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The wave propagation in a one-dimensional nonhomogeneous medium is considered, where 
the wave speed and the restoring force depend on location. In the frequency domain 
this is equivalent to the Schrijdinger equation d2$/dx2 + k211, = k2P(x)II, + Q(x)Jt with an 
added potential proportional to energy. The scattering and bound-state solutions of 
this equation are studied and the properties of the scattering matrix are obtained; the inverse 
scattering problem of recovering the restoring force when the wave speed and the 
scattering data are known are also solved. 

I. INTRODUCTION 

Consider the one-dimensional (1-D) Schrijdinger 
equation, 

d2WW 
-ygz--- + @$(k,x) = ~f’(x>W,4 + Q(x)$(k,x), 

(1.1) 
where XER is the space coordinate, k%R is energy, 
kzP(x) is the potential proportional to energy, and Q(x) 
is also a potential. Both potentials P(x) and Q(x) are 
real. The Fourier transformation from the frequency k 
domain into the time t domain changes ( 1.1) into 

&&$=QW, (1.2) +(ky) = @t&NW, 

where c(x) = l/d- is the wave speed and Q(x) 
is the restoring force. The equation in ( 1.2) describes the 
propagation of waves in a medium, where the wave speed 
and the restoring force depend on location. We will let 
H(x) = J1 - P(x), and for a meaningful wave speed we 
will assume P(x) < 1. We also assume that P(x) is 
bounded below, and thus 

M = sup H(x) 
XeR 

(1.3) 

is a finite number. 
The direct scattering problem for ( 1.1) consists of 

finding the scattering matrix S(k) (which will be defined 
in Sec. II) when the potentials P(x) and Q(x) are 
known. There are three inverse scattering problems asso- 
ciated with ( 1.1). The first one is to recover the potential 

Q(x) when the scattering matrix S(k) and the other po- 
tential P(x) are known. The second inverse problem is to 
recover P(x) when S(k) and Q(x) are given. The last 
one is to recover both P(x) and Q(x) when S(k) is 
given, although its solution is, in general, not unique. In 
this paper we will only study the first inverse problem 
mentioned; physically, this inverse problem corresponds 
to the determination of the restoring force when the wave 
speed and the scattering data are known. 

Letting 

Y = Scf@ H(l) 

and 

one can transform ( 1.1) into the Schrodinger equation, 

& 
$z + J% = w>9, 

where the new potential V(v) is related to the potential of 
(1.1) as 

V(y) = - G(x)/H(x), 

where 

(1.5) 

H” (xl 3 H’(x)~ Q(x) 
G(x)= -~H(x)~+~~-H(x)* (1.6) 

Note that throughout the paper we use the prime to de- 
note the derivative with respect to x. V(v) can be ob- 
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tained by solving the inverse scattering problem’for ( 1.4) 
by using one of the inverse scattering methods for the 1-D 
Schrijdinger equation. Inverting ( 1.5) we can obtain 
Q(x) when P(x) is known, thereby solving the inverse 
scattering problem for ( 1.1) . However, in this paper we 
will use the spatial coordinate directly because this will 
enable us in the future to combine the results of the 
present paper with those of Ref. 1 in order to solve the 
second inverse problem and to study the third inverse 
problem mentioned earlier. 

We formulate the first inverse scattering problem for 
( 1.1) as a Riemann-Hilbert problem. Once the problem 
is posed as a Riemann-Hilbert problem, there are several 
methods to solve it, such as the Marchenko method,26 
the Gel’fand-Levitan method,697 the Wiener-Hopf factor- 
ization method,* and the Muskhelishvili-Vekua 
method,“” which is also known as the Newton-Jost 
method.” In this paper we will only use the Marchenko 
method to solve the first inverse problem. 

All the results given in this paper hold for real po- 
tentials satisfying the conditions wi (R), P(x) < 1 and 
is bounded below, P&(R), and GEL,:(R), where 
Lj (R) is the class of Lebesgue-integrable potentials hav- 
ing a finitejth moment. Note that whenever pd;’ (R), we 
have l--d’(R) since Il-Hj<Il-Hl(l+H) 
= I PI. This fact will be used throughout the paper. In 

the beginning of each section we will specify the sufficient 
conditions under which the results there hold. 

This paper is organized as follows. In Sec. II we de- 
fine the scattering solutions of ( 1.1 ), study their proper- 
ties, and establish their asymptotics for small k. In Sec. 
III we study the large k asymptotics of the scattering 
solutions of ( 1.1). In Sec. IV we study the properties of 
the scattering matrix and establish its asymptotics for 
small and large k. In Sec. V we study the bound-state 
solutions of ( 1.1) and obtain a Levinson theorem that 
relates the number of bound states to the phase of the 
transmission coefficient. In Sec. VI, using the Marchenko 
method, we solve the inverse scattering problem by re- 
covering Q(x) from one of the reflection coefficients 
when P(x) is known. In Sec. VII we obtain some prop- 
erties of the scattering data when the Marchenko method 
leads to w’,(R), where G(x) is the quantity defined in 
(1.6). In Sec. VIII we show that G(x) obtained from the 
Marchenko method belongs to L:(R) when the scatter- 
ing data satisfy the conditions obtained in Sec. VII, and 
we also show that the solution of each of the two March- 
enko integral equations leads to a solution of the Schro- 
dinger equation ( 1.1). Finally, in the Appendix we prove 
a lemma used in Sec. VI. 

II. SCATTERING SOLUTIONS 

In this section we study the scattering solutions of 
(1.1) and also establish their asymptotics for small k. 

The sufficient conditions on the potentials in this section 
are P(x) < 1 and P,Qd’,(R). 

The physical solutions @ I from the left and t/r from 
the right satisfy 

Tj(k>eik” + o(l), X-+00, 

eikx + L(k)ewik” + o(l), 
(2.1) 

X-P - 03 

e- 
ih+R(k)eikx+o(l), X+C.G, 

+4&x) = 
I T,.(k)ewik” + o(l), x+ - co* C2e2) 

Here Tl and T, are the transmission coefficients from the 
left and from the right, respectively, and L and R are the 
reflection coefficients from the left and from the right, 
respectively. The scattering matrix S(k) is defined as 

I 
TAk) R(k) 

S(k) = L(k) T,(k) * I 

We will study the properties of S(k) 
physical solutions +$ and $, satisfy 
Schwinger equation 

(2.3) 

in Sec. IV. The 
the Lippmann- 

[t[:zi] = [:Th] +& J”, dyeiklX-“l 

x B%Y) + Q(Y)] (2.4) 

The Jost solutions of ( 1. 1 ), fr from the left and f r 
from the right, are defined as 

f,(k,x) = [l/TO) lb(b), 
(2.5) 

f,(k,x) = [l/T,(k)l$,(b). 
They satisfy the integral equations 

fl(k,x) = eikr -k J* dy sin k(x -y) 
x 

x W+(Y) + Q(y) Ifr(ky), 

dysink(x-y) 
m  

x W+(Y) + Q(y) IfAky), 
and the boundary conditions 

X+03, 

jkx + L(k) -eei’k”+O(l), X-+ - 00 
T/(k) 
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and 

ikx+ R(k) ikr 

f,(k,x) = &ie- me 
+0(l), x-co, 

[emikr+o(l), x-+ - 00. 

Let us also define 

ml(k,x) = [ l/TAk)le-ikxW,x), 

m,(k,x) = [ l/Tr(k)leikx$,(k,x). 
(2.6) 

Then from ( 1.1) and (2.6) it is seen that ml and m, 
satisfy the equations 

m;‘(k,x) + 2ikm;(k,x) 

= [k2P(x) + Q(x) Imhkx>, (2.7) 

m:(k,x) - 2ikm;(k,x) 

= Ik2p(x) + Q(x) lm,W). (2.8) 

We will call mI and m, the Faddeev solutions from the 
left and right, respectively; they satisfy the integral equa- 

1 r.0 
ml(k,x) = 1 - G 

s 
dy[ 1 _ e2Wy--x)] 

x 

X [@f’(v) + Q(v>lmkkyh (2.9) x I m,(b) I <exp 
U- 

44 IWY) I --03 
dy[ 1 _ e2iUx-Y)] 

+ b-y)IQ(y)Il), kc+, (2.12) 
(2.10) and that m,( k,x) is analytic in k for k&Z+ and contin- 

uousinkforkEC+. 

X [J@~(Y> + Q(Y) lm,(ky), 
and the boundary conditions 

ml(k,x) = 1 +o(l), X-+CO, 

m;(k,x) = o( l), x+ 00, 

m,(k,x) = 1 +0(l), x--r - CO, 

m:(k,x) = o( l), x-+ - co. 

Next we show that the Faddeev solutions defined in 
(2.6) can be extended analytically in k to the upper half 
complex plane C + . We will use the notation C - for the 
lower half complex plane and use ?? to denote C* UR. 

Theorem 2.1: If Q&,!(R) and M’(R), the Faddeev 
solutions mt(k,x) and m,(k,x) are analytic in k for 
kczC + and continuous in k for k E C + . 
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Pro08 From (2.9) we have ml(k,x) = Xj?= oni(k,x), 
where no( k,x) = 1 and 

q(k,x) = - & 
I 

co dy[ 1 _ e2iW--x)] 
x 

x [k2P(y) + Q(y)]ni- ,(k,y), j>l. 

Noting that S{-” dt e2ikt = 
and using I 1 - e2ik(y- X, 

- ( 1/2ik) [l - e2iq “‘I, 
](2wheny>xandkEC ,we 

obtain 

In,(k,x)I<;[ j-” 44lWy)I +(Y-x)IQ(~)ll]‘. * x 

Hence, we have 

I mAk,x) 1 <exp 
(I 

m 44 IkW) I 
x 

+ Cv-x)IQ(y)II), k?. (2.11) 

Furthermore, each ni( k,x) is analytic in k for k& + and 
continuous in k for k E C +, and thus by the Weierstrass 
theorem, ml( k,x), being the limit of a uniformly conver- 
gent sequence of analytic functions on compact subsets in 
C + , is analytic in k for k& + and continuous in k for 
k& + for each XER whenever &L’ (R) and @EL; (R). 

Repeating the above argument with (2. lo), we obtain 

The solutions of (2.7) and (2.8) at k = 0 satisfy 

ml(O,x) = 1 + 
s 

m dy(y - x)Q(y)ml(O,y), (2.13) 
x 

m,(W) = 1 + 
s 

* 
dy(x - y>Q(y>m,(O,y), 

-co 
(2.14) 

which can also be obtained from (2.9) and (2.10) in the 
limit k-0. Applying the analysis given in the beginning 
of the proof to (2.13) and (2.14), we see that (2.11) and 
(2.12) are valid also at k = 0. Hence, for each x, we have 
the continuity of m[(k,x) and m,(k,x) at k = 0. n 

Proposition 2.2: If P&L;(R), then for k E C+,the 
Faddeev solutions m[(k,x) and m,(k,x) satisfy the ine- 
quality Im(k,x) I <C,(k)[l + lx]], where 
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Cl(k) = exp ( SW dy[l+ 1~11 lk*P(y) + QcY, 1) 

x(1 ilxp(J m  dz[ IkP(z) / + [zQ(z) --m 

X [ Jrn -co ~YIYI I’-(Y) f Q(Y) I]. 
Proa~ From the proof of Theorem 2.1 we see that the 
Lippmann-Schwinger equation for m[(k,x) can also be 
written as 

q(k,x) = 1 + J: & Jfex dr e2’k’[k2P(v) 

+ Q(Y) lmdka), 

and thus for k E C + we have 

Im/(k,x) (~1 + 
s 

m  dY(Y-xx) 
x 

I k*PW 

+ Q(Y) I l dky) l 

<1+ s mdyYl~po 
0 

7) + Q(Y) 

-x s m  dy I @ P (Y) + Q(Y) I x 

Using (2.11) and letting 

/ l-m 

I dky) I 

Im(kx)I/(C,(k)[l + 1x11) 

<exp ( J; dy [1 f IYIII~+(Y) + Q(Y) l), 

which gives the result stated in the propostion with 

Cl(k) = C2Ck)exp 
(S 

- dy[l+ Irll --m 

x Ik*P(y) + Q(Y) I). 

