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A matrix Riemann-Hilbert problem associated with the one-dimensional SchrB- 
dinger equation is considered, and the existence and uniqueness of its solutions 
are studied. The solution of this Riemann-Hilbert problem yields the solution of 
the inverse scattering problem for a larger class of potentials than the usual 
Faddeev class. Some examples of explicit solutions of the Riemann-Hilbert prob- 
lem are given, and the connection with ambiguities in the inverse scattering 
problem is established. 

I. INTRODUCTION 

Consider the Schrodinger equation 

tlr”(k,x) +&Nk,x> = V(x)W,x), (1.1) 

where XER is the space coordinate and k2 is energy. Unless otherwise stated, we assume that 
V(x) is a real-valued potential in Li, where L:={VI JE’,( l+ 1x1 )pI V(x) jdx< CO}. 

There are two linearly independent solutions qr and I/, of Rq. ( 1. 1 ), called the physical 
solutions from the left and from the right, respectively, such that 

tw,x) = g;;;~!:;+;(;)+ ; 
I f +-co, 

eeikX+R(k)eik”+o( l), x+ + CO 
1CI,(kx) = T(k)e-‘&+o( l), x-+ - CO. 

(1.2) 

(1.3) 

Here T(k) is the transmission coefficient, and L(k) and R(k) are the reflection coefficients 
from the left and from the right, respectively. The scattering matrix S(k) is defined as 

T(k) R(k) 
S(k) = 

L(k) 1 T(k) * 

For kcR the pairs {&(k,x),$,(k,x)) and {$I( -k,x),$,( -k,x)} form linearly indepen- 
dent sets of solutions of Rq. ( 1.1). Furthermore, $l( - k,x) = $t(k,x) and tir( -k,x) 
= $,( k,x) when ke R, where a bar denotes complex conjugation, and we have’ 

[ ;;;;;;I =S(k) [ $;i I;;;;] , kER. (1.4) 
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Defme ml( k,x) = [l/T( k>]e-‘k”$l( k,x) and m,( k,x) = [ l/T( k)]eik”lCt,( k,x). Then the 
functions m*(k,x) and m,(k,x) satisfy the equations 

m;(k,x) +2ikm;(k,x) = V(x)ml(k,x), (1.5) 

mF(k,x) -2ikm:(k,x) = V(x)m,(k,x). (1.6) 

Let J=[A o-r] and m(k,x) = [ml(k’x) m,(k,x)]. Then we can write Eqs. (1.5) and (1.6) as a vector 
equation 

m”(k,x) +2ikJm’(k,x) = V(x)m(k,x). (1.7) 

Let q=g A]. Then Eq. ( 1.4) is equivalent to 

m( -k,x) =G(k,x)qm(k,x), keR, (1.8) 

where 

T(k) -R(k)pkx 
G( k,x) = 

- L(k)e-*jh 1 T(k) ’ 

It is known* that for potentials in Li the functions ml( k,x) and m,( k,x) are continuous in 
k in R, can be extended analytically in k to Cf, and ml(k,x) -+ 1 and m,(k,x) + 1 as k- UJ in 
C+. Here Cf denotes the upper-half complex plane and C+ denotes its closure. Similarly, C- 
and ?? denote the lower-half complex plane and its closure, respectively. Thus m ( - k,x) can 
be extended analytically in k to C-. Hence, when S(k) is given, solving Eq. ( 1.8) for m(k,x) 
becomes a Riemann-Hilbert problem. Once Rq. ( 1.8) is solved, the potential can be obtained 
from Fqs. (1.5) or (1.6) using 

V(x) = 
m;‘(k,x)+2ikm;(k,x) mT(k,x)-2ikm:(k,x) 

ml(b) = w&%x) * 
(1.9) 

Thus, solving the Riemann-Hilbert problem ( 1.8) amounts to solving the inverse scattering 
problem for Eq. ( 1.1 ), namely, the recovery of the potential from the scattering data. 

Associated with the scattering matrix S(k) we have the matrix 

---R(k) 1 T(k) ’ 
(1.10) 

Consider the vector Riemann-Hilbert problem associated with JG( k,x) J 

n( -k,x)=JG(k,x)Jqn(k,x), kER, (1.11) 

where the solution vector n (k,x) = [$yXi] is sought such that, for each fixed XER, n( k,x) is 
continuous in k in R\{O}, can be extended analytically in k to C+, nl( k,x) -+ 1 and n,( k,x) -+ 1 
as k+ M in ??. The exact behavior of n (k,x) at k=O depends on the scattering matrix S(k) 
and will be specified below. It will be shown that there always exists a potential U whose 
scattering matrix is JS( k) J, but U will “generically” be nonunique. The term “generic” will be 
made precise below. In analogy to Eq. ( 1.7), n( k,x) obeys 

n”(k,x)+2ikJn’(k,x)=U(x)n(k,x). (1.12) 
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Let #,(k,x) and, 
h 

,(k,x) denote the physical solutions associated with the potential V; that is, 
#l(k,x)=T(k)e’ n,(k,x) and $,(k,x) =T(k)e-%,(k,x). Then from Eqs. (1.2), (1.3), and 
(1.10) we see that 

tjr(k,x) = :~~“L”;k:;>;~+;(;;;)+ “, 
I e , +-co, 

I e 
-jkx-R(k)eikx+o( l), x+ + CO 

Mb) = T(k)emikx+o( l), x--r - 00. 

Define the 2x2 matrix M( k,x) by314 

mAk,x) +nAk,x) m&x) --n&x) 1 m,(k,x) -0,x> m,(k,x> +n,(k,x) * 

(1.13) 

(1.14) 

(1.15) 

Let 

i=[;] and e^=[_ll]. 

