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Sufficient conditions are given for the existence of a Wiener—Hopf factorization of the
scattering operator for the 3-D Schrodinger equation with a potential having no spherical
symmetry. A consequence of this factorization is the solution of a related Riemann—-Hilbert
problem, thus providing a solution of the 3-D inverse scattering problem.

i. INTRODUCTION
Consider the Schrodinger equation in three dimensions
AY(kx,0) + k*P(kx,0) = V(x)¥(k.x,60), (1.1)

where A is the Laplacian, xeR? is the space coordinate, 6cS
is a unit vector in R, and k “eR is energy. The potential ¥(x)
is assumed to decrease to zero sufficiently fast as |x|— co.
However, we do not assume any spherical symmetry on the
potential. As x| - o, the wave function ¥(%,x,8) behaves as

ik x|
P(kx,0) =" 4 £ 4 (k, X »6) + "(’L) ,
x| |x] x|
(1.2)

where 4(k,0,0°) is the scattering amplitude. The scattering
operator S(k,6,0 ) is then defined by

S(k6,6')=8(0—6")— (k/2mi)A(k6,0"), (1.3)

where § is the Dirac delta distribution on S2 In operator
notation (1.3) is written as

S(k) =1- (k/2m)A(k),

where the operators are defined on L?(S?), the Hilbert
space of complex-valued, square-integrable functions on the
unit sphere §? in R? with the usual inner product {-,*).

The direct scattering problem is to obtain S(k,0,0")
when V(x) is given. The inverse scattering problem, how-
ever, is to recover ¥(x) when S(k%,0,8") is known. Since the
main source of information about molecular, atomic, and
subatomic particles consists of collision experiments, solving
the inverse scattering problem is equivalent to determining
the forces between particles from scattering data.

For one-dimensional and radial Schridinger equations,
the inverse scattering problem is fairly well understood (at
least for certain classes of potentials).! In higher dimen-
sions, however, the situation is quite different. The solution
methods developed in higher dimensions include the New-
ton-Marchenko method,>* the Gel'fand-Levitan meth-
0d,”* the 3 method,*® the generalized Jost~-Kohn meth-
0d,’™"'? and a method that uses the Green’s function of
Faddeev.'*'® There are still many open problems in multidi-
mensional inverse scattering, and the methods developed are
still far from being complete. A comprehensive review of the
methods and related open problems in multidimensional in-
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verse scattering can be found in Newton’s recent book!” or
in Ref. 1.

The principal idea behind both the Newton-Marchenko
and Gel'fand-Levitan methods is to formulate the inverse
scattering problem as a Riemann—Hilbert boundary value
problem, to transform this Riemann-Hilbert problem into a
nonhomogeneous integral equation where the kernel and the
nonhomogeneous term contain the Fourier transform of the
scattering data, and to obtain the potential from the solution
of the resulting integral equation. In this paper we present a
solution of the 3-D inverse scattering problem by establish-
ing a Wiener—Hopf factorization for the scattering operator
and thus solving the corresponding Riemann-Hilbert prob-
lem. The usual theory of Wiener—Hopf factorization, how-
ever, deals with scalar functions and square matrix func-
tions. Here, we need the Wiener—-Hopf factorization of an
operator function in an infinite-dimensional setting, and for
this we draw on some results by Gohberg and Leiterer.'®

The present paper is organized as follows. In Sec. IT we
define the class of potentials (which we will name the New-
ton class) for which corresponding scattering operators
have a Wiener—Hopf factorization. In Sec. III we give some
estimates on the scattering amplitude and its derivative and
establish the Holder continuity of the scattering operator. In
Sec. IV we define the Wiener—Hopf factorization for opera-
tor-valued functions and prove its existence for scattering
operators corresponding to potentials in the Newton class.
In Sec. V we solve a related Riemann-Hilbert problem using
the Wiener—Hopf factorization of the scattering operator. In
Sec. VI the solution of the inverse scattering problem is giv-
en. Also in this section, for potentials in the Newton class
having no bound states, we give the necessary and sufficient
conditions for the existence and uniqueness of the Jost oper-
ator in terms of the partial indices of the scattering operator.
In Sec. VII we summarize the main results of the paper and
give the conclusion.

1. ESTIMATES ON THE SCATTERING OPERATOR

We first identify the class of potentials for which all of
the results in this paper are valid. Except for the third condi-
tion given in the following definition, these conditions are
standard assumptions on the potential.'” The second condi-
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tion is much weaker than the usual assumptions.'” The third
condition is needed only twice: first to establish a uniform
operator bound for the derivative of the scattering ampli-
tude, and second to use an interpolation argument. Note that
all four conditions used below are only sufficient conditions
and might possibly be weakened.

Definition 2.1: A potential ¥(x) is said to belong to the
Newton class if V(x) is real valued and measurable and sat-
isfies

(i) Ja,b>0such that

f dgi(x)|(-|3‘—‘!i‘-)i!i—‘f) <b, VyeR’. 2.1)
(i) 3¢>0,5>4 such that VxeR?

[Vi(x)|<e/(1 + |x*) (2.2)
(iii) ¥ >0 and Be(0,1] such that

J- dx|x?|V(x)|<y. 2.3)
R3

(iv) The point k = 0 is not an exceptional point.'® This
condition is satisfied if at zero energy there are neither bound
states nor half-bound states.

Remark 2.2: If V(x) satisfies (2.1), we have

J dx|V(x)| < c0,
RJ

[ ozl .,
R’ |x y
f x|
< 0,
R’ Ix y?
ff dx dy R14E14008 < o0,
R R? |x yl

Whe=([ [, axay ERYOL"

Ix —y|?