In a similar way, we also obtain I m,(k,x) ( ( C,(k) 
x 11 + 1x11. n 

From (2.9) and (2.10), we have 

m;(k,x) = - 
s 

O” dy e*ik(Y - x) 
x 

X W+(Y) + Q(y)ldky), 

x m;(k,x) = 
s 

dy $ik(x - y) 
--m 

X [J+‘(Y) + Q(Y) ldky). 
Hence, using Proposition 2.2 we obtain 

a, 14(kx)IG(k) M l+ 1~11 -aJ 
w(k,y) I. Xl@P(v) +QCy,l, kdJ+, 

and similarly 

\ s m  Im:(kx) I <Cl(k) M l+ lyl] 
--m 

C,(k) = 1 + exp 
IJ -02 d4 I Wz) l -t- IzQ(z) l I) 

X [ I”, dylyl I~P(Y> + Q(Y) 11, 

we obtain 

I mAk,x) I 

- 
G(k)[l+ )x)]‘~ + J- 

M l+ l~lll@p(~) 
x 

+ Q(Y) I IMky) (/(C,(k) 

XL1 + IYII). 

Hence, using iteration we obtain 

x I @P(Y) + Q(Y) 1, kEs, 

where C,(k) is as specified in Proposition 2.2. Thus, if 
P,Q E L:(R), the functions m;(k,x)anr;(k,x)are an- 
alytic in k&Z+ and continuous in k E C + for each XER. 

III. LARGE k ASYMPTOTICS OF THE SCATTERING 
SOLUTIONS 

In this section, the sufficient assumptions are that 
P(x) < 1 and is bounded below, A=L’ (R), and GE,C,~ (R), 
where G(x) is the quantity defined in (1.6). First, using 
techniques similar to those used in Refs. 12 and 1, we 
show the existence of two linearly independent solutions 
of ( 1.1) and establish their large k asymptotics. Then, 
relating these solutions to the scattering solutions of 
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( 1.1) defined in Sec. II, we will establish the large k 
asymptotics of the scattering solutions of ( 1.1). 

Assume a solution of ( 1.1) of the form $( k,x) 
= Y(k,x)Z(k,x), where Y(k,x) stands for either of the 

two functions defined by 

YjW,x) = 
exp [ ikSg dz H(z) ] 

$m) 

and 

(3.1) 

Yr(k,x) = 
exp [ - ikS,X dz H(z) ] 

Jmx) ’ 
(3.2) 

Then Z( k,x) satisfies 

YZ”+2Y’Z’+ [YR+k2H2Y-QY]Z=O. 

Multiplying the above equation by Y and rearranging 
terms, we have 

(Y*Z’)‘+ Y*[Y”/Y+@H*-Q]Z=O. (3.3) 

Note that from (3.1) and (3.2) we have 

Y”/Y + k*H* - Q = G(x)H(x), 

where G(x) is the quantity in (1.6). Integrating (3.3) 
with the boundary condition Z’(k,xo) = 0, we obtain 

Y(k,x)*Z’(k,x) 

=- 
s 

X dz Y(k,z)*G(z)H(z)Z(k,z), 
x0 

or equivalently 

Z’(k,x) = - 
s 

Y(k,z)* 
X dz Y(kx)Z G(z)H(zW(k,z). 

x0 , 
(3.4) 

Integrating (3.4) with the boundary condition Z( k,x,) 
= 1. we obtain 

Z(k,x) = 1 - 
s s 

x d{ ’ dz 
Y(kz>* 

x0 x0 Y(W* 

x G(zW(z)Z(kz), (3.5) 

and after changing the order of integration in (3.5), we 
obtain 

Z(k,x) = l- 
s 

’ dz L?‘(k;x,z)Z(k,z), (3.6) 
x0 

where 
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L?(k;x,z) = G(z)H(z) s x &f 
Y(kz)* 

z Y(k,Oz ’ 

From (3.6) choosing x0 = f CO, we will obtain two lin- 
early independent solutions denoted by Z, and Z,., respec- 
tively, satisfying 

Z,(k,x) = 1 + 
s 

m dz yl( k;x,z)Z!( k,z), (3.7) 
x 

Z,(k,x) = 1 - 
s 

x dz yr( k;x,z)Z,( k,z), (3.8) 
--m 

where 

cY,( k;x,z) = z[ 1 - exp(2ik J: d{H(S))], 

Y,(k;x,z) 

= -s[ 1 -exp( -2ik J: d<H(c))]. 

Note that for k E C + \{O}, we have 

I~~(k;x,z)I<IG(z)l/lkl and 

in the domains of integration given in (3.7) and (3.8), 
respectively. Thus, iterating (3.7) and (3.8) we obtain 

IzAkx) l <exp(& Jrn dzlG(z) 1) x 

IZAkx) I <ev( h JI m dzl G(z) 1) 

k&I! + \{O}. 

(3.10) 

Hence, by the Weierstrass theorem used before, when 
GEL;(R), for each x both Z&,x> and Z,( k,x) have con- 
tinuous extensions in k to C + \{O}, which are analytic 
on C+ . Furthermore, on estimating Z,( k,x) - 1 and 
Z,(k,x) - 1 by iterating (3.7) and (3.8), we obtain 
Z,(k,x) = 1 + 0(1/k) and Z,(k,x) = 1 + 0(1/k) 
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as k-roe in C+. -. Using (3.4), (3.9), and (3.10), and from (2.6) we obtain 
for k E C + \{O}, we obtain 

IZj(k,x)IGfexp(& j”, dzlG(z)l) 

X 
s m dClG(C) 1, -co 

IZ&%x)Idfexp & ( s 1 dz( G(z) 1 m 
X 

s 
O” d~lW)l, 
-co 

where M is the constant given in ( 1.3). Hence, by the 
Weierstrass theorem, both3 (k,x) and Zi (k,x) have con- 
tinuous extensions to k E C + \ {0}, which are analytic on 
Cf, andZ;(k,x) = O(1) and Z:(k,x) = O(1) as 
k-r* in C+. 

Since Z;(k,co) = 0, Z,(k,m) = 1, Z;(k,- 00) 
= 0, and Z,(k, - UJ) = 1, using 

Yl(k,x)Zl(k,x) = exp(ikr - ik Joa [ 1 -HI) 

-l-o(l), X-+M, 

Y,( k,x)Z,( k,x) = exp - ikx - ik lo, [l-HI) 

+0(l), x--r - co, 

we see that the Jost solutions defined in (2.5) are given by 

f,(b) = exp( ik Jam 11 - HI) YAk,x)&(k,x), 
(3.11) 

’ f,(k,x) = exp ik 
i s -cc 

t 1 -HI) Y,(k,x)Z,(k,x). 
(3.12) 

Hence, from (2.5) it is seen that the physical solutions of 
(1.1) are given by 

$0,x) = T(kkw( ik som [ 1 -HI) 

x YAk,x)ZAkx), 

t,br( k,x) = T( k)exp zk (’ Jya D-HI) 

x Yr(k,x)Zr(k,x), 
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[l -HI Z,(k,x), 

(3.13) 

mJk,x) =&exp(ik JI, [l -H])Z,(k,x). 

(3.14) 

Thus, since ml(k,x) and m,(k,x> are continuous in k 
even at k = 0, it follows that% k,x) and Z,( k,x) are also 
continuous in k as k-+0 in C +. 

From (3.13) and (3.14), as k- 00 we obtain 

w(b) = 
exp( ikS,” [ 1 - H] > 

$W 

x[l +0(1/k)], kEC+, 

m,(k,x> = 
exp(zkfx-m[l -HI) 

JR3 

x [1+0(1/k)], k&+. 

Note that both ml(k,x) and m,(k,x> remain bounded as 
k-+&a inR. 

IV. SCATTERING MATRIX 

In this section we show that the scattering matrix 
S(k) is unitary and continuous for kER and study its 
asymptotics for small and large k. In this section the 
sufficient assumptions on the potentials are P(x) < 1 and 
P&L: (R). Although we use @&d(R) for mathematical 
simplicity in our proof to obtain the properties of S( k) as 
k-0, the condition QEL,~ (R) suffices as in the scattering 
theory’3$14 for the Schrodinger equation in ( 1.4). The 
proofs under the assumption QEL~ (R) will be given in 
Ref. 15. 

From (2.1), (2.2), and (2.4) we obtain the expres- 
sions for the transmission coefficients, 

T/(k) = 1+ & 1 
dy e - ikv 

m 

x [k’P(r) + Q(~)llClr(k,y), (4.1) 

1 00 
T,.(k) = 1+2x 

s 
dy eiky _ m 

x tk*PW + Q(y)llc;(k,y>, (4.2) 

and the reflection coefficients 
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L(k) = & j-” d. eiky[~fV) + Q(Y) lh(kyh m 
(4.3) 

R(k) =& j-1 d. eeiky[~P(y) + Q(v) lddky). m 
(4.4) 

From (2.4) through differentiation, we obtain 

1 

ikTl(k)eik” + o(l), x+ 03, 
$;(k,x) = ikeikx -ikL(k)e-ikX+o(l), x-r - CO 

and 

$:(kx) 

I 

- jke - ikx + ikR(k)eikr + o(l), x--r 00, 
= - ikTr(k)e-jkx + o(l), x+ - co. 

Let [ fg] = fg’ - f’g denote the Wronskian off and 
8; it can be shown that the Wronskian of any two solu- 
tions of ( 1.1) is independent of x. Hence, as x+ f 00, 
from the Wronskian [+J - k,x);t,bl(k,x)] we obtain 

Tl(k)T/( - k) + L(k)L( - k) = 1, 

from [$,( - k,x); $,(k,x)] we obtain 

T,(k)T,( - k) + R(k)R( - k) = 1, 

and from [tCt,(k,x); $,( - k,x)] we find 

T/(k)R( - k) + Uk)Tr( -k) = 0, 

keR, (4.5) 

kER, (4.6) 

keR. (4.7) 

From (4.5), (4.6), and (4.7), it is seen that the scattering 
matrix S(k) defined in (2.3) is unitary and that we have 
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tm,W);mG,x)l = - 2ikm,(k,x)ml(k,x) 

+ 2ik/T(k). (4.8) 

In Sec. II, we have shown that ml( k,x), m,( k,x), 
m;(b), and m:( k,x) are continuous in k for 
k E C + and analytic in k for k& + . Thus, k/T(k) is 
continuous in C+ and analytic in C+. We can write 
(4.8) as 

T(k) = 
2ik 

2ikml(k,x)m,(k,x) + [m,(k,x);ml(k,x) I ’ 

from which it is seen that T(k)#O for keR\{O}. Hence, 
using the unitarity of S(k), we see that the reflection 
coefficients R(k) and L(k) cannot be equal to 1 in abso- 
lute value when kgR\ 10). 