We then have 

m(k,x) =M(k,x) f, (1.16) 

n(k,x) =JM(k,x)Z. (1.17) 

We can combine Eqs. ( 1.8) and ( 1.11) into the matrix Riemann-Hilbert problem 

M( -k,x)=G(k,x)qM(k,x)q, keR, (1.18) 

where M(k,x) is continuous for kER\{O} and has an analytic extension in k to C!+, and 
M( k,x) -+I, the identity matrix, as k+ 00 in c + for each x. Note that Eq. ( 1.18) is a gener- 
alization of the standard Riemann-Hilbert problem in the sense that we do not require M (k,x) 
to be continuous at k=O. The behavior of M (k,x) at k=O depends on that of T(k) . In this 
article we only consider transmission coefficients for which the following dichotomy holds: (i) 
T(k) =ick+o(k) as k-+0 where c is a real nonzero constant, or (ii) T(k) + T(O)#O. For 
YE Li it is well-known that this dichotomy holds.2V5 We will refer to case (i) as the generic case 
and to case (ii) as the exceptional case. Then R (0) = L(0) = - 1 in the generic case and 
1 R(0) I= I L(0) I < 1 in the exceptional case. We will use the terms “generic” and “excep- 
tional” also for the potentials U if the associated potential V(x) has the corresponding prop- 
erty. Note that in the generic case UQ Lf because at k=O the reflection coefficients for U have 
the “wrong” value + 1 instead of - 1. In the exceptional case UE Li if and only if VE Lt. 

The inverse scattering problem can be formulated as a matrix Riemann-Hilbert problem in 
the form of Eq. ( 1.18) or in related forms.‘P4P6~7 In this article we show that the solution of Eq. 
( 1.18) leads to the solutions of the inverse scattering problems for the scattering matrices S(k) 
and JS(k)J and that the solutions of these two inverse problems satisfy Newton’s miracle 
condition,’ namely, the potentials obtained using the solutions from the left and from the right 
are the same. The solution of the matrix Riemann-Hilbert problem ( 1.18) allows us to obtain 
the solution of the inverse scattering problem for a larger class of potentials than the usual 
Faddeev class* of potentials belonging to L!. Since the solution of Eq. ( 1.18) can be singular 
at k=O and since we merely require M(k,x) +I as k+ 03 in c+ and not M(k,x) -IEL*(R), 
we do not use a Fourier transform in k together with Marchenko integral equations. Instead, 
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our approach relies on the Darboux transformation which allows us to relate the solutions of 
Eq. ( 1.7) to those of Fq. ( 1.12). Then we obtain the solution of the matrix Riemann-Hilbert 
problem ( 1.18) in terms of the solutions of the Schrodinger equation ( 1.1). The Darboux 
transformation was used by Degasperis and Sabatier* in the absence of bound states and when 
YE L!,, with m)2 in order to construct a one-parameter family of potentials U and their wave 
functions corresponding to the scattering matrix JS (k) J. Examples of such families were also 
obtained by other methods.3,799 One can ask whether the potentials obtained previously repre- 
sent all possible solutions of the inverse scattering problem for the scattering matrix JS( k)J. 
Here we show that the answer is in the affirmative, provided the associated solution of Eq. 
( 1.18) obeys certain restrictions. In the process we extend the analysis of Degasperis and 
Sabatier to the case when VE Li and also when bound states are present. As a further by- 
product of our analysis we find that the bound state norming constants for a potential VE Li 
whose support is contained in a half line; i.e., V(x) =0 for x>ai or x <a*, are already 
determined by the scattering matrix, and that in solving the inverse scattering problem for such 
a potential the norming constants cannot be specified arbitrarily. This answers a question raised 
by P. Sacks (private communication to T. Aktosun). 

This article is organized as follows. In Sec. II, when VE Li, we study the Darboux trans- 
formation and the small k behavior of the solution M ( k,x ) of Eq. ( 1.18 ) , and thus in particular 
we analyze the behavior of the solutions of Eq. ( 1.12) at k=O. In Sec. III we characterize the 
class of potentials to which U belongs whenever VE Li and Eq. ( 1.1) has no bound states; in 
Sec. IV we study the case when there are bound states and also show how bound states can be 
added to and removed from the potential U. In Sec. V we analyze the Riemann-Hilbert 
problem (1.18) and establish the connection of its solutions with the solutions of the Schro- 
dinger equations ( 1.7) and (1.12); in Sec. VI this analysis is extended to include the bound 
states. In Sec. VII the Wiener-Hopf factorization of G( k,x) is given in terms of the solution of 
the Riemann-Hilbert problem ( 1.18). Finally, in Sec. VIII we give some examples of explicit 
solutions of the Riemann-Hilbert problem ( 1.18) and the potentials obtained from those 
solutions. 

II. DARBOUX TRANSFORMATION AND PROPERTIES OF M(k,x) 

In this section we study the Darboux transformation relevant to the Riemann-Hilbert 
problem ( 1.18) and also obtain some estimates on the solutions of the Schrbdinger equations 
( 1.7) and ( 1.12) as k-+0. It is known**” that mt(k,x) and m,(k,x) satisfy 

ml(k,x)=l+& [ e2ik(y-x) - 11 WMkyb’s (2.1) 

m,(k,x)=l+& [e2’k’“-y’-11~(~)m,(k,~)d~. (2.2) 
m 

Proposition 2.1: Let VEL~ and k E c+. Set a,(~)=fS=~(l+lyl)Iy(y)Idy. With 
constants C, , C,, C3, C4 independent of k, we have 

(i) jmt(k,x) - 11 <Go+(x) l’~~f~x’o’, Im,(k,x)--ll<Cg-(x) 
1 + maxCx,O) 

l+lkl ’ 

(ii> Im;(k,x)~<C3~m IV(~)ldy, x>O, Irn:(k,x)/<C4~ IV(y)Idy, x(0, 
x -02 

(iii> Im;(k,x) l,Im:(k,x) I -+O as k-+ 43 in ??, unihmdy in x. 
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Proof: It stices to consider m[(k,x) because the proof for m,(k,x) is similar. We use the 
order symbols 0 and o in the limit as k+ CO in c+ when the estimates are valid uniformly in 
x. The proof of (i) is given in Ref. 10 (Lemma 1, p. 130). To prove (ii) note that by Eq. (2.1) 

m;(k,x)=- 
s 

m ezik’Y-“‘V(y)ml(k,y)dy=11(k,x)+12(k,x), 
x 

where 

I1(k,x) = - 
s 

O” e2ik(y-x) V(y) [ ml( k,y) - 1 ] dy, 
x 

(2.3) 

12( k,x) = - e*iJdY-x) v(y)dy. 