The last integral defines the Rollnik norm of the potential.
The real potentials with a finite Rollnik norm make up the
Rollnik class. The number of bound states n, for potentials
in the Rollnik class is finite’>*! and ny<||V||k/(1677).

Remark 2.3: In (2.2), whenever s>}, the potential
VeL*(R?). If s> 1, there are no nonzero real exceptional
points and hence no positive-energy bound states.”

The kernel of the scattering operator A4 (k) has the rep-
resentation

VyeR?,

VyeR?,

A(k,6,08') = —-———J dx V(x)e **p(kx,0"),
(2.4)

where (k,x,6) is the solution of the Schrédinger equation.
The 3-D Lippmann-Schwinger equation corresponding to
the Schrddinger equation satisfying (1.2) is given by

1 e* |x — ¥
—“fsdy V(x)¢(kyy’6)-

Y(kx,0) =™ —
4 Jr |x — ¥
(2.5)

Iterating (2.5) three times, we obtain
¥, (k,x,0) = ™7,
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e @] e yy{‘ VO, (k2.),
j=123
¥, (k,x,0) = (k,x,0) — Z} ¥, (k,x,0).
Then we can write (2.4) as'’ J*
(k90)=-——-2A(k99), (2.6)
where T
A;(k0,0') = L3 dx V(x)e ** o (kx,0'),
j=1234. @

Proposition 2.4: If the potential ¥(x) satisfies the first
and fourth conditions in the Newton class, the correspond-
ing scattering amplitude 4 (k) is a continuous operator func-
tion in keR on L?(S?).

Proof: From (2.7) we obtain the estimates

1A,<k,e,9')(<f dx|V(x)],

§A2(k96)<__ff lV(x)V(y)i ’
R3xR? yf

45 n') R
X{Lsdy%ug é ;|Vf)z|;”

and hence, using Remark 2.2 and Lebesgue’s dominated
convergence theorem, (2.1) is sufficient to conclude that
A;(k) is continuous for j = 1,2,3 in the operator norm on
L?(S?). The continuity of 4, (k) follows'” under the suffi-
cient condition (2.1) and the fourth condition in the Newton
class. |

The next result is due to Weder.”* A proof convenient to
our present problem is provided by Newton."”

Proposition 2.5: If the potential V(x) satisfies (2.1) and
(2.2) with s > 1, and the fourth condition in the definition of
the Newton class, 3C > Osuch that ||k4 (k) ||[<C /(1 + |k )
for all keR, where the norm is the operator normon L *(S?).

The following proposition generalizes Proposition 2.5
under a much weaker condition.

Proposition 2.6: If the potential V(x) satisfies (2.1) and
(2.2) with { < s < 1, and the fourth condition in the definition
of the Newton class, JE>0 such that |k4(k)||
<E /(1 + |k |)?~*for all keR, where the norm is the opera-
tor norm on L 2(S?).

Proof: When |k |<1, using (1.3) and the unitarity of
S(k) we obtain -

kA ()| <2m(|SC || + <4722~ 2/ (1 + |k [)> 2

When |k |»1, we proceed as follows. According to the
lemma due to Vega,?* VgeL *(S?), we have

12
[ J dx|(o"( — D)X [*(1 + |x]») -‘] <cligli,
RJ

Vs>4,
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where ¢ is a constant and

(o' (k)g)(x) =f df e~ *9*g(9).

Replacing x by kx in Vega’s lemma and using |k [>1, we
obtain

f dx|(ot (k)g)x) (1 + |x[?) ¢
RS

<lgl*/ |k P~ ><2* = >clgl/ (1 + [k D° % (2.8)

Next, we apply the representation for the scattering ampli-
tude17,23

A(k) = — (1/4m)a(k)VV*[1 - L(k)]~'|V|"%0"(k),

2.9)

where o (k) is the adjoint of ot (k), ¥ is the potential V(x),
V2 =sgn(V)|V|"? and L(k) is the operator whose ker-
nel :

L(k,x,y) —_ (1/47)|V(x){VZeik"‘_y'V(y)l/z/Ix—-y|,

is closely related to the kernel of the Lippmann-Schwinger
equation (2.5). Itis known that [I — L(k)] " is uniformly
bounded in k in operator norm."” Hence, if ¥(x) satisfies
(2.2) with s>}, using (2.8) and (2.9) we obtain
|kA(k)||<E /(1 + |k|)?>~ %, for some constant E. [ ]

The choice S =1 in the next three propositions may
seem to be a step backward at first; however, using the inter-
polation in Proposition 2.10, the results of Propositions 2.8
and 2.9 will be strengthened to include Be(0,1]. The next
proposition gives the uniform boundedness of the derivative
of the scattering amplitude.

Proposition 2.7: If the potential V(x) satisfies (2.1) and
(2.3) with 8 = 1, and the fourth condition in the definition
ofthe Newton class, 3B > Osuch that ||d4(k)/dk | <B forall
keR, where the norm is the operator norm on L *(S?).

