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We establish three results in the 3D Schrodinger equation with a potential having no spherical sym-
metry: the existence of a Wiener-Hopf factorization of the scattering operator, a method to recover the
potential from the scattering data, and the existence of the 3D Jost operator.
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Consider the Schrodinger equation in three dimensions
V2y(k,0,x) +k?y(k,0,x) =V x)y(k,0,x), 1)

where k? is energy, x € R? is the space coordinate, and
6 € S?is a unit vector in R3. The potential ¥ (x) is real
and is assumed to decrease to zero fast enough as |x|
— oo, but it is not assumed to have any spherical sym-
metry. As |x|— oo, the wave function satisfies

X
| x|

y(k,0,x) =e*ox+ e;’:’l‘l A [k,

,0[+o(), (2

where A is the scattering amplitude, which is related to
the scattering operator S by

S(k,0,6) =5(0—0) — X 4(k,0,0) 3)
2rxi

and §(6— ') is the 2D Dirac § distribution. In operator
notation we have S(k)=I—(k/2ri)A(k), where the
operators act on vectors in L2(S?2), the Hilbert space of
square integrable functions on the unit sphere S2in R3.
The direct scattering problem is to obtain S(k) when
the potential ¥ (x) is given. The inverse scattering prob-
lem, however, is to recover V' (x) from S(k). The main
source of information about molecular, atomic, and
subatomic particles consists of collision experiments;
hence, the solution of the inverse scattering problem is
equivalent to the determination of the forces between
particles using the scattering data and is of the utmost
importance in physics. The methods developed to solve

the 3D inverse scattering problem include the Newton-
Marchenko method,! the Gel’fand-Levitan method,' the
9 method,? a method that relies only on backward
scattering data,’ and a method that uses the Green’s
function of Faddeev.*> However, there are still many
open problems in 3D inverse scattering theory, and the
methods developed are far from complete. A com-
prehensive and up-to-date review of the methods and re-
lated open problems in 3D inverse scattering theory can
be found in a forthcoming book on Newton.®

The main idea behind the Newton-Marchenko and
Gel’fand-Levitan methods' is to formulate the inverse
scattering problem as a Riemann-Hilbert boundary-
value problem, to transform this Riemann-Hilbert prob-
lem into a nonhomogeneous linear integral equation
whose kernel is related to the scattering data, and to ob-
tain the potential from the resulting integral equation.

In this paper we present a solution method for the 3D
inverse scattering problem by establishing a Wiener-
Hopf factorization of the scattering operator, and thus
by solving the Riemann-Hilbert problem. The usual
theory of Wiener-Hopf factorization, however, deals
with either scalar functions’ or square matrix functions.®
Here we give the Wiener-Hopf factorization of the scat-
tering operator in an infinite-dimensional setting® by us-
ing some results of Gohberg and Leiterer. !°

The results presented in this paper are obtained for po-
tentials that satisfy the following four sufficient condi-
tions. The first two conditions below are standard and
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the third condition is much weaker than usually as- X +(k) has an analytic extension in k to C*, the com-
sumed.® Our fourth condition is rather mild. plex upper half-plane, and X +(k)— 0 as k— o in C*.
Definition.— A real potential V' (x) is said to belong to Similarly, X — (k) has an analytic extension in k to C ™,
the Newton class if (1) the lower half-plane, and X —(k)— 0 as k— o in C ™.
2 The Riemann-Hilbert problem amounts to determining

f dix| V)| [M] <C<oo, X+(k) and X-(k) from G(k). Once X+(k) and

R? |x—yl X-(k) are found, one obtains a solution of the

Schrédinger equation and hence, in principle, the poten-
tial.

We establish the following result.

Theorem I.—If the potential V(x) belongs to the
Newton class, the operator function G (k) defined in (7)
has a Wiener-Hopf factorization, i.e.,

where the bound C is independent of y € R3. (2) k=0
is not an exceptional point. (This condition is satisfied if
the potential does not have a bound state or half-bound
state at zero energy.) (3) There exist ¢ >0 and s> %
such that |V(x)| =c(1+|x|?)~* for all x € R3. (4)
There exists 8> 0 such that f:d3x | x|?|V(x)| < eo.

