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E X P L I C I T  W I E N E R - H O P F  F A C T O R I Z A T I O N  
F O R  C E R T A I N  N O N - R A T I O N A L  M A T R I X  F U N C T I O N S  

Tuncay Aktosun, Martin Klaus, and Cornelis van der Mee 

Explicit Wiener-Hopf factorizations are obtained for a certain class of nonrational 
2 x 2 matrix functions that are related to the scattering matrices for the 1-D SchrSdinger 
equation. The diagonal elements coincide and are meromorphic and nonzero in the upper- 
half complex plane and either they vanish linearly at the origin or they do not vanish. 
The most conspicuous nonrationality consists of imaginary exponential factors in the off- 
diagonal elements. 

1. I N T R O D U C T I O N  
In this article we obtain explicit Wiener-Hopf factorizations of certain nonrational 

2 x 2 matrix functions which arise as (modified) scattering matrices for the 1-D Schrgdinger 
equation [20,21,22] and some related SchrSdinger-type equations [6,8]. These matrix 
functions have the form 

T(k) 
(1.1) G(k,x)  : _L(k)e_2ik  T(k) .]' 

where, for any real parameter z, 
1. T(k) is nonzero on C+ \ {0}, 1 is meromorphic on C + with continuous boundary values 

on the extended real axis, either T(0) r 0 or T(k) vanishes linearly at k = 0, and 
T(oo) : 1, 

2. R(k) and L(k) are meromorphic on C + with continuous boundary values on the 
extended real axis and vanish as k --~ oc in C +, (0 

3. G(k, x) -1 = q G ( - k ,  x)q for k E R, where q = 1 

4. G(k, x), as a function of k 6 R, belongs to a suitable Banach algebra of 2 x 2 matrix 
functions within which Wiener-Hopf faetorization is possible. This may be the Wiener 
algebra or the algebra of functions f(k) such that f*(~) "1+e " = f(z i_-~) is Hglder continuous 
with exponent a on the unit circle where a E (0, 1). We will define these algebras 
shortly. 
Wiener-Hopf factorization problems of the above type arise as an offshoot of the 

inverse scattering problems for the 1-D Schrgdinger equation [20,21,22] and some related 

1 Throughout this article we denote by C + and C -  the open upper and lower half-planes 
and by C + and C -  the closed upper and lower half-planes including infinity. 
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Schr6dinger-type equations [6,8]. T(k) is usually called the transmission coefficient, R(k) 
and L(k) the reflection coefficients from the right and the left, respectively, and 

(1.2) S(k) = (T(k) R(k)~ 
\L(k) T(k)] 

is the scattering matrix. The solution of the inverse scattering problem is achieved by 
obtaining the potential of the Schr6dinger equation when the scattering matrix is known. 
Such an inverse scattering problem can be posed [20,21,22] as a Pdemann-Hilbert problem 
which can be solved by various means, such as the methods due to Gel'land and Levitan, 
Marchenko, Faddeev, and Newton [11,12,13,20,21,22], where the Riemann-Hilbert prob- 
lem is transformed into a nonhomogeneous Fredholm integral equation. When the reflec- 
tion coefficients have meromorphic extensions to C +, the resulting integral equation has a 
separable kernel and thus its solution can be obtained explicitly by solving a system of lin- 
ear algebraic equations. It is then possible to obtain the solution of this Riemann-Hilbert 
problem by a contour integration [1] without solving the Fredholm integral equation when 
T(0) # 0; if T(0) --- 0, one can find a scattering matrix S~(k) such that its transmission 
coefficient does not vanish at k = 0 and SE(k) ~ S(k) as e ~ 0. Then the Riemann-Hilbert 
problem can be solved using So(k) as the input matrix, and then letting e --~ 0 one obtains 
the solution of the Riemann-Hilbert problem where the input matrix is S(k) [1,2]. When 
T(k) has a zero at k = 0, the factorization of G(k,  x) becomes noncanonical; in this case 
the solution of the inverse scattering problem becomes nonunique unless R(0) --- L(0) = - 1  
and the zero of T(k) at k = 0 is a simple one. Explicit examples of nonuniqueness of the 
solution of the inverse scattering problem for the 1-D Schrhdinger equation can be found 
in [3,4,5,7,10]. 

For many years it has been customary to view explicit Wiener-Hopf factorization of 
non_rational matrix functions as a Herculean task well-nigh impossible to carry out. In 
recent years there have appeared some papers [16,17,19,24] in which nonrational 2 x 2 
matrix functions within special classes are factorized explicitly. The present article is 
devoted to a completely different class of 2 x 2 matrix functions and our factorization 
method differs significantly from the ones adopted in [16,17,19,24]. In this paper we 
will obtain the Wiener-Hopf factors of the matrix G(k, x) given in (1.1) by the contour 
integration method. 

This article is organized as follows. In Section 2 we give the preliminary results needed 
for the factorization. In Section 3, assuming T(0) r 0, we pose the inverse scattering 
problem for the 1-D Schrhdinger equation as a matrix Riemann-Hilbert problem and obtain 
the canonical Wiener-Hopf factors of G(k, x) by solving the Riemann-Hilbert problem 
posed. In Section 4 explicit canonical factorizations of G(k,  x) are obtained by the contour 
integration method when the reflection coefficients have meromorphic extension to C + 
with continuous boundary values as k approaches the extended real axis. In Section 5 we 
treat the case T(0) = 0 and the case where the extension of T(k) to C + is meromorphic, 
and we obtain the noncanonical Wiener-Hopf factorization of G(k,  x). In Section 6 some 
instructive examples are presented. Finally, in the Appendix some special functions needed 
in Section 4 are defined. 
A c k n o w l e d g e m e n t s .  The authors are indebted to Roger Newton for his comments. The 



Aktosun, Klaus and van der Mee 881 

research leading to this article was supported in part by the National Science Foundation 
under grant DMS 9096268. 

