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A Neutral Gas Model for Electron Swarms 
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A BGK-type Boltzmann equation for a neutral gas is considered as a model for 
electron swarms, because the gas and the electron Boltzmann equation have a 
common diffusion approximation. Both full- and half-range theory are 
developed using orthogonality methods of solution. Preliminary comparisons 
with diffusion theory are presented. 
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1. I N T R O D U C T I O N  

The mot iva t ion  for this research comes from several  studies ~ 3) on the 
influence of bounda r i e s  upon  the behav ior  of  a par t ic le  swarm, i.e., of a 
dilute popu l a t i on  of charged  par t ic les  diffusing th rough  a neut ra l  host  gas 
under  the influence of a dc space-uni form electric field E (see also, for 
example ,  the reviews in refs. 4 and  5). When  ion iza t ion  and  r ecombina t i on  
processes are  in equi l ibr ium,  the per t inen t  l inear ized Bo l t zmann  equa t ion  
reads 

~ + V . ~ r r + a .  f ( r ,  v, t ) =  [J f ] ( r ,  v, t) (1.1) 

Here t, v, r, f ,  and  J denote  the t ime var iable ,  the pos i t ion  vector, the 
veloci ty vector,  the d i s t r ibu t ion  funct ion of  the guest  part icles,  and  the 
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collision term, respectively. In addition, for the acceleration vector we have 
a = qE/m, where q is the charge and m is the mass of each guest particle. 

In the absence of a runaway effect, (6) a simple macroscopic 
approximation for the process is the convection-diffusion equation 

55 + w.  ~ c(r, t) = D V2c(r, t) (1.2) 

where c(r, t) := ~3 f(r ,  v, t) dv is the concentration of the charged particles, 
D is the diffusion coefficient, and w = +/~E is the drift velocity due to the 
dc electric field. Here /~ is the mobility of the particles (ref. 5, p. 324) and 
the • sign corresponds to the sign of their charge. 

Under steady-state conditions, when there is spatial slab symmetry 
and velocity azimuthal symmetry with respect to the direction of the 
acceleration field a, Eq. (1.1) can be rewritten in terms of one spatial 
variable (the component of r in the a direction) and two velocity variables 
(the components of v parallel and orthogonal to a). A (rather questionable) 
approximation consists in dropping the dependence on the orthogonal 
component of the velocity v. The resulting approximate steady-state version 
of Eq. (1.1) reads 

X V-~xf( , v) + a ~--~ f ( x ,  v)= [Jf](x,  v) (1.3a) 

and is comparable with the one-dimensional Ka~ model (7) in nonlinear 
Boltzmann theory. 

Equation (1.3a) appears to constitute a reasonable starting point for 
the study of some classes of boundary effects. Of course, a specific choice 
of the collision term J must be made. One may adopt, for instance, the 
BGK (8) relaxation time model: 

f 
~3 

[ J f](x ,  v) = - v o f ( x ,  v) + vom(v) f ( x ,  s) ds 
- - o o  

(1.3b) 

where re(v)= (fl/Tt)l/2exp(--flv2) is the Maxwellian at the temperature of 
the background gas. This problem has been tackled by approximate 
methods. An exact explicit solution would be useful, since it would provide 
some insight into the physical mechanisms and constitute a "benchmark" 
against which to test the approximate solutions and Monte Carlo simula- 
tions. Specifically, it would allow a test of the reliability of the diffusion 
approximation. However, even in the simplified form (1.3) the problem 
turns out to be quite intricate. The application, for instance, of Case's 
singular eigenfunction technique (9) turns out to be extremely difficult, since 
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the spectrum of the pertinent operator occupies an entire half-plane. 
(However, it may be possible to apply the technique described by 
Cercignani. (1~ 

