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Abstract

In this article we study two linear Boltzmann equations which describe
the time evolution of the electron distribution in a weakly ionized gas, both
~of them one-dimensional in the velocity and any spatial variable, and one
of them spatially homogeneous. We present two mathematical definitions of
electron runaway, one based on travelling wave phenomena and the other
ong invelving the average speed asympiotics. Under suitable assumptions
on the collision frequency, we prove electron runaway according to the
average speed definition In the spatially homogeneous as well as the spatially
dependent case. For constant collision frequency 1, the average speed is
shown to relax 1o o/14g where a is the electrostatic acceleration,

1. Introduction.

In this paper we study the linear integro-differential equation
which describes the time evolution of the space-velocity electron
distribution  f(z,v,t) in a weakly inonized host medium. This
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equation reads

of | af | 8f

¢ -MJB—I + aa—v + vz, v)flz, v, t) =
(1.1) too
=f k(:r,v,v’)y(:c,v’)f(sc,v’,t)d'u’

and is studied under the initial condition
(1.2) f@,v,0) = folz,v).

In this one dimensional model the electrostatic acceleration
is assumed to be uniform in time and position, ie. a is constant
and positive. If ¢ and m are the electron charge and mass and £
is the electric field, we have a = |¢|E/m. The collision frequency
v(z,v) and the scattering kernel k(z,v,v") are independent of the
temporal variable ¢ and satisfy the following assumptions:

ASSUMPTION 1. There exists a measurable even Junction
=) in Ly (R,dv) such that the collision frequency v{(z,v)
satisfies
0 < vz, v) <o) forae (z,v)c iR

ASSUMPTION 2. The collision kernel k(z,v,v") appearing in
the integral operator is nonnegative and satisfies the normalization
condition

+oo

f k(z,v,vYdv =1 (z,v)eR* a.e

—0
and the reciprocity condition k(z, —v,—v") = k(x, v,v'), (z,v,v) €
R? a.e. The normalization condition expresses the balance between
lonization and recombination effects.

Physical considerations suggest that, as the solution flz, v, t)
and its initial condition fy(z,v) represent electron densities, they
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must be nonnegative and have a finite integral in position-velocity
space which stands for the total number of electrons at time # and
at time t =0, respectively. Thus it is natral from the physical
point of view to introduce L;(IR?, dzdv) endowed with the norm

(£1l =[;m/;m|f(z, v)|dzdy

as the functional setting where the problem (1.1)-(1.2) is to be
studied. On the other hand, it is sometimes convenient to have a
measure for the total number of collisions at a certain moment
in time. This measure is given by the integral of the product of
collision frequency and electron density in position-velocity space.
Hence, let us also introduce the Banach space L (IR?, vdrdy) with
the norm '

£l = f f Uz, 0)| £, ) dady

as a tool to measure the total number of collisions.
Let us denote by T the operator on L;(IR? dzdv) defined by

af af

D(Ty) = {f € Li(R?, dzdv) : v tes € (IR, duduv)}
- 9f _ 8F
hof =-—vg =03,

with the partial derivatives being distributional, and by A and K
the operators with domain L;(IR?, dzdv) N L1(R?, vdzdw) defined
by '

(AfNz,v) = —v(z, v)f(z,v),

K F)z,v) = f k(z, v, v ), o) f(z, o' v,

Then —A and K extend to bounded linear operators from
the space L1(IR?, vdzdy) into L(IR2, dzdv) which are positive and
satisfy

= AFll: = ||K fils =[|£l,, for all £ € L (0R?, vdzdv) and f > 0.
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Using the preceding definitions, problem (1.1)-(1.2) can be
put in the abstract form

(1.3) Z—J; =THfO+AfO+ K ft), t>0,
(1.4) lim /) = fo,

where d/dt is a strong derivative on L(IR? dzdv), f(t) = f(-,t) is
a function from R* into 1,(IR?, dzdv), the limit as ¢ — 0% is taken
in the strong sense and f; is the initial datum. It is known [1] that
To+ A+ K generates a strongly continuous, positive contraction
semigroup {S(t)}iz0 on L1(IR?, dzdv) which, under very mild extra
hypotheses, satisfies

(1.5) 1Sl =1lg|li, ¢ > 0in Li(IR*, dzdv).

Hence, f(f) = S()fp is the unique solution of problem
(1.3)-(1.4) and, as (1.5) indicates, the total number of electrons
with distribution fuction f(z,wv,t) is preserved in time.