2. P R E L I M I N A R Y  R E S U L T S  
A 2 x 2 matrix function W(k)  for k �9 R has a (right) Wiener-Hopf factorization if 

there exist matrix functions W + ( k )  and W_(k) ,  complementary rank-one projections Q+ 
and Q_,  and integers pl and p2 such that 

1. W+(k )  can be extended to a matrix function that is continuous and invertible on C +, 
2. the extension of W + ( k )  is analytic on C • and 
3. the equality 

(2.1) W(k) : W_(k)  ~ Q+ + \~---~-~/ Q_ W+(k), k �9 R, 

holds true. 
The partial indices Pl and p2 are uniquely determined by W(k) .  Their sum, the sum index, 
is the winding number of det W(k)  with respect to +i. If pl = p2 = 0 so that (2.1) reduces 
to W(k)  = W _ ( k ) W + ( k ) ,  the factorization (2.1) is called (right) canonical. It is possible 0) 

1 " 
For general information on Wiener-Hopf factorization of matrix functions, we refer the 
reader to [9,14]. 

In inverse scattering theory the matrix function W(k)  usually satisfies W ( ~ )  = I, 
where I is the unit matrix. In that case, we will require that W+(oe)  = W_(oz )  = I. 
It may then no longer be possible to choose Q+ and Q_ as the coordinate projections. 
Instead, we will choose Q+ as in (5.1). 

The Wiener algebra )4; p• is defined as the Banach space of all complex p • q matrix 
functions f(k) for k �9 R of the form 

F f(k) = f(c~) + dy eikyf(y), 
oo 

where f~oo dy IIf(v)ll is finite, endowed with the norm 

F (2.2)  [If i iw,•  = ]]f(oo)ll + dy IIf(y)H- 
o o  

Further, for 0 < a < 1, 7-/~ xq denotes the Banach space of all complex p x q matrix 
functions f(k) for k 6 R such that f*(4) = f(i11+_-~) is Hhlder continuous on the unit circle 
T with exponent a,  endowed with the norm 

l l f*(~l)  - f*(~:) l l  
(2.3) Ilf[]~• = ~a~llf*(~)l [ + sup is 

e 1 ~ e 2 6 T  [iX - -  ~2 
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In (2.2) and (2.3), H" ]1 is a suitable p x q vector norm. We write W and :H(~ for W lx1 and 
7-/lxl respectively. ot , 

Let W(k)  6 7-/2• for some a 6 (0, 1). Then if W(k)  is invertible for all k 6 RU {oo}, 
W(k)  has a (right) Wiener-Hopf factorizafion of the form (2.1) where W~_ ([) = W + (i ~ )  

is H61der continuous of exponent a on T+ and W*_(~) = W _ ( i  11+--~) is H61der continuous 
of exponent a on T_  ([9], Theorem II 6.2). Here T+ is the set of all ~ 6 C with I[I < 1, 
and T -  is the set of all ~ e C with I [ I>  1 including oo. Similarly, if W(k)  is invertible 
for all k 6 R U {co} and W 6 W 2• W(k)  has a (right) Wiener-Hopf factorization of 
the form (2.1) where W+(k) ,  W_(k) ,  and their inverses belong to W 2• ([9], Theorem II 
6.3). 

PROPOSITION 2.1. Suppose 

(2.4) W ( k ) = ( _ q ( k ) l  q(k ) )  , k 6 R ,  

where q(oo) = O, and q 6 W or q 6 :Ha for some a 6 (0,1). Then W ( k )  has a unique 
(right) canonical factorization 

w ( k )  = W_(k)W+(k),  k e R, 

"~/2X2 respectively, and W+(~o) = I. where W + 6 W 2 x 2  o r  W - 4 -  E �9 " 4  , 

Proof :  Let (-,.) and H" [[ be the usual inner product and L2-norm on C ' ,  respectively. 
Then 

Re (W(k)~,,) = [[~17, , E c L  k e R, 

which, according to Lemma 1.1 of [15], implies that supkel ~ 117W(k)-Ill < 1 for all k 6 R 
and a suitable constant 7. Since W 6 W 2x2 or W 6 ..,~']42x2 for some a E (0, 1), the result 
is clear from Theorem 1.1 (for W 2x2) and Theorem 5.1 (for 2• % )of[15] .  �9 

COROLLARY 2.2. Suppose 

f T(k) -R(k)d ~ )  
G(k ,x )  = \_L(k)e_2ik~ T(k) 

is a unitary matrix for all k 6 R such that 
1. T(k) is nonzero for all k 6 R ,  
2. T(k)  can be continued to a meromorphic function on C + with continuous boundary 

values on the extended real axis, and T(oo) : 1, 
~. T(k), R(k) ,  and n(k)  belong to either W or :Ha for some ~ e (0, 1). 

Then G(k, x) has a (right) Wiener-Hopf factorization with equal indices Pl = P2 = P, where 
p is the number of zeros minus the number of poles o fT(k)  in C +. 
Proof :  From the unitarity of G(k ,x)  it follows that T(k)R(k)  = - T ( k ) L ( k ) ,  and thus 
G(k) /T (k )  coincides with the matrix function (2.4) with q(k) = -R(k)e21k*/T(k).  So 
G(k, x) /T(k )  has the (right) canonical factorization 

G(k,x) 
T(k) - W _ ( k , x ) W + ( k , x ) ,  k e R, 
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where W• x) = I. Also, the scalar function T(k) has the Wiener-Hopf factorization 

T(k) = T_(k) ( k  - i~ \ k + i ]  T+(k), kER,  

where T:t:(oo) --- 1. Hence, 

G(k,x)=W_(k,x)T_(k).  -k--~ I.W+(k,x)T+(k), k e R ,  

is a Wiener-Hopf factorization of G(k, x). �9 

In the scattering theory for the 1-D Schr6dinger equation one has a more special case 
than that given in Corollary 2.2, namely T_(k) : 1 and T(k) does not have any zeros in 
C+; the poles of T(k) in C + correspond to the bound state energies for the Schr6dinger 
equation (3.1). 