Now let us consider a different physical situation: that of a dilute gas 
of neutral particles diffusing within a moving background gas in the 
absence of an external electric field. It is easy to show that the diffusionlike 
equation for the population of guest particles is once again Eq. (1.2); 
however, now w is the convective velocity of the background gas. The 
counterparts of Eqs. (1.3) read 

v f ( x ,  v) = - v o f ( x ,  v) + vorl(v) f ( x ,  s) ds (1.4a) 
o o  

Here x is the component of x in the +w direction, r 1 is a drifting 
Maxwellian, and + w is the magnitude of w. Thus, the two formulations 
(1.3) and (1.4) describe two physical situations but share a common diffu- 
sion approximation, which in the absence of sources reads 

w c(x)=D~x~C(X) (1.5) 

In this paper we present a preliminary study of problem (1.4). The specific 
boundary conditions chosen will be suggested mainly by charged particle 
problems; we expect that our work will provide some insight into the 
harder problem (1.3) and also that it will allow some benchmark checks on 
Monte Carlo codes. We expect to be able to present specific asymptotic 
estimates and numerical in future work. This would allow us to test the 
reliability of the diffusion approximation. We expect to encounter some 
difficulties, since the spectrum of the linearized Boltzmann operator, unlike 
the spectrum of the diffusion operator, does not contain eigenvalues. The 
results in this paper generalize those for the case w = 0 obtain earlierJ 11) 

In Section 2 we study the (singular) eigenvalues and eigenfunctions 
associated with Eq. (1.4) in detail. The result will be a continuous spectrum 
on the real line and, for w =/= 0, a simple eigenvalue at infinite. The latter is 
a departure from our experience for the conservative neutron transport 
equation and the linearized BGK model, which exhibit a double eigenvalue 
at infinity. (8'9'H~ In Sections 3 and 5 we obtain the full- and half-range 
eigenvalue expansions associated with Eq. (1.4), in analogy with the results 
of refs. 8, 9, and 11. These expansions are applied to an infinite-medium 
problem where charged particles are emitted by a permeable grid at x = 0 
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(Section 4), and to the half-space problem with incoming flux boundary 
conditions (Section 6). The quallitative results for the half-space problem 
(with an electron-absorbing boundary) turn out to depend only on whether 
the convection process tends to move particles away from the boundary 
(w>0)  or back toward the boundary (w<0).  The latter case requires 
one to specify the asymptotic distribution [i.e., f ( + ~ ,  v)] as an extra 
boundary condition. 

2. F O R M U L A T I O N  OF THE PROBLEM 

The introdifferential equation which we consider will be written in the 
dimensionless form 

V~x v)+ f ( x , v ) = t l ( v [ w )  f ~ 
--  oo 

f ( x , s )  ds, y e n  (2.1) 

with 

1 
~(vlw) := x-~ e -(v w)2 (2.2) 

In these units both the thermal speed (2~cBT/m) ~/2 and the collision 
frequency Vo are equal to unity. The dimensionless drift velocity w e ~ is 
assigned. 

Following Case (19) and Cercignani (8'11) we seek elementrary solutions 
of the form 

f ( x ,  v)= (p,,(v)e - x/v 

subject to the usual normalization 

(2.3) 

f~ ~0v(v) = dv 1 

A standard treatment (8'9'11) yields the discrete eigenmodes 

v k ~ ( v l w )  
~ o k ( v )  - - -  

Y k - - t )  

where the eigenvalues are zeros of the dispersion function 

A ( v ] w ) : = l _ ;  ~ v r l ( s l w ) d s = _ f  ~ s tl(s[w) ds, 
- ~  V - - S  ~ V S 

(2.4) 

(2.5) 

v �9 C \ ~  

(2.6a) 
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Hence 

V : ,~c e t2 

A(v[ w) = 1 + - -  J dt, v ~ C \ ~  (2.6b) 

In terms of the tabulated ~12) Fried and Conte plasma dispersion function Z; 
we have 

A ( v l w ) = l + v Z ( v - w ) ,  I m v > 0  (2.7) 

We note the following useful relations: 

A( - v{ - w) = A(vl w) (2.8a) 

A(FI w) = A(v lw)  (2.8b) 

which hold for v e C\R and we R. Furthermore, for u e N the Plemelj 
formulas imply 

A+(urw):=limA(u+_ielw)=)o(ulw)++ircu~l(ulw) (2.9a) 
e $ 0  

where 

2(ul w) := 1 - r __u ~(sl w) ds = ~ - -  r/(sl w) ds 
,zo U - - S  - o o  S U 

= � 8 9  (ut w)] (2.9b) 

and 

A + ( O I w ) = A - ( O I w ) =  1 (2.9c) 

One can prove the following result. 