When the spatial variable z is dropped and v = v(v) and
k = k(v,v") no longer depend on X, the Banach spaces 7 (IR?, dzdv)
and L1(IR?, vdzdy) must be replaced by Li(R,dv) and L (R, vdv),
respectively. Modifying the definitions of Tp, A and K in the
obvious way, we arrive at problem (1.3)-(1.4) in the setting
of L1(R,dv). As shown in [2], Ty + A+ K generates a strongly
continuous, positive contraction semigroup {S®}s0 on L1(IR, dv)
which, under very mild extra hypotheses, satisfies (1.5). Moreover,
in the spatially independent case usually one of the following

two situations occurs: 1. The collision frequency v(v) satisfies
4o

f v(v)dv = +oo and there is a stationary solution f, € L1(IR, dv)

sﬁ?:oh that the solution f(t) satisfies

Jim (|7 — foolls = 0.
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This situation is characterized as relaxation to equilibriom.

It occurs, for instance [2], if v(v) is bounded but satisfies
+oa

f v(vldv = +co and K is a weakly compact operator from
L1(R, vdv) into L1(R, du),
+0o
2. The collision frequency w(v) satisfies / v(v)dv < +oo.

I we write [Wo(t)g)v) = g(v — at), the strong limit Og =
iIiIElm Wo(—t)S(t)g exists in L;(R,dv) and the solution @) of
problem (1.3)-(1.4) satisfies

+o0

lim [F(v+at, 1) — [Q folw)|dv = 0.

400

In this situation, as shown in [3], the solution behaves
asymptotically as a travelling wave in velocity space with
«velocity» a. In this case there always is a stationary solution f.,
in L1(IR, vdv), but this function does not belong to L (IR, dv) and
does not occur as a limit of f(¢) as t —» +oo.

In the sequel we will often deal with the so-called BGK model
where BGK stands for Bhatnagar-Gross- Krook. In this simplified
model, the collision term has the special form

+00

f k(, v () f', tdv = my(v)fm(v)
- f V() fonl0' )
f v(@)f W, t)dv'

where f,(v) is a Maxwellian distribution or some other
nonnegative fucntion in I (IR, vdv). In this case the assumption
ron :

/ v(v)dv = +oo always leads to the existence of a stationary

—00
solution in L1(IR, dv) and to relaxation to equilibrium, irrespective
of other properties of .




628 GIOVANNE FROSALI - CORNELIS VAN DER MEE

In the physical literature of the linear Boltzmann equation
(1.1) and it Fokker-Planck approximations, runaway of electrons is
one of the major topics of interest. As early as 1949, Giovanelli
[4] has argued in a heuristic manner that for an electric field
exceeding a critical field there always is some fraction of electrons
that run away. In 1972, for the spatially independent case, in the

general linear Boltzmann context, Cavalleri and Paveri-Fontana
+oo

[5] have pointéd out / v(v)dv = +oo as a necessary (but not

necessarily sufficient) condition for suppression of runaways. Many
heuristic results for a variety of electron drift model equations
have been reported [6, 7]. A striclty mathematical definition of
runaway, however, was missing in these and similar studies.

For the spatially independent case, a useful characterization
of electron runaway appeared to be the behaviour of the electron
distribution f(v,t) as a travelling wave of the form g(v + at) for
farge time [2, 3]. Characterizations as above have been generalized
to the three-dimensional (in @), spatially independent case by
Arlotti [8] and Poupaud [9, 10].

For the spatially dependent equation it is not clear how to
define electron runaway in a mathematically meaningful way, since
one might in principle have travelling waves in either position
space or velocity space. Also, as well-known from the theory of
the Korteweg-De Vries equation and related equations, the concept
of travelling wave has defied a satisfactory generalization to higher
dimensional equations. In the next section, we will discuss two
ways to operationalize electron runaway as a viable concept of
mathematics. One hinges on the definition for the corresponding
spatially independent equation. The other one makes use of the
average velocity for large time. In Section 4 and 5 we will work
out the theory in more detail and specialize it to the BGK model,
first in the spatially independent case and then with the spatial
variable taken into account.

RS

R

gL
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2. Characterization of runaway in spatially dependent systems.

As pointed out in the introduction, it is not obvious how to
define the concept of electron runaway for the spatially dependent
problem (1.1)-(1.2) where the collision frequency » and the
collision kernel & may depend on position z in addition to their
dependence on the velocity variables. However, starting from the
solution f(z,v,t) and the initial datum fy(z,v) we introduce the
velocity electron distributions

+oo +00
ey Rw=[ i Fen= [ f@oni
Since, as functions of (z,v), fy and F(t) belong to L,(R?, dzdv)
it is clear that, as functions of v, Fy and F (t) belong to L;(IR, dv).
Via (2.1), we can then adopt the definition of runaway in the
spatially independent case.