3. I N V E R S E  S C A T T E R I N G  P R O B L E M  
Consider the 1-D SchrSdinger equation 

(3.1) - r  x) + Y(x) r x) = k2r x), x E R, 

where the prime denotes differentiation with respect to x, k 2 is energy, and V(x) is the 
(real) potential assumed to satisfy f~176 + ]xl)[V(x)] < oo and is allowed to con- 
rain delta distributions. Being a second-order differential equation, (3.1) has two linearly 
independent solutions, which we will call r z) and r x), satisfying the boundary 
conditions 

; T(k)e ik'~ + o(1), x -~ +oc 
(3.2) el(k, X) /. ~ + L(k)~ - ' ~  + o(1), ~ ~ - o ~ ,  

{e -ik~ + R(k)e ik~ + o(i), x -~ +~ 
(3.3) r = T(k)e -ik~ + o(I), x -+ -oe, 

where T is the transmission coefficient, and L and R are the reflection coefficients. The 
inverse scattering problem is to obtain the potential V(x) from the scattering data S(k). 
Let mz(k, x) = ~ ~-~k~r ~) and mr(k, x) = 1 *~k*r *). We will call m~(k, ~) 

and mr(k, x) Faddeev solutions of the Schr6dlnger equation. They satisfy the differential 
equations 

,W[(k,x) + 2ikm',(k,x) = V(x)m,(k,x), 

m"(k, ~) - 2ikm'~(k, ~) : V(~) mr(k, ~), 
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with boundary conditions 

mr(k, as) = 1 + o(1), m;(k, x) = o(1), x ---+ +0% 

.~.(~, .)  = ] + o0), ~'~(<x)=o(S),  . - - , - o o .  

In the Sehr6dinger equation (3.1), k appears as k 2 and hence {~b,(k,x),r as)} and 
{r  as), r  x)} each form an independent set of solutions of (3.1). Thus, the first 
set can be written as a linear combination of the second set. As a result we are led to 
[=I,=2] 

(3.4) / r  {T(k) R(k)~ (~b~(-k,as)'~ k E R .  
\r  = kL(k) T(k)) kr as)/' 

( m,(k, as) ) 
In terms of the Faddeev solutions re(k, x) = \m~(k, x) and G(k, x) defined in (1.1), we 

can write (3.4) as 

(3.5) m ( - k , x )  = G(k,x)qm(k,x),  k e R. 

When T(k) has analytic extension to C +, for the class of potentials specified in the be- 
ginning of this section there is a one-to-one correspondence between that class and a class 
of scattering matrices [12,18], and it follows that if T(0) r 0, then m(k, x) is continuous 

on C +, analytic on C +, and m(k,x)  = i + O(1/k) as k ~ e~ in C +, where 1 = 1 " 

If T(k) vanishes linearly at k = 0, these properties of m(k, x) are retained except for the 
continuity at k = 0; however, when R(0) = L(0) = -1 ,  the continuity of re(k, x) is also 
valid at k = 0 [12,18]. The vector m(k,x)  can then be obtained uniquely by solving 
(3.5) provided T(k) is analytic in C +. Hence, if T(k) has analytic extension to C + and is 
nonzero in C +, the Riemann-Hilbert problem 

(3.6) n( -k , x )=JG(k , x )Jqn (k , x ) ,  h E R ,  

where a = diag (1 , -1) ,  is also uniquely solvable for the vector n(k, x) possessing the same 
analytieity and continuity properties as re(k, x). In fact, defining 

(3.7) 1 I~rZl(k,~,)Jr-nl(~x ) ?'igl(~,Z)--~l(~,X) l 
M ( k , x ) =  ~ m~(k,x) - n~(k,x) m~(k,x) + nr(k,z) ' 

where 

(a.s) {/~l(k, as) ) m ( k , x ) =  {mt (k , x ) )  =M(k,x)l ,  n ( k , x ) =  \n,.(k,x) = J M ( k ' x ) 6 '  \m~(<z)) 

aad ~ -- ( 1 1 ) ,  from (3.5) and (3.6) one obtains the matrix Riemann-Hilbert problem 

(3.9) M ( - k , x )  = G(k,x)qM(k,x)q,  k 6 R. 
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Hence, if T(k) has analytic extension to (3 + and is nonzero in C +, (3.9) is uniquely solvable 
and the solution matrix M(k, x) is continuous on C +, analytic on C +, and M(k, x) = 
I + O(1/k) as k ~ oo in C +. Since the scattering matrix S(k) satisfies the property 
S ( - k )  = qS(k) - lq ,  it follows that 

(3.10) det G(k ,  x) = det S (k )  - T(k) 
T(-k)" 

Hence, from (3.9) and (3.10) we obtain 

T ( - k )  det M ( - k ,  x) = T(k) det M(k, x), k 6 R, 

and from Liouville's theorem it follows that 

1 
det M(k, x) -- , ~ . , ,  k 6 C +. 

A~tg )  

Thus, if T(k) is nonzero in C +, the matrix M(k, x) -1 is also continuous on C +, anMytic 
on C +, and M(k, x) -1 = I + O(1/k) as k ~ oo in C+. Hence, from (3.9) it follows that 
G(k, x) has the canonical factorization 

(3.11) G(k,x)  = M ( - k , x ) q M ( k , x )  -1 q 

with factors G+(k, x) = M ( - k ,  x) and G_(k,  x) = q M(k, X) -1 q. Thus, the Wiener-Hopf 
factorization of G(k ,x)  given in (1.1) can be achieved by solving the inverse scattering 
problem for the scattering matrix S(k) given in (1.2). 

Let us start the process of evaluating of M(k, x) when G(k, z) is given. Defining 

(3.12) B(x ,y)  = e-ikY[M(k,x) - I], 
oo ~7r 

from the analyticity properties of M(k, x) it follows that B(x, y) = 0 for y < 0 and hence 

Writing (3.9) in the form 

~0 ~176 
M(k, x ) = I +  dyeikyB(x,y).  