Proposition 1. A( . lw)  has no zeros on C\R. Further, its limits 
A-+(-f w) do not have real zeros. 

In order to have an eigenvalue at infinity, Eq. (2.1) must have a non- 
trivial solution not depending on x [cf. (2.3)]. From Eq. (2.1) we have 
immediately 

which satisfies the normalization j ' ~  q)o(v)dv= 1. Generalized eigen- 
vectors at v = oo correspond to solutions of Eq. (2.1) which are polynomials 
in x. It can be shown by straightforward calculation that there exist no 
such generalized eigenvectors if w # 0. In fact, we have the following result. 
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P r o p o s i t i o n 2 .  As  v-~+__~, A ( v l w ) ~ - w / v  for w•0 and 
A(v lw)~  -1/2v 2 for w=0 .  

Proof. The proof follows directly from results of Section II of 
ref. 12. | 

From the above it is clear that ~0o(V)=r/(v[w) is the only discrete 
mode. [If w = 0, one must also account for the generalized discrete mode 
(x-v)~(vlO) .]  In addition, we have for each s ~  the singular eigen- 
function 

S 
cps(v)=tl(vlw)~- + 2(s[w) 6 ( v - s )  (2.10) 

S - - l )  

which is in agreement with the normalization (2.4), provided )~ obeys (2.9b) 
Direct study of A(v[w) shows that if we introduce the continuous 

functions 

O(slw ) :=arg(A+(slw)), s e R  

we have, as s ~ + m ,  

O(slw)-O(OLw)=~+O(s2e- '2),  w > 0  (2.11a) 

O(slw)-O(O[w)=O(s2e S2), w < 0  (2.1 lb) 

Similarly, we find for w 4:0 

O( + oe I w) - O( - oe I w) = 7r sgn(w) (2.12) 

Formulas (2.11) and (2.12) will play a crucial role in the subsequent 
discussion of the full- and half-range expansions. 

3. F U L L - R A N G E  E X P A N S I O N  

To construct the solutions to infinite-medium problems, we shall be 
led to the solution of a singular integral equation of the form 

g(v) = B(s) ~o~(v) ds, v ~ ~ (3.1a) 
--2C) 

with 

g(v) -- f (v)  - ao~Po(V ) (3.1b) 
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Here vf(v) is a uniformly H61der continuous function subject to 
j '_~ Iv[ ]f(v)l dv < +oo, ao is a discrete expansion coefficient, and (p0(v)= 
rl(viw) is the discrete mode at infinity. If w = 0, we add a term al vq(vrO) 
to the right-hand side of Eq. (3.1b), in order to account for the generalized 
eigenfunction vq(v[O). As this leads to a well-known result, (8'LII we will 
refrain from considering this case in detail. 

Using Eq. (2.11a) in (3.1a) gives 

f 
~ 

g(v)=2(vrw)B(v)+~l(v[w)~ B(s) s.. ds, veR (3.2) 
- ~ v  S - -  V 

We shall solve this equation by the orthogonality method. (13) First, we 
transform (3.2) to canonical form by defining 

g(v) A(s)= B(s) 
h(v) = q(vpw)' ,(sl w) (3.3) 

in which case (3.2) becomes 

~'~ W) ds ' h(v)=Z(vlw)A(v)+~ j sA(s) ~l(s] v ~  (3.4) 
- o r  S - -  V 

The solution is (13) 

2(sl w) g(s) q(s[ w) fo~ X+(vl w)g(v) dr, 
B(S)=A+(s[w)A-(s[w)+X+(s[w)A (s[w) ~@ ooVA+(v[w)s -v  

s ~  (3.5) 