DEFINITION 1. The physical process modelled by problem
(1.1)-(1.2) gives rise to runaway if there exists a functions
Foo = Feolv) in L1(IR, dv) such that

tlil;n Fv+at,t)= Faolv)
in the limir of L1(R, dv).

Using this definition, the theory of initial-valne problem
(1.3)-(1.4) in the spatially dependent case can largely be developed
as in the spatially independent case. If we suppose Assumptions 1
and 2 stated in the introduction to hold, then we have again the
~ following results [1]:

1. A necessary condition for the existence of a nontri-
vial nonnegative stationary solution to problem (1.1)«(1.2) in
L1(R?, dzdv) N L1(R?, vdzdv) is that

+oo

(2.2) f p{v)dv = +o0,

—00
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for any o which satisfies Assumption 1.

2. If we write [Wo(Bgl(z,v)=¢ (a: — vt + —12-at2, v — at) and

the collision frequency v(z,v) satisfies the additional assumption

+oo

(2.3) f v()dv =M < +oo,

then the limits

(2.4) Q = tlil}l Wo(—)8(t) and QF = tlir_n S(—HWo(t)

exist in the strong operator topology of L1(R? dxdv) and are
bounded positive operators. Furthermore, problem (1.1)-(1.2) gives
rise to runaway according to Definition 1.

Tt has not been shown so far that if a stationary solution
f.o(z,v) exists in L)(IR?, dzdv), the solution f(z,v,t) of problem :
(1.1)-(1.2) approaches f..(z,v) as t — +oo in the sense that

@.5) dim [/~ fucll1 = 0.

However, if (v) is bounded and K is a weakly compact
operator from L (R?, vdzdv) into L1(R?, dzdv), then the reasoning
of [2] could be repeated to prove (2.5} and. hence telaxation to
equilibrium if a non-trivial stationary solution f € L1(R?, dzdv)
exists.

It might be instructive to give the proof of the second
statement, i.e. the proof of the occurrence of runaway according
to Definition 1. Indeed let fo be the initial condition and let us

define Fo(v) = f [ fo](:c v)dz. Let us denote by f(x,v,t) the

solution S(t)fo and by F(v,t) the corresponding velocity electron

e S e T D R R
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+o0
distribution f 7(z, v, H)dw. We find that
—O0

+o0

f [F(v+at,t) — Foolw)|dv <

—00

+0o +o0 1
< f / |f(z+ vt + Eatz, v+at, £) — [ fol(z, v)ldzdu=

+oo +00

=/ f [[Wo(—)S ) fol(z, v) — [ fol(z, v)|dzdv,

which proves the assertion.

Another physical interpretation of this result can be given in
terms of travelling waves. In velocity space, by a travelling wave
with «velocity» a, we mean a function of the form g(v — at). Then
the previous result can be read in the sense that F(u,t) behaves
like a travelling wave, i.e.

Flo,t)= f 1S fol(z, v)da =

00

m~ f [Q7 fol(z, v — at)dz = Foy(v — at),

as 1 — +oo.

- A different, more hydrodynamic, characterization of runaway
can be given by making use of the concept of average speed of the
charge carriers. The particle current density divided by the particle
number density gives the drift velocity

+oo +oo

'/ dz/ dvvf(x,v,t)

+oo

+e0
/' dcrf dv f(z, vt)

(2.6) (v)@) =
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DEFINITION 2. The physical process modelled by problem
(1.1)-(1.2) gives rise to runaway if

(v)m{%:ginm(v)(t) = 00.

Note that, in general, (v),, is a positive real number which
can be either finite or infinite. In physical terms, it is proportional
to the D.C. conductivity of the gaseous medium. When (v)o#c0,
the D.C. conductivity is finite and, according to Definition 2,
the physical process modelled by Eg. (1.1) does not give rise to
runaway, but we cannot say if the process decays to equilibrium.

Definitions 1 and 2 are not necessarily equivalent. In fact, -
physical folk wisdom tells us that the physical process governed :
by Ea. (1.1) either displays relaxation to equilibrium or gives .
rse to runaway. In practice, there may exist situations in which
the distinction between those two phenomena gets blurred.
For instance, a nontrivial stationary solution in L{(IR%, dzdv) ;
may fail to exist, even though (2.2) is fulfilled, or there is.
relaxation to the equilibrium solution fo(z,v) satisfying the

+00 o0
condition [ f v foo{z, v)dzdv = co and hence there is runaway
e i

according to Definition 2.

