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SOMMARIO. — Vengono costruite soluzioni per equazioni integrall singolari
su contorni chiusi utilizzando una generalizzazione delle relazioni di ortogona-
lith della teoria del trasporto. Si ottengono semplificazioni notevoli rispetto alla
teoria classica, che fa uso della trasformazione di Hilbert.

1. - INTRODUCTION.

Recently [1], the authors proposed to solve singular integral
equations of Cauchy type on intervals, such as commonly arise in
transport theory [2], by an orthogonality method. Similar methods
were introduced in transport theory long ago [3] but were restricted
specifically to the transport equation. The point of Ref. 1 was that
2 similar method could be used for quite general equations. This
approach has a number of advantages. Among them are elegance
and simplicity (the Hilbert transform used in the standard method
of solving singular integral equations [4, 5] need not be introduced);
familiarity (the method of solution becomes closely analogous to
classical techniques for solving partial differential equations); and,
perhaps most important, insight (for example, the go-called endpoint
conditions [6] usually introduced in a completely ad hoc manner
are seen to arise naturally, as a condition that certain contour in-
tegrals exist).
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In the present work the analysis of Ref. 1 is extended to the
case that the contour of integration is a closed rectifiable Jordan
curve in the complex plane which we assume to be the unit circle
S Of course, endpoint conditions are no longer involved, but we
find advantages in this case also. In particular, for certain problems
(the so-called « non-normal » problems of Ref. 5) the gain in sim-
plicity is quite spectacular. Also, certain problems not previously
solved can be treated by a limiting procedure. These points are ela-
borated in more detail in Section 3.

2. - THE Basic METHOD.

We consider the eguation
aNAG) 5

y—1

) floy =140+ 2§

where the symbol P mean Cauchy principal value and the contour
integration is, as mentioned previously, the unit circle St We seek
complex-valued uniformly Hslder continuous solutions A(#) for
|¢| =1, under the assumption that the given functions f, A and 7
are uniformly Hélder continuous on S

The more general problem

gty = 2{) B + ”i(t)P®—’“—S’):%(—ﬂ—d,,

can be reduced to Eq. (1) by the substitutions
B(» = 5. () A,
gt = n @O F O,
s @) 0 () = 7).

so we shall consider only Eq. (1).

In solving Eq. (1), it is necessary, as in Ref. 1, to infroduce
the solution X{(z) to a homogeneous Riemann-Hilbert problem, ie.
we seek a solution holomorphic on ¢\ .S* whose boundary values
X= satify
: X+ AW +ain() -

) =0 — fn—am@
with

X = Im X (=49
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We observe the important fact that if X(2) is a solution of Eq. (2),
so is
Pz) X(2)
Q(2)

for any polynomials P{z) and Q(z).
For simplicity, we introduce the abbreviations

A= (E) = A(t) 4 min @

without any implication that there exists an analytic funetion of
which A= are the boundary values. Actually, in transport theory
such a funetion A often does exist which clearly simplifies the solu-
tion to the Riemann-Hilbert problem (2)). It is called the symbol
and the funection X is referred to as the facforization of A. This
Wicner-Ilopf approach of reducing Eg. (1) to a Riemann-Hilbert
problem which is solved by factorization techniques, has been ex-
ploited extensively by I. Gohberg and co-workers [7] and, it must
be admitted, is the method of choice for dealing with vector pro-
blems. This is true because of the inherent difficulty posed by the
matrix Riemann-Hilbert problem [8]. However, in the present paper
we deal with the scalar problem and do not adopt the latter ap-
proach. For the scalar case standard algorithms exist for com-
puting X(2), and, as we shall see, in many cases X can actually be
written down by inspection. In any case, let us assume X is known.

We shall assume throughout that A+ are non-vanishing, except
when explicitly stated otherwise. This assumption is necessary to
turn Eq. (1) into a Fredholm problem.

Let us now introduce a suggestive notation by rewriting Eq. (1)
in the form '

®) ro =& Ame 0,
where the ¢, are distributions of the type
o) = M) S — 8) + P;”_E’_)t.

We can now state.

ProrosiTioN 1. (Orthogonality) Let X(z) obey Eq. (2), be ana-
lytic on €\ 8! and bounded at infinity. Then

(4) $ W g ®a = Noyotr—),
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where the weight function W is given by

A+
A+ @

{48) Wi(#) = #(7)

and the normalization constant N(») by

(46) N0) = g() X+ () A= ().

We shall not present proofs in this paper, since they can be
found elsewhere [9]. For example, Proposition 1 is proved by sub-
stituting W and ¢, into the left-hand side of (4a) and performing
the integration.

COROLLARY. A sclution to Eq. (1) (or Eq. (3)), if it exist, is
given by

(5) 450) = 505 P& WO S0 0 0.

This follows by multiplying (3) by W(f)p, () and integrating
over 8%, taking into account (4a). The subscript X on Ay serves to
remind us that A depends in an explicit way on X.