M ( - k , x )  - I  = [G(k, x) - I ]qM(k ,x )  q + q[M(k, x) - I ] q ,  k 6 R, 

and using (3.12), we are led to 

/ ~ dk - I ] q M ( k , x ) q ,  y > 0. (3.13) B(x, y) = oo eiky [G( ]g, x) 
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Using (3.8), from (3.13) we obtain 

b ( x , y ) =  ( bl(x,y)'~br(x,y) } = f_~ooo ~dk eiky [G(k'x) - I]qm(k'x)  

= - ~ -~ L(k)e ik(-~*+y) 0 q re(k, x), 

and 

(3.15) 

{cl(x,y)'~ f ?  dke ikU[JG(k ,x)J_i lqn(k ,x)  e(~, y) = \ ~(~, y) ] = ~ 

= ~ ~ L(k)e ik(-2x+y) 0 q n(h, x), 

where we have defined b(x, y) and c(x, y) as 

b(x, y) = B(k, x)]_ = / ~ o  dk oo ~ e-iky[m(k' x) - i], 

y > O ,  

y > 0 ,  

f5  dk ~-'~[n(k,x) i]. c(x ,y)  = JB(k ,~)~  = o~ 

In the special case where R(k) extends to a function meromorphic on C + with con- 
tinuous boundary values on the extended real line and only simple poles, say NR of them, 
bl(x,y) and cl(x,y) for x > 0 can be computed from (3.14) and (3.15) by performing a 
contour integration and solving a linear system of order Nn. Fourier transformation then 
yields rnt(k, x) and hi(k, x) by using 

(3.~6) fO ~ ~ ( k ,  ~) = i + dy ~k~b(~,  ~), 

(3.17) n ( k , x ) = i +  dyeikYc(x,y). 

On the other hand, if L(k) extends to a function meromorphic on C + with continuous 
boundary values on the extended real line and only simple poles, say NL of them, then 
b~(x, y) and cr(x, y) for x < 0 can be computed from (3.14) and (3.15) in a similar fashion. 
From (3.16) and (3.17) one then finds .~r(~, x) and ,~(k,  x). From (3.5) and (3.6) it follows 
that 

(3.1S) mr(k, 5) = {.~(-k,  x) + ~-2~k*L(k)mr(k, x)}/T(k), 

(3.19) n~(k, 5) = {n, . ( -k ,  5) - ,-:~k*Z(k)nr(k, ~)}/T(k), 
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(3.20) ,~ (k ,  x) = {mt(-k,  ~) + e:~k~R(k)m,(k, ~)}/T(k), 

(3.21) nr(k, x) = {n~(--~, x) -- ~'k~R(k)n~(k, x)i /T(k).  

Thus, using (3.18)-(3.21) one obtains M(k, x) for x �9 R. In the next section we will use this 
procedure to obtain M(k, x) explicitly when the reflection coefficients have meromorphic 
extensions to C +, and thus the canonical Wiener-Hopf factorization of G(k, x) will be 
obtained as in (3.11). 

4. E X P L I C I T  F A C T O R I Z A T I O N  
In this section we will obtain explicit expressions for the Faddeev solutions re(k, x) 

and n(k,x) of the Riemann-Hilbert problems (3.5) and (3.6) for a certain class of G(k,x) .  
Then, the canonical Wiener-Hopf factors of G(k, x) can be determined as in (3.11). The 
function Ft-~(k, x, ~) appearing in (4.1)-(4.4) below will be defined in the Appendix. 

THEOREM 4.1. Suppose 
1. T(k) is nonzero for all k 6 R ,  T(ec) = 1, R(oe) : 0 and L(oo) = O, 
2. T(k) is continuous on C + and analytic on C +, 
3. T(k), a (k )  and L(k) belong to either 14; or ~ for some a e (0, 1), 
4. S ( -k)  : qS(k)- lq ,  k �9 R, where S(k) is the matrix defined in (1.2), 

and G(k,x) is defined by (1.1). In addition, assume that R(k) is meromorphic on C + 
with principal parts A_.,s=oN-'P';-1 (k - igj)-(s+l)Rj, 8 at the poles i~j (j =- 1, . . .  , WR) and with 
continuous boundary values on the extended real axis. Suppose m(k,x) and n(k,x) are 
solutions of the Riemann-Hilbert problems (3.5) and (3.6) which are continuous on C +, are 
analytic on C + and approach 1 as k --~ oo in C +. Then for x > 0 

(4.1) mr(k, x) = 1 + ~ E ml(k, x) ~ it-SRi,tFt_s(k, x, gj), 
s=0 k=i~ i  t = s  

(4.2) nz(k, x) = 1 - E E ~ d-k n,(k, x) ~ i t-sRj, tFt-8(k,  x, ~j). 
j = l  8=0 k=i~cj t = s  

Similarly, i lL (k )  is meromorphic on C + with principal parts L.,~=oV'qr (k - iAj)-(~+l)Lj,s at 
the poles iAj (j = 1,-.- ,NL) and with continuous boundary values on the extended real 
azis, then for x < 0 

(4.3) mr(k, x) = 1 + ~ ~ mr(k, x) 
j = l  s--0 k=iAj  

qj - 1  

i t - :L j , tF t_ : ( k , - x ,  Aj), 
t=S 
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(4.4) 
s q./-- 1 

"=  s=O k=iAj t=s 

Conversely, any pair of vector functions m(k, x) and n(k, x) satisfying (4.1), (4.2), (3.20) 
and (3.21) [for x > 0], or (4.3), (4.4), (3.18) and (3.19) [for x < 0] are solutions of the 
Riemann.Hilbert problems (3.5) and (3.6) and are analytic in C +. 
Proof :  By calculus of residues, we get from (3.14) and (3.15) 

NR 

(4.5) bt(x,y) = ( - i )  j~. 4.= k=iajRes {R(k)ml(k,x)eik(y+2~)}, x >_ O, 

NR 

(4.6) ct(x,y) = ( + i ) E  Res {R(k)nl(k,x)eik(y+2~)}, x > O, 
k=i~j 

j = l  

NL 

(4.7) b~(x,y) = ( - i )  E Res {L(k)m~(k,x)eik(y-2~)}, x < O, 
k=iAj 

j----1 

NL 

(4.8) c~(x,y) = (+i) j..~ 1'= k=i,xjRes {L(k)n~(k,x)eik(Y-2")}, x <_ O. 