2

3. The Bhatnagar-Gross-Krook (BGK) model: spatially inde- iﬁ
pendent case. : g
-
.

i

A highly popular model in gas kinetics is the BGK model .
(e.g., [111, Sec. IL10). If we limit our discussion to the spatially'_i?
independent case, then the basic assumption of the BGK model is:
that the average effect of collisions is to provide a «source» which:
is proportional to the deviation of the distribution function f(v,?
from a Maxwellian f,,(v). The collision term in (1.1) then take
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the simple form

+

o0 +00
f k(v, v @) f', t)dy' = u(v)Fm(v)f v f( tdy,

where

Fin() = — fm(v)

v(v') fra (V)

and f.() = (/M2 exp(—Bv?) is the Maxwellian with (UZ) =
f v frm(v)dy = (1/28). The simplified model is represented by
the kinetic equation
O (4 20O (o )
3.1) 5 (U D+ a5 -, 1) = v(){c(t)fmv)
- fw, B}, vER, t >0,

where
+00

v()f(v, t)du
o) = —35

v(v) fm(v)dy

—0o0

is a normalization parameter.

In order to study when runaway, according io either Definition
1 or Definition 2, occurs, we solve the kinetic equation (3.1) as
well as the integro-differential equation

(3.2) w@i(v, Y+ aa—f(’u, D+v@)fv,t)=0,ve R, t >0,
ot v

under the initial condition (1.2). Under this initial condition, Eqgs.
(3.1) and (3.2) have the solutions

f(v,t) =[S fol(v) for problem (3.1), and

fv,t) = [So(t)fol(v) for problem (3.2),
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where {§(f)}:i»0 and {So(t)}i>0 are strongly continuous, positive
contraction semigroup on L((IR, dv) related via one the Duhamel
formulas
i
S@fo = St)fo + f Solt — VK S(0) fod,
(3.3) 0 oo

£>0, iff V(w)dy < oo,

i
Sfo = So(t)fo-i—/ St — 0)K So(o) foda,
(3.4) | !

t > 0, for general v(v),

where (Kg)(v) = y(v)Fm(v)[ v(v)g(v)dv' and

t
[So(t)fol(v) = exp (—f viv—at+ a'r)dn')

4
folw—at), ve R, t > 0.

(3.5)

‘We note that (3. 3) and (3.4) are valid for general K and not ; :
just for K as in the BGK model. it is readily verified that (1.5) ;%E
holds for every g > 0 in L,(IR, dv). Moreover, for every g > 0 m§
Ly (R, dv). We have (cf. [3]) §

i

¢ i 400
f So(t)glld = f f Vo)
0 A

t.'
- €Xp (g f viv—at' + m—)d'r) g(v — atNdudt =

0

(3.6)

+oo t

!
fv(v+at’)exp (—/
oo 0 0

t

.—./ (1 — exp (_f (v +aT)d'r)) g()dv < |lglls,
0o (¢ /

viv+ GT)dT) g(v)dt'dv
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£

i
so that f 1Soltg|ldt’ < lig||:- Introducing Zp(t) = [ Sptydt and
() (]

i
Z(t) = / S({t"dt', we easily derive from (3.3) and (3.6) for f; > 0
A _
in Li(R,dv)

+00 t to
N2 folly = 120 foll, + [ V(v [ f SyDLK S(@) folw)drdo <
— 00 0 <0 .

it _Foo
<Nzl + [ [
()
t—ao

. (1 - EXp (—f viv+ a'r)dﬂ) ) [K S{o) fol(v)dvdo <
0

<asll+ (1o (-2} Iz

+o0

where M = ||v|i = f v(v)dv. Hence, if the collision frequency

v(v) is integrable, we Oﬁave

G 2Ol exp (f‘ai) 1Z0® il < exp (%) 1ol
because from (3.6) {[Zo(t)gll. < llgll1, for every ¢ > 0 in L1(IR, dv).

Let us recall the definition (2.6) for the drift velocity {v) ().
For a spatially independent problem, we shall now modify (2.6)
and add the following definition for the uncollided flux [go](t) for
the model governed by Eq. (3.2), for which the total number of
electrons is not preserved in time:

+00

f oIS folw)du
(wt) = —3x : and {gol(t) =
(3.8) f 1S fol(w)dv

—od
L too

= f v Sp(®) fo](’u)dv.

—00
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In case of confusion, we write (v)g(@) and [go],(¢) to indicate
that g(v) is the initial datum. Quite naturally, for the drift velocities
to make sense at t = 0 we must require that the initial datum g(v)

+co
has finite first moment, i.e. that f (1 +|vD]gv)|dv < +cc.