Using (i), for x)0 we get 

I V(Y 1 I dy, 

IIz(k,x) I < j-m I V(y) Id& x 
Hence (ii) follows. 

Using (i) in IZq. (2.3), it follows that I, (k,x) =0( l/k) for x>O; hence in order to prove 
(iii), it- suffices to show that 1*( k,x) =o( 1). Given any E > 0, let YE C; be such that 
]I V - q] LI < E; thus VE L’. Then 

Iz(k,x) =13%x> +I,(k,x), 

where 

I,(k,x) = - 
s 

m e2ik(Y--x) [ V(y) - v(y) ]dy, 
x 

I.+( k,x) = - 

Thu.% for k E 3, we have 11s (k,x) 1 <E. From Eq. (2.4) using integration by parts we obtain 

I&,x) =A kx> + 

and since ~EC;, it follows that I,(k,x) =0( l/k) as k + CO. Since E > 0 is arbitrary, assertion 
(iii) follows. n 

Note that the decay in k of the integral I2 above can be arbitrarily slow. For example, let 
x=0 and V(y) =y-“[H(y) --H(y- l)] with O< E< 1 where HQ) is the Heaviside function. 
Then VE L: and I,(k,O) -c&‘-’ as k-t co, where c,= - 10” e*%-‘du. For this reason we 
could not rely on the estimates for rn; (k,x) stated in Ref. 10 [Lemma 1, (iii) and (iv), p. 1301. 

For k = 0 the Schrijdinger equation ( 1.1) reduces to 

V(kx) = W)W,x), (2.5) 
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and Eqs. (2.1) and (2.2) become 

ml( 0,x) = 1 + 
s 

m (y-x) V(y)m,(O,y)dy, 
x 

J- 

x 

m,Kbx) = 1+ W-Y) V(rbdOa>dy, 
-co 

respectively. Moreover, 

m;(O,x) = - 
s 

m V(y)mhO,y)dy, 
x 

mi(O,x) = V(y)m,(Oy)dy. 

From Eqs. (2.6)-(2.9), we obtain the relations 

i 
1+0(l), x++m 

mkO,x) = -qx+o(x), x+-cm, 

i 
4 l/x), x++co 

ml) (0,x) = 
-c,+o(l), x--c-a, 

i 
c,x+o(x>, x-r + 00 

m,Kbx) = 1+0(l), x--r-CC?, 

1 
c,+o(l), x+ + Q) 

m;(O,x) = 
o( l/x), x-+ - co, 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

where 

s 
m 

q= V(yh(Oa)dy and c,= m VCy)m,(Oa)dy. (2.14) 
-00 s -02 

Let [ fg] = fg’ -f’g denote the Wronskian. In the absence of bound states m[(O,x) and 
m,(O,x) are positive,**” and thus we obtain 

[m~W);m,(O,x> 1 =c~=cM. (2.15) 

Hence, cl=c,=O if and only if m[(O,x) and m,(O,x) are linearly dependent, and by Eqs. (2.10) 
and (2.12) it is seen that this happens if and only if ml(O,x) and m,(O,x) are bounded. If a 
zero-energy solution of the Schrijdinger equation is bounded but not in L*, it is called a half 
bound state. It is known**” that for YE Li a half bound state occurs if and only if V(x) is 
exceptional, which follows from the Wronskian 

2ik 
[fzW;fr(Wl=--I (2.16) 
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by letting k-+0, where fr( k,x) is the Jost solution of Eq. ( 1.1) from the left and f,( k,x) is that 
from the right. Recall’ that the Jost solutions of Eq. ( 1.1) satisfy lim,, +- e-‘k”fi(k,x) = 1 
and lim,,-, eihfr(k,x) = 1, and they are related to the solutions of Eqs. ( 1.5) and ( 1.6) as 

f,(k,x)=eiksml(k,x) and f,( k,x) =eeikxmr( k,x). (2.17) 

In the generic case we define a family of solutions of Eq. (2.5) depending on a nonnegative 
parameter a by 

i 

mkO,x) +am,(O,x), O<a < CO 
x(-v> = m (ox) 

r 9 9 a=c0. 
(2.18) 

From Eqs. (2. lo), (2.12)) and the fact that ml( 0,x) and m,( 0,x) are positive, it follows that 
x(x;a) > 0 and hence the set {$I $=cx( * ;a), c > 0, O<aG CO ) represents all positive solutions 
of Eq. (2.5). Let 

(2.19) 

Then from Eq. (2.5) it follows that p(x;a) obeys the Riccati equation 

p’(x;a> +p(x;a)*= V(x). (2.20) 

Now let $( k,x) be an arbitrary solution of Eq. ( 1.1) and define 

q(kx;a) =$‘(kx) -pkaWW). (2.21) 

Then cp obeys the differential equation 

qf’(k,x;a) +k2s,(k,x;a) = Uka>qdk,x;a>, (2.22) 

where 

U(x;a) = -p’(x;a) +p(x;a)*. (2.23) 

From Eqs. (2.20) and (2.23), we have 

U(x;a) = V(x) -2p’(x;a), (2.24) 

U(x;a) =2p(x;a)*- V(x). (2.25) 

We will refer to the transformation from the potential V(x) to the potential U(x;a) by means 
of Eq. (2.24) as a Darboux transformation; note that this was called the limit Darboux 
transformation in Ref. 8. In the exceptional case instead of Eqs. (2.18) and (2.19)) we define 
X(X> =mt(O,x) and p(x) = m;(O,x)/ml(O,x) because ml(O,x) and m,(O,x) are linearly de- 
pendent and thus the parameter a does not appear in Eqs. (2.18) and (2.19); the Darboux 
transform of V(x), which is then unique, will be denoted by U(x). 