Here the function X(z r w) must be chosen according to the ratio condition 

X+(vlw) A+(vlw) 

x (vlw) A (vlw) 
(3.6) 

such that Z(zlw) -~ is bounded at infinity and analytic on C\E,  except for 
finitely many poles in C\N. (13) An obvious choice for X(z! w) is 

X(z I w) = ( z -  c) A(ztw) (3.7) 

for some c ~ C\N. Since X(zlw) has a pole at z = c, a constraint on g(v) is 
introduced, (13) which reduces to 

f~ t'g(t') dt' = 0 (3.8) 
oO  
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independent of c. As a result, we get, after using using (3.6) and (3.8) in 
(3.5), 

2(sl w) f(s)  rl(S I w) f ~  vf (v) dr, 
B(S)=A+(slw)A (slw) + A+(s lw)A (slwi ~ ~ s-----v 

s e e  

(3.9) 

Recalling (3.1b), we see that ao can always be chosen such that (3.8) is 
satisfied. Indeed, 

~ vf(v) dv 1 f ~ 
ao = ~-oo Vq)o(V) dv - w  ~ vf(v) dv (3.10) 

The fact that B(s) is independent of ao is a consequence of orthogonality. 
The summarize the results of this section in the following proposition. 

Proposition 3. Let f (v)  be uniformly H61der continuous on E, let 
~ Ivl If(v)l dv be finite, and let w r  Then there exist a constant ao and 
a function B(s) such that 

f 
o 9  

f(v)-=aorl(vlw)+ B(s) q)s(v)ds, v s R  (3.11) 
:)9 

with B(s) given by (3.9) and ao by (3.10). 

4. AN I N F I N I T E - M E D I U M  PROBLEM 

The model problem we have in mind involves a grid at x = 0 emitting 
electrons with the velocity distribution q(v) in both directions. The grid is 
assumed permeable both to the host particles and the electrons. (The effect 
of the imposed electric field is modeled by a drift velocity w in the opposite 
direction.) Thus, we seek solutions to the homogeneous transport equa- 
tion (2.1) subject to the "jump condition" 

f(O +, v) - f (O- ,  v) = q(v) (4.1a) 
l) 

It is assumed that q(v)>~O, v e E; that q(v)/v is uniformly H61der con- 
tinuous on E; and finally, that the source strength is finite, namely 

i 
V 

Q := q(v) dr< +oe (4.1b) 
- - o o  
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Moreover, without loss of generality we assume that w>0.  The grid is 
suppose to be the unique source of electrons. Thus we supplement (4.1a) by 
the upstream condition 

f (  - o% v) = 0 (4.2) 

and we require f ( x ,  v) to remain bounded as x ~ +oo. Then the solution 
is given by 

v~ faoq(VlW)+f~  ~ .... "Sds, x > 0  
f (x, ,[ _~o_ ~ B(s) qo~(v)e x/s ds, x < 0 (4.3) 

The jump condition gives 

f ct-.) 
q(v) = aorl(vlw) + B(s) qo~.(v) ds (4.4) 

I) --oo 

with ao and B(v) given by (3.9) and (3.10) with f ( v ) =  q(v)/v, In particular, 
we have 

1 
ao = - Q (4.5) 

W 

so that asymptotically for large x we have 

f (  + oc, v) = Qtl( v j w )/w 

Moreover, 

2(slw) q(s) r/(s I w) V ~ q(v) 
B ( s ) -  

s A + ( s l w ) A - ( s J w )  + A + ( s l w ) A - ( s l w )  ~ J _ ~ s - v  

(4.6) 

- -  dv (4.7a) 

which can be written, with the help of (2.9b), as 

1 f ~  vq(s) rl(v]w)-sq(v)q(sjW)dv (4 .7b)  
B(s) = sA +(sl w) A - ( s l  w) _ ~ v -  s 