To begin with n elementary situation, let us conmsider the
BGK model equation (3.1) for constant 1(v) = . Then, using the
nonnegativity of its solution, Eq. (3.1) reduces to

%{—(v,tna—g%(v,w = I f Ol fon®) = f, )0 € R, £ 0.

Assuming an initial datum f£ with finite first moment, we
multiply the above equation by v and eliminate the partial derivative
with respect to v by partial integration. Because [vfv, )72 =0,
see Appendix, we obtain

S UFOI )6 ~ all el =

= w|| @O |x (f v fm(v)dv — (v)(t)) , >0,

Let us now make use of the following three easily recognized
facts:

(i) the Maxwellian £, has average speed zero,

(i) [IF@I = || folfr, and

+oo
(i) (v)(0) = [ f vfo(v)dv} /ol
Then we are left with a calculus exercise, yielding

—wpt +eo

{v)@) = %(1 — ey 4 v fo(v)dv,

1follr L,

which approaches a4 exponentially as ¢ — +oo. Consequently, the
4]
BGK model with constant collision frequency does not displa
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runaway according to Definition 2. Runaway does not according
to Definition 1 either, because one can easily prove relaxation to
equilibrium in this case ({2], Theorem 9).

It turns out - that, for the BGK model without spatial
dependence, the criterion for runaway according to Definition 1,
namely the integrability of 1(v), is also a criterion for runaway
according to Definition 2.

+00

THEOREM 1. Suppose f v(v)dv = M < oo. Then for nonne-

= +00
gative initial data fy with the property f (I + |w])folv)dv < +oo

the solution f(v,t) of the BGK model ec}zfation (3.1) satisfies the
asympiotic formula

(3.9 |

() 1 ~ /*""

I = " Q m v H
A T ”(f“”F ol dg) 1

which implies runaway according to Definition 2. Here Q +y is
the wave operator defined by

(3.10) : o9 = lm Wo(-1)So(t)g.

Proof. Using (3.5) and (3.8) we have

[qol(t) = f {at + (@ — at)}[So(®) fol(v)do =

t:

= at/ exp (—f v{v +aT)d‘T) fo(v)dv+
(]

—00
[

+/ vexp (—/ v(v -HET)dT) Jfolv)dv,
o i)
1 +o0 ’ ,
P (—;/' v{v )d'u) Jo(v)duv,

whence

i 1001®) _ f .

t—4+0 at
—o0




638 ' GIOVANNI FROSALI - CORNELIS VAN DER MEE

which is a finite positive number.
Let us now shed some light on (v}(®) itself. From (3.3) we
have immediately
(S0 fol@) = [So(t)follv)t
(3.11) ¢
i [ 1510 oW ER@S ol 2 0,
o

where vFm € L1(R,dv). Muliiplying the above equation by v,
integrating with respect to v and using (3.8) we obtain

1
tYy= —+— i
<’U>f0( ) HfOHI {[QO]J’U( )+

i
(3.12) f [qolvr. ( — U)HS(U)f{JHvdG} ;
0

t> 0,

We now note that both fo and vFm have finite first moments,
the latter being true because v is integrable and v Fn(v) is bounded.
Further, as [goluF, (£) /(at) 18 bounded for ¢ > 0 and (3.6) holds true,
we may divide (3.12) by at and apply the theorem of dominated
comnvergence to pull the limit as ¢ — +oo under the integral sign.
As a resulf, we find

im M = 1 { lim [q[)]fo(t) +
t—to0 at Hf()“l 1—to0 at
0 [qolvra{t — ) ~ '
fo Jim ey (")f"””d“’} =
1 +0C 1 +00 1 ‘
(313) = Hfo“l -/_‘m EXp (-4;[ U(U )d’l)) .

+00

1 1
.fo(v)dv+W[m exp(—z—[ p{v )d'u)-

e

lIS(e)follvdo

() (v)dv - /

0
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Starting from the other side, we have

v+at

' 1
[Wo(—t)So(t)gl(v) =exp (——; f V(v’)d'v’> g(v).

As a consequence, (2.4) implies

1
[Qq fol(v) =exp (“;f

Comparing this identity with (3.13) we obtain (3.9), which
completes the proof. m

+oa

v(v')dv’) g(v).

Theorem 1 can, in fact, be generalized to non-BGK models
without spatial dependence. Assuming a nonnegative initial datum
+oo

fo with the property f (1 + o)) folv)dv < 400, the proof of

Theorem 1 can be repea_tga until we reach (3.11), which must be
replaced by (3.3), and (3.12), which must be replaced by

. . ,
i
{v) () = === 3 a0l (O + / (g0l st —oddo ¢, £ >0,
||f0“1 ) .