From (4.1) and (4.2) we have 

1 la 
-=- 

’ - T(k) 2ik s 
dy[k*P(y) + Q(y)lmAky), _ m 

-=- dy[~P(y) + Q(y) IwW). 
(4.9) 

Similarly, from (4.3) and (4.4) we have 

L(k) 1 m 
-=- 

s T(k) 2ik --oo dy e2iky[k2PZP(y) + Q(Y) lmkky), 

R(k) 1 m 
T(k)=% --m s 

dy e-2iky[k2P(y) + Q(r>lm,W). 
(4.10) 

S( -k)‘=S(k)‘=S(k)-‘, keR, 

where S(k)’ denotes the transpose and S(k) - ’ the in- 
verse of the matrix S(k). As a consequence, the trans- 
mission and reflection coefficients cannot exceed one in 
absolute value for kcR. 

There are two cases to consider; namely, the case 
J”“_ oD dy Q(y)ml(O,y)#O, which is the generic case, and 
the case J’“_ m dy Q(y)m[(O,y) = 0, which is the excep- 
tional case. In the generic case, as k-+ 0 from C + , using 
Proposition 2.2, from (4.9) we obtain 

The Wronskian [t,bl(k,x);$,(k,x)] can be computed 
using (2.1) and (2.2) to obtain 1 

- = 1 - & s: 
T(k) 

dy Q(y)ml(O,y) + 4 l/k), 
m 

[&(k,x);$,(k,x)] = - ZikT,(k) = - 2ikTJk). 
and hence 

Therefore the transmission coefficients from the right and 
left coincide, and this common value will be denoted by 
T(k): 

- 2ik 
T(k) = 

S”_ m dy Q(u>mAOs) +0(k), k&+. 

T(k) = T[(k) = T,(k). 

The Wronskian of the Faddeev solutions can be com- 
puted from (2.7) and (2.8) to obtain 

Thus, since T(k) vanishes linearly as k--+0, the quantity 
k/T(k) does not have a zero at k = 0 in the generic case. 
From (4.9) and (4.10) we obtain 
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L(k) + 1  
T(k) 

= I+& I”, dy[ez’ky- 1] 

X [PRY) + QcY> lml(k,y), 

R(k) + 1 
T(k) 

= 1 + & I:, dy[e-2iky- 11 

x [kzP(y) + Q(y)]m,(k,y), 

and hence, as k-0 we have 

L(k) + 1  
T(k) 

=1+ OD dyyQ(y)mAO,y) 
--m 

am,(Osc> x 
I 

am,(O,y) 
ak - --m 40  -Y)Q(Y) ak 

. r” 40 -r)*QCvh(Oa). =I 
J-C.3 

From (4.9) we then obtain 

d k 1 1  -- 
dkT(k) 

1 m  
=1-z --m 

I &Q(Y) 
am,(w) 

ak - 

+0(l), kER, 
Thus, in the exceptional case we have, as k-*0, 

R(k) + 1  
T(k) 

=*- 
I m  dyyQ(y)m,(Oa) -02 

+0(l), keR, 

where the convergence of the integrals above can be seen 
from Proposition 2.2 and from the assumption QG$( R). 
Thus, in the generic case we have 

L(k) = - 1  + kq+ o(k), k&, 

R(k) = - 1  + kc,+o(k), kER, 

where cl and c, are the constants given by 

- 2i[ 1 + S’Z Q) dyyQ(y)ml(Oy) 1 Cl = SE m  dr Q(uh(O,y) , 

- 2i[ 1 - S’Y m  &yQCYh,(Qr) 1 c, = S”_ m  dv Qtih,Ub) 

Assuming QL&( R), we obtain by differentiating 
(2.9) and (2.10) with respect to k that m[(k,x) and 
m,(k,x) are continuously differentiable with respect to k 
on R. Letting k-+0 we have 

amf(o ,Y) 
dy(y -x)Q(y) ak 

=z . SW 40 - x)*Q(y)mAW), 
X 

1 1 m  
T(k)=l--Z;. --m s 

ammY) 
dr Q(Y) ak 

+0(l), kEC+, 

and hence T(O)=+0 and, as k-+0, 

T(k) = 
I 

1  - (1LW.f”_ m  dy Q(y) [anq(o,y)/ak] 

+0(l), k&+. 

In the exceptional case, since T(O>=#O, the quantity 
k/T(k) has a simple zero at k = 0. 

From the preceding analysis it is seen that L(k) and 
R(k) are continuous for keR and T(k) is continuous for 
kEC+.Infact,inthegenericcaseL(O)=R(O)= -1 
and T(0) = 0, while R(O), L(O), and T(0) are nonzero 
in the exceptional case. Thus, in both the generic and 
exceptional cases, when &L:(R), the continuity of S( k) 
is also valid at the point k = 0. By using the method of 
Ref. 14 it is possible to prove” the continuity of S(k) at 
k = 0 under the weaker assumption QZi (R), but for 
mathematical simplicity, in the above analysis we have 
assumed that Q&(R). 

Now let us study the large k asymptotics of the scat- 
tering matrix. From (3.7), (3.8), (3.11), and (3.12), we 
obtain 
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~fkk,xkxp ( J j-X- WI) - ‘k 

X 
GWZLks) 

2ik exp(Xkz-2ik I[1 -HI) 

(4.11) 

and 

&?.fSkx)exp ( J r V--HI) - ‘k --m 

1 

X dz 
G(z)Zr(kz) 

2ik 

X exp -2ikz+2ik !:[I-HI). (4.12) 

Then from (4.11) and (4.12) the transmission and re- 
flection coefficients are obtained as 

- [l-H] 
-02 

dz G(z)Zkk,z) 

1 2ik ’ 

O3 [l-H] 
-co 

O” dz 
G(z)Z,(k,z) 

-co I 2ik ’ 

s 
’ 
-co 

Aktosun, Klaus, and van der Mee: Scattering and inverse scattering 1725 

’ [l-HI--k 
--co 

m 
X[l-H] 

dz G(zZr(k,z) 
-cc 2ik 

X exp -2ikzf2ik l[l-HI). 

From the above expressions, as 1 k( 4 CO we obtain 

- [l-H] 1 
--m 

s 
G(z) - OD dz 

--m 
z+ 0(1/k? , k8, 1 

L(k) = -exp (-2ik so [I-H])[ Im dz 
-co --03 

x zexp(2ikz-2ik Ji [l -HI)] 

+ O( l/k?, km, 

R(k)=-exp(-2ik [ [I-H])[ s”,dz 

G(z) - x .&.k exp -2ikz+2ik l [l -HI)] 

-I- O( I/#), keR. (4.13) 

V. BOUND STATES 

In this section we study the bound-state solutions of 
( 1.1) . We assume that P(x) and Q(x) are bounded, 
P&L!(R), and P(x) < 1. Then, a multiplication by 
Q(x) or by 1 - P(x) is a bounded operator on L2( R). By 
definition, a bound-state solution of ( 1.1) is a solution 
$(k,x) belonging to L’(R) such that +“(k;) + [kz 
X(1 -P(*)) - Q(*)]3(k;) also belongs to L*(R). Due 
to the boundedness of P(x) and Q(x), the bound-state 
solutions of ( 1.1) thus belong to the domain of the 
Hamiltonian I-I,-, = - d2/dx2. 

Proposition 5. I: The bound-state energies for ( 1.1) 
correspond to the zeros of k/T(k) in C + and can only 
occur on the imaginary axis in C + . There is never a 
bound state at zero energy. 

Proq$ Bound states when k2 > 0 are ruled out owing 
to the asymptotic behavior of the Jost solutions and their 
complex conjugates [see (3.11) and (3.12)]. Note that 
fake) amif@ ,x are linearly independent and that no 1 
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linear combination of them can lie in L2 (R) . Thus there 
cannot be any bound states when kER\ (0). 

The Wronskian identity 

[fh%x);f,(k,x) 1 = - 2WW) (5.1) 

derived from (4.8) implies that, for kcX+, the Jost so- 
lutions fi( k,x) and f,( k,x) are linearly dependent if and 
only if T(k) has a pole at k. As seen from (3.11) and 
(3.12), j’[(k,x) vanishes exponentially as x+ + 03 and 

f,( k,x) vanishes exponentially as x+ - 03. Thus, when- 
ever fi(k,x) and f,(k,x) are linearly dependent, as x--, 
f 03, we obtain an exponentially decaying solution of 
( 1.1) and hence there is a bound state at k. On the other 
hand, if T(k) does not have a pole at k, then since we are 
in the limit-point case at both endpoints f CO, any solu- 
tion that is square-integrable at - m[ + ~1 must be a 
multiple of f,(k,x) [f[(k,x)]. Hence, if any nontrivial 
combination of the Jost solutions were in L2(R), then it 
would have to be a multiple of both fr( k,x) and f,( k,x). 
Since f,( k,x) and f,( k,x) are linearly independent, this is 
impossible and hence - kz cannot be a bound state. 

As the analysis in Sec. IV shows, for km, the 
Wronskian in (5.1) is nonzero with only one exception; 
namely, at k = 0 in the exceptional case. In the generic 
case, the Wronskian in (5.1) is nonzero, even at k = 0. 
However, k = 0 in either case does not correspond to a 
bound state. This can be seen by noting that for k = 0, 
( 1.1) reduces to the ordinary Schrbdinger equation at 
k = 0, which is given by +!I” = Q(x)@, and it is known 
that the ordinary Schrodinger equation does not have a 
bound-state solution at zero energy4P’3Y16 when QIzL~ (R). 

In order to prove that the bound states can only oc- 
cur on the imaginary axis in C +, we proceed as follows. 
Since P(x) is real, from ( 1.1) we have 

(G-W) = (W2U - PIti) 

z/p m 
s 

441 -pwlIwY)12~ (5.2) 
-co 

O-W,+) = (k2U - P)$,$> 

=Y?J- 441 -J’W~I$(~Y)~~, (5.3) 
-co 

where H = - d2/dx2 + Q(x). Because Q(x) is real, H is 
a self-adjoint operator; using P(x) < 1, from (5.2) and 
(5.3), we see that at a bound state we have kz = 2, 
which can occur only when k is on the real axis or on the 
imaginary axis. However, above we have already ex- 
cluded bound states for real k. n 

Proposition 5.2: Each zero of k/T(k) in C’+ is a sim- 
ple zero. 
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Prooj From the analysis in Sec. IV we know that 
k/T(k) has either no zeros at k = 0 (generic case) or has 
a simple zero at k = 0 (exceptional case). Thus let us 
consider k E C + \{O}. Let an overdot indicate the deriv- 
ative with respect to k. Then, from ( 1.1) , we obtain the 
identities 

$ LkkWAkx)l 

= Wl - f’(x) If/Uv)fr(kx), (5.4) 

$[fi(k,x);f,(k,x) 1 

= - 2k[ 1 - P(x) ]fi(k,x)f,(k,x). 