The Corollary clearly exemplifies some of the advantages clai-
med in the introduction, namely simplicity, elegance and familiarity.
However, we still need

PrOPOSITION 2, Let X (2) obey Eq. (2), and let 1/X(2) be ana-
Iytic on ¢~ S* and bounded at infinity. Then a sclution to Eq. (1)
(or Eq. (3)) is given by Ay in Eq. (b).

The proof of this proposition is actually identical to the proof
of the corresponding proposition in Ref. 1. The idea is to substitute
the putative solution (5) into (3) and to perform the integrations,
arriving at the tautology F(£) = ().

Note that Proposition 2 requires that 1/X(2) be bounded at
infinity, Uniqueness depends on the actual asymptotic behavior
of 1/X.

ProPosITION 3, Let X(2) be as in Proposition 2, and let Py(2)
be a polynomial of degree less than or equal to N such that




SINGULAR INTEGRAL EQUATIONS ON CLOSED CONTOURS 199

Py(z)/X(2) = 0 as |z| = «. Then

Px(t)
X A-0)

is a solution to the homogeneous Eq. (1) (or (8)).

Finally, if 1/X(2) is not analytic, we can state

PROPOSITION 4. Let X (2) obey Eq. (2), and let 1/X(2) be bounded
at infinity and analytic on €™ S except for a pole of order m at
2 =— (. Then there exists a solution to Eq. (1) (or (3)) if and only
if the following m constraints are satisfied:

(6) <§> WO Ofd =0, 1=—101..,m—2.
and this solution is given by Ay in Eq. (7).

We note that if 1/X(z) has a pole of order m at z==2,, the
pole can always be shifted to z==0 by choosing

z

5@ = (=) xe,

2 — 2
while X; still obeys Eq. (2).

Incidentally, suppose that X(z) obeys Eq. (2), that it is ana-
Iytic on ¢ S;, that it has no zeros (except for a possible zero of
order m at the origin), and that X(2) ~ ¢ 2" as [z| — o (¢~ 0); then
its index, i.e. the winding number of X with respect fo z—=0, is
defined by

E=m—N.
with m =0 if X(0)=£0.

It is now clear that X(z) can always be chosen so that 1/X
will never simultaneously vanish at infinity and have a finite pole.
For instance, suppose X(z) ! ~ z-1 at infinity and also has a first
order pole at zero. Then the function X,(2) = X(z)/z can be defined
ag the solution to he Riemann-Hilbert problem (2), and 1/X, ap-
proaches a nhonzero constant at infinity and is analytic at zero.
Keeping this important fact in mind, we can now collect all our
propositions as
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THEOREM 1. Let X (2) obey Eq. (2), and let k& be the index of X.
Then

(a) If =0, the unique solution to Eq. (1) is given by Ax({) in
Eq. (5).

(b) Ifk < 0, the general solution to Eq. (1) is given by

P_p_1{)

Ax () + 73 (& A—(8)

where P_,_; iz an arbitrary polynomial of indicated degree.

(¢) If k& > 0, there exists a unique solution to Eq. (1) if and only
if the & constraints in Eq. (8) are satisfied, and this solution
is given by Ea. (5).

Theorem 1 incorporates all of the classical results [4, 5], ob-
tained here by what we believe to be more elegant and familiar
methods. We now turn to applications.

3. - APPLICATIONS.

‘We consider first some cases in which X can be constructed by
inspection.

THEOREM 2. Let
Aty 0+ (@)
A= — Q-@®

Q.

where 2%(t) are functions that can be continued analytically into
St ={z€ Q:|z] < 1}, respectively. We sall denofe the analytic
continuation by Q= (2). Define

2 €8T X (2) =

X, (&) = € 8.

1 1
0 () @ ¢

Suppose 2'X(2) —> cont 54 0 as [z[ — . Then.
(a) I is the index, &, of the singular integral equation (1).
(b) I I <« 0, the solutions are given by

P11t

0T Frode

G e e

AR
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(¢) If 1> 0, define Xi(2)==¢'Xo(2). Then the solution is given
by Ax, (f), provided I constraints, as in Theorem 1, are satisfied.

(Note that the weight funetion W(t) in Eqs. (5) and (6) is

defined by (4b) with, in this case, X = X).

ExXAMPLE 1.
N N
M« II @-»
A-I—(t) i,r-},[ci}>1 .l:=1,lck{<1
A—(1) - M M,
[T @-o Il @-»
I=1,1d;]>1 n=1,{d | <1
Then

Ne

Il @w—»

k=1, lcﬂ?E<1

Q- = e
II @—»
n=1;|d,]<1
M B
(di — 1)
1=1,|d[>1
Q4 = ——
IT @w—»
i=1,|e | =1
and l=k=N.—M,.
Exampik 2. Consider
®) s = a0+ 5 2§ 2w,
Tt p—1

where ¢ is a complex number such that |¢]+ 1.