Proof: From (2.7) we obtain by direct computation

A, (k,6,0°
!i—'(—)—‘ <f dx|xV(x)|,

‘———M’(k”)‘ ——f dy|V(»)|

[L (lxltbl") IV(x)I],

< dy|V<y>|U do{V(2)]
R3 3

ax Y +2fdy|V(y>|
R |x—z|

U dle(x)IU dz lz”’"”

and hence, using Lebesgue’s dominated-convergence
theorem, the first and third conditions in the Newton class
are sufficient for the differentiability of 4; (k) with respect to
kin the operator norm on L ?(S'?) and the uniform bounded-
ness of its derivative for keR, for j = 1,2,3. The uniform
boundedness ||dA4, (k)/dk ||<B, has already been estab-
lished'” using the first and fourth conditions in the definition
of the Newton class. Note that in the above proof, the only

)8A3 (k,60,8") ‘
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place where we used (2.3) was the bound on ||dA4, (k)/dk ||.
|

The Mobius transformation k—& = (k—1i)/(k + i)
maps the extended real axis R onto the unit circle T, the
upper-half complex plane C * onto the unitdisk T *, and the
lower-half plane C~ onto the exterior of the unit disk T,
where oo is considered tobe a pointof T . Let 3’(5) = S(k)
under this transformation, and let us adopt this notation
throughout the paper.

Let T be a Borel set in the complex plane C. Consider an
operator-valued function W:I'- #(L?*(S?)), where
L (L?(S?)) is the space of bounded linear operators acting
on L ?(S?). Then the quantity ||| W |||,, which is given as

W) — W(z)|

>

W lla =sup [W(D)]| + sup
el 4 # el

Ity — 8|
where ||| is the operator norm on L?(S?) and a<(0,1],
defines a complete norm on the Banach space

X IT;L(L*(S?))] of Holder-continuous operator func-
tions'*?* with exponent a.

Proposition 2.8: The S(&) is Holder continuous on the
unit circle T with exponent } if the potential ¥(x) is in the
Newton class with s> 1in (2.2) and 8= 1 in (2.3).

_ Proof: We have to show that IM >0 such that
I3(6,) — S(&)I<M &, — £,|"* for all &, & €T. Using

I15(€1) — 8|l = (1/2m) ||k Ak, ) — ko A (K|
and

E —& =2k, —ky))/(ky +D)(ky +1),
we have
IS¢ -SEDl _ 1

6 —&l° 27

X ||k, Ak, ) — Ky ACk) |/ |y — K, <
Because of the symmetry in &, and k,, it is sufficient to show

that A (k,8) is bounded by a constant independent of k and 6
forall§>0and — o <k < o0, where

AkS) = (k> + D*[(k+8)* + 1]?
X || (k + 8)A(k + 8) — kA(K)||(1/8°).

In our proof we will use Propositions 2.5 and 2.7 and the
constants C and B given there.

When |k |<1<8, using k2 +
and

|k + 8)A(k + &) — kA(K) ||
<|[(k+ 8)A4(k + 8) || + || k4 (k) ||<2C,

we obtain A (k,8) <2 10¢2C.
When |k |<1, 6<1, using k2 + 1<2, (k + 6)* + 1<5,

|k + 8)A(k + &) — kA(K)||' ~ < (2C)' ~%,
and
|k + 8)A4(k + &)

(k2+1)e/2(k +1)s/2

1<2, (k4 8)* + 1<58%,

— kA(K)||°

<(||A(k +8)|| + 2(]k | + 6)max
keR

)

<(C + 4B)<6°,
we obtain A (k,8) <102(2C)! ~¢(C + 4B)".
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When 1<|k |<8, usingk 2 + 1<2k 2, (k + 8)* + 1<56°,
and

| (k+ 8)A(k + &) — kA(K)||<2C /(1 + |k |),

we obtain A(k,8)<2C-102[ |k |/(1 + |k |)].
When 1<6<|k |, using

1/8°<1, k* + 1<2k %, (k + 8)* + 1<5k 2,
and
|(k + 8)A(k + 8) — kA(k)[|<2C/(1 + [k ),

we obtain A (£,8) <2C-102[ |k >/(1 + |k ) ].
Whend<1<|k |,usingk ? + 1<2k %, (k + 8)* + 1<5k?,

| (k 4+ 8)A(k + 8) — kA (k)||' ¢
<QO)' /U + kD'
and

[k + 8)A(k + 8) — kA (k)|

<‘5€<”A(k + )| +2(|k| + 6)12;}(

‘ dA(k) ‘
dk

:

<O(C +4B)<|k |5,

we obtain
A(k,8)<(2C)' — < 107*(C + aB)e[ |k P/(1 + kD' <).

Hence, whenever 0<e<}, we have A (k,6) <M, where M
is a constant independent of £ and &. |

Under weaker assumptions on the potential, we can
modify Proposition 2.8 to obtain the following result.

Proposition 2.9: The S( £) is Holder continuous with ex-
ponent 2(1 — 5)/(5 — 2s) if the potential ¥ (x) belongs to
the Newton class with some se(4,1) in (2.2) and f=1in
(2.3).

Proof: The only place in the proof of Proposition 2.8
where we have used Proposition 2.5 are the three cases
1< |k |<8, 1<6< |k |, and 5<1<|k |. In these three cases, we
must use the result in Proposition 2.6 instead of the result in
Proposition 2.5. This is accomplished by replacing
2C/(1+ |k|)by2E /(1 + |k |)*~ *inthe proof of Proposi-
tion 2.8. We have the following.