Adding (5.4) and (5.5) we see that 

(5.5) 

;l fr(k-WXk,x) 1 = Li-hW;f,(kx) I 

+ [f,(kx);jr(kx)l (5.6) 

is independent of x. From (5.1) it is seen that the expres- 
sion in (5.6) is equal to - (d/dk)[2ik/T( k)]. Hence, in 
order to show that each zero of k/T( k) is a simple zero 
in C+, it is enough to show that the right-hand side of 
(5.6) does not vanish at a bound-state energy. At the 
bound state k = $3, the functions f [(@,x), fJiP,x), 
f;(iP,xh and f;(i&x) all vanish as x+f CO, and 
f,(i&x> = c(p)fr($,x) for a nonzero constant c(p). 
Thus, from (5.4) and (5.5), using the fact that 
V;(kx);lj;(kx)l vanishes as x+ + CO and that 
V;(k,x);f,( k,x)] vanishes as x+ - 00, we obtain 

[ji(iP,x);f,(iP,x)] 

= - NW?) SW dy[ 1 - P(y) IfA@,r)*, 
x 

[fi(iP,x);i;(iS,x) 1 

= -2@(P) x 
I 

drt 1 - P(Y) lfM%y)2v 
-o[) 

and hence 

[iiM%x);f,(i8,x)l + [fi(iBx);f,(&x)l 

= - WdP> J”, dv[ 1 - P(y) Ifd@s)2. (5.7) 

Due to the fact that f l( - TX) = fl( k,x) for k E C +, it 
follows that f/(i@,x), fJi&x), and c(p) are all real. Thus 
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the integral in (5.7) cannot be zero. Hence, comparing 
(5.6) and (5.7), we see that - (d/dk) [2ik/T(k)] is 
nonzero at a bound state and thus the zeros of k/T(k) in 
c+ are simple. n 

Proposition 5.3: The number of bound states for ( 1.1) 
is finite. 

Prooj Note that l/T(k) cannot vanish on the real 
axis because ) T(k) ) < 1 for kER. Due to the analyticity of 
f,(k,x), f,(k,x), fi(k,x), and fi(k,x) fork&+, as seen 
from (5.1>, k/T(k) is also analytic in C+ , and hence 
k/T(k) can have only isolated zeros in C ’ . As seen from 
(4.13), as k-+ 00 in C+, the quantity 

ikexp( -ikS”_,[l -H]) 

T(k) 

grows like I k 1 in absolute value and hence k/T(k) can- 
not have zeros for large enough I kl . Furthermore, as 
seen from the analysis in Sec. IV, the quantity k/T(k) 
either has an isolated simple zero at k = 0 (exceptional 
case) or no zero at k = 0 (generic case). Hence k/T(k) 
can only have isolated zeros in a bounded region of 
c+, and by Proposition 5.2 each zero of k/T(k) in 
?? is simple. Hence, by Proposition 5.1 and the analy- 
ticity of k/T(k) in C!+, the number of bound states, 
which is equal to the number of zeros of k/T(k) in C + , 
must be finite. n 

When Q(x)>O, we will show that there cannot be a 
bound state. Note that for Q(x)>O, 1 - P(x) > 0, and 
kz < 0, using the fact the I-&, = - d2/dx2 is a non-nega- 
tive self-adjoint operator, we see from ( 1. I) that 

- O-b,Q) + k”lllct~~ll’ = <Qtcl,$>. (5.8) 

Hence, the left-hand side of (5.8) is nonpositive and its 
right-hand side is non-negative, which can only occur 
when $=O. Thus, there cannot be any bound states when 
Q(x) s-0. 

Let Jr(Q,P) denote the number of bound states for 
( 1. I ), which is the same as the number of discrete eigen- 
values of ( 1.1). The next result shows that &“( Q,P) 
= J’(Q,P = 0), hence, if Q(x) has a negative part and 

thus the possibility of bound states exists, the number of 
bound states of ( 1.1) does not depend on P(x). 

Proposition 5.4: The number of bound states for ( 1.1) 
is independent of P(x). 

Prooj In order to prove that X( Q,P) = N(Q,P 
= 0), we will use a variant of the Birman-Schwinger 

kernel.17 Let Q(x) = Q, (x) - Q- (x), where Q, (x) 
= max Q(x),O) and Q- (x) = maxi - Q(x),O). Let cp 
= ?- Q- t/J and let k = ip so that k2 = - fi2; note that 

/3 > 0 at a bound state because, as shown in Proposition 
5.1, the bound states can only occur when k is on the 
imaginary axis in C + . Then, we can write ( 1.1) as 

p=x@qb 

where 
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(5.9) 

x~= &- --$+Q+ +P2(l-P) 
I 1 -k 

is a version of the Birman-Schwinger kernel. The opera- 
tor X0 is positive and self-adjoint. It is also. compact, 
as the following inequalities show. Let pm,, 
= supti P(x) < 1 and P,i, = infEa P(x). Then, in the 

sense of operator inequalities, we have 

E[ -$+ Q, +P2(1 -P,J 1 -1dE<*/3 
c&- 

I --$+Q+ +82W-K,ax) 1 -k-9 
(5.10) 

and since Q + (x) 20, we have 

K[ 
d2 

-;i;;~fQ+ +B2U -Pmin) -‘@I 1 
<@I -$+8*u-P,,,) 

I 1 -‘@I. (5.11) 

The operator appearing on the right-hand side in (5.11) 
contains the kernel dQ/(2a) --e--alx-yl 
X dQ _ (y), where a = fl dl - Pm,, and, as a conse- 
quence, is Hilbert-Schmidt because Q _ a’ (R). This im- 
plies via (5.11) and (5.10) that Y, is compact. The 
latter follows from the fact that if A and B are positive 
operators such that -40, then 
dim E (a,m)(A)<dimE(,,)(B) for every a>O. Here 
EC .,,,(A) denotes the spectral projection 
of A for the interval (a, co ). For if dim EC,,, ) (A) 
> dim EC, m ) (B) then there would exist a unit vector @ 
in the range of E,,, ) (A), which is perpendicular to the 
range of Eta,,)(B). Then (+A@,) >a while (@,B@)<a, 
contradicting A<B. By the spectral theorem it follows 
that A is compact if B is compact. 

Returning to (5.9) we see that X, has eigenvalue 1 
if and only if - p2 is an eigenvalue of ( 1.1) . Moreover, as 
functions of p the eigenvalues of ;I;-, are strictly decreas- 
ing and approach zero as p-+ -I- 00. Hence, if PO > 0 is 
fixed, the number of eigenvalues of X6, that are strictly 
greater than 1 is equal to the number bf eigenvalues of 
( 1.1) which are strictly less than - &. Since Do > 0 is 
arbitrary, (5.10) immediately translates into 

Jy‘( QtPmin > <Jy’( QJ> <M( QJ’,,,) . 
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However, X(Q,P,h) =M(Q,O) = J%‘“(Q,P-) for if 
- @ is an eigenvalue of ( 1.1) with P = 0, then - @/[l 
- P,,,.J is an eigenvalue of ( 1.1) with P = Pmax and - 

@/[l - PmiJ is an eigenvalue of ( 1.1) with P = Pb 
Thus the proof is complete. n 

For the ordinary SchrSdinger equation, the Levinson 
theorem specifies the relation between the number of 
bound states and the phase of T(k). The Levinson theo- 
rem for ( 1.1) can be stated for the phase of 
T(k)exp(ik.Y ,[I -H]). As seen from (4.13), 
T(k)exp(ik.f” ,[I---H]) converges to 1 as k* ~0 in 
C +, and hence, we can use the argument principle for the 
contour that consists of the real axis and the semicircle of 
in&rite radius in C + . Let JY be the number of bound 
states for ( 1.1) and let O(k) denote the phase of 
T(k)exp(ik.f’? ,[l -H]). One then obtains the Levin- 
son theorem for ( 1.1) 

@(O+)-@(i-co)= 
I 

~(Jtr - f), generic case, 

1TJK exceptional case. 

As in the case of the regular Schrijdinger equation in one 
dimension, since in the Levinson theorem the phases dif- 
fer by $r in the generic and exceptional cases, we will say 
that there is a half-bound state at zero energy in the 
exceptional case. 

VI. RECOVERY OF Q(x) 

In this section the sufficient assumptions are P(x) < 1 
and P,w!(R). We will show that the potential Q(x) 

I 

T(k)exp tk 
A(k,x) = 

(- J”, t1-HI) 

-L(k)exp 
( 

- 2ikx + 2ik 
s 

x [l-H] 
-w 

Let ? = [f]. From Sec. III it is known that Z(k,x) is 
continuous in k E C+ and has an azalytic extension in k 
to C+ for each x, while Z(k,x) - 1 = 0( l/k) as k+ OC, 
in C!+ . The continuity of Z( k,x) at k = 0 can be seen 
from (3.24) and (3.25) and the continuity of mt(k,x) 
and of m,(k,x). Similarly, Z( - k,x) is continuous in 
kE C - and has an analytic extension in k to C - for each 
x, and Z( - k,x) - ?= 0( l/k) as k+ CG in C- . Hence, 
solving (6.2) for Z( - k,x) and Z(k,x) when A(k,x) is 
known constitutes a Riemann-Hilbert problem.6*‘c~18 
There are various methods to solve this Riemann-Hilbert 
problem, such as the Marchenko method,2d the 
Gel’fand-Levitan method,7 Newton’s generalization of 
the Marchenko and Gel’fand-Levitan methods,6 the 
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can be recovered when the scattering matrix S(k) and 
the other potential P(x) are known. In fact, one of the 
reflection coefficients determines the potential Q(x). 
When there are bound states, the norming constants must 
be specified for each bound state in order to obtain the 
potential uniquely. 

and 

Since k appears as P in ( 1.1)) +!J!( - k,x) and $,.( 
- k,x) are also solutions of ( 1.1) whenever qr( k,x) and 

$,( k,x) are the physical solutions. Using (2.1) and (2.2) 
as well as (4.9) and (4. IO), the solution vectors 

are found to be related to each other as 

$( - k,x) = St - k)bWkx), kR, (6.1) 

where q = c 3. Letting Z(k,x) = [~~~X~] and using 
(4.7), (3.4), (3.5), (3.22), and (3.23), we can write 
(6.1) as 

Z( - k,x) = A(k,x)qZ(k,x), kcR, (6.2) 

where 

--R(k)exp(2ikx+?ikJ [l-H])’ 

T(k)exp (iks’,[l--H]) * 

Wiener-Hopf factorization method,* and the 
Muskhelishvili-Vekua method.‘-” 

Below we will solve (6.2) by the Marchenko method. 
From (6.2), letting I = [A 3, we obtain 

Z( - k,x) - i”= [A(k,x) - I]q[Z(k,x) - ?] 

+ dZ(k,x) - ?I -I- [A(k,x) - I]: 
(6.3) 

and using the Fourier transform, we transform (6.3) into 
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CQ 
B(w) = 

dk iky _ m  Ge [AUw) - Ilq[Z(k,x) - ?I 

s 
co 

+ 
dk iky _ m  Ge [A(k,x) -II?+ qB(x, -y), 

(6.4) 

where we have defined 

s 
m  dk 

B(x,y) = _ m  geviky[Z(k,x) -?I. 