Note that the integral is not a principal value integral. The electron concen- 
tration is given by 

fQ/w + ~  B(s)e -x/s as, x > 0 (4.8) 
c(x)  = ( _~o oo B(s )e  x/s as, x < 0 

Conversely, the solution of this problem under the diffusion approxima- 
tion, i.e., the pertinent solution of Eq. (1.5), reads 

c(x) = ~Q/w, x > 0 (4.9) 
((Q/w)e "x/D, x < 0 

822/57/'1-2-17 
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provided 

Q~ := vq(v) dv = 0 (4.10) 
--<3o 

The remainder of this section is devoted to a comparison of expres- 
sions (4.8) and (4.9). We see that the two expressions are in satisfactory 
agreement if and only if (i) B(s) is sharply peaked in the neighborhood of 
-D/w;  (ii) it is negligible elsewhere; and finally (iii) we have c ( 0 + ) =  
c(0-  ), i.e., 

f ~  B ( s ) d s = - Q / w  (4.11) 
--oo 

Now, with the help of Eqs. (2.4), (4.4), and (4.5) we see that (4.11) holds 
if and only if 

f ~  dv 0 
q(v) 
- -  = ( 4 . 1 2 )  

--oo V 

which is to be compared with (4.10). Of course, both (4.10) and (4.12) are 
valid if q(v) is even. 

In order to study the position of the peaks of B(s), let us now consider 
expression (4.7a). Since the expression in the denominator 

A + (sbw) A -(slw) = 2(s I w) 2 + ~ 2 s 2 / ~ ( s  t w ) 2  (4.13) 

is strictly positive for sE R and q(v)/v is H61der continuous, we can claim 
that B(s) is not singular at s = 0. It may exhibit peaks in the vicinity of the 
(possible) peaks of the source function q(v) as well as in the vicinity of the 
minimum points of A + A - .  We shall concentrate our attention on the latter 
putative peak points. 

First, we recall that t/(sl w) = ~-1/2 e x p [ -  (s - W) 2"] > 0 for all s e 
and we observe that, consistent with Eqs. (2.7) and (2.9b), 

where 

2(sL w) = 1 - 2sF(s - w), s ~ 

F(x) := e x2 e # dt 

is Dawson's integral. (14) Then we introduce 

1 
y(x) . -  2x 

f (x)  

and remark that 2 has a zero at s = x + w s N if and only if y(x) = 2w. The 
function y(x) can be studied with the help of Table 7.5 of ref. 14. We find 
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that, as x increases from 0 toward + oo, y(x) first descends from + oo 
toward its minimum at y(xb)~--0.72 at Xb ~--1.75 and then increases 
toward y( + oo) = 0 - .  The unique positive zero of y(x) is at xa -~ 0.92. The 
behavior of y(x) for negative x can be established by reflection, since y(x) 
is an odd function. At this point we can claim that, if 0 < w < -y(xb)/2, 
then 2(s]w) has three zeros: So(W)~(-oo,-xb+w), Sl(W)~(--Xb+W, 
--X,+W), and Sz(W)S(W, Xa+W ). On the other hand, if w > - y ( x b ) / 2 ,  
then 2 has a unique zero which is in the interval (w, xa + w). Now, a zero 
s k of 2(sl w) may be expected to correspond to a sharp peak of (A + A - )  1 
only if sktl(Sk] w) is small; i.e., only if ]sk - wj ,> 1. This occurs for only one 
of the three zeros listed above, So(W), and only when w is small compared 
to one. Indeed, since (12) 

y(x) F(x)-2x x 1 +  + O  as x ~ _ _ o o  

we see that y(x)-2w has a large zero at 

1 
X o = - ~ w w [ l + 4 w 2 + O ( w 4 ) ]  as w--*0 + 

which corresponds to 

1 
So=Xo+W=---[l+2w2+O(w4)] as w ~ 0  + (4.14) 

2w 

where 2(Sol w ) =  0. For  the derivative we have 

2'(s~ l+2S~ -4w3[l +O(w2)]=2s--~o 1 + O  

Accordingly, when s -~ So in the w ~ 0 § l i m i t  (i .e. ,  as so ~ - o o  ), 

2(s) q(s) + ~/(sl w)~ f~ if(v) dv 
S - o o S - - V  

~ ( s l w )  q(~) l + s + 7 + . . ,  dv 
S oo 

A+(slw) A-(slw) 

~- (s - So) ~ 2'(So I w) ~ + ~s~tt(sl  w) ~ 

( s -  So) 2 
- 4s 6 +n2s~tl(SolW) 2 
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so that Eq. (4.7a) yields 

27zs4~l(sol w ) 21Sol Q (4.15) 
- B(s )  ~- (s - so) 2 + (2~s4) 2 q(so I w) 2 zr 

The integration of the expression on the right-hand side of (4.15) with 
respect to s on ~ gives 2 [So[ Q. 