Proposition 2.2: In the generic case, for p(x;a) defined in Eq. (2.19), we have 
(i) i fO<a<w then p(x;a)=l/x+o(l/x) asx-+hm, 
(ii) if a=0 then 

( 
4 l/x), x++co 

p(x;O) = l/x+0(1/x), x+ - 00, 
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(iii) if a= 00 then 

i 

l/x+0( l/x), x-+ + 03 
P(x;m)= o(l,x) , x+-co. 

(iv) In the exceptional case, we have p(x) =o( l/x) as x--t + CO. 
Pro& The results follow from Eqs. (2.10)-(2.13) and the definitions of p(x;a) and 

p(x). n 
Applying the Darboux transformation to the Jost solutions f[( k,x) and f r( k,x) defined in 

Pq. (2.17), we obtain 

g&w) =A t f;(h) -p(x;a)fAkx)l, (2.26) 

g,(k,x;a) = -A [ fP,x) --pka)f,(kx) I. (2.27) 

Theorem 2.3: The functions g[(k,x;a) and g,(k,x;a) given by Eqs. (2.26) and (2.27) are 
the Jost solutions of the Schrijdinger equation with the potential U(x;a); equivalently, 
$[( k,x;a) = T( k)g[( k,x;a) and r$,( k,x;a) = T( k)g,( k,x;a) are the physical solutions of Eq. 
(2.22) satisfying Eqs. (1.13) and (1.14), and nl(k,x;a)=e-ihgl(k,x;a) and n,(k,x;a) 
=eikx g,(k,x;a) are solutions of Eq. ( 1.12) with the potential U(x;a). 

Prooj By straightforward verification using Proposition 2.2. n 
From Eqs. (2.26) and (2.27) we obtain 

dk,x;a) =A [m;(b) +ikml(k,x) -p(x;a)m[(k,x)], (2.28) 

n,(k,x;a) = -A [m:(k,x) -ikm,(k,x)-p(x;a)m,(k,x)]. (2.29) 

The next theorem gives the behavior of tq(k,x;a) and n,(k,x;a) at k=O. 
Theorem 2.4: Let q(k,x;a) and n,(k,x;a) be the functions defined in Eqs. (2.28) and 

(2.29). In the generic case as k-0 in C?, for 0 <a < CO we have 

lim iknl( k,x;a) = - 
ac, 

k-0 mD4x) +am,(O,x) ’ 

lim ikn,( k,x;a) = - 
C, 

k-0 mAO,x) +am,(O,x) ' 

(2.30) 

(2.31) 

for a=0 we have 

1 
lim nl( k,x;a) =p 

m(W) ’ k-0 
(2.32) 

C, lim ikn,( k,x;a) = -- 
mdO,x) ’ k-0 

(2.33) 

and for a= CO we have 
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CT lim iknl( k,x;a) = -- 
k-0 m,Ubx) ’ 

(2.34) 

1 
lim n,( k,x;a) =- 
k-0 m,(O,x) ’ 

where c, is the constant defined in Eq. (2.14). In the exceptional case, we have 

1 1 
lim nl( k,x) =- and lim n,( k,x) =- 
k-0 mdO,x) k-0 m,(O,x) * 

(2.35) 

Proof? The proof of Eq. (2.30) is obtained by letting k-0 in Eq. (2.28) and by using Eqs. 
(2.15), (2.18), and (2.19). Similarly Eq. (2.31) is obtained from Eq. (2.29). From Eq. (1.5) 
we have 

and by Proposition 2.1 (ii), rn; (k,x) is absolutely integrable near x= + CO, and hence 

ml(O,x)m;(k,x)-ml(k,x)m/(0,x)=2ik 
s 

m m~WhK4~My. 
x 

(2.37) 

Using Lebesgue’s dominated convergence theorem, from Eq. (2.37) in the limit k-+0, we 
obtain 

m,(O,x)m;(k,x) -ml(k,x)m;(O,x) =ik[ 1 -m,(O,x>*] +0(k). (2.38) 

Then from Eqs. (2.37), (2.38), and the fact that p(x;O) = m;(O,x)/ml(O,x), we get Eq. 
(2.32). The limits in Eqs. (2.33) and (2.34) follow from Eqs. (2.15), (2.18), (2.28), and 
(2.29). The proof of Eq. (2.35) is analogous to that of Eq. (2.32), where, instead of Eq. 
(2.37), we use 

m,(O,x)m:(k,x) -m,(k,x)m:(O,x) =2ik 

The proof of the two equations in (2.36) is similar to that of Eqs. (2.32) and (2.35), respec- 
tively. n 

Next we consider the zero-energy solutions of the Schrodinger equation with the potential 
U( x;a) . 

Proposition 2.5: In the generic case, k=O is a bound state for the potential U(x;a) if 
0 < a < CO, and a half bound state if a = 0 or a = 03. In the exceptional case, k = 0 is always a half 
bound state. Moreover, in either case there is a bounded zero-energy solution of the Schro- 
dinger equation which can be chosen to be positive, and this is (apart from constant multiples) 
the only positive solution. 