As in Sec. V, we will use JY to denote the number of 
bound states that occur at k = i&,...,iP,v. Note that from 
the analysis in Sec. IV, we have A(k,x) = I + O( l/k) as 
k-+&co. From (4.18) and the properties of T(k) in 
C + that are established in Sec. IV, it follows that 
T(k)exp(ik.f”_ ,[l -H]) is continuous for k E C+, is 
meromorphic for k&!+ with poles at k = i&...,ipJv and 
behaves like 1 + O( l/k) as k-t CO in C+. Let 

U(Y) = s”, g eiky[ T(k) 

* [l-H] -1. 
-co 1 1 

Then we have 

u(y) = - c Ep+“, y>O, (6.5) j= 1 

where 

exp( -PjJTm[l -HI) 
’ = SE o. dz[ 1 - P(z) ]f~(@~,z)f,(ipiz) * (6.6) 

Note that in order to obtain (6.6), we have used (5.1) 
and (5.7) and the residues of T(k) at the bound states. 

From the analytic and asymptotic properties studied 
in Sec. III, we see that the functions Z,(k,x) - 1 and 
Z,(k,x) - 1 belong to the Hardy space of L* functions in 
k with analytic continuations to C!.+ and hence their Fou- 
rier transforms are L* functions in y with support in 
[0, CO ); i.e., B,(x,y) = B,(x,y) = 0 for y < 0, where 

s 
- dk 

W X ,Y) = _ m  G [ZAk,x) - lle-‘ky, (6.7) 

B,(x,Y) = s 
m  fik 
_ m  rr [Z,(b) - lleeiky, (6.8) 

and hence 

m  Z,(k,x) = 1 + 
s 

dv Bt(x,y)eiky, (6.9) 
0 

Zr(k,x) = 1 + 
I 

om dy B,( k,y ) eikY. (6.10) 

From (3.26) it is seen that Bl(x,y) and B,(x,y) are real. 
Introducing 

00 dk 
g(W) = J- m  2;;crky[A(k,x) - I], 

~0 dk 
&(X,Y) = - --m GRCk) 

&(%Y 1 = 

Xexp 2ikx + 2ik 
I * [I 

x 
- - H] eiky, 

(6.11) 

- 
s 

m  dk 
--oD cfLtk) 

X exp f X -2&x+ 2ik c \ 
[ 1 - H] eiky, 

J-cc ) 

from (6.4) we derive the 2 X 1 system of integral equa- 
tions, 

B(x,Y) =gky>?+ qB(x, -y) 

+ 
s 

m  dzg(x,y + z)qBkz>, JER, 
-cc 

(6.12) 

where we have 

&(X,Y) 
g(x>Y)r= g,(x,y) + u(y)i: 1 1 

Note that for y > 0, (6.12) gives us the two scalar equa- 
tions 
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s 
co B @ ,Y) =&,Y) + 4~) + dz g&y + 44Cv> 

0 

dz u(y + z)B,(x,z), Y > 0, 
(6.13) 

BrCw) = g,(w) + 4~) + Jam dzgr(w + z)B,(x,d 

+ 
I m  dzu(y+dBt(x,z), Y>O. (6.14) 

0 

Although (6.13) and (6.14) seem to be coupled at a first 
glance, using (6.5) and (6.6) and the fact that f[(k,x) 
and f,.( k,x) are linearly dependent if k = ipi, we will 
show that (6.13) and (6.14) can actually be uncoupled. 
As in Sec. V, let us use C(pj) to denote the proportional- 
ity constants at bound states; i.e., let fr(@ ,x) 
= c(pj)fl(ipix>. Then, using (3.4), (3.5), (3.20), and 
(3.21), we obtain Z,(@?x) = C(/~,+X)Z~(@?~X), where we 
have defined 

X exp 

XexP Pj ( I”_, I.1 -HI). (6.i5) 
From (6.5), we have, for y > 0, 

U(Y) + 
s 

co dz u(y + z)B,(x,z) 
0 

=- jt, e-BIyEI[ I + Jam dz em@BJx,z)] 

= - ,E, e-@‘E&(iL$x), (6.16) 

as well as 

Sr: ewBYexp( - 2 
M&Y) =gt(x,Y) - z 

WjS,” [ 1 - H] )exp( - 2PjS;;H) 

j=l -Jr, dz[l-P(z)]f~(i&,z)* ’ 

JV e-@Yexp( - 2pj.f”_ ,[ 1 - H])eXP(2/3&.H) . 

S”_ m  dz[ 1 - P(z) lfr(i/3j,z)2 

m  U(Y) + 
s 

dz u(y + z)Bl(xs) o 

=- jil e-‘YEj[ 1 + Jam dze-@Bl(x,z)] 

= - jg, e-@‘Eyl(ifl>x). (6.17) 

On the other hand, from (6.6) and (6.15) we have, for 
Y>Q 

N 

=I 
C(&,x)Ef-b”+ m  dz C(&,x) 

j=l s 0 

x E/ - ‘?” + =) B[(x,z) 1 
= jg, C(D+)e-‘~Ej[ 1 + Jm dz e - Bi’Bl( x,z) 

0 1 

= ,H, C(/3jx>e-BA?$Zt(i&,x), 

as well as 

(6.18) 

s 

1 
- dzp 

0 wp) 

X E,e-@Y+Z)B,(x,~) 1 
-‘J”Ej 1 + 1 Jr dz emBFB,.(x,z) 1 

=jE,&e -B/yEiz,( ia,x) . 
P 

(6.19) 

Now let 

Jv 
~~(x,y) = g&x,y) - c C(&W,e - ‘6 

j=l 

Ww) =&by) - 5 j= 1 &lEJ+y 
or, using (6.6) and (6.15), 
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Using Z,(iP,x) = C(j?)x)Zl($3)x) as well as (6.16), 
(6.17), (6.18), and (6.19), we can write (6.13) and 
(6.14) as 

I 
m  4(w) = WGY) + dz WX,Y + z)B&v), o 

Y>O, (6.22) 

B,(wY) = WX,Y) + 
s 

m  dz f%(x,y + z)B,(x,z), 
0 

Y>O. (6.23) 

The equations given in (6.22) and (6.23) are the March- 
enko equations. Note that the scattering data given in 
(6.20) and (6.21) indicate that in the presence of bound 
states, for the unique solvability of the Marchenko equa- 
tions, at each bound state the constants Kl(flj) and K,(fij) 
must be specified, where 

m  KI(P j) = d4 1 - P(z) IfM+)2, -co 

m  Kr(Dj) = d, 
dz[ 1 - P(z>]fr(i~jz)2. 

--m 

This is the counterpart of specifying the norming con- 
stants for the inverse problemb6 for the regular Schrii- 
dinger equation. 

Let us write (3.16) as 

Z,(k,x) - 1 = 
s 

m  m  dz Y[(k;x,z) + dz Yr( k;x,z) 
x J- x 

x [Zdkz) - II. 

Taking the Fourier transform of both sides and using 
(3.13), (3.15), (6.7) as well as the realness of B,(x,y), 
we obtain, for y> 0, 

~(x,Y) = 

sin(kc - ky) - sin kg-ky + 2k ( :H ’ s )I 
Using S”_ m  dk[sin(yk)/k] = &(y), where 8(y) is the sign function, we can write (6.24) as 

&(x,Y) = - ; Jxm +W +e( -u+2~;H)]W +; sxm dz Jo= dg 

x[6c5-y,-+-~+2 j-; H)]G(rW,S). 

Similarly, one obtains, 

(6.24) 

(6.25) 

x e(b+-8 C-Y 
I 1 

+2 G(z)B,(z,&). (6.26) 

, 

Hence, from (6.25) and (6.26), we obtain 

B[(x,O + ) = - ; 
I 

m  dzG(z), 
x 

1 x 
B,(x,O+)= -2 

s 
dz G(z), --m 

and thus we have 

G(x)=2 
dBkx,O + 1 dB,W + 1 

dx = -2 dx , (6.27) 

where the derivative exists for almost every XER. As a 
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consequence, using ( 1.6), Q(x) can be recovered from 
the solution of either of the Marchenko equations (6.22) 
and (6.23). 

Let us define 

q(x) = 
I 

O” dz IG(z)l, 
x 

x a,(x) = dzlG(z) I, -00 
71(x) = s co dzdz), x 

s X 

r,(x) = dz a,(z). 
-00 

Note that from (6.28) and (6.29), we obtain 

q(x) = ddz-x)IG(z)I, 

(6.28) 

(6.29) 

and 

7,(x) = ’ dz(x-z)IG(z)I. 
-co 

Proposition 6.1: If G E L:(R), the integral equations 
(6.25) and (6.26) are uniquely solvable for B[(x,y) and 
B,( x,y ) , respectively. Furthermore, the solutions satisfy 

I&(x,y) 1 <f q(x + y/(2M) )&l71(X) - Tt(x+y”2M)‘;6 30) 

where M  is the constant in ( 1.3), and aI, a, rl, and rr are 
the quantities defined in (6.28) and (6.29). 

Prooj Note that from (6.28) we have (d/dx)T[(x)” 
=-- nq(x) ‘- ‘al(x) for n> 1. Note also that al(x) and 

r[(x) are decreasing functions of x, and if G E Li (R), we 

have al( - 00 ) < + CO and rl(x) < -I- CO for each x. Let 
US omit the subscript from Bl(x,y) for simplicity. From 
(6.25) we have 

B(X,J’) = Bo(X$) + ItI Bj(X,y), 

where 

Bokr) = -a 
s I 

m  dz e(Y) 

.,(:,,,j-1 H)1G(z), 

~+~CGY) =; j-: d. 160 d+Wy) -+-y 

+2 

Then we have 

G(zUMz,~L n>O. 

IBn(x,~)k~ I +w Mn+ y )[,(x) -.(X+gJn 

for n>O. The proof is by induction and as follows. Since 
H(x)<M, we have -y+2J-=~<-y+2M(z-x). 
Thus the term 8(y) + 0( -y + 2S 3) vanishes when 
-y + 2M(z - x) ~0. Hence the integration for Bo(x,y) 
vanishes when z < x + y/( 2M) and 

I BoLv) I G; s,“, y,(2M ) dz ) NY) 

+e( --Y+2 j-1 H)IIG(dl 

Assume for n, the induction hypothesis holds. Since 
O<H(x)<M, (Xc-y) -&~-y+2.f~) vanishes if 
c-y>Oorifg-y+22M(z-x)<O.Thuswehave 

I&+I~Y) 1~; I,” dz j-am  4CIW) I IBM)l<~ j-w dz Joa Cl ( )I ( * x d G z 01 z+&)[rW -r(~+&)]~ 
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du s,’ dciG(u-&)I[+-A) -hf 

d+,(u-&) -n(ul]nj.; dtlG(+&)l 

=gm (x+&) sp,,,,, d+(u-&) -du 

Hence the induction proof is complete and we obtain 
(6.30). Thus (6.25) is uniquely solvable and the solution 
can be obtained using iteration. The proof for the unique 
solvability for (6.26) and the bound on its solution can be 
obtained in a similar way. n 

Proposition 6.2: If G E L:(R), the solution Bl(x,y) of 
(6.25) satisfies the partial differential equation, 

I ~(x,Y) = f WxVVx,y) 
(6.31) 

and the solution B,(x,y) of (6.26) satisfies the partial 
differential equation, 

1 B,(x,Y) = - f G(x)B,ky). 
(6.32) 

P~OOJ? Let us first work on B,(x,y) of (6.25). Since 
dO(x)/dx = 26(x), where 6(x) is the Dirac delta distri- 
bution, we have, in the sense of distributions, 

-4 -y+2 J; 43~1 +; JXm dz 

X 

+ 6(6--v + 2 j-1 H) ] G(z)4(4), 
or, equivalently, 

1733 

I 

$B/(x,y) = -; j-w dz[G(y) -6( -y+2 r H)] 
x x 

XG(z) +; f-X- dzG(z)[ -&(z,y) 

+&(W j-; H)]. 
On the other hand, 

; &(x,Y) = H(x) Jxm dzS( -y+ 2 J; H)G(z) 

+ H(x) s a 
x 

Thus we have 

$ - &$-]B,‘xs’ = -; j-; dz G(zMz,Y), 

(6.33) 

from which (6.3 1) follows. The proof for B,(x,y) is sim- 
ilar. By differentiating (6.26) we obtain 

I 1 x 
B,(x,Y) = -z s 

dz G(z)Br(z,~), _ m  

from which we obtain (6.32). n 
From (6.33), using (6.30), we have the estimate 
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I[ 
$,-&$WY)(<~ j-; dzIG(z)I IBAWl 

1 = 

%  x s 
$n[T,(z) - dz+Y/(*))I 

m  @dX) -++Y/(2M))l 
s 

dzl G(z) ( 
x 

The next theorem shows that the Marchenko equa- 
tions given in (6.22) and (6.23) are uniquely solvable. 