Using

|(k+ 8)A(k + 6) — kA(K)||<2E /(1 + |k |)* ™7,

we obtain A(k,8)<2E-10?[|k|/(1+ |k|)>~*] when
1<k |<8, and

A(k,5)<2E105/2[|k |2‘/(1 + Ikl)Z—zs]’

when 1<8<[k |
When < 1<|k |, we use

|k + 8)A(k + 8) — kA (k) ||

<5 Hack+ &3] + 201k | + Oymax | | LK )
<8(E+4B)|k |5,
and
(ZE)I —€

|(k + 8)A(k + 8) — kA(k)||' ~*<

(1 + lkl)(l—e)(z—ls) 4
to obtain
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A(k,8)<(2E)' ~<10¥*(E + 4B)*

X Ik '35/(1 + 'k I)(l -e)(2—2s).
Hence, whenever 0<e<2(1 —s5)/(5—2s), we have
A(k,8) <M, where M is a constant independent of k and 5. B
Proposition 2.10: The A, (k) defined in (2.7) is Holder
continuous with exponent S whenever the potential V(x)
belongs to the Newton class with the constant £in (2.3).
Proof: From (2.7) we have

A4,(k,6,0) =f dx V(x)ee—0x,
R3

Consider the operator % :V(x)—(4,(k)f.g), for some
fixed f,geL *(S?); i.e., consider

(WV)(k)=fjf dx dédo’' V(x)
R*%S2xS?

Xeik(GA 0)7‘(9) g(o '),

where the bar denotes complex conjugation. The operator
% is linear from L '(R3dx), the space of Lebesgue integra-
ble functions with respect to measure dx, into 57, the Ban-
ach space of bounded continuous functions on R. The same
operator % maps L '(R% (1 + |x|)dx)into 57, the Banach
space of bounded Hoélder-continuous functions on R with
exponent 1. An application of an interpolation theorem pre-
sented by Krein et al. (Theorems I11.3.5 and II1.3.6 of Ref.
25) leads to the result that %" maps L '(R% (1 + |x|)%dx)
into 7, where

Y ={hedp:|\h(k,) — h(ky)| =o(|k, — k,|®)

as |k, — k,|-0}.

Since this result is true uniformly in f,g on bounded sub-
sets of L2(S?), A, (k) belongs to % [R;ZL(L*(S?))].
Hence, 4, (k) is Holder continuous with exponent B when-
ever the potential V(x) belongs to the Newton class where 8
is the constant in (2.3). Note that, strictly speaking, in order
to apply Krein’s result, one must restrict the function
(F V) (k) to ke I, where ICR is a compact interval, and
observe that all the norm bounds are independent of I to pass
to the case where (%" V) (k) is considered for all keR, which
is the case here. ]

Using Proposition 2.10, we improve the results of Prop-
ositions 2.8 and 2.9 to obtain the following result that will be
used in Sec. V.

Theorem 2.11: If the potential ¥'(x) belongs to the New-
ton class with some S€(0,1] in (2.3), then on Mobius trans-
formation the corresponding scattering operator S(&) be-
longs to 7, [T;.Z(L*(5?))], where u=B/2(1 +p) if
s>1in (2.2) and g =B(1 —s5)/(B—s5+3) if se(},1) in
(2.2). Here, 27, [T;.£(L*(S*))] is the Banach space of
Hélder-continuous operator functions on the unit circle T
with exponent p.

Proof- Using (1.3) and (2.6) we have

4
Stky) = SU) =—— 3 [kd;(ky) — ko dy (ky) ]
872 <

As mentioned at the end of the proof of Proposition 2.7, the
only place where we used (2.3) was in the uniform bounded-
ness of ||d4, (k)/dk ||. Therefore, from the proof of Proposi-
tion 2.8, we obtain that for j = 2,3,4, the operator k4, (k) is
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Holder continuous of exponent } even for 8 =10 in (2.3).

Hence, to prove the theorem, it is enough to redo the proof of
Proposition 2.8 only for 4, (k) and only in two cases; name-
ly, when |k |<1,8<1and when <1<k |;i.e., itis enough to
show that

A (k8) = (kP + D[ (k+8)* + 1]

X || (k + )4, (k + 8) — k4, (k)||(1/5) <M,
for e<f21+p) if s>1 in  (22) and
e<B(1 —5)/(B—s+3) if se(},1) in (2.2), where M is a
constant independent of k and &. Note that, whenever the
potential V(x) satisfies (2.3), from Proposition 2.10 we
have |4, (k + 8) — 4, (k)||<N&”, where N is a constant in-
dependent of k and 8. We will do the case when s> 1in (2.2)
first.

When 8<1,|k |<1, using k% + 1<2,(k + 8)* + 1<5,
|(k+8)A, (k+ &) — kA, (k)||
<[k |14, Gk + 8) — 4, ()| + 8|4, (k + &)
<|k |N&® 4+ SC<(N + O) &,
we have A, (k,8)<10¥*(N + C)8°~ <.
Whend< 1<k |,usingk 2 + 1<2k %, (k + 8)* + 1<5k?,
|k + 8)A4, (k+8) — kA, (k)||'~<*
<QC/(1+|k|)' %
and
[k + 8)4, (k + &) — kA, (k)||“P<(2|k |N&#)?
+ (25C)E/ﬁ<(2lk |6)E/B(N5/ﬁ+ Ce/B)’
we have
2, (k,8)<2:10' ~“P(N P + C¥)
Xae/ﬂ—s|k|25+s/ﬁ/(l + lk|)l_€/ﬁ.

Thus, whenever €< /2(1 4+ ), A, (k,8)1s bounded by a
constant independent of & and &, and the proof for s> 1 is
complete.