Prooj It follows from Eqs. (2.30), (2.32), and (2.34) that in the generic case 

I 
1 

mdO,x) +am,(O,x) ’ 
O<a< 00 

rl(x;a) = 1 
m,(O,x> ’ ‘= O”’ 

(2.39) 
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is a positive, bounded zero-energy solution of the Schrijdinger equation with the potential 
U(x;a>; when 0 <a < 00, by Eqs. (2.10) and (2.12) this solution is in L* and hence k=O is a 
bound state. When a=0 or a= 03, q(x;a) is bounded but not in L* and thus we have a half 
bound state. A second, linearly independent solution is given by G(x;a) =v(x;a) 
XJFjq-*(y;a)dy. Using Eqs. (2.10) and (2.12), for O<a< CO we have $(x;a)=(ac/3)x* 
+0(x*) as x+ + CC and q(x;a) = - (cJ3)x2+o(x2) as x+ - ~0, for a=0 we have q(x;a) =x 
+0(x) as x+ + CO and q(x;a) = - (c,x*/3) +0(x*) as x + - CO, and for a= 03 we have q(x;a> 
= (c,x*/3) +0(x*) as x--r + 03 and q(x;a) =x+0(x) as x-+-a; thus no solution that is 
linearly independent of q(x;a) can be either bounded or positive. In the exceptional case, we 
have ~,J(x) = l/m[(O,x) which is bounded, but not in L*, and hence it is a half bound state.= 

Ill. CHARACTERIZATION OF POTENTIALS 

In this section we characterize the potentials U(x;a) that arise as the Darboux transfor- 
mation of some VE Li; a similar characterization was given in Ref. 8 for the more restrictive 
class when YE L:. 

First we note that the Darboux transformation given in Eqs. (2.26) and (2.27) is invert- 
ible. Differentiating Eq. (2.26) and using Eq. ( 1. 1 ), we obtain 

fi(k,x) =i k;(k,x;a) +p(x;akAkw)l, (3.1) 

and similarly from Eqs. (2.27) and ( 1.1)) we obtain 

f,(b) = -$ [g;(k,x;a) +pkaMk-v)l. (3.2) 

Thus we have 

mAk,x) =i [n;(k,x;a) +ikq(k,x;a) +p(x;a)q(k,x;a)], (3.3) 

m,(k,x) = -$ [n:(k,x;a)-ikn,(k,x;a)+p(x;a)n,(k,x;a)]. (3.4) 

We see that the inverse Darboux transform has the same form as the direct transform, but 
that p(x;a) is replaced by -p(x;a). With q(x;a) given by Eq. (2.39) and w(x;a) 
=$(x;a)/v(x;a), we have w(x;a) = -p(x;a), and hence 

V(x) =w(x;a)*-w’(x;a). (3.5) 

In Eq. (3.5) the right hand side is independent of the parameter a and thus V(x) is uniquely 
determined by U(x;a). In other words, if we know that a given U(x;a) is the Darboux 
transform of some VE Li, then there is only one such V and it is given by Eq. (3.5) in terms 
of the zero-energy solution of the Schrodinger equation with the potential U. 

Let WE L: and Ej=O, 1 with j= 1, 2. We define ?& to be the family of potentials U having 
the form 

(3.6) 

and satisfying the following two conditions: 
(i) the Schriidinger equation with the potential U has no negative-energy bound states, 
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(ii) k=O is either a bound state or a half bound state of the Schrijdinger equation. 
Proposition 3.1: Let UE 9. Then k=O is a bound state of the Schrijdinger equation if and 

only if e*=e*= 1. 
Prooj Suppose that UE ‘Pi with e1 =e2= 1 and consider the interval x > 1. Recall that the 

Schrijdinger equation c$“= (2/x*)+ has the two linearly independent solution x-t and x2. 
Define 

Q(x)=U(x)-$=- x’(x;+ 1) + W(x), x’ 1, (3.7) 

and note that QE Li( 1,~ ). Considering Q(x) as a perturbation of the potential 2/x2, we can 
use variation of parameters to construct a decaying solution U/(X) of the equation 

r$“= U(x)+, XER, (3.8) 

such that 

W=;+; j--xa [;-5]pWhW.., x> 1. 

To see that UI(X) is well-defined for x> 1, we define uj’)(x) =O and 

uj”+‘)(x)=;+; j--w [;-;]Q(y)ujni(y)dy, n=0,1,2,..., 

(3.9) 

(3.10) 

and set 

ACn+‘)(x) =x1 u;“+‘)(x) -z@‘(x) I. 

Then from Eq. (3. lo), we obtain 

A(“+i)(x) <; 
s xm Y I Q(Y) I @%4dy, 

and hence by iteration, 

A’“+“(x) <A (j-)IQb+$. 

Thus q(x) =lim,,, U’“‘(X) exists and we have 

x I f+(x) I <e W~L~,“YIQ(YH~Y, x> 1. (3.11) 

It follows from Eqs. (3.9) and (3.11) that ~~(x)=l/x+o( l/x) as x--r + CO and hence 
USE L*( 1,~ ). Any solution of Eq. (3.8) that is linearly independent of U,(X) grows like cx* as 
x-, + CO with c#O. Similarly, since e2= 1 there is a unique solution u,(x) of Eq. (3.8) obeying 
U,(x)=1/x+o(1/x) asx-+- to and any other linearly independent solution grows quadrat- 
ically as x+ - 03. Assumption (ii) therefore implies that U/(X) and u,(x) must be linearly 
dependent. Hence U/(X) =0( l/x) as x + i 03 and so U/E L*(R) . Thus k= 0 is a bound state. 

Conversely, suppose that UE % and k=O is a bound state. If e1 =0, then, since U(x) 
= W(x) for x > 0 by Eq. (3.8) and W(x) E Li, there are two linearly independent solutions of 
Eq. (3.11) which are asymptotic to 1 and x as x + + 03, respectively. Hence no nontrivial linear 
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combination of these solutions can lie in L*, contradicting the assumption that k=O is a bound 
state. Similarly, e2=0 is ruled out. Hence we must have et = e2= 1. n 

Theorem 3.2: We have the following: 
(i) Assume VE L’, without bound states. If V is generic, then U( +;a) E Q for every 

ae[O,oo]. In fact, if O<a< CO then e1=e2=1, if a=0 then ei=O, e2=1, and if a=co then 
e1 = 1, e2=0. If V is exceptional, then UE ‘% with e1 = e2=0. 