We can draw the conclusion that, when 0 < w ~ 1, - B(s)  does indeed 
exhibit a peak, which is extremely sharp, since its (approximate) width and 
height are 

As ~ 2rrs{~/(So I w) ~ 2r?/2s 4 e x p ( - s  2) 

and 

Q exp(s~) 
- B ( s o ) - ~  rc3/2 isol 3 

respectively. The center is (approximately) at so --- -1/(2w) ~ -1 .  The area 
is approximately 2 [Sol Q ~_ Q/w,  to be compared with (4.11). Accordingly, 
we can claim that if the drift speed is small compared to the thermal speed 
(0 < w ~  1), then there is good agreement between the diffusion theory 
expansion (4.9) and the transport theory result (4.8), provided we set [-in 
agreement with (4.14)] 

1 O = - - s o w  = ~ - ~  w 2 -Jr O(w 4) (4.16) 

Agreement between (4.8) and (4.9) is clearly not as good when the 
convective velocity is comparable (or large with respect) to the speed of 
thermal agitation. However, introducing the Fourier transform of the 
concentration 

f 
30 

( ( k )  = e ikx C(X) dx, k ~ 

one can show that 

6(k  ) i k (w  - i kD  ) = Q (4.17) 

according to diffusion theory, whereas 

i ~ ikv 

~(k)  1 + ikv 
I ~ q(v)  t l ( v l w ) d v =  - ,~  l + i k v  - - e l y  
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according to transport theory. Expanding in powers of k the latter result, 
we have 

(,co 

~(k ) j co ikv[1 - ikv+ O(k2v2) ] q(vl w) dv 

= ikv[1 - ikv + O(k2v2)] q(v) dv (4.18) 
- - c o  

Since 
fco vq(vrw) dv=w (4.19a) 

coo 

f ~ 1 W 2 v2r/(v ] w) dv = 5+ (4.19a) 
co 

we can write (4.18) as follows 

g(k) i k [w- ik ( �89  +O(k2)] (4.20) 

provided (4.10) holds and j'coco v2q(v) dv < +oo. Comparison of (4.17) with 
(4.20) shows that there is agreement (to lower orders in powers of k) 
between the two expressions (originating from diffusion theory and trans- 
port theory, respectively), provided that one sets 

1 W 2 = f o e  D = 5 + v2r/(v ] w) dv (4.21) 
oo 

This result, which is consistent with (4.16), is somewhat surprising. One 
may assume that the diffusion of a dilute gas of guest particles within a 
drifting host medium ought to be governed by the latter's thermal agitation 
(i.e., the average kinetic energy of the host molecules as seen by a 
Lagrangian observer moving with the host gas); in this case, we would 
have found D =S~co ( v - w )  2 q(v] w)dr. On the contrary, (4.21) indicates 
that the diffusion process is governed by the thermal agitation of the host 
gas as seen by an observer who does not move with the convective host 
gas. 

5. H A L F - R A N G E  E X P A N S I O N  

For solving problems on a half-space, we shall be led to solving 
singular integral equations of the form 

g(v) = B(s) q~s(v) ds, v > 0 (5.1a) 
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Transforming it to the canonical form as in Section 3, we obtain 

f •  sa(s) rl(slw) h(v) =- )L(v) A(v) + ds (5.1b) 
S - - l )  

where h(v)=g(v)/rl(vlw) and A(s)=B(s)/rl(sLw). The 
given by 

solution is then 

In this case, however, the X function satisfies a different ratio condition 
from (3.6) because of the different range of integration. Specifically, 

X+(sl w) A*(slw) 
s > 0  (5.3a) 