Theorem 6.3: Suppose the potential P(x) is bounded 
below, 1 - HEL’(R), P(x) < 1, and GE L:(R),where G 
is the quantity defined in ( 1.6). Then the Marchenko 
integral operators are self-adjoint and compact on 
L2( 0, 00 ), and the Marchenko integral equations (6.22) 
and (6.23) are uniquely solvable. 

Proof Note that the reflection coefficients R(k) and 
L(k) are continuous for k&t, are of O( l/k) as k--+ f CO 
and belong to L2(R). We will only prove the unique 
solvability of (6.22); the proof for (6.23) is similar. Let 
us introduce the linear operators sl, &“* and CI, by 

(Y@)(y) = j-w dzgz(w+z)BW, 
0 

(&P@)(y) = - 2 w$x>E;e-~i’ Jm dz e-@B(z), 
j=l 0 

(i-&B)(y) = j- dz Mx,y + z)B(z). 
0 

Then 9 I is compact on L2 (0, CXI ) as a result of the lemma 
in the Appendix and &“l is compact as a result of the 
square integrability of its kernel. Thus RI = Y I + &“I is 
compact on L2 (0, CO ) . 

From (4.8) it follows that g](x,y) is real and from 
(6.20) it is seen that Rl(x,y) is real. Since in (6.22) y and 
z appear as y + z in the argument of the kernel, the 

I 

Marchenko integral operator R, has a symmetric kernel. 
Hence, since 0, is also bounded, it is self-adjoint. 

The proof of the unique solvability of (6.22) is sim- 
ilar to the proof given in Ref. 19. Since Q is a compact 
operator, it suffices to show that the homogeneous 
Marchenko equation q(y) = (CIm) (y) has no nontrivial 
solutions; i.e., if q(y) is a solution of 

r](Y) = 
s 

m  dzg,(x,y + z>v(z) 
0 

+ YZ C(P>x)EJj(Y) Jaw dz Cj(z)v(z), 
j=l 

then q(y) vanishes identically. Here [j(Z) = e - @ . Let 
( a, *) denote the usual inner product on L2 (0,~ ). Then 
we have 

0 = ((I- f-m ,77) 

:, =- 

j-m  t1 -HI)] I$W l’ x 

(6.34) 

where G(k) is the Fourier transform of q(y) and 

C(fijJ)Ej= 
c(/?j)exp( -2P&H-B/~[1 -HI +P,SO-,[l -HI -DJoP_,[l -HII 

S”_ m  dz[ 1 - P(~)]f~(i~~z)f,<ip,z> > 0, 
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in view of fi(i&,z) = C(flj)f,(ifipz) and 1 - P> 0. As a 
result of these inequalities and 1 R (k) 1 < 1 for all nonzero 
real k, we obtain from (6.34), 

;j(k) = 0 and (q,Cl) = a** = (w&v) = 0, 

whence q(y) ~0. n 

VII. BOUNDS ON THE KERNELS OF THE 
MARCHENKO OPERATORS 

In this section, under the assumption that the solu- 
tion of each Marchenko equation through (6.27) leads to 
G(x) satisfying G E Li (R), we will obtain some estimates 
on the kernels given in (6.20) and (6.21). 

Proposition Z I: Assume G(x) obtained from the so- 
lution of each Marchenko equation using (6.27) satisfies 
G E Lr (R). Then the kernels of the Marchenko equations 
(6.22) and (6.23) satisfy 

1 O,(xa) I<; u,(x)P~(xw~‘r’“) - ‘I, 
(7.1) 

1 R,(x,y) 1 <f ur(x)P~(x)~[~rO - ‘I, 

where iU is the constant defined in (1.3) and al(x), 
a,(x), T/(X), and T/(X) are the functions defined in 
(6.28) and (6.29). 

Frmj We will give the proof for &(x,y) only; the 
proof for LI,(x,y) is similar. From (6.11) and (6.20) it is 
seen that C&(x,y) is a function of x + .f ,“[l - HJ +y/2. 
Let 

=R/(x,y). (7.2) 

I 

From the Marchenko equation (6.22), letting s = x 
+ S,“[l - H] + y/2, we obtain 

q(s) = Bl x,2s - 2x - 2 
( 

J- W I) x 

s 
* -2 dt Bl(x,2t - 2s)ol( t). (7.3) 

5 

Similarly, from (6.11) and (6.2 1) it is seen that Q(x,y) 
is a function of - x + .I? m[l - H] + y/2. Equation 
(7.3), being a Volterra equation, is uniquely solvable for 
w1(s). For simplicity, let us drop the subscript I in BI, oI, 
ol, and rP We then have w(s) = ~,~=ooi(s), where we(s) 
= B(x,2s - 2x - 2S,“[l -H]) and 

@ j(S) = - 2 
s 

m  dtB(x,2t-2S)mjmI(t), j>l. 
s 

Using (6.30) we obtain 

1 B(x,2t - 2s) I <f a(x + y/( 2M) )pcx) - MT(x +“‘(2M)). 
(7.4) 

Thus we have Iwo(s) ) < ~~O(X>~~~“). Assume 

1 % (S) I<& O(X)@(~) 
IS 

OJ dt 
s 

x0(x+?) (p(x) -Awx+ (t--)/M ) n* 1 
Then by induction using (7.4) we obtain 

1 
[r dtcfx+G) 1 n+l 

= 2(n + l)! u(x)EwX) @ T (x) - MT(X + (t - s)/-w , 
Thus through summation we obtain 

lo(s) I<; a(x)eM  exp[ 1 &u(x 1 ‘--$)@h) --T(X+ (i-d/M )] = 1 ,,(x)@ fdx)@ -)- ‘I, 

and hence, replacing s by x + .f,“[l - H] + y/2 and using (7.2), we obtain (7.1). n 
Proposition Z2: Assume G(x) obtained from the solution of each Marchenko equation using (6.27) satisfies G 

E Lf (R).Then the derivatives of the kernels of the Marchenko equations (6.22) and (6.23) satisfy 
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G(x) 
g ~,(x,O) - - 

2Nx) 

1+M 
Q 2 

- ,l(X)2eM’r(x)gfP~x~ - 11 , 

where M  is the constant defined in (1.3), and ol, o’r, rl, 
and rr are the quantities defined in (6.28) and (6.29). 

Prooj We will give the proof only for (d/dx) C12,( x,0); 
the proof for (d/dx)&(x,O) is similar. For simplicity, we 
will again drop the subscript 1 in BI, wl, ui, and rP 

-g W&O) - g$ 

l+M 
<2 r 

-u (x)zp+wpP~(“) - 11 t 

Let y -, 0 in the Marchenko equation, which is equiv- 
alent to letting s + x + S,“[l - HJ in (7.3). Let us use 
the notation B, (x,~) and B,(x,y) for i3Bl(x,y)/c3x and 
cYBl(x,y)/i3y, respectively. We then obtain 

s 
O” 

x+J,m[l-HI 
dt B(x,2t-2x-2 J; [ 1 -H+(r). 

Taking the derivative of both sides of (7.6) with respect to x, we obtain 

dt 

(7.6) 

X +,2t-2x-2~~ [l-H]) -2H(x)B,(x&-2x-2 JXm [l-l+(t). 

(7.7) 

dz G(z)B(z,y). (7.8) 

From (6.33) we have 

BI(w) - 2~(x)Bdx,y) = H(x) 

Thus, using B,(x,O) = $G(x) and (7.8) in (7.7), we obtain 

d(x+ Jxm [l-HI) -gg)= 2B(x,O)o(x+ s,” [l -Xl) -2 j-;+,,,-H, dtw(t) J; dzG(z) 

xB(z,Pt-2x-2 JXa [l-X]). 

Thus we have 

I++ J; Il-H1)-~~~2lB(x,O)I/o(x+ j-; W -4+2 j.;+J;LImq dtldt)I 

x sxm dzIG(z)) IB(z,2t-2x-2 J; [l -HI)1 . 

Note that using (7.4) and (7.5), we have 

2lB(x,O) I 10(x+ J; [l -HI) ~~~~(x)~~M”“‘~I~~~~‘-~I 

and 
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2 
s 

xtJ;l,mHl dtlo(t)I jXm dzlG(z)+(zWx-2 1 [l--HI)1 

<a(x)&wpP(x) - II Jxm dzIG(z)I I,“,,,,, dt;~(z+f-x-Jj’l -H1) 
x 

X exp MT(X) - Mr z + 1 i t-x-S,m[l -H] 
M  )I 

<a(X)eM’c”)preM r(x) - 11 
is 

- 
x 

dz;lG(z) I] = (r)~(~)~~~~~~[~~‘~‘-~]. 

Hence the proof is complete. 

Proposition 7.3: Assume G E L: (R). Then the functions 
al(x) and a,(x) defined in (6.28) satisfy 

s 
m  dx( 1+ 1x1 >u,W2<C,(a> 

(I 

and 

I 
= Ml + 1x1 br(~)~<C,(d, 
-co 

where C,(a) is a decreasing function of a and C,(a) is an 
increasing function of a. 

ProcJ We will give the proof for U/(X) only; the proof 
for a,(x) is similar. For simplicity, let us drop the sub- 
script I in ok First note that 

I 
- Ml+ 1x1 )a(~)~ 

D 

am43, -a)(1 + Ial )u( - Ial j2 

+ a(O) j-ca d&l + 1x1 b(x). 

Hence we only need to show that .f,” dx( 1 + x)0(x) is 
finite. 

