isometry for t~>0 and hence the 
number of charged particles is conserved. The same thing will appear to be 
valid for the existence of ~2 + 

T h e o r e m  3. If the collision frequency v(v) satisfies the same 
assumptions as in Theorem 1, then the limit f2 + = s - l i m , + ~  S ( - t )  We(t) 
exists in the strong operator topology of L~(N, dr) and is a bounded 
positive operator. 

Proof. The proof is analogous to the proof of Theorem 2. | 

4. T R A V E L I N G  W A V E S  IN THE  ELECTRON T R A N S P O R T  
P R O B L E M  

When a nontrivial stationary solution exists in L l ( R  , dr), the colli- 
sion frequency v(v) is not integrable. (4/ A different phenomenon occurs if 
v(v) is integrable. In this case there exists an (up to normalization) unique 
nontrivial nonnegative stationary solution in LI(R, v dr) that does not 
belong to LI(R, dr). Using the results of the preceding section, we prove 
that the solution of the time-dependent problem behaves as a traveling 
wave in velocity space with "velocity" a as t ~ + oe. 

By a traveling wave (in velocity space) of "velocity" a we mean a 
function of the form We(t) g with g independent of t, i.e., a function of the 
form 

[Wo(t) g](v ) = g (v -a t )  

In the study of the convergence of the solution of the time-dependent 
problem (1.1)-(1.2) to such a traveling wave an important role is played by 
the streaming semigroup So(t). In the following lemma, we see how the 
integrability of v(v) affects its asymptotic behavior. 

k e m m a  4. If v(v) is integrable, we have 

lim [[So(t)g-Wo(t)12og[11=O, g~L~(~,dv) (4.1) 
f ~  + o o  

where 

1 ( +  + 
(12~ = exp [ -  aJv v(v') 

while for nonintegrable v(v) we have l imt_ +~ IkSo(t)glk~ = O, g ~ LI(~, dr). 
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ProoL Equation (4.1) follows directly by taking t--, +Qo in the 
expression 

++t E ' 1 (" exp - - j v(v' + at) dr' 
J oo a w 

[ ]t - e x p  - -  v ( v ' + a t )  dv' jg(w)ldw 
a iv 

for riSe(t) g + We(t) s o g Ill, using dominated convergence. The result for 
nonintegrable v(v) is an immediate consequence of definition (2.1) and the 
nonintegrability of v(v). | 

We have the following result. 

T h e o r e m  5. Let v(v) be integrable. Then for every g e L l ( R ,  dr), we 
have 

lim [ I W o ( - t ) S o ( t ) g - f 2 ~ g [ l l = O  
t ~  +0(3 

lim II Wo( - t ) S( t ) g - s'-2 -gll , = O 

where f2 o and f2 are the wave operators defined in Section 2. 

Proof. This theorem is a direct consequence of L e m m a 4  
Theorem 2. | 

Under the conditions of Theorem 5 we have 

and 

[So( t )g] (v )  ~- [ f 2 o g ] ( v - a t ) ,  [ S ( t ) g ] ( v )  ~- if2 g ] ( v - a l )  

as t ~ +oo. Hence, in the remote future both Soft) g and S(t)  g behave like 
traveling waves in velocity space. 
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