X - ( s i w ) - A  (stw)' 

but 

X+(slw)=X (st'w), s<~O (5.3b) 

The fundamental solution Xo(Z ] w) is well known (9'1s~ and has then form 

where O(slw)=argA+(slw). The analysis of ref. 13 indicates that (5.2) 
satisfies Eq. (5.1b) if and only if X(zl w) a is bounded at infinity and 

X(zl w) = O(z ~) as z ~ 0 (5.5) 

for some 0 ~< c~ < 1. Certainly, Xo(z] w) is bounded, while 

Xo(zlw)~z -~176 as z - * 0  

o o  

provided ~o O(slw)ds is finite. Referring to Eqs. (2.11), we see that this 
integral is finite for w < 0 and diverges for w > 0. 

Consider the case w < 0 first. We note that 0 (0 lw)=  0, so condition 
(5.5) is satisfied and the solution is given by (5.2) with X=Xo. 

For w > 0 it is necessary to renormalize Xo(zlw) to (13) 

X,(z,w)=exp(lf~O(Sl-sW~)z-~ds), are(z) ~ (0, 2~) (5.6) 

).(slw) g(s) rl(slw) f,5 X+(vlw) g(v) 
B(S)=A+(slw)A (slw) + X+(slw)A (slw) ~ v v A + ( v t w ~ ) s - v  

dr, 

s > 0  (5.2) 
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Then Xl(z ] w) still obeys the ratio condition, but now So [O(sl w ) -  ~] ds 
is finite. We see that X~(zLw ) is bounded at infinity, while 

Xl (Z lw)~z  as z--*O 

Thus we are led to choose for X(zlw) 

X2(z l w) = z -  c X~(zf w) (5.7) 
z 

for some x ~ C \ R .  The subsequent analysis is similar to the one of 
Section 3, involving a constraint induced by the pole at z = c. Again, the 
constraint is satisfied by choosing g(v)=f(v)-aorl(v[ w). We find rather 
easily 

[. o f(v)  X+ (v [ w) A + (vl w)- '  dv 
ao = So ~/(v ] w) X~+(vlw) A +(v i w) -1 dv 

= - f (v)X]-(v lw)A+(vlw)  -~ dr, (5.8) 

since the identity 

1 
~l(vtw X~(v w) A+(viw) l=~-~i~i[X~-(vlw)-X;(viw)] (5.9a) 

followed by some straightforward contour integration can be used to show 
that 

t ~ r t ( v l w ) X ~ ( v l w ) A + ( v i w )  -~ d r =  - !  
JO 

(5.9b) 

The continuum coefficients reduce to 

,~(slw)f(s) s~(slw) fo ~ x?(v I w)f(v) dr, 
B(S)=A+(slw)A-(slw) t-X~-(s[w)A-(slwi ~ A+(v[w) s - v  

s>0  (5.10) 

Note that X~, and not X2, enters the expressions for a 0 and B(s), which 
are, of course, independent of c. 

We collect the results of this section as a proposition. 

Proposition 4. Let f (v)  be uniformly H61der continuous on 
E0, oo) and let S~ [f(v)l dv be finite. Then: 
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(a) For  w > 0 there exist a constant a o and a function B(s) such that 

I; f(v)=ao~l(vjw)+ B(s) cps(v)ds, v > 0  

Here ao and B(s) are given by (5.8) and (5.10), respectively. 

(b) For w < 0 there exists a function B(s) such that 

fo f (v)  = B(s) ~Os(V ) ds, v > 0 

Here B(s) is given by (5.2) [-setting X =  Xo, Eq. (5.4), and g = f ] .  