If }<s<1in (2.2), we basically have the same proof
with only two minor modifications, which amount to replac-
ing the denominator (1 + |k |) by (1 + |k |)*>~* and the
constant C by E above. As a result, we obtain the sufficient
condition

2e + €/B<2(1 —e/B) (1 —5),

for the uniform boundedness of A4, (k,6). Hence, we must
have

O<e<B(l —5)/(B—5+3),
which completes the proof. [ ]

lil. RIEMANN-HILBERT PROBLEM

In the Schrodinger equation, k appears as k > and hence
¥( — k,x,0) is a solution whenever ¥(k,x,8) is. These two
solutions are related to each other as”

¥(k,x,0) =f de' Sk, — 6,0)y( —kx,0'). (3.1)
SZ

Define

flk,x,0) = e~ *@xp(k,x,0). (3.2)
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If the potential satisfies (2.1) and if there are no bound
states, for fixed x and &, the function f( k,x,0) has an analytic
extension in & to C* and f(k,x,0) =14 O(1/|k|) as
|k | - oo there.? Similarly, f{ — k,x,6) has an analytic exten-
sionin k to C~. Hence, using (3.1), we obtain the Riemann-
Hilbert problem

Sflkx,0) =J do' e~ ***S(k,—6,0")
SZ

Xe *OUX _ kx,0"). (3.3)

Analogously, in the absence of bound states, we have the
associated operator Riemann—Hilbert problem

F(k,x,0,0') =f do" e~ **S(k,—6,0")
SZ

Xe-ike"'xF( _k,x,___eu’_e,)’ (3'4)

where, for fixed x,8,8’, the operator F(k,x,0,0") has an ana-
lytic extension in k to C* and F(kx,0,6')
=8(0—0')+0(1/]k|) as |k|—> oo there. Similarly,
F( — k,x,0,0") has an analytic extension in £ to C~.

For fixed x,0, and 8', let X(%,x,0,68') denote both the
analytic extension in k of F(k,x,0,0') —6(8—0')to C*
and the analytic extension of F(—kx,—6,—8")

—68(0—8')toC~ . Then X(%,x,6,8’) is a sectionally ana-
lytic operator-valued function of & in the complex plane with
a jump on the real axis. For k<R, define

X, (kx,60') = lim X(k+ i€x,0,0")

e-0"

=F(k,x,0,0') —-6(6—-0"), (3.5)
X_(kx,6,0')= lim X(k—iex,0,0")
=07t
=F(—kx,—0,—0')—-56(6-0"),
(3.6)
and
G(k,x,0,6') =e~**S(k, — 6, — 9")e™*?"*, (3.7)
Then, in operator notation, we can write (3.4) as
X, (k)=Gk)X_ (k) + [G(k) —1], (3.8)

where we suppress the x dependence; note that x enters (3.8)
only as a parameter. The operators X , (k), X _ (k), G(k),
and I all act on L 2(S?). Let 1 be the constant function on
this space defined as 1(8) = 1, VOS2 Let us define

X, (k)y=X, (k)1 =flkx6) —1, (3.9)
X_(k)=X_(ki, (3.10)

where f(k,x,0) is as in (3.2). Then we can write (3.3) in
vector form as

X, (k) =GK)X_ (k) + [G(k) —I]1. (3.11)

If there are bound states, the extension of f(k,x,8) in k
to C* becomes meromorphic with simple poles on the
imaginary axis. A pole at k = iy corresponds to a bound
state of the Hamiltonian with energy — 7°. It is possible to
remove these simple poles from the Riemann-Hilbert prob-
lem by a reduction method.* Assume there is a bound state
corresponding to a pole at k£ = iy. Using a suitable orthogo-
nal projection B, we form the rational function
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(k) =1—B+ [(k+iy)/(k—iy)]B.

For the operators X, (k), X _ (k), and G(k), we then de-
fine the corresponding reduced operators

X (k) =T(k) "X, (k) + [TI(k) ~' —1], (3.12)

Xrd(k) = (k)X _ (k) + [II(k) —1], (3.13)
G (k) = II(k) ~ 'G(k)IL (k).
Thus we have
X (ky =TI(k) "X, (k) + [I(k) "' =111, (3.14)
Xrd(ky = (k)X _ (k) + [TT(k) —I]1. (3.15)

As a result, X! (k) and X*?(k) do not have a pole at
k =iy, and X™(k) and X™(k) do not have a pole at
k = — iy. If there is more than one bound state, this proce-
dure must be repeated to remove the finitely many poles
corresponding to the bound states; the details can be found in
Ref. 4. This eventually leads to the operator Riemann-Hil-
bert problem

Xrid (k) — Gred(k)xrid(k) + [Gred(k) _ I],
and the vector Riemann-Hilbert problem

X (k) = G (k)X (k) + [G™ (k) —I]1. (3.17)
Once the reduced Riemann—Hilbert problems (3.16) and
(3.17) are solved, the solutions of the original Riemann—
Hilbert problems (3.8) and (3.11) can be obtained using
(3.12), (3.13), (3.14), and (3.15). Hence, in the following
sections we will give the solutions of both the operator and
vector Riemann—Hilbert problems assuming that X | (k)
and X _ (k), and similarly X (k) and X _ (k), have ana-
lytic extensions to C* and C, respectively.