An important technical issue at this point is our need to have the
existence of the first moment of the vector K. S(c)fo. However, since
we assume v(v) to be integrable, K. S(cfy € L1(IR, dv) for almost
every o > 0. If we now assume K to be a bounded linear operator
from L1(IR, vdv) into L; (R, A1 +|v])dv), K S(o)fo € L1(IR, (1+|v])dv)
for almost every ¢ > 0, (see Apppendix). Repeating the calculations
of (3.13) with the help of (3.10), we eventually obfain

o (fo + f KS(G)fodU)
(4]

. (vip® 1
O IR e T TR

1
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Here we note that, due to (3.7) and the integrability of v(v),
; +00
the operator fo — f S(o)fodo can be defined as a bounded

i)
operator from Li(IR,dv) into Li(R,vdv), so that the right-hand
side of (3.14) is well-defined.

4. Generalization to the spatially dependent case.

In this section we geenralize our results on glectron runaway
from the spatially independent case fo the spatially dependent
situation. In the latter situation we have, in Section 2, given two
definitions of electron runaway. As we have seen in [3] and Section
3, for the spatially independent problem runaway occurs according
to both definitions if the co]lisioil frequency v(v) is integrable, the

o0

initial datum jp > O satisfies / (1 + |u])fo(v)dv < +oo and K is

a bounded operator from Ll(iFi—, vdv) into L1(R, (1 +|vdv). In the
present section we will aim at analogous results.

Let us first introduce the strongly continuous, positive’

contraction ‘semigroups {Wo(t)}i>0s {So(t)}ipo and {S)}i»0 on
L1(R2, dzdv) which govem the time evolution of the unique
solutions of problem (1.1)-(1.2) with v =0 and k = 0, problem
(1.1)-(1.2) with v arbitrary and k == 0, and problem (1.1)-(1.2)
with arbitrary v and k. We have

4.1} (Wol)gllz,v)=¢ (:r, — vt + —;—atz,v — at) ;

t
[So(t)gl(z,v) =€Xp (-—/ v(iz —vs+ —;—asz, v — as)ds)

0

I 2
g m—vt+-iat ,u—at

4.2)

e e
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[St)gl(z,v) =[So(t)g)(z, v)+

¢
+ / [Set — o) K S(o)g](z, v)do,
b .

4.3)
t>0, iff vi{v)dy << 00,
[S@®)gl(z,v) =LSo(t)gl(z, v)+
i
(4.4) + / [S(t — oYK Sp(o)gl(z, v)do,
o

t > 0, for general v{v).

If (2.3) holds true, then runaway occurs according to Definition
1, [1]. More precisely, as t — +oo the solution {S()g)(z, v) behaves
as
(S folz, v) ~ W fol(z,v),

where the asymptotic equivalence is to be considered in the strong
operator topology of L1(R?, dzdv) and

+o0
[Q gz, v)=exp (—f viz +or+ éaﬁ, v+ a'r)d’r) .
0

00

: {g(m,vﬂf [So(—S)KS(s)g](ﬂg,v)dsj'.

0

Let us now find a criterion for the occurrence of runaway
according to Definition 2. Let us recal the definition of {v)(f) and
define [go](t) as follows:

+oa +00

f.[tﬁmmmww@
()0 = T and

@.5) f f (SO fol(, 0)dady

OG0
+o0
—0

[mw=f f o[So(®)fol e, v)dzdo
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and define

+00

[, 91(=z, 1) = exp (— vz +vT+ %ml, v+ a’r)ch’) g(z, v).

0

We then have

+00

THEOREM 2. Suppose f p(v)dv = M < +oo and K is

a bounded linear operator f;om L1(R?, vdzdv) into Li(R%, (1 +
jv|)dzdv). Then for nonnegatwe mmal data fo which have

the integrability property / [ (1 + |v])folw)dzdy < +00 the

solurwn flz,v,0 of the mmal-value problem (1.1)-(1 2) satisfies
the asymptotic formula (3.14), which implies runaway according
to Definition 2. Here € is the wave operator defined by (3.10),

with Wy and Sy given by (4.1) and (4.2).