Further, 

Res {R(k) m,(k, z) 
k = i ~ j  

s=O kmi~:d 

Rj,,  -' 

t=O k=itaj s=t 

Using (4.5)-(4.8) in (3.16) and (3.17) and using (A.2), we find (4.1)-(4.4). 
Conversely, let re(k, x) and n(k, x) be vector functions satisfying (4.1), (4.2), (3.20) 

and (3.21) [for x >_ 0], or (4.3), (4.4), (3.18) and (3.19) [for z < 0]. Then m(k ,z )  and 
n(k,x) are continuous on C +, are meromorphic on C + and approach 1 as k ~ oc in C +. 
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Further, rn,(Ic, x) and hi(k, x) do not have poles in C + for x > 0 and mr(k, x) and n~(k, x) 
do not have poles in C + for x < 0. We now compute 

= T ( - k )  + ~-  T--~ [m,(-k,  ~) + ~ ' ~ R ( k )  ~ , (k,  ~)] 

= + ~ ) km--Tm77-k) + m--C~) m,(-k,x) 
= m(k) mr(k, x), 

which yields (3.18). Here we have employed condition 4 of the statement of this theorem. 
In a similar way we prove (3.19). 

It remains to prove that  mr(k, x) and n~(k, x) [for x _ 0] and rnl(k, x) and n~(k, x) [for 
x < 0] do not have poles in C +. For example, let us prove that,  for x >_ O, mr(k, x)T(k) 
does not have a pole a t  iKj, by showing that  the coefficients of (k - i~j)-(~+l)  (u = 
O, 1 , . . . , p j  - 1) in the Laurent series of rnT(k, x)T(k) all vanish. Using (4.1) one verifies 
that,  for u = 0, 1 , . . .  ,pj - -  1 ,  the coefficients of (k - i~j) -(~+1) in the Laurent series of 
- m z ( - k ,  x) and R(k) e2ik~mz(k, x) both  equal 

P J--1 1 [( d ) ?TLI(]C ,x)I pj-l~ ./~j,t+l e-2~jx (2ix)t-s-u 
-- 7. 7# -- ~-~+i(~-~-~)!' 
s=O k=iKj t=s+u 

which, in view of (3.20), shows that  mr(k,x)T(k)  is analytic at k = igj. The same 
reasoning may be applied to nr(k, x) T(k) [for x _> 0] and to ral(k, x) T(k) and nz(k, x) T(k) 
[for x _ 0]. �9 

If all poles g a , " " ,  ~;Nrt o f  /~(k)  in C + are simple and Rj = limk~/.~ (k - ieaj) R(k), 
we get 

NR e-2Kj x 
(4.9) rnz(k, x) = 1 + ~ rnt(iaj, x) Rj x > O, 

k + inj '  

NR e - 2  ~j x 
(4.1o) ,~t(k, ~) = 1 - ~ ,~,(i,~j, x) Rj x _> o. 

k + inj '  

If all poles Aa, ' - -  , ANL of L(k) in C + are simple and Lj = limk~i~j (k - iAj) L(k), we have 
[Cf. (A.3)] 

NL c2Ai x 
(4.11) m~(k, ~) = 1+ ~ m~(/:~j,~) L~ k , ~ < o ,  j=l + i)u -- 
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NL e2ii z 
(4.12) ~(~, . )  : ,  - ~ ~ ( / ~ , ,  x) L, ~ x < 0. 

j=l q- iAj ' - -  

Substituting k = i~1,-- .  ,aN~ in (4.9) and (4.10), we obtain two systems of NR linear 
equations for ml(ixj ,  x) and nl(igj, x) (j = 1 , . . .  , NR), respectively. After we have found 
mz(~, z) and . , ( t , . )  for ~ > 0, m~(<x) = a  .~(~, ~) for x > 0 are obtained with the hdp 
of (3.20) and (3.21), respectively. Substituting (4.9) and (4.10) in (3.20) and (3.21) we find 
f o r x  _>0 
(4.13) 

NR e-2 ~i x 
m~(k, x) T(k) = 1-  ~ m,(i~,, x) R, 

j=l k - i~r 

(4.14) 

NR e_2~j x ] 

j=l 

n.,.(k,x)T(k) = I + Z  mt(inj, x )RJk  e2ik'~R(k) 1 -- m t ( i n j , x ) I t j ~  . 
121 - -  i l g j  "= 

Hence, from (4.9), (4.10), (4.13), and (4.14), we obtain 

NR _2~,~ml(i~, x)R~ 
lim (k - i~j)m~(k, x)T(k) = Rje -2'~i'~ -mt( i~j ,  x) + 1 + E i(~j + ~,) = O, 

k-- -~i~j  

which implies the analyticity of mr(k, x) and nr(k, x) on C + for x > 0. Analogously, 
substituting k = iA1,.-.  ,iANL in (4.11) and (4.12), we obtain two systems of NL linear 
eq.ations for mr(iA#, x) and ,r(/A,, , )  (j = 1 , - . . ,  ;VL). After finding mr(< ~) and ~.(k, ~) 
for x < 0, mz(k, x) and nz(k, z) for x < 0 are computed with the help of (3.18) and (3.19), 
respectively. The analyticity of ml(k, x) and nl(k, x) on C + for x ~ 0 is proved in an 
analogous manner. 