We have 

s 
co dxa(x)2<o(0) Q, dxa(x) 

0 s 0 

and 

s 
o, dxxa(x)2 

0 

= j-w dxxsm  dyIW )I Ia dzIG(z)I 
0 x x 

< I,* dx j-m dyylG(y) I j-w dzIG(z) I 

<(~om~$W~)j-o~~~ ~x~WX~I~ 

Hence we only need to prove that Jrdx a(x) is finite. 
This follows from 

s 
O” 

0 
dxdx) = Joa & s,’ dxIG(y)I 

= 
s 

m  dyylG(y)I < + co. 
0 

Thus the proof is complete. n 
Proposition Z4: Assume G(x) obtained from the so- 

lution of each Marchenko equation using (6.27) satisfies 
GE L:(R), and inf&H(t) > 0. We then have 

s 
dWx,O) 

Q) Ml+ 1x1) dx 
I I 

<q(a), (7.9) 
a 

s 
’ 

dWx,O) 
d-41+ 1x1) dx 

I I 
<c,(a), (7.10) 

-02 

where c,(a) is a decreasing function of a and c,(a) is an 
increasing function of a. 
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ProojY We will give the proof only for (d/dx) n/(x,0); 
the proof for (d/dx) n,(x,O) is similar. For simplicity, let 
us drop the subscripts in a[, CT/, and TV Using Proposition 
7.2 we have 

dfi(x,O) 
Ml+ 1x1) dx 

I I 

< 
s 

- dx(l+ 1x1) g 
a [I I 

+ ~~(,)2,2Twee~(~) - 1 
2 1 

1 
s 

O” 
‘2 infe H(t) 

dx(1 + Ix l)l’Xx>l a 

1 +-p(-]lal)eeT(-IaI)-l 
2 Ml + 1x1 )a(~)~. 

The first integral is finite because G E Li(R)and the sec- 
ond integral is bounded, as shown in Proposition 7.3. n 

VIII. PROPERTIES OF THE POTENTIAL 

In this section, when the scattering data satisfy (7.9) 
and (7.10), we show that G(x) obtained through (6.27) 
from the solution of each Marchenko equation satisfies 
G E L:(R) .We also show that the solution of each March- 
enko equation leads to a solution of the Schriidinger 
equation ( 1.1) . 

Note that (7.9) is equivalent to 6~; E L: (a, CO ) ,where 
ol( t) is the function defined in (7.2). Define 

Yl(X) = dtlo;(t) 1. (8.1) 

It is seen that Ye is a decreasing function of x that is 
bounded on [a,00 ) for any real number a. Note that 
14~) I <S,“dtl4(t) I, and hence lo,(x) I <y/(x). Fur- 
thermore, y@’ (a, CO ) because 

s O” dx y/(x) a 
= j-=* dx JXrn dt(w;W I w(a)maxCO, -aI 

+ Lm dx L- dtl4W I = C3(a), 

where we have defined 

s 
m C3@> = ydahaxC0, - al + dt tlo;(t) I. o 

(8.2) 
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Proposition 8.1: Any solution in L’ (0, CXI ) of each of 
the homogeneous Marchenko equations is bounded and 
hence also belongs to L2 (0, co ) . 

Proc$ We will give the proof for the homogeneous 
version of the Marchenko equation (6.22) only. The cor- 
responding proof for (6.23) is similar. Let /EL’ (0, CO ) be 
a solution of 

h(Y) 

= ~omdzcq(x+ j-; [l-H] +f+i h(z), y>o. ) 

By using (8.1) we then get 

IhCv) I 

< Jom dzlh(z) 1 Jx;Ja[l-Hl +y,2+z,2 dtlw;(t)I x 

= dzlh(z)Iy/ x+ j-a [l-HI +f+; 
x 

<I? x+ ( j-; [I -HI +;)[ Joa d+W(\. 

Hence h(y) is bounded and since 

s m dylh(y) 12< 
0 

j-w dylh(y)h(x+ j-- [l-HI 
0 x 

the solution hd’ (0,~ > also belongs to L2 (0, CO ) . W 
Proposition 8.2: The Marchenko operators RI and C& 

arecompact inL’(O,m). Furthermore, /](I-C$)-‘]] is 
uniformly bounded for XE[CI, 00 ) and I] (I - 0,) - ‘11 is 
uniformly bounded for XE ( - CO ,a] for any UER. 

Proofi We will give the proof for s1/ only; the proof 
for C$ is similar. For any hd’ (0, UJ ) we have 

(f&h)(Y) 

= Joa dzo/(x+ j-; [l-H] +;+;)h(z). 

Then, as in the proof of Proposition 8.1, we have 
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c dylO-W~y)lc~o~ 4++ j-m  [I-H I +;) x 

X II m  dzlh(z)I 
0 1 (8.3) 

and 

I = 4Wfi)(y+d - (W)(y)1 
0 

<Jo= d+Wl c d+(x+ Jxrn [l-HI +f 

+;+;) -oi(x+ J; 11 -HI +;+;) 
(8.4) . 

and also 

s 
m  4+fhWy)I~ 

N 
[ Jo- dzlh(z) I ] [ j-i d. 

XYl x+ ( J 
m  [l-H]+; 1. 

x ) 
(8.5) 

Then, for any hd’ (0, co ), using the properties of wI( t) 

implied by w; E L! (a, CO ) ,we can conclude that the integral 
in (8.3) is finite, the integral in (8.4) vanishes as e-+0, 
and the integral in (8.5) vanishes as N+ + 00. There- 
fore, all the three conditions in the Frechet-Kolmogorov 
compactness criterion2’ are satisfied. Hence the March- 
enko operator Q, maps bounded sets into relatively com- 
pact sets, and thus R, is a compact operator on L2(0, CO ). 

From Theorem 6.3 it follows that 1 is not an eigen- 
value of the operator RI defined on L*(O, 00 ), and hence 
from Proposition 8.1 it follows that 1 is not eigenvalue of 
RI in L’ (0,~ ). As a result, the operator (I - a,) - i ex- 
ists for each x. The norm continuity of 0, with respect to 
x and the fact that Il&ll-+O as x--, + CO imply that for 
each aeR, the L’ norm /I (I - a,) - ‘11 is uniformly 
bounded for xe[a, CO ) . n 

Proposition 8.3: The solution of the Marchenko equa- 
tion (6.22) is unique in L’(O,CX,)~L~(O,CO) for each 
xc[a, 03 ), and the solution of the Marchenko equation 
(6.23) is unique in L1(0,~)flL2(0,~) for each 
XE( - ~,a], where a is any real number. 

Proox We will give the proof for (6.22) only. The 
proof for (6.23) is similar. Let us write (6.22) as (I 
- fl()B, = ofi We then obtain Bl = (I - a,) - ‘ol. 

Hence,intermsofthenormof(I-Qnl)-’onL’(O,co), 
we have 

[ dzlBi(x,z)l<II(I-~,,-lll~ 4+(x+ J; [I-H ] +;)I 

<IIU-W1ll~om dyy,(x+ J; [1-W  +;) 

4l(I- f-b) -111 s,“,,-,,-,, x 
dt n(t)<2llU- f--h> - lljq(x + Jrn [ 1 - X I), x 

where C3(x + S ,” [ 1 - H] ) is the quantity given in 
(8.2). n 

Proposition 8.4: The solution B*(x,y) of the March- 
enko equation (6.22) is bounded for each @a, CO ), and 
the solution B,(x,y) of the Marchenko equation (6.23) is 
bounded for each XE( - CO,~], where a is any real num- 
ber. Furthermore, these solutions vanish as y+ + CO. 

Proqfi We will give the proof for (6.22) only. The 
proof for (6.23) is similar. From the Marchenko equa- 
tion (6.22) we have 

IB~(xfl)I(I@ i(x+ j-- [l--H ] +;)I + Jo- dz 

I 
IB[(x,z)I 

dz I B&v) 1 1 
<C,(X)Y, 

( J- 
x + m Il-Hl+;, x ) 
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C,(x) = 1 + 2ll(I - a,> - yc3(x + Jm [ 1 - HI), x 
(8.6) 

where C3(x + S ,“[l -H]) is the quantity given in (8.2). 
Since y&l (a, 01) for any aER and yI( 0~) ) = 0, the proof 
is complete. W  

Proposition 8.5: Suppose that fl,(x,y) obeys (7.9). 
Then the solution Bl(x,y) of the Marchenko equation 
(6.22) has first partial derivatives (a.e.) such that (a/ 
~3x)B~(x;)~L’(O,co) and (a/a~)B~(x;)~‘(O,co). Sim- 
ilarly, when &(x,y) satisfies (7.10), for the solution 
B,(x,y) of (6.23) we have (~/~~)B,(x;)~,~(~,ccJ) and 
(d/ay)B,(x,%%,co 1. 

Proq? We will give the proof only for (a/ax) Bl(x,y) . 
The proof for (d/c3y)Bl(x,y) and for the derivatives of 
B,(x,y) is similar. From (6.22), we obtain 

aBl(x,Y) 
ax 

=H(x)o; x + 
( J- 

- [l--HI +f 1-H(x) x ) 

x Jam dzo;(x+ j-; [l--HI +;+;) 

X~(X,Z) + s 
m  dz 

0 

( J m  
z dBlb,Z) 

xq x+ x [l-HI +;+&p 

y>o. (8.7) 

Obtaining (8.7) from (6.22) through differentiation is 
justified, as shown by the following argument. Letting 
UW,Y) = 4(x + GY) - WGY) and A$WGY) 
= n/(x + e,y) - fil(x,y), from (6.22) we obtain 

UVX,Y 1 

= AJ&(x,y) + s ow dz 4fMx,y + z) 

s m  xBl(x + E,Z) + dz f&y + z>A,A(x,z). (8.8) 
0 

In order to prove that the pointwise limit of 
E- ‘A &,(x,y) exists a.e. and satisfies 

lim E - ‘A&nl(x,y) = 0; 
E-O 

[l --HI +$H(x), 

and that, in fact, the same limit exists in the L’ sense 
(with respect to y), we write down the inequalities 

m  
I I O” dy E- ‘A$-W ,y) - 0; x + 

0 ( s [l--HI +$%x)1 

<Jam dy I:+’ dse-‘,u;(s:[ [l-H] +;)H(s) --o;(x+ J; [l-H] .q)H(x)I 

GE-’ j.;du Jam dy(w;(x+u+ ~;+U[l--Hl+f)H(x+u)-w;(x+ J; [l-HI++(x)1 

‘owE Jo- dj+;(x+u+ s,“,. tl -HI +;)H(x+d -4(x+ j-: t1 -HI +$W/ . 

In an analogous manner, using Proposition 8.4, it follows 
that ~$Ax,Y) = (I- Q> - ’ ~-WY) + 

I 

tie-l m  

s 

x &-W,Y + z)Bkx + w)I. 
dz Ae-fMx,y + z)Bl(x + ez), 

E-+0 0 
Since (I - a,) - ’ is a bounded operator on 

(8.9) 

L’(O,CO), we 

exists pointwise a.e. as well as in the L’ sense. 
Now let us write (8.8) as 

conclude that lim,,, E- ‘A$,(x,y) exists in the L’ sense. 
Hence, since fi[(x,y + z) is bounded, from (8.8) we can 
conclude that 

dz 
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lime-’ 
I 

m  dz WX,Y + z)U(x,z) 
p-0 0 

exists pointwise a.e. as well as in the L’ sense. Thus, from 
(8.8) we see that lim,,o E- ‘Apl(x,y) = dBl(x,y)/dx 
a.e. From (8.8) and (8.9) it follows that this partial de- 
rivative satisfies (8.7) and is in L’(0, UJ ), W  

Defining 

1 am-d 
PrbYV) = - H(X) ax 

(8.10) 

Pl(XS) 

= Jomdzai(x+ J: [l-H] +f+f)B,(x,z) 

+ [dw(x+ fxm  [l--HI +f+;) 

x0; x+ 
( I 

m [l-Hl+;, x 1 
we can write (8.7) as 

PrhY) = pdx,y) + I 
m  dz 

0 

XWI x-l- ( J m  
x 

[l-H] +;+; 
) 

(8.11) 

xPkw), Y  > 0. (8.12) 

Proposition 8.6: For each real constant a, the quantity 
PIbY) defined in (8.10) is bounded and 
p,(x;)d,‘(O,co), uniformly in x on [a,m). 