(3.16)

IV. WIENER-HOPF FACTORIZATION OF THE
SCATTERING MATRIX

The usual theory for the existence of Wiener—Hopf fac-
torizations deals either with scalar functions®® or with ma-
trix functions.?”"* In our case we study the Wiener—Hopf
factorization of operator-valued functions. Hence, we must
study Wiener—Hopf factorization in an infinite-dimensional
setting®' and use results on the existence of Wiener-Hopf
factorizations of operator functions.'®%%3

By a (left) Wiener-Hopf factorization of an operator-
valued function G:R , - .#(L *(S?)), we mean a represen-
tation of G(k) in the form

G(k)=G_, (k)D(k)G_ (k), keR_, 4.1)
with
no(k—1i\
D(k) =P, P,
) o+j;l(k+i) !
where

(i) G, (k)iscontinuousin C™ in the operator norm on
Z(L*(S?) and boundedly invertible there. Similarly,
G _ (k) is continuous in C ~ in the operator norm and boun-
dedly invertible there;

(ii) G, (k) isanalyticinC* and G _ (k) is analyticin
C~;and

(iii) G, (0)=G_ () =L
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The projections P, ,...,P,, are finite in number, are mutually
disjoint, and have rank one, while P, =1 — X7, P,. The
(left) partial indices p,,...,0,, are nonzero integers. In the
absence of partial indices, we have D(k) = L, in which case
the Wiener—Hopf factorization is called (left) canonical.
The partial indices depend neither on the choice of the fac-
tors G, (k) and G _ (k) nor on the choice of the projections
P,,...,P, . If the factorization is (left) canonical, the factors
G, (k) and G_ (k) are unique, as one sees by applying
Liouville’s theorem.

In the same way, we define a right Wiener-Hopf factori-
zation, right partial indices, and a right canonical factoriza-
tion by interchanging G, (k) and G _ (k) in (4.1). The
right indices may be different, both in number and in value,
from the left indices, but the sum of the right indices coin-
cides with the sum of the left indices. This sum is called the
sum index of G(k).

By using the Mobius transformation defined above
Proposition 2.8, we can define the left and right Wiener—
Hopf factorizations of operator functions on the unit circle T
in the complex plane. The left and right partial indices are
invariant under this Mobius transformation.

Remark 4.1: If G(k) has a left Wiener-Hopf factoriza-
tion of the form (4.1) with left partial indices p, ,...,,,, then
taking the inverses of both sides of (4.1) converts it into a
right Wiener-Hopf factorization of G(k) ~ ! with right par-
tialindices — p,,..., — p,,. On the other hand, if we consider
the right Wiener—Hopf factorization

Gk) =G _ (k)D(k)G, (k), keR,, (4.2)
with
A A ’?' k—1i PiA
D(k) =P (———) P,
(%3 0 +j;1 k+1i /

and take the adjoints on both sides of (4.1) with & replaced
by its complex conjugate k, we convert it into a right Wie-
ner-Hopf factorization of G(k)' with right partial indices
— Pi1ses — P Hence, if G(k) is unitary for every real &,
which is the case in inverse scattering theory, the sets of left
and right partial indices of G(k) necessarily coincide. More-
over, the projections and factors appearing in (4.1) and
(4.2) are related by

B,=(P)" for j=1,..,m; and G (k)~'= G, (B

In the remainder of this section we will only consider left
Wiener—Hopf factorizations, though our results can also be
derived for right Wiener—-Hopf factorizations.

Theorem 4.2: If the potential ¥(x) is in the Newton
class, the operator function G(k) defined in (3.7) has a left
Wiener-Hopf factorization.

Proof: According to Theorem 6.1 (or 6.2) of Ref. 18, it is
sufficient to show the following:

(i) G(k) is boundedly invertible for every keR _ ;

(ii) G(k) is a compact perturbation of the identity for
every keR _ ; and

(ili) G(&)eHF,[T;L(L2(S?))] for some ae(0,1),
where G (&) is the Mdobius transform of G(k), as explained
above in Proposition 2.8.

Under these conditions there exists a left Wiener—Hopf
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factorization of G(£) with respect to the unit circle T that is
given by

G(&) =G, (ODEG_ (&),
where
D) =P+ Y £°P,

i=

G, (5)e¥ [T+ L(L*(SH)] and is invertible there,
G_ (5w, [T ;L(L2(S?))] and is invertible there, and
G, (&) and G_ (&) are analytic in T+ and in T~ respec-
tlvely The inverse of the Mobius transformation given above
Proposition 2.8 then yields a left Wiener~Hopf factorization
for G(k) of the type (4.1) where the Mébius transformed
factors G + (&) and G_( &) as well as their inverses are
Holder continuous of exponent « in the operator norm in
T* and T, respectively.

First, note that we can use (3.7) to write

G(k) = U(k)QS(k)QU(k),
where

(UKSf)O) = e ™7(0), (@f)(O) =A—6),

so that G(k) is unitarily equivalent to S(k). Hence, G(k) is
boundedly invertible for every keR _ .

Next, since 4(%,6,6 ') is bounded and continuous in all
three variables, it is Hilbert—-Schmidt and hence compact as
an operator on L ?(S?) for every real k. As a result,

I1—Gk)= — (k/2m)Uk)QA(k)QU(k)*
is compact for every real k, and thus G(k) is a compact
perturbation of the identity.

Moreover, using (4.3) as well as the unitarity of U(k)
and Q, we have the estimate

”G(kl ) — G(kz)lKu Uk,) — U(kz)”'”S(kl )“
+ |5k ) = SCky) || + ISk, |
WUk — Uk,).
Because U(k) has a k derivative whose operator norm is
uniformly bounded in k for every x, it is Lipschitz contin-
uous in the operator norm with a Lipschitz constant inde-
pendent of k€R. Further, according to Theorem 2.11 we
have $(£)e7, [T;-L(L *(S*)] for some pe(0,1). Hence,
G(g‘)eﬁf [T;-Z (L *(S?))] for some positive u.