If the poles of R(k) and L(k) in C + are simple, it is straightforward to write down 
expressions for ml(k, x) and nl(k, x) if x < 0 and for mr(k,  x) and n,.(k, x) if x > 0. Indeed, 
defining g( } ) L( k ) NL : - ~j=~ (k - i l j ) - l L j  as the nonprincipal part  of L(k) in C +, using 
(4.11) in (a.lS) and using (4.12) in (3.19), we obtain {or ~ _< 0 

(4.1~) 

1[ ( Lj e 2A# z 

j=l 

+ ]~ L..~(ia~, .) ~ '  ~ 1 
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(4.16) 

NL r ~  [ Lje2Xj~ ( e-2i(k--iAi)z n,(k,~)= 1-e-~'~t(k)n~(~'~)+~ ~---i~j 1 -  

+ E L~n~(i)~8'x)e2A"~ e--2i(k--iAJ)x 1 
,=~ k + iAs i(Aj + As) " 

Note that the analyticity of mr(k, x) and nt(k, x) for k E C + when x < 0 is also apparent 
from (4.15) and (4.16). Further, defining p(k) = R(k) - ~jN=~ (k - i g j ) - l R j  as the non- 
principal part of R(k) in C +, using (4.9) in (3.20) and using (4.10) in (3.21), we obtain 
fo rx  > 0  

(4.17) 

1 [ N. e _ ~ (  .~(k,~) = ~ 1 + e~'~z(~).~,(~,~)+ ~ Rj___  ~'(~-'"~)~ - 1 

+ ~ m.~(i~,~) _~.~ { ~(~-2'~)~ 1 
k + i~s i(~j + ~s s-~-I 

(4.1s) 

n, . (k ,x)= ~(k)l [1 - e2ik~p(k)nl(k,x)+ ~ RJ e-2~i~ (1 - -  e 2i(k-i~i)z 
j=l k -- inj 

+ ~ ~ .,(i~, x)~-~'.* ( ~ i(~j + ~) 

Note that the analyticity of rn~(k, x) and n~(k, x) for k 6 C + when x _> 0 is also apparent 
from (4.17) and (4.18). 

Once m(k, x) and n(k, x) have been determined for x E R, M(k, x) follows with the 
help of (3.7). As a result of (3.7) and (3.8), the first part of the next corollary is immediate 
from Theorem 4.1. The part pertaining to unitary matrix functions follows with the help 
of Corollary 2.2. 

COROLLARY 4.2. Suppose the hypotheses of Theorem 4.1 are fulfilled. Then G(k,x)  
has a (right) canonical factorization if and only if the two systems of linear equations 
determining the unspecified constants in (4.1) and (4.2) [for x > 01 or (4.3) and (4.4) Ifor 
x < 0] are both uniquely solvable. In particular, i fS(k)  is a unitary matrix, then these two 
systems of linear equations are uniquely solvable. 

5. A D A P T A T I O N S  IN T H E  C A S E  T(O) = 0 
In this section we adapt the construction of the Wiener-Hopf factorization performed 

in Sections 3 and 4 to scattering matrices of the form (1.2) where T(k) vanishes linearly 
at k = 0. We will also treat the case where the extension of T(k) to C + is meromorphic. 
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Suppose a 2 x 2 matrix function W(k)  for k �9 R has a (right) Wiener-Hopf factor- 
ization of the form (2.1), while W(cc)  = I and 

W ( - k )  = qW(/~)- lq ,  h �9 R. 

Then it is possible to choose the factorization in such a way that 

W + ( - k )  = q W §  qQ~: = Q+q. 

(, Since 1 4-1 is the only pair of complementary rank-one projections on C 2 com- 

muting with q, we may choose, with no loss of generality, 

(5.1) Q + = 2  ' q - = 2  - 1  " 

As we now have W:l:((xD) = qW~:(cxD)-lq, W• must commute with the projections 
Q+ and Q_ in (5.1) and hence the factorization (2.1) may be adjusted in such a way that 
(1) Q+ are as in (5.1), (2) W + ( - k )  = q W ~ ( k ) - l q  for k �9 R, and (3) Wj=(~ )  -- I. We 
shM1 henceforth call such Wiener-Hopf factorizations special. In [23] such factorizations 
were called Jost function factorizations. 

PROPOSITION 5.1. Suppose 

s(k) = (T(~) R(k)) 
L(~) T(~) 

is a 2 x 2 matrix for all k E R such that 
1. T(k)  is nonzero for aUk e R \  {0), T(o~) = 1, R(o~) = 0 and L ( ~ )  = 0, and the 

order of the zero of T(k) at k = 0 is finite~ 
2. T(k)  can be continued to a function continuous on C + and analytic on C +, 
3. S(k) -1 = q S ( - k ) q ,  k �9 R,  
4. T(k), n(k),  and L(~) ~elong to either W o~ 7-t~ for some o~ ~ (0,1). 

Then all special (right) Wiener-Itopf faetorizations of G(k, x) of the form 

(5.2) ~ ] [ \ k + i )  Q + + \ k + i )  Q -  G+(k ,x) ,  k C R ,  

are given by 

(5.3) G _ ( k , x ) = M ( - k , x ) ,  G + ( k , x ) = q M ( k , x ) - l q ,  

%o heTe  

(5.4) 
~(k,~)  = ( ~ ( k ,  �9 ) 

\ M3(k, ~) 

N 
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t ,~,(k, ~))  ,,,~,t a(k,~) = \~ , (k ,~ ) )  ar~ ~o~ti,~ou~ o,~ c+, ar~ a~alytic 
on C +, and satisfy ~n(k, x) -* i and ~(k, x) --* i as k --~ oo in C + as well as the Riemann- 
Hilbert problems 

( k + i ~ " G ( k , x ) q f f l ( k , x ) ,  k c R ,  (5.5) ~ ( - k , x )  = \ k  - i )  

( k + i ~  c' 
(5.6) f i ( - k , x ) =  \ k - i f  J G ( k , x ) J q ~ ( k , z ) ,  k 6 R .  