(ii) For every UE 9, there is a unique YE L’, without bound states such that U is related 
to V as in Eq. (2.24) for a unique value of a. 

proof: For x> 1, from Eqs. (2.6), (2.7), and (2.14), we have 

mLO,x) = 1 +q(x), (3.12) 

m,(O,x) =c~+s,(x), (3.13) 

where 

q(x) = s m (Y-X) V(yh(O,.v)dy, 
x 

s m Wh(O,yMy- I 
x 

s,(x) = 1 -x yWh(QyMy. 
x -02 

(3.14) 

(3.15) 

When O<a< co, our first goal is to show that p(x;a)*-l/x2ELi(l,m), where p(x;a) is the 
quantity in Eq. (2.19). Define 

r(x) =p(x;a) -i. 

From Eqs. (2.18), (2.19), (3.12)-(3.15), we obtain 

1 
r(x) =a 

X4(X) -q(x) +axsi(x) -as,(x) - 1 
1 +Wx) 1 

, (3.16) 

where 

b(x) = 
1 -i-q(x) +as,(x) 

acp ’ 
(3.17) 

Note that 1 +b(x) is strictly positive and continuous on (1,~) because we have 

l+b(x)= 
w(W) +am,W) 

ac, x 

FromEqs. (3.12) and (3.14) wehave+(x)=o(l) asx++ CO. To estimate the second integral 
in Eq. (3.15), with x> 1 and O<E< 1, note that 

s 

x 
IYI I V(Y) I lm,(O,y) ldy= --m I 11 bl IV(Y) I ImA09yWy+ JOY/ V(Y)\ lm,(O,y) Jdy. 

(3.18) 

Using / m,(O,y) 1 <Cy for y> 1, we have 
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I x Yl V(Y) I I T(O,Y) I dY<CX 
xc s ; Y I V(Y) I dY. (3.19) 

Since VE L!, the last integral in Eq. (3.19) behaves like o( 1) as x4 + o. and hence from ~qs. 
(3.18) and (3.19) we see that 

s x IYI --m I V(Y) 

Using Eqs. (2.12), (3.15), and 

IMO,Y) ldy=o(x), x-*+ *. (3.20) 

Is,(x) [<1+x Ja I V(Y) I ITKAY) ldv+ s_“, IYl x 

+ s x; Y I V(Y) I I WUAY) I dY, 

we obkn s,(x) =0(x1 as x+ + CO, and hence from ~q. (3.17 

b(x)=o(l), x*+00. 

From Eq. (3.14) we have 

l-m 

V(Y) I I4AY) I dY 

we have 

(3.21) 

which implies 

x$(x) = -x 
J 

V(Yh(QYMY, x 

Ixsl(x) I< JxWYl V(Y) I I%(O,Y) IdY, 

xS;(x)=o(l), x-++co. (3.22) 

From Eq. (3.15) we have 

s 

x 
x$(x) --s,(x) = - 1+ Yv(Y)m,(o,Y)dY. (3.23) 

-co 

By Eqs. (3.16), (3.21), (3.22), and (3.23) there is a constant C such that 

lr(x)l<c;+$ 
1 J 

‘, IYllvcY)lImmldvl, x’l. 

Integration by parts yields 

s,” (x-2J:m IYI I V(Y) I Im,(O,y) ldY)dx,= [ -5 J;, ly 1 
m 1 1 V(Y) 1 In, Idy , 

+ s lw I V(x) I I 40,x) 1 dx. (3.24) 
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By Eq. (3.20) the first term on the right hand side of Eq. (3.24) vanishes at the upper limit. 
Hence r~L’(l,m). Since p(x;a)2-l/x2=[p(x;a)+(l/x)]r(x) and p(x;a)=O(l/x) as 
x--~+co, it follows that p(x;~)~-l/x~~Lf(l,~). From Eq. (2.25), writing 

U(x) =x2+1 2 +2[p’(x;o)--;]+2[~-~]-V(x) 

and using the fact that xv2 - (X2+1)-‘ELi(l,co),weseethat,forx>l, U(x;a)isoftheform 
(3.6) with l 1 = 1. A similar analysis for x < - 1 shows that e2= 1. 

For u=O, using m/(0,x) + 1 as x+ + CO, from Eqs. (2.8) and (2.19) we obtain 

1 
2 

p(x;o)2<c V(yhK4yMy , x> 1. 

Then 

xp(x;O)2dx<C [ j-m~lV(~)l lMos)ldy][ JIrn I V(y)1 lM4~)ldy], 
1 

and so p( +;O)2~L!(1 ,CO ); thus by Eq. (2.25), V( * ;O) E Li( 1,00 ) and hence et=O. When 
x < - 1 we proceed as in the case 0 <a < 03 and find that U(x;O) is of the form Eq. (3.6) with 
e2= 1. When a = 03 the proof is analogous to that for a=0 and we find that et = 1 and e2 =O. 
In the exceptional case, from Eqs. (2.25), (3.6), and Proposition 2.2 (iv), we see that UE ‘% 
with et =e2=0. Thus the proof of (i) is complete. 

Now let us prove (ii). Let UE % be given and suppose that e1 =e2= 1. Let u/(x) denote the 
zero-energy solution given in Eq. (3.9). We have 

q(x) =f+h(xL (3.25) 

where, for x > 1 we have 

h(x) =; j-1 [$;]P(y)u,(yM.. (3.26) 

Let 

(3.27) 

Since U does not support any negative-energy bound states, u,(x)#O (Theorem on p. 94 of 
Ref. S), and hence 6(x) in Eq. (3.27) is well-defined. Then, from Eq. (3.25) we have 

Using Eq. (3.26) we obtain 

X2h'(X) +x/l(x) = -x3 s xm QbW'uhWy. 