Now A= (ty=1% £ ¢, 80

A+(@)  t+e
A—(@)  t—c
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CASE 1. [¢] > 1. We have from Theorem 2

-+

Xo(z)=;mﬁ, zg 8+, Ap(z) =1, z€8—.
Then (Eqs. (4))
7 (1) X (2}
Wit) = — ii( L
A+ i \t— ¢,

and
NO) = g (OXf 4= = = v+ 0.
Computing A4y, from (5) gives immediately (noting that k=20)

_ vf(¥ ¢ F0)
A("')_,},z_uez .na(v%—c) r (t—c)(yﬁt) dt .

CASE 2. |¢| < 1. Now Theorem 2 tells us that

() = 1, 2€8+; and X(2) = ° . res—.

t4e

Again one finds easily from Eq. (5) (again k=10)

. f () € J(@)
A“P—ﬁ_w+nuww)P®(w+@u—@d“

The condition [¢|+~1 is enforced so that A=(f) will be non-zero
on S This, incidentally, is Example 3, Sec. 4 of Ref. 5.

If we now relax the requirement that A+ will be non-zero, we
can treat the case [¢/=1 by a limiting procedure. We rewrite
Eq. (8) as

(9) i) = A+ ST P@A(”) v, €30, [e] = 1,.

e y-—£

and plan to take the limit as ¢ | 0 at the end of the calculation.
As in Case 1, the solution to Eq. (9) is given by

v/ (2) 61+ ) £ »
P — (1 4 &)? ai(r + el 4 &) t—ell+e)y(v—0

Aly) =
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Taking the limit as £ | 0 (using the formulas of Plemelj [4]) gives

v f () — o (0) c ICE.

A = p? — @? ai(y + ©) - t—e) (¥ —1) o

This agrees with the result obtained in Ref. 5 (Eq. (24a)) by a
much more complicated method. (Sign disagreements between our
results and those of Ref. 5 exist in certain cases, because the in-
tegrals there are taken in the negative sense with respect to S%,
while ours are taken in the positive sense). This last example is an
illustration of a so-called « non-normal» equation, which simply
means that either A+() or A—(f} or both vanish somewhere on the
contour of integration (but not at the same point to the same order).

It appears that problems might arise if A+ are irrational, but
this is not necessarily the case, since only sectional analyticity is
required (Theorem 2).

ExaMPLE 8. Consider

Ve

CASE L. |ki} < 1, || < 1. The function

22— ky

ze8—,
22—k €

A
X, 2) = 1, 2€8+; X, () = ]/
follow from Theorem 2 with k=20,

CASE 2. || > 1, |ko| > 1. Now

%
Xo(z)——‘/z—ki, €S+, X,z =1, z€8—,
. 2

ig caleulated from Theorem 2, again with & ==10.

CASE 3. |k| > 1, {ke| < 1. This case can be treated by a limiting
procedure, We illustrate the idea with a somewhat simpler example.
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ExsMpPLE 4. Consider

w0 =L

- é(}/,,___l) i(_v_}hd,,’
o y—1
80

A+ = Ve,  A-(t) = 1.

The winding number for this problem is —;— (we avoid the term

« index » here because of the possibility of confusion with the Fre-
dholm index on some L -space, which is equal fo the winding number
of A+/A- only when A+/A4- is continuous and non-zero on the unit
eirele [7])..

Since thiz equation cannot be solved as it stands, we introduce

two complex numbers «lo.| < 1, Ja_| > 1; at the end of the cal-
culation we shall take @ «, an arbitrary point on S Then the
equation :

R | TR N | S ELE

ig the same as (10) as ¢ > o. But (11) can be solved as in Exam-
ple 3. In particular,

o
t— o
+m=V%_%, A=() =

So applying Theorem 2 once more we obtfain

)
22— Op

Xo(2) = Ve—a-, 2€8+; Xo(z)z__]/ , 2€8~,

Z

and again we have k+~—=0. The evaluation of the solution is some-
whatl complicated and it turns out that the final result (after taking
the limit) is not unique, i.e. the homogeneous equation has non-
trivial selutions. The details may be found in Ref. 9.

In conclusion, let us note that for many problems the function X
cannot be constructed by inspection, so that the standard algorithms
[4, 5] must be used. For example, let

A0, . Ao
A TP fEenEaS ey

= 1, = argét=2xn.

e e e e
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Then A+(£)/A-(f) is continuous and non-vanishing on the circle,
but X(2) cannot be construected by inspection. However, the stan-
dard formula [4, 5] which for k=—=0 takes the form

!,

X)) = exp i @m ATO/ATE)

2 2 — 1
can be used, after which the formalism described in Section 2 can
be applied directly [10].

Hopefully, the reader will agree that the claims made in the
introduction have been justified. (We also note that an equation not
previously worked out in detail, Example 4 above, has been treated).
Further details and more examples may be found in Ref, 9.
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SuMMARY. — Construction of solutions to singular integral equations on
closed contours is carried out using a generalization of the orthogonality rela-
tions of transpoft theory. Considerable simplification is achieved over the eclas-
sical (Hilbert transform} approach.
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In this case % is defined to be the winding number of A+/4- arcund S*
If &0, the formulas are somewhat more complicated. See, for example,
Ref. 4.