Proof:  The existence of the factorization is clear from [9], Theorem n 6.2 (for ,~• 
or Theorem II 6.3 (for W2x2). Suppose ffa(k,x) and i i(k,x) are continuous on C +, are 
analytic on C +, approach 1 as k ~ oo in C+ and satisfy the respective Riemann-Hilbert 
problems (5.5) and (5.6), and let us define G i (k ,  x) by (5.3) and (5.4). Writing D(k) = 

k-i ~ ( ~ ) =  Q_] ,  we have [ ( ~ )  q + +  k-~ 

[G_(k, x) D(k) - G(k, x) G+(k, x ) - l ] i  

\ k + i ]  \ k - i /  

r 

and 
[G_(k ,x )D(k)  - G(k, x) G+(k, x)-l]~ 

= ~ G - ( k ' x ) - G ( k ' x ) G + ( k , x ) - I  

( k - i ' ~  ~ [J~(-k,x)+ kk-i; JG(k, = \ ~ 4 - 7 )  J ( k + i ' ~ =  x) q~(k,x)]  
-- ~ j (  ~- ,~o ~ [~(-~, ~ _ ~ j ( ~  + ~o ~ ~ ,  ~) ~ . ~ ,  ~)] 

As a result, (5.5) and (5.6) imply (5.2), and (5.2) implies (5.5) and (5.6). 
implication is most easily obtained with the help of the equalities 

The latter 

This completes the proof. * 
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If we define 

(5.7) m(k, x) = •(k, x), n(k, x) = fi(k, x), 

we obtain instead of (5.5) and (5.6) the Riemann-Hilbert problems 

m ( - k , z )  = G(k ,z )  qm(k ,x ) ,  k �9 R, 

n ( - k ,  x) = JG(k ,x )Jqn(k ,x ) ,  k �9 R, 

where m(k, x) and n(k, x) are continuous on C+ \ {0}, are analytic on C +, and approach 
i as k ~ oo in C +, while the limits of krm(k,x) and k~n(k,x) exist as k --+ 0 in C+. 
Defining 

( 5 . s )  M(k ,x )=  M(k,x)  [ (~-~-i )rQ+ + ( ~ i ) ~ Q - ]  , 

we obtain the matrix Riemann-Hilbert problem (3.9) where M(h, x) is continuous on C + \ 
{0}, is analytic on C +, and approach I as k ~ c~ in C +, while the limits of krM(k,x)Q+ 
and k"M(k, x)Q_ exist as k ~ 0 in C +. The matrix function M(k, x) is related to m(k, x) 
and n(k, x) as in (3.7). 

In the inverse scattering problem for (3.1) for the class of potentials specified in the 
beginning of Section 3, generically T(k) vanishes linearly at k = 0 and R(0) = L(0) = -1 .  
In that case m(k,x)  remains continuous at k = 0. Hence if T(k) is analytic in C + from 
(5.7) we see that we have r = 0 in the above analysis. Letting T(k) = ~+/T(k) we have 

T(k) analytic on C + without zeros and T(0) r 0, and from (3.10) we obtain 

T ( k )  k - i 
det G(k, x ) -  T ~ _ k ) -  (~_5_~) T(k) 

Thus, we see that the partial indices of G(k ,x)  add up to 1, and hence ~r = 1 in the above 
analysis, and that 

( 5 . 9 )  detM(k,x)- 1 detM(k,x)- 1 
~(k)' T(k)' k E C  +. 

COROLLARY 5.2. Suppose 

: {T(k) n(k)  
\ L(k) T(k) ] 

is a unitary matrix for all k 6 R such that 
1. T(k) is nonzero for all k �9 R \ {0}, T ( ~ )  = 1, R ( ~ )  = 0 and L ( ~ )  = 0, 
2. T(k) can be continued to a meromorphic function on C + having finitely many zeros 

and continuous boundary values on the extended real axis, while T(co) = 1, 
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(5.10) 

where 

3. T(k), R(k), and L(k) belong to either W or 7-l~ for some a 6 (0, 1), and 

4. T(k) = ( ~ )  ~(k) wher~ ~(0) # O, and R(O) = L(O) = - 1  
Then G(k, x) defined in (1.1) has a (right) Wiener-Hopf factorization with partial indices 
p and p + 1, where p is the number of zeros minus the number of poles of T(k) in C +. 
Proof :  Let us first assume that T(k) is analytic and nonzero on C +. Then, inserting (5.8) 
with T = 0 and a = 1 in (3.9) and using the fact the Q+ commute with q, we obtain the 
explicit noncanonieal factorization 

k - i  

If the extension of T(k) to C + has zeros on C + or is meromorphic instead of analytic 
on C +, the Wiener-ttopf factorization of G(k, x) can be obtained as follows. Assume T(k) 
has poles at k = ~j 6 C + f o r j  = 1, . . . ,3/" and zeros at k = % 6 C + for s = 1 , . . .  ,.M 
there. We can then factor G(k,  x) into a scalar factor and a matrix as 

G(k ,x )  

"r k - / 3 j  ~ [  k + %  
(5.11) H(k, x) = G(k, ~) 1~ ~ --~. k - -~ 

j = l  s = l  

The diagonal entries of H(k,  x) have nonzero analytic extension to C + and hence the 
Wiener-Hopf factorization of H(k ,x )  can be obtained by replacing T(k) by T(k)w(k), 
R(k) by R(k)w(k), L(k) by L(k)w(k)in (1.1), where w(k) = IIj~__l ~ [I~M=I k+~, and by k+fl j  k-'r ' 

employing the method we have presented. The scalar factor in (5.10) has the factorization 
(5.12) 

Hence, as seen from (5.12) the Wiener-Hopf fac~orization of G(k,x)  then becomes non- 
canonical with partial indices M - A f  and M - A /  in case T(0) # 0, and in case T(k) 
vanishes linearly at k = 0 the partial indices are given by A4 - .hf and 1 + AA - iV'. The 
Wiener-Hopf factors of G(k,  x) are then obtained by multiplying the factors of H(k,  x) 
and those of w(k) -1. ,* 