Put 
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1 1 x%‘(x)+xh(x) 
t(x) =6(x) +x=x 

I 1 l+xh(x) . 
(3.28) 

Note that from Eq. (3.11) we have ~~(y)=O(l/y) as y++ 03, and from Bqs. (3.11) and 
(3.26) we haveh(x)=o(l/x) asx++ co; furthermore, from Eq. (3.25) we see that 1 +x/r(x) 
is continuous and bounded. Hence we get 

IWbS’j-w IQ(y,Idy, x>l. 
x 

(3.29) 

Thus &L’( 1,~) because QeLi( 1,~). As a result, from Bq. (3.28) we have e(x) =O( l/x) 
as x--r + a, and thus using Bq. (3.29) and the fact that e(x)‘- ( 1/x2) = [6(x) - ( l/x)]t(x), 
we conclude 

(3.30) 

Asimilaranalysison (-UZJ,-1) showsthat8(x)2-(1/x2)EL~(-c0,-l).0n (-1,1),6(x) 
is bounded. Thus using Eq. (3.7) and defining V(x) =20(x)‘- U(x), we obtain VEL~(R). 
The potential V has no bound states because U has no negative-energy bound states and the 
transmission coefficients for U and V are equal to each other. A comparison with Eq. (2.24) 
and the explanation given following Eq. (3.5) show that there is a unique value of the param- 
eter 0 <a < CO such that U is the Darboux transform of V. With appropriate modifications the 
above proof also works when one or both of et and e2 are zero. If et =0, e2= 1 (et = 1, e2=0), 
then one finds a=0 (a= CO ) in accordance with (i). If et =e2=0, then VE Li is exceptional 
and the parameter a plays no role. n 

Returning to the matrix M(k,x), assuming there are no bound states, we note that by Eq. 
(1.15) 

det M(k,x) =i[ml(k,x)n,(k,x) +m,(k,x)n~(k,x) I. 

Hence from Eqs. (2.16), (2.28), and (2.29) we obtain 

1 
det M(k,x) =~(k). (3.31) 

Alternatively, this relation can also be deduced directly from Eq. ( 1.18). By taking the deter- 
minant ofboth sidesofEq. (1.18) and usingdetG(k,x)=detS(k)=T(k)/T(-k), weob- 
tain 

T( -k)det M( -k,x)=T(k)det M(k,x), keR. (3.32) 

Since in the generic case T(k) = O( k) as k-0, in both the generic and exceptional cases, T(k) 
det M(k,x) is analytic in C+, continuous in ??, and converges to 1 as k+ 03 in C+. In Bq. 
( 3.32) we have a scalar Riemann-Hilbert problem, where knowing T(k) we seek det M( k,x) . 
By virtue of Eq. (3.32), T(k) det M( k,x) has an analytic continuation to C-. Therefore, by 
Liouville’s theorem, we conclude that T(k) det M (k,x) = 1 on C, which gives Eq. (3.3 1). So 
M(k,x) is invertible in Cf\{O} and we have that 

m,(k,x) +n,(k,x) q(k,x) -q(k,x) 1 n,(kx) -m,(k,x) m/(k,x) +q(k,x) ’ 
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Since in the generic case T(k) vanishes linearly as k-0 and thus cancels the l/k singularities 
of n[(k,x) and +k,x), we see that in both the generic and exceptional cases M(k,x)-’ is 
continuous at k=O. When there are bound states T(k) is not analytic in C’, and Eq. (3.3 1) 
is no longer valid. 

In the absence of bound states the parameter u can be recovered from Eqs. (2.30) and 
(2.31) via 

lim 
nz( km 1 

k-o n,(kw) 
=u, O<u< co, 

or using Theorem 2.4 via 

(3.33) 

, O<a<co 
lim kM(k,x;u) = ( 

k-0 ic, 2x(x;co) 1 1 -1 0 0 1 ’ u=co7 

where X(X;U) is the function defined in IQ. (2.18) and c, is the constant in Eq. (2.15). If 
0 <a < co, then k=O is a bound state for the potential U(x;u). Moreover, the parameter a is 
then related to the norming constant of the zero-energy solution q(x;u) in Eq. (2.39). From 
Eqs. (2.15) and (2.39) we have ~(x;u)2=-[l/uc,][ml(0,x)~(x;u)]‘, and thus using Eqs. 
(2.10) and (2.12) we obtain 

The next theorem summarizes the main results about the Riemann-Hilbert problem ( 1.18) 
obtained thus far. 

Theorem 3.3: Suppose that VE L.i without bound states. In the generic case the Riemann- 
Hilbert problem ( 1.18) has a one-parameter family of solutions M(k,x;u) such that m( k,x) 
=M(k,x;u)iis asolution ofQ. (1.7) with the potential V(x) and n(k,x;a)=JM(k,x;u)e^is 
a solution of Eq. (1.12) with the potential U(x;u), where UE% but U@&t. Moreover, 
M(k,x;u) has a l/k singularity at k=O and M(k,x;u) is invertible for k E C+\{O). In the 
exceptional case, the solution M (k,x) of Eq. ( 1.18) does not depend on the parameter a and 
UE L:; furthermore, M( k,x) is continuous at k=O and invertible for k E c+. In both the 
generic and exceptional cases, M( k,x) - ’ is continuous at k=O. 

IV. BOUND STATES 

Now we turn to the case when the potential V(x) supports A” bound states with energies 
- &..., - p2s/ where pX> *** >&>O. Then T(k) has simple poles at k=ipi (j=l,...,A’). 
Define 

$(k)=( ,cI ~)J%Wv, 

or equivalently, 

(4.1) 

fW=( 6, ~)W4, (4.2) 
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&k)=(-l)M ( fi, &$W4, 

t(k)=(-l)“Y (,ij &$+4. 

(4.3) 

(4.4) 

The potential corresponding to g(k) will be denoted by V(x) and its Jost solutions by 3[( k,x) 
and f,( k,x). The Schrijdinger equation with the potential V has no bound states since f(k) 
has no poles in C?. Let 

is -1 

Kj= m fr(ipisx)2dx --m 
be the norming constant associated with the bound state -8; of V, and let 

OTj= 2(-1)‘-“’ ( lg z) F(iP,>, 
Ki 

i= l,...&Y. 