Proof. Using (4.1), (4.2) and (4.5) we have
o= [ f {at + (0 — a)}[So()fol(z, v)dzdv =

= at“SQ(f)f()Hl + f / VEexXp-

i :
. (H/ vir+ (v —at)s+ —Z-asz, v+ asds) folz, v)dzdv,

0

whence

1t
[‘I{;]t( ) . Jim |[Wolt {Wo(—1)So(t) — 51 fot

{—+00

+ Wo foll = 1184 foll1,

which is a finite positive number.

& e e e e T R
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Let us now consider on (v)(f) itself. From (4.3) we readily
have '

t .

I

(#.6) {v)nlt)= Tl {[Q(ﬂfo(i) +/ leo)r s st — G)da} £ >0
b

Since K is a bounded lincar operator from I1(R?, vdwdy) into
. 1

L1(R?, (1 + [v|)dzdv) and the operator fo — f S(o)fo 18 bounded
o

from L;(R? dzdv) into L1(R? vdzdv) [which one proves by
repeating (3.6) and (3.7)], we may divide (4.6) by at and apply
the theorem of dominated convergence for vector-valued functions
([12], Theorem II 2.3) to pull the limit as t — +oco under the
integral sign. As a result, we find in analogy with (3.14)

()p® _ 1 .

. V) fo -

lim = e + / KS(o)fodo ,
t—too  at [ folhs 0 (ﬁ} o fo ) ;
which completes the proof. =

If condition (2.2) is fulfilled, one expects from physical
considerations that the average velocity {v)(t) approaches a positive
constant as t — +oo. Related physical considerations suggest in this
case the existence of a nontrivial steady-state solution f,.(z,v) of
Eq. (1.1) in L,0R?, dzdv) and the relaxation of the time dependent
solution f(x,v,t) of problem (1.1)-(1.2) to this equilibrium. It is
then to be expected that, since the I;-norm of the solution of
problem (1.1)-(1.2) does not depend on time or, in physical terms,
the total number of electrons is preserved in time,

+o0 +oQ

1
4.7) (V)oo = tLiinm(v)(t) = mf f v foolx, v)dzdy.

—oa

Of course, as exemplified by the difficulties encountered in
deriving the results of [2], there are many technical problems,
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some of which are of a physical nature, because the distinction
between relaxation to equilibrium and runaway may get blurred.
To mention just a few of these «technicalities»: The nontrivial
stationary solution 7..(z,v) may not exist or, when it does exist, it
may not have a finite first velocity moment so that the right-hand
side of (4.7) does not make sense. At this occasion we will not
dwell on these problems much longer but attempt to illustrate them
by working out the example of problem (1.1)-(1.2) without spatial
dependence and with constant collision frequency »(v) = vo.

Let us consider Eq. (1.1) without spatial dependence and with
collision frequency v(v) = vg:

+00

(4.8) %{— + ag—i + o flv, )= vof kv, o) f(v, )dv.

—00

Multiplying (4.8) by v, integrating with respect to v and
eliminating the partial derivate with respect to v by partial
integration, we obtain

d i
L@l @) — all Ol -+l FOI ()0 =
4.9) +oo
v f o[ K F@)()dv.

If we assume that K is a bounded linear operator from
continuous L1 (R, vdv) into Li(R, (1 +|v|)dv), then the integral in
the right-hand side of (4.9) is a bounded continuous functions of ¢
on IRt which we will denote as G(t), see (A.1) in the Appendix.

Then for nonnegative initial data fy which have the integrability
+oo

property f (1 +|v|)fo(v)dv < +oo, we have ||f®|1 = |[fol: and

+oo

{(v)(0) = f vfow)du | /|| foll1- If we then assume the right-hand

side of (4.§) as known [which, of course, it is not], we can solve

.ié))zf
E-)
-
z
£
A
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the differential equation (4.9) by elementary means and find the
expression '

(v)(t) = —%a - e

Iy
gt +00 ¢
+ [T A f v folv)du + N;’”] f e =3 X 5)ds.
—00 0

Since G(¢) is bounded and continuous in ¢, the last term on
the right-hand side is a bounded continuous fucntion of ¢ on R
Hence, {v)(¢) remains -bounded as ¢t — +co.

Appendix (prepared by C. v.d.M.).
In this appendix we prove the following result.

THEOREM Suppose N > 0. Let K be a bounded operator from
Li(R,vdv) into the weigted Li-space L — 1(R, (1 + |[v[)Ndv), and
let v(v) be integrable on R. Then the operators Sy(t) and S(t) are
bounded on L1(R, (1+|v|¥)dv) for every t > 0. Moroever, {Sp(t)}i0
and {S(t)}ho are strongly continuous, positive semigroups on
Li(R, (1 + |v)¥ dv).