Thus all three conditions needed to apply the above
mentioned Gohberg-Leiterer result are satisfied, and the
proof is complete. ]

Remark 4.3: Using the symmetry relation
G( — k) = QG(k) ~'Q, we can prove that it is possible to
choose G (k) and G _ (k) in (4.1) such that

G, (—k)=0G; (k)~'Q. (4.4)
Indeed, from (4.1) and using D( — k) = D(k) ' we have
Gk)~'=G_(k)"'Dk)"'G, (k)~!
=0G, (—k)DKk)~'G_(—-KQ,

(4.3)

so that
G, (k)~'QG_ ( —k)D(k)

=D(k)G_ (k) ~'QG, (—k). (4.5)
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If the factorization (4.1) is canonical, i.e., if D(k) =1, Liou-
ville’s theorem gives (4.4) directly from (4.5).If (4.1) isnot
a canonical factorization, we obtain

((k+D/(k—DY " "P,G, (k) "'QG_ (—k)~'P,
=P,G_ (k)QG+ ( - k)Ps’

where P, and P, are two of the projections appearing in D(k)
with r, 5{0,1,2,...,m}. If p, <p,, both sides of the last equa-
tion are equal to P,QP,, due to Liouville’s theorem. If
p, > p,, however, we have

PG, (k)7'QG_(—k)~

= [¢.(K)/(k + i)’ ~*]P,QP,, (4.6)
P.G_(K)QG, (—k)P,
= [¢,.(k)/(k—i)"~*] P,QP,, 4.7

where ¢, (k) is a polynomial of degree (p, — p, ) with lead-
ing coefficient 1. Using the procedure in Ref. 31, we can
multiply G, (k) by suitable rational functions and there-
fore change our original factorization (4.1) in such a way
that both sides of (4.6) and (4.7) reduce to P,QP,. Then,
using 2%, P, =37 P, =1, we find (4.4) for this modi-
fied factorization.

V. SOLUTION OF THE RIEMANN-HILBERT PROBLEM

In Sec. IV we have derived the existence of a Wiener—
Hopf factorization of the operator function relevant to the
Riemann-Hilbert problems (3.8) and (3.11). This result
was obtained under the assumption that the potential V(x)
belongs to the Newton class. In this section we will use the
factorization (4.1) to obtain the solutions of the Riemann—
Hilbert problems (3.8) and (3.11). During the process the
variable x enters as a dummy variable, which may affect the
partial indices and the factors in (4.1) and hence the unique
solvability properties of (3.8) and (3.11) and the explicit
form of their solutions, but does not affect the way in which
the solution itself is obtained. Therefore, to simplify our no-
tation we suppress the x dependence of all vectors, operators,
and partial indices.

Starting from the Wiener-Hopf factorization (4.1) of
G(k), we define

D, (k)= Po+2( e+ 3
p;>0 pi<0

and

D_Ur=P+ 3P+ 3 (2P

p;>0 p;<0
where P,,...,P,, are the mutually disjoint, rank one projec-
tions appearing in the diagonal factor D(k) and
P, =1—-2" P,

Using (4.1), let us write (3.11) in the form

X, (ky=G, (kYD (k)D_ (k)G _ (k)X _ (k)
+[G, (k)D, (k)D_ (k)G _ (k) ~1}1,
(5.1
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where 1 is the function in L 2(S?) as defined above (3.9).
Then

D, (k)7'G, (k)7 'X, (k)
=D_(K)G_ (k)X_ (k) + [D_ (k)G _ (k)

—D, (b6, (b '] (5.2)
Premultiplying both sides by P, yields
PG, (k)~'X, (k) +P,G, (k)~'i

=P,G_ (K)X_ (k) + P,G_ (k)1. (5.3)

The left-hand side of (5.3) is analytic in C*, the right-hand
side is analytic in C~, and both sides tend to P, 1 as k— oo
from the appropriate half-plane. Hence, by Liouville’s
theorem,

PG, (k)~'X, (k) =P [1-G, (k)~']i
and
PoG_ (K)X_ (k) =P [I—G_ (©)]1. (5.5)

Similarly, premultiplying both sides of (5.2) by (k — i)”P,
with p; > 0 and using Liouville’s theorem, we obtain

PG, (k)"'X, () =P[I-G, (b~ ']i
+ [@; (k) / (ke + )], (5.6)

(5.4)

and
PG_(K)X_ (k)= —P,G_ (k)1 + [¢k)/(k—i)"]

X7, + [(k+0)/(k—D)P1. (5.7)
Here, ; is a fixed nonzero vector in the range of F;, and
@, (k) is an arbitrary polynomial of degree less than p;. Next,
premultiplication of both sides of (5.2) by P; withp; <0 and
yet another application of Liouville’s theorem yield

PG, (k) "'X, (b)=P[I-G, (b~ ']1 (58)
and
PG_ (K)X_ (k)

= —PG_ (K4 [(k+0/(k—D1PI, (59

provided the second term on the right-hand side of (5.9) is
analyticat k = — i. Becausep; <0, the latter happens if and
only if ;1 =0.

Finally, adding (5.4), (5.6), and (5.8) together as well

as  (5.5), (5.7), and (59), and |using P,
+32,.0P + 3, oP; =1, weobtain
; @, (k)
X (k)=[G, (k)—1I]1+G, (k) L B
+ (G- 1 + p,-§>:0 k + 1) b
(5.10)

and
X_(kb)=[G_(k)~'—1]i+G_ (k)"

(k—”1pi

’

@ (oym + [(k+ i) —

£;>0 (k=i

(5.11)
provided Pji =0 whenever p; <0. Hence, if these
( — 2, cop;) linear constraints on P; for p; <0 are satisfied,
thereisa (2,,}_> op;) parameter family of solutions to (3.11),
and these solutions are given by (5.10) and (5.11).
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We can summarize the above results as follows.