6. E X A M P L E S  
E x a m p l e  6.1. Consider the unitary matrix function (1.2) where for 0 < e < 1 and 7 > 0 

T ( k ) -  k + i e  L ( k ) = - i 4 1 - e  ~ k + i ' r  R ( k ) - - i 4 1 - ~ 2  k + i ~ k - i ' ~  
k + i  ' k + i  k - i T '  k + i  k - i c k + i  7" 
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Note that T(k) does not have any poles in C + and T(0) # 0. The canonical Wiener-Hopf 

G(k,x) are then given as in (3.11). Letting M(k,x)  = (Ml(k,x) M2(k,z))" factors of kM3(k,x) M,(~,~). ' 
we find for x >_ 0 

2ie s(x) 2 
Ml(k,~)= l + 

k + i e  1 - s(x) 2' 

2ie s(x) 
M~(k ,  ~)  = k + i~ ~ - s ( x ) ~ '  

M,(k,x)=l+~_ieiA4(x) (1 _ c2,~(k_,,))  +-k---~[~eiAs(x) ( 1 - e  2 ' ' ( k + ' 0 )  + iA6(x)e2ik"k+i7 

artd when x _< 0 we have 

Mi(k,~,)  = ~ + k + i-------[ + k + i ,  ~ ' 

M2(k,x ) = iAlo(x) + iAn(x) e_2ikz i A l 2 (X )  (1 -- e -2ix(k-i'~)) 
k +i-----T ~ + ~-i---T 

2i,~ t (~ )  
M ~ ( k ,  ~) = k + i-~ I - ~(~)~' 

2i7 t(x) 2 
M~(k,  ~)  = ~ + k + i~  1 - t(~)~' 

where we have defined 

~(~)= u  ' 

t (~ )  4 1 -  ~2 
I + S  

(1 + r s (x )  
A i ( = )  = I - ~ ( = ) ~  ' 

A 2 ( x ) -  ( m - c )  s (x )  
1 - s (z)  2 ' 

A a ( x ) = - ~  27 [1+  2e s(x) 2 ] 
~+~ ~- -  ~ 1 - ~--~)2 , 

( I  + e)s(x) 2 
A 4 ( x ) -  z-~(~)~ ' 

1 - - {  
As(x) -- 1 - s(x) 2' 
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A6(z) = lx/~ff~-- ~ 2 2e 27 s(x) 
~+7 ~ - 7 1 -  s(z) 2' 

AT(z)=(1-e)  1 + e + 7 1 _ t ( x ) 2 ]  ' 

As(x) = -  1 ~ / ~ ~ -  e 2 27 t(x) 
c + 7 1 - t ( z )  ~' 

Ag(x) = 2 3 " ( 1 + 7 )  t(x) 2 
e + 7  1 - t ( z )  2' 

A10(x) = 23,(1 - e) t(x) 
+ '7 1 - t(x) 2' 

A l l (X)=  - 1 +  e + 3 ' 1 -  ' 

A12(x) = 23,(1 + 3') t(x) 
+3, 1 -  t(x) 2" 

E x a m p l e  6.2. As our second example, consider the unitary matrix function (1.2) where 

k - i  
T(k) : k + i' R(k) = L(k) = k + i" 

A Wiener-Hopf factorization of G(k, x) is then given by 

G-(k,x)= M(-k ,z)  [Q+ + (kk~_ i)  Q-] , 

( k - i  / 
D ( k ) = Q + +  ~ Q_, 

G+(k,x) = [Q+ + (~-J - )  Q-] qM(k,x)- '  q, 

( MI(]~ , x) M2(]g , ~) ) 
where M(k,~)  = \M3(k ,x )  M4(~,z) ' and we have for x > 0 

Ml(k, z) = 1 + 
i 1 
k l + 2x + 2a' 

i 1 
M2(k,x) = k 1 + 2x + 2a' 

M 3 ( k , x ) : - ~  + - V + ~ 2  ] 1 + 2 x + 2 a '  
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M4(k ,x )  = l + # + - + - - - - -  
1 1 ] 1 

k 2 k 2 e2ikx 1 + 2x + 2a' 

where a is an a rb i t ra ry  posit ive parameter .  When  z _< 0, we have 

M~(k , x )  = l + -s + - + 
k 2 k 2 J l + 2 a - - 4 a x '  

i - 2 1 k z  [k 1 1_2ik~ ] 2a 
M 2 ( k , x ) = - ~ e  + --s +--~e  ] l + 2 a - 4 a x '  

i 2a 
M 3 ( k , x ) =  k l + 2 a - 4 a x '  

M 4 ( k , x ) =  l + 
i 2a 

k 1 + 2a--  4ax" 

A P P E N D I X  
In Section 3 we are using functions defined in terms of the polynomials  

Q o ( z ) -  1, Qm(z)  = - " z  J = z m m z  m-1 j=o j! + + r e ( m -  1)z m-2 + . . -  + (m!),  

which satisfy the recurrence relat ion 

(A.1) Qo(z) =__ 1, Qm+l(z) = (z + ~ + 1)Qm(z) - z ~ q m ( z ) .  

For all ~ wi th  Re ~ > 0, k E R a n d x > 0 w e h a v e  

(A.2) F~(~ ,x ,  ~) = ( - i )  dy~ ik~(y + 2x)m~ -~(~+~) = ( - i )~ -~ ik~a , , (~  - ik ,x) ,  
m! 

where 

a , , ( f l ,  x) = dy (y + 2x)m ~-~(y+2~) Re r > 0. 
m[ 

We have 

~---fiGm(fl, x) = - ( m  + 1)Gm+~(fl, x),  

and hence using (A.1) we obta in  

Gm(~,x)  = - -  m!/3~+1 
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Thus 

f ~ ( k , x ,  ~) = (----~)~-2~-----2 
[2(~ ik )x]rn-j 

(~ - ik) '~+~ j = o  J! 

In particular, 

e-2~x 
(A.3) F0(k, x, ~) = k + i,~ 

e - 2 ~  ~ ,  i i(2x) m-i  
= z--- i ! ~ - / ~  �9 

j = 0 - ' "  -}- " 
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