Prooj Using (8.11) and Proposition 8.3, we obtain 

IMX*Y) I 

< fom  d+;(xf f; [l-H] +f+f B( ) ) I x,z 1 

+ j-am  dz I++ j-; [l-HI +;+;) 

XWi X+ 
( J 

m  x [l-HI +;) 

<C,b)n ( s x + m [l-Hl+;, x ) 
where we have defined 

c,(X) = 2[c&) + l]yl ( X + j-X- 11 -HI), 

and C,(x) is the quantity defined in (8.6). Hence we 
have the L’ norm of puI satisfying 

Ikd G(x) ( dv yi( x + fxm  [ 1 - H I + ;) 
= 2WX)7ll(X>, (8.13) 

where 

O” 71/(X) = 
s 

dtlw(t) I. 
x 

Thus from (8.12) we obtain 

IPIkId + l&PI1 

eyx)yr [l-H] +; 

11 -HI +$P~ll~ (8.14) 

On the other hand, from (8.12) and (8.13) we have 

IlPrll4l(I - a) - ‘llllI4I 

<%(xhb) IIt1 - f-b) - ‘IIt (8.15) 

and thus (8.14) gives us 

IPII w 

X 

l f 
m  x+ x [l---HI +;) 

[G(x) -t2C,(x)rlr(x)ll(I--n,)-‘IIl, 

and hence 

)I 2[1 +C4(x)] 

x[l +2rll(x)II(I--~)-111]. (8.16) 

Thus from (8.16) it follows that p/(x,y) is bounded in x 
andyon [a,m)XR+, where a is any real constant; from 
(8.15) itfollowsthatpl(x;)~‘(O,cr,),uniformlyinxon 
b,w 1. W  

The next theorem shows that when the reflection co- 
efficients are used as inputs to the Marchenko equations 
(6.22) and (6.23), the quantity G(x) obtained by using 
(6.27) satisfies GEL!(R) whenever the quantities in 
(6.20) and (6.21) obtained from the scattering data sat- 
isfy (7.9) and (7.10). 
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Theorem 8.7: Assume that the quantities in (6.20) 
and (6.21) that are obtained from the scattering data 
satisfy (7.9) and (7.10) and that H(x) is bounded away 
from 0. Then the quantity G(x) that is obtained from the 
solutions of the Marchenko equations using (6.27) satis- 
fies GEL:(R). 

Proo$ The proof will be given by proving that 
S,” dx(l + 1x1) \dBl(x,O)/dxI and S”_ m  dx(1 + 1x1) 
I dB,(x,O)/dx I are finite for each ER; we will only give 
the proof of the former since the proof of the latter is 
similar. From (8.10) it is seen that it suffices to prove 
that .f,” dx( 1 -I- 1x1) Ipl(x,O) I < + CO. From (8.16) it 
is seen that this integral is finite if d E ~5: (a, CO ),where 
n(x) is the quantity defined in (8.1). Since yl(x) is 
bounded in [a, 00 ), it is enough for us to prove that d 
E ti (0, CO ). The latter follows from the assumption w; 
E L{ (a, CO ) and a repetition of the proof of Proposition 7.3. 
Thus we obtain G/(~H)GC~(~,CO) and G/(2H)ELi( 
- ~,a) for any real number a. Hence G/(2H)EL:(R). 

Since inf,& H(x) > 0, it follows that G E L;(R). n 
Theorem 8.8: The solution of each of the Marchenko 

equations leads to the solution of the Schrodinger equa- 
tion ( 1.1). As a result, the solutions of the Marchenko 
equations also lead to the solution of the Riemann- 
Hilbert problem (6.2). 

Proq? We will give the proof only for the Marchenko 
equation (6.22); the proof for (6.23) is similar. Let 
Bl(xy) be a solution of (6.22) and set 

dmx,o + 1 
G(x) = 2 dx . (8.17) 

In the following steps we will make the assumption, in 
addition to the properties of B[(x,y) stated in Proposition 
8.5, that 

a 
I 

i a 
ax 

-2d+-- ay H(x) ax 1 4(x,y)EL’(O<y< co 1. 
(8.18) 

This assumption will be used to justify some of our cal- 
culations below, although it is not needed for the validity 
of the theorem; later in the proof, we will use an approx- 
imation argument in order to get rid of this extra assump- 
tion. Let 

v(x,y) =$ 1 
-,a,12 ay H(x) ax 1 Bl(X,Y 1 

+ G(x)&(x,Y 1. (8.19) 

We will show that ~(x,y) satisfies the homogeneous 
Marchenko equation 

77kY) - 
s 

m  dz f-4kY + z>q(x,z) = 0, y> 0, 0 
(8.20) 

and it will then follow from Theorem 6.3 that r](x,y) = 0, 
and thus 

a a i a 
ax -2Z&+H(x)ax -- &(x,Y) = - G(x)&(x,Y). 1 

(8.21) 

In order to establish (8.20) we note that from (6.11) 
and (6.20), we have 

I g - 2H(x) g &(x,y) = 0. 
I 

Using (6.22), (8.19), and (8.22), the left-hand side of 
(8.20) can be evaluated as 

a i a 
-2a+-- 

ay H(X) ax W X ,Y) + G(x)~(x,Y) + &  
i a =- ax - 2 a + - - m  ay H(X) ax U- 

dz f&(X,Y + Z)Bl(X,Z> o 

+ s 
m  dzQ(x,y+z)$ 

0 ( 
-2 ; + & ;)Bi(x,z) + Jo- dz % (x,Y + ~W(X)~(X,Z) 

= G(x)f-b(x,y) + $ I om 
1 aB,(x,ig m  

dz f&by + Z)H(X) 7 - s 0 
dz &(x,y + z)& 

Wx,O + 1 
G(x) -2 dx 1 f-u&Y). 
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Hence, upon using (8.17)) we see that q(x,y) is a solu- 
tion of (8.20), and since 1 is not an eigenvalue of fib we 
conclude that q(x,y) = 0. We will prove the assertion of 
the theorem by showing that Z,(k,x) defined by using 
(6.9) satisfies (3.3), or equivalently, 

2; + [ - H’/H + 2ikH]Z; + GHZI = 0, 

which we write as 

-1) 1 +GIZl-l]= -G. (8.23) 

In order to verify (8.23), we differentiate (6.9) and use 
integration by parts to obtain 

T7+2ik(Zl- 1) = -22BI(x,0+) -2 

where we have used the fact that B[(x, CO ) = 0, as seen 
from Proposition 8.4. Hence we can rewrite (8.23) as 

c dyeiky[$( --2$+&g) +G(x)]Bi(rg) 
Wx,O + 1 = - G(x) + dx . (8.24) 

Zi 

Each side of the equality in (8.24) vanishes; the left-hand 
side due to (8.21) and the right-hand side due to (8.17). 
This proves the theorem under the assumption given in 
(8.18). 

In the general case without assuming (8.18), we can 
choose a sequence of functions o~,,EC~ (0,~ ), satisfying 

s 
co lim 

n-m 0 
d4 1 + z) 10; (~1 - o&(z) 1 = 0, 

and hence 

lim 
I 

Q) 
n-00 0 

dzlo;(z) -c&(z) 1 = 0. 

Let &,,(x,Y) = W&C + S ,“[I - HJ +y/2) and let 
Bl,,(xy) denote the corresponding solution of (6.22). 
Also set Gn(x) = 2[dBI,,(x,O + )/dx] and denote by 
Z,,,(k,x) the corresponding solution of (8.23). Then it 
follows from (8.7) that B/,,(x,y) satisfies (8.18) so that 
the calculations above are justified for the approximating 
sequence. It also follows that IIn, - nr,ll -0 and hence 
II(I--,,n)-‘-(I--,)-‘II-*O as n-co, where []-]I 
denotes the operator norm in L’(0, CO ). By exploiting 
(8.7) it can then be shown that ]Bb,(x,y) - Bl(x,y) I -+O 

uniformly in x and y and that IIBr,,(x;) - B[(x;) II -+O 
and II (a/ax)B&;) - (a/ax)Bl(x; ) I] -+O uniformly in 
x; we omit the details. From (6.9) we have 

m Z&6x) = 1 + s dy Bl,, (x,y ) eiky. (8.25) 
--oo 

The right-hand side in (8.25) tends to a limit uniformly 
in x, and thus so does Zr,,( k,x). Since by (3.7) we have 

Z,,,Ak,x) = 1 + s G,(z) 
a dzX 

x 

X[l -exp( -2ik JI H)]G,,Akg) 
and G,(x)-+G(x) in L’(R), we conclude that 
lb, m Zl,,(k,x) = Zl(k,x) is a solution of (8.23) with 
corresponding potential G(x). The proof of Theorem 8.8 
is now complete. n 

The equivalence of 2[dB[(x,O + )/dx] and - 
2[dB,(x,O + )/dx] in (6.7) is assured because the solu- 
tions of the Marchenko integral equations (6.22) and 
(6.23) lead to the solution of the Riemann-Hilbert prob- 
lem (6.1). The proof of this equivalence is similar to the 
corresponding proof in the inverse problem4 for the reg- 
ular Schrodinger equation ( 1.4) and can be given in a 
straightforward manner by noting that the solution of 
(1.1) also satisfies (6.1). 

APPENDIX 

In this appendix we prove the following result used in 
the proof of Theorem 6.3. 

Lemma A. I: Let F(k) be continuous for keR, vanish 
as k-+ f 00, and belong to L2( R) . Put 

f(y) = sy, $eikyF(k), yeR. 

Then the operator 3 defined on L2( 0, CO ) by 

(Yh)(y) = Jo= dzf(y+zM(z), YXJ 

is compact. 
Proq? Let j(x) be a non-negative C” function for 

XER with support in [ - 1,1] such that 
S”_ m dxj(x) = 1, and let j,(x) = (l/e)J’(x/e). Define 
the mollification ae = j,*F by convolution. Then, from 
Lemma 2.18 of Ref. 21, we have (i) aE is a C” function 
that vanishes at f 00 together with all its derivatives; i.e., 
QyFT;(i) @G2W 7;:) ll~~ll2~IIFll2 and h,dP, 

; and lim,,oI @@I - F(k) 1 
= 0, iniformly in k on R, due to the uniform continuity 

of F on R. Now put 
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s 
to 

PAY) = 
dk iky 

_ m  me QdkL FR 

and define Y, on L2(0,a) by 

(3&h)(y) = j-w dzq&+zVW, Y>O. 
0 

Since 

I om dyyldy) Iz4$l~rl12110:l12 

~~l~~ll~lli:ll~ll4l~~ 009 

the operators Y E are Hilbert-Schmidt on L2 (0, CO ) . Also, 
noting that 

[9 - 9clh = (f - qJe)*h*, 

for h*(y) = h ( - y), and putting 

h^(k) = (l/,/%)S~ dy e-ik%*(y), 

we obtain 

II t 53 - 53J4l2~ q&II V’ - dll2 

+ 
2T syug IJW) - QAk) I II4127 

where we used l$lj2 = Ilhl12. As a result of (iii), 1I.Y 
- Y,I(-+O as ~10 in the operator norm of L2(0,m), 

which establishes the compactness of 9. n 
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