Proof. Consider g € Li(R,(1 + [v[)Vdv) and put |jgllin =
+o00

f (1 + v2)¥2|g(v)|dv, noting that this norm is equivalent to the
OO

n;wural norm on L1(R, (1 + |v|)Vdv). For ¢t > 0 we get

1+(‘U+Cbt)2 N2
-—~—) lolliw <

Wl
Woglhv < f:;%( T4

1 v '
< {5 (at+(a2t2+4)‘/2)} gl

and hence

' 1 N
1Se@g|)1,y < |[Woltlgl|1w < {“‘Z‘(Gt +(G2?52+4)1/2)} lg||1,m-
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N
We wil write Sy () = { %(at+(azt2+4)1/2)} and we note
that (at)V < Zy () < (1 +at)V. Thus Zn(t) is an upper bound for
the norm of Sy(t).
Now recall the Duhamel formula (3.3

¢
S(t)g = Sp(t)g +/ Solt — o)KS(o)gdo, t > 0.
1]

Applying the norm g — llglli,v to both sides of this identity
for arbitrary g > 0 in  — 1(R, (1 + [v|" dv) and denoting the norm
of K as an operator from L(IR, vdv) into Li(R, (1 + |v|YNdv) by
£(> 1), we obtain

t
IS®glliy < Zn@lglx +x f Enlt — )|S©@)glldo <
0

i
< v ® | llollw +5 [ I1S(@gll.do | <
0

S IO +sexp((vfli/a)lgllin,

where we have used (3.7), the integrability of u(v) and the
inequality |g{[; < |lg||1,~- Hence the proof of the boundedness of
S(t) is complete.

To establish the strong continuity, we estimate for every
9 € Li(R; (1 + o))" dv)

+oo

| 11509100~ 15010101 + 09200 <

—CC

< Zy(C - Dllgihn < Ev Do)y

for {,7 € [0,7]. Thus we may apply the theorem of dominated
convergence to the integral

+00

/ IS (©)g1(v) — [S(MgI@)[(1 +v2)¥ s

—o0
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and prove that [1S@)g — SOglliny — 0 as +— ¢ Thus {So(t)}tzo
Is a strongly continuous semigroup on Li(R, (1 + [v))¥dw).

For g € I1(R, (1 + {v))"dv) and ¢ <t < T, we estimate, under
. +0o0 .
the assumption that Af = / v(v)dv < oo and that (> 1) is the
norm of K Li(R, vdv) — Ly(R, (1 + o)) do),

i

y .
I/f So(t — F)K S(a)gdo < ﬁ‘,/ Za(t — o)HS(o)g[[,,dc <
0 1.5 0

4
< NZN(T)f (15(o)gll,do <
0
< wZu0esp (L) ol

As a result S@) — Spt), and hence S(), is bounded
on Ly(R,(1 + [v[)Ydv). Next, using the theorem of dominated
convergence for Bochner integrals ([12], Theorem II 2.3), we see
that

—0

t ' T . .
f So(t — 0)K S(o)gdo - / So(r — K S(5)gdo
0 ¢ LN

as t — 7. From Duhamel’s formula (3.3)'. it follows that
[S(®) — So(t)lg, and hence S(t)g, is contimious in 1 in the norm of
LR, (1 +u))¥du). In fact, for 0 <t < T we have o

(1S ®glhy < [Ew(t)+n/ Iyl — 0-)610} llollw <
_ ] _
L+ =D (T lg|l1n.
In the spatiaily dependent case, the above theorem is true

if we replace the weighted L ,-space Li(R, (1 + u)dv) by
L1(R%, (1 + |o])¥ dzdv). With the same modification, the proof can
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be repeated verbatin, even o the point that the norm estimates
remain valid,

Finally, Jet us consider the case of constant collision frequency
v(v) = vg. Then for EVery 9 > 0in Li(R, (1 + v dv) we have

[1So@alln < 8_v°tHW0(i)gH1,N < ZN(?f)E‘m”gHz,N-

t
S()g = Se(t)g + / So@)KS(t ~ 0)gds, ¢t >0
0 .
the estimate
4
IS®gllw < Eyet 4 5 / Z (@)™ da) gl .
0

Here we have used that HES(E - )9l < AlS@ — algily =
Mlall: < Algllin. Hence  the operator §(¢) is bounded op
LR, (1 + o))V dv) and its norm there is bounded above by

[

(et 4 )\/ EN(O')e_VOUdO‘,
1]

strongly continuons semigroup on LR, (1 + ]v[)‘N dv). As a resnlt,
+co
A1 GO= [ ok s@giwe

is a bounded continuougs function on R*,
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