In the Schrodinger equation k appears as k2 and G(k) =G +(k)D(k)G - (k) , )
hence y(—k,0,x) is a solution whenever y(k,0,x) is. ) ) . )
These two solutions are related as where G + (k) is an operator function having an analytic

extension to C*, G+(k) 7! exists there as a bounded
w(k,0,x) ..f do'S(k, — 6,0 y(—k,6',x). @) operator, and G+(k)—1 on C% in operator norm.
s? Similarly, G — (k) is an operator function with an analyt-
Let ic extension to C ~, G —(k) ~! exists there as a bounded
- —ikéx _ operator, and G - (k)— I on C ~ in operator norm. The
X+ (k,6,x)=e vk, 00— 1, ©) diagonal operator D(k) is given by
X-(k,0,x) =e ~*™y(—k,—0,x)—1, (6) ,
m — J
G(k,6,0,x) =e ~**S(k,—0, — 0')e % @) D(k) =P+ X, L;TZ P;, (10)
i=1
Then (5) can be written as
A here P,,...,P, are finitely many, mutually disjoint
- )+ - w b o P y many, y disj
X+A(k) GUIX-U)+[6 %) 111, R ®) rank-one projections and Po=I—Z}"=1Pj. The numbers
where 1 is the function on S2 defined as 1(8) =1 for all P1, - - - »Pm are nonzero integers called the partial indices
6e S of G(k).
It is known' that in the absence of bound states Using the Wiener-Hopf factorization given above, the
|
solution of (8) is given by
N (k)
X+ () =[G+ (0 -Ni+6.G0 T 254 an
>0 (k+i)”
- (k) + [(k+i)” — (k—i)”1P;1
X_0=16-W)"'-1+6-0) ' T ¥ L, (12)

pj>0 (k—i )i
provided Pﬁ =0 whenever p; <0. Here 7; is a fixed [
nonzero vector in the range of P; and ¢;(k) is an arbi- right-hand side of (13) is equivalent to the so-called
trary polynomial of degree less than p;. Using the miracle condition of Newton. !

Schrodinger equation the potential is then obtained as'' The vector Riemann-Hilbert problem (8) is associated
(V2+2ik6V) X + (k. 6,x) with the operator Riemann-Hilbert problem

T+ X k00 (13) X+ () =G U)X - (k) +G (k) 1. (14)

V(x)

provided the right-hand side is independent of k and 6. Using the Wiener-Hopf factorization of G(k) given in
It can be shown'' that the k and 6 independence of the | (9), the solution of (14) is obtain as''

X+ =[G+(K)—11+G+(k) X _0, ) :
;>0 (k+i)"

NP P
0, (K)+(k+i)” —(k—i) ]Pj, 16)

P;, (15)

X-(K)=G-k)'—11+G-k) ' X
pj>0 (k_i)pj

provided there are no negative partial indices. If there are negative partial indices, the solution to (14) does not exist.
Again ¢;(k) is an arbitrary polynomial of degree less than p;.
When x=0, the operator [I+X4+(k)] ™! becomes the Jost operator used in the 3D Gel'fand-Levitan inversion
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method.! The existence of the Jost operator has been an
open question,! which has now been resolved for poten-
tials in the Newton class.

Thus we have the following result.

Theorem 2.—If the potential V' (x) belongs to the
Newton class, the Jost operator exists if and only if there
are no negative partial indices. In that case the Jost
operator is given by!!

_ 0, (k) — (ke +1)” »
Jk) =11 ij>:0 o (0 P;|0S+(k) "0,
an
where, for all p; > 0, w;(k) is an arbitrary polynomial of
degree equal to p; with leading coefficient 1 and without
zeros in C*UR. S4(k) is one of the factors in the
Wiener-Hopf factorization S (k) =S4 (k)D(k)S - (k) of
the scattering operator S(k). In the absence of partial
indices, the Jost operator is uniquely given by
0S5+ () ~'Q.

If the potential ¥(x) has any bound states, each
bound state corresponds to a simple pole X+(k,0,x)
given in (5) on the positive imaginary axis in the com-
plex k plane.! It is possible to use the reduction method
of Newton' to remove these bound state poles from the
scattering operator. Then the Wiener-Hopf factorization
method described above can be used to solve the
Riemann-Hilbert problems (8) and (14), to solve the in-
verse scattering problem, and to find the Jost operator.
All the proofs and the mathematical details of the

method outlined in this paper with and without bound
states will be published elsewhere. !
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