6. H A L F - S P A C E  P R O B L E M S  

We consider the half-space x > 0 with the particles injected at x = 0. 
We consider separately the case in which the convection process drives the 
particles away from the boundary (w > 0) and the case in which the con- 
vection process drives the particles back toward the boundary (w < 0). The 
case w > 0 would correspond to an electron transport  problem in which 
electrons are released from a cathode (at x = 0) with a velocity distribution 
fo(v), v > 0, and accelerated in an electric field in the positive x direction. 
Moreover, those electrons which are driven back to the cathode by colli- 
sion are assumed to be absorbed. Conversely, the case w < 0 corresponds 
to electrons being driven by an electric field in the negative x direction 
toward an anode located at ~y=0. The incoming electron current is 
assumed to be given. In addition, electrons may evaporate from the anode 
into the x > 0 semispace with a distribution fo(V). In either case, w > 0 or 
w < 0, we require the distribution to be bounded as x--* + oo. 

Caso I. w > 0 .  By virtue of the above discussion, we see that we 
must impose the condition 

f(O, v)=fo(v), v > 0  (6.1) 

Then Proposition 4 implies that 

f (x ,v)=aoq(V]w)+ B(s)e-X/S~Os(v)ds, x > 0 ,  y e n  (6.2) 

with a o and B(s) given by Eqs. (5.8) and (5.t0) and the downstream 
distribution by 

f (  + ao, v) = aorl(vlw) (6.3) 
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The entering current at x = 0 ,  the outgoing current at x=0 ,  
downstream net current are given by the respective expressions 

fo J+(0) = vf(O, v) dv 

J (0)= [v l f (O, -v )  dv 

J ~ =  v f (+o%v)dv=aow 

We have by particle conservation 

J + ( 0 ) = J  (O)+J~  

Then the transmission T is given by 

;o T=J(+oo)/J+(O)= - w  X( (v[w)A+(v  

and the albed0 is given by 1 -  T. 
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and the 

(6.4a) 

(6.4b) 

(6.4c) 

(6.5) 

w)-' f0(,,) d./ ./;(~) d. 

(6.6) 

Case 2. w < 0. The previous discussion indicates that, in addition to 
(6.1), we must impose the condition 

f (+oo ,  v)=tl(Vlw)q , with q~>0 (6.7) 

Then the solution is given by 

f (x ,  v)=q~l(v]w)+ B(s) cps(v)e-X/Sds, x > 0 ,  s c R  (6.8) 

We compute B(s) from Eq. (5.10) with g(v) replaced by fo(v)-qtl(VlW). 
Thus, 

B(s) = Bo(s ) - qB,l(s ) (6.9) 

where Bo and B, are computed from (5.10) with data f0 and r/, respectively. 
In fact, B~ can be computed explicitly by a contour integration similar to 
one used in ref. 13. The result is 

~(slw) 
B,(s) - X~(s) A- (s )  (6.10) 

We note the similarity of this case to the Milne problem (9) and the 
Kramers problem, (8,11~ in which a source at infinity is assumed. 
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7. DISCUSSION 

The problem discussed here is a one-dimensional "caricature" of an 
electron transport problem. In this model, convection and scattering 
govern the equations of motion of electrons, whereas in the true physical 
situation it is the electric field which together with the scattering process 
drives the electrons. When the electron distribution function has a velocity 
profile which is not far from a Maxwellian (at the temperature and the drift 
velocity of the background gas), we may expect the two models to yield 
results which are close to each other, and not far from the results of the 
corresponding diffusion approximation, provided drift velocity, accelera- 
tion, diffusion coefficient, etc., are properly matched. 

An indication that this model may have some merit stems from the 
qualitative agreement between the results of transport theory and those 
from diffusion theory (cf. discussion in Section 4). Further comparison 
between expression (6.6) for the transmission coefficient and its counterpart 
according to diffusion theory--at an asymptotic or a numerical level--may 
be of interest. 

Finally, we remark that, although Eq. (1.4) looks very much like the 
evaporation model studied by Arthur and Cercignani, (16) the qualitative 
results depend essentially on whether w exceeds the speed of sound of the 
evaporizing gas or not, whereas in the present problem the sign of w is all 
that matters. 

The mathematical model dealt with in this paper is very simple. 
More general transport equations have been discussed in recent 
monographs/~7,18) It is possible that the methods discussed in these 
monographs could be utilized to deal with more realistic, and hence more 
complicated, models of the transport process we have attempted to 
describe in this paper. This question is still being studied. 
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