Theorem 5.1: Let ¥(x) be a potential in the Newton
class. Then the Riemgnn—Hilbert problem (3.11) has a solu-
tion, if and only if P;1 = O whenever p; <0. In that case the
solutions are given by (5.10) and (5.11), where @; (k) is an
arbitrary polynomial of degree less than p; associated with
each p; >0.

The solution of the operator Riemann-Hilbert problem
(3.8) is obtained in the same way as the vector Riemann—
Hilbert problem (3.11) is solved using (5.1) through
(5.11). The solution of (3.8) is given by

@, (k)

X, (k)=G, (k)—T1+G, (k) 3 —2—_
’ " ’ ,,;) (k + i)?
(5.12)

j

and
X (h)=G_(k)"'—I1+G_ (k)"
xS @; (k) + [(k+ D — (k—i)"]

p;>0 (k——i)pj

J?
(5.13)

provided there are no negative partial indices. If there are
any negative partial indices, the solution does not exist. Due
to the presence of @; (k) in (5.12) and (5.13), the solution is
not unique unless there are no positive partial indices.

Note that, when there are no bound states, for x = 0, the
operator [I + X, (k)] becomes related to the 3-D Jost op-
erator used in the 3-D Gel'fand-Levitan inversion meth-
od.”>™ Hence, we obtain the following result.

Corollary 5.2: If the potential ¥V (x) belongs to the New-
ton class with no bound states, the Jost operator exists if and
only if there are no partial indices of the scattering operator.
In that case the Jost operator is given by

J(k) =08, (KQ, (5.14)

where S | (k) is the operator that is given by G . (k) evalu-
ated at x = 0.

V1. SOLUTION OF THE INVERSE PROBLEM

. Once the Riemann—-Hilbert problem posed in (3.11) is
solved by the Wiener—Hopf factorization method given in
Sec. V, we obtain f( k,x,0) givenin (3.2) using (3.9). If there
are no bound states, from the Schrddinger equation (1.1) we
then obtain the potential as

_ (A +2ik8-V)X  (kx,0)
N 14+ X, (kx,0)

Note that the right-hand side of this equation contains & and
k whereas these two variables are absent from the left-hand
side. Hence, the solution of the Riemann-Hilbert problem
will lead to a potential only if the right-hand side of (6.1) is
independent of  and k. Below, we show that if the so-called
miracle condition? occurs, the right-hand side of (6.1) is
independent of 8 and k and becomes equal to a potential
function of x.
Let the Fourier transform of X | (k,x,8) be given by

V(ix)

(6.1)

+ oo
7(ax,0) =?1- f dk X, (kx8)e=*.  (62)
ﬂ — o0
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SinceX | (k,x,0) = O(1/|k|) ask— + o andisanalyticin
k in C*, we have 7(a,x,0) =0 for a <0. The function
7(a,x,6) plays a major role in the 3-D Newton-Marchenko
inversion theory.> In case the Riemann-Hilbert problem
(3.11) has a unique solution, 7 (a,x,0) satisfies the equa-
tion?

A—ZiG-V— V(x)]n(a,x,e) =0, (6.3)
da
where the potential is obtained as
V(x) = —26-V lim %n(a,x,0), (6.4)

a-0*
provided the right-hand side of (6.4) is independent of 4.
The @ independence of the right-hand side of (6.4) is known
as the “miracle” condition of Newton.?
From (6.2) we have

ikX | (kx,0) = — lim %(a,x,0)

a-0t
—J da e‘k"—(?—n(a,x,G). 6.5)
o da

Hence, using (6.2), (6.4), and (6.5), we obtain
[A 4+ 2ik6-V — V(x)]X . (kx,0)

- V(x) + f da e”‘"[A 2% 0¥y
o da

- V(x)]n(a,x,ﬁ).

Thus (6.1) is equivalent to (6.3) and (6.4) in the absence of
bound states.

If there are any bound states, the above procedure can be
modified to prove that the potential V(x) is obtained from
(6.1) if and only if (6.3) and (6.4) hold true.>*

Vil. CONCLUSION

In this paper we have established the following results.
If the potential ¥(x) belongs to the Newton class defined in
Sec. II, the corresponding scattering operator has a Wiener—
Hopf factorization. The related Riemann—-Hilbert problem
(3.11) can be solved by using these factors. The related oper-
ator Riemann-Hilbert problem (3.8) is also solvable by us-
ing the Wiener-Hopf factors. A consequence of this is the
following. For potentials in the Newton class with no bound
states, the Jost operator (as defined in Ref. 2) exists if and
only if the corresponding scattering operator does not have
any partial indices. If and only if Newton’s miracle condition
is satisfied, the solution of the Riemann-Hilbert problem
leads to a potential.

The physical interpretation of the partial indices of the
scattering operator is an open problem. It is known that the
total index is related to the total number of bound states of
the potential, but the relationship of each partial index to the
bound states or to any physical parameters is presently not
known.

A simple condition®* that guarantees the unique solv-
ability of the Riemann—-Hilbert problems (3.8) and (3.11) is
given by max, g |[S(k) — I|| < 1, where the norm is the oper-
ator norm on L ?(5?). When this happens, the scattering

2180 J. Math. Phys,, Vol. 31, No. 9, September 1990

operator S(k) has neither positive nor negative partial in-
dices.

The results presented in this paper remain valid for any
real, measurable potential ¥ (x) on R” with n>2 without real
exceptional points that lead to a scattering operator S(k)
such that S(k) —1I is compact for all keR and that
S(&) =SE(1 + £)/(1 — £)) is Holder continuous in £€T.
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