(4.5) 

(4.6) 

Note that f(Q) > 0 for p> 0 because p(k) is nonzero and continuous in Cf, f(ifi) is real, ” 
and T(k) + 1 as k+ co in c+. Thus, in particular P(ip,, ~0 for j= l,.../. Hence, from Eq. 
(4.6) it is seen that oj> 0. It is known (Theorem 6, p. 176 of Ref. 10) that Vcan be obtained 
from V inductively by defining 

PI(x) = t(x) , 

y[il(,)=yLi-*1(,)-2 $ log Vi(X), j= l,***+Y, (4.7) 

where 

and fjjl( k,x) and fF’1 (k,x) being the Jost solutions associated with the potential Vii1 (x), and 

and e’](x) = V(x). Note that Vi(X)>0 because -$<-#-t and hence (Ref. 10) 
A’-“(ipi,x) >O and fJiW1] (iai,x) > 0. It follows that Y[jl(x) is a potential having j bound 
states with energies -&,..., -@. For more details and proofs we refer the reader to Ref. 10. 
The bound states can also be added or removed one at a time by Newton’s method.19’1 

Instead of ebtaining V from V by adding a bound state one at a time, it is possible to go 
directly from V to V as follows. Define 

wj(x)=(-ll)i+‘~~(iBj,X)+aj~r(iPi,X), (4.8) 

where aj is given in IQ. (4.6). Let a[wt ,..., ” whf,fi(k,x)] denote the determinant of the 
(x+ 1) X (x+ 1) matrix with entries 

Gj- l,s(k,x) = I 
B:j-2wsw, s= l,...$./Y- 

(-l)j-‘k2j--jI(k,x), s=A’+l, (4.9) 
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/?;j-2w;(x), s= l,...+V 
&j,s(kx) = ( -1)‘-1k2’-2~;(k,x), s=N+l. 

Let 0[w, ,..., We] be the principal minor of R[w, ,..., wx,$l(k,x)]. Then 

d2 
V(x) = h) -2 z log ~[W,,...,W,yl, 

fkkx) = ( --ijN 

.fSk,x)=i.‘( ,t, &) “‘“;I;;;~;;~” . 
Similar relations hold for the potential U(x) if we define 

tPl(x) = 6(x) , 

u[ il tx) = u[ i-11 tx) -2 
d2 

-& lOgYj(X), i=l,***N; 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

where 

Yj(X)=gjj-ll(i~j,X)+f$g~j-ll(ifij,X), j=l,...Jzr, (4.16) 

with O</j< CO, fiA(x) = U(x), djl( k,x) and $:I( k,x) are the Jost solutions associated 
with the potential Util (x), and do1 (k,x) =&( k,x) and $p]( k,x) =&( k,x) are the Jost solutions 
associated with c(x). Note that yj(x) satisfies the Schrodinger equation 

yy=[p;+u[i-ll tx) lYj9 (4.17) 

and that Yj(X) > 0 since &-‘](ipi ,x) > 0 and $,jW1](iflj ,x) > 0. To see this, we first note that 
any nontrivial solution of Eq. (4.17) can have at most one zero (Theorem 2.c of Ref. 12). 
Suppose that dj-‘](ipi,x) has a zero at x=x0. Pick any x1 <x0 and let h,(x) be a nontrivial 
solution of Eq. (4.17) such that ht (x1) =O. Then hr (x) is linearly independent of 
~i-11(i/3j,x).Th~~hr(x)#Oforx#xtandht(x) =c$3i”+o(@iX) ~SX++OO withc#O.For 
x>xr define h2(~)=hl(x)~~h,(y)-2dy. Then h2(x) is a solution of Eq. (4.17) and h2(x) 
= [1/2CfIj]emBjX + o(e+j”) iit3 X++ co. Therefore dj-‘l(ipi,X) = (2C~j) h,(x). Since 
hz(~o)#O and &-ll(iflj,xo) =0, we have a contradiction. Hence d’-‘I(ipj,x) has no zeros 
and so #‘](iflj ,x) > 0. Similarly one sees that $rj-1](i/3j ,x) > 0. In Eq. (4.14) fi is a Dar- 
boux transform of ?, where in the generic case the parameter a needed to uniquely specify fi 
has been fixed. Hence a will be suppressed in our notation. 

Theorem 4.1: The potentials Util(x) for j=O,...N are of the form (3.6), and the values 
of el and e2 are the same for all j. Moreover, k=O is a bound state (half bound state) for 
@(x), j= l,...fl if and only if k=O is a bound state (half bound state) for c(x). 

Proof: From Theorem 3.2 we know that fi is of the form (3.6). Let us use induction and 
assume that Z?i-ll(x) is of the form (3.6) with et=l. From Eqs. (4.15) and (4.16) we have 

Yjw u[il(,)=u[i-11(,)-2- - 
Yjtx) +2 Y;(x) 2 1 I Y;(x) 2 

Yjtx) 
=-u[j-l1(,)-2@+2 - 1 1 Yjtx> ’ 

(4.18) 
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We have 

Y:(X) [em'+j(X)]' 
yi(x)= - .s e 'I Yjtx) 

+Pj* (4.19) 

From the proof of Theorem 3.2 we know that the SchrGdinger equation with the potential 
dj-‘l(x) has a zero -energy solution z#-‘~(x) which is asymptotic to l/x as x+ + CO. Hence 
there is an x0 such that uii-‘](x) > 0 for x > x0. In analogy to Eq. (3.27), let 

and define 

Pj(X>=Y~(x)--wj(X)Yj(X), X>XO* (4.20) 

Then pi(X) is a “local” Darboux transform Of yj(X) on the interval x0 <x < 00. As seen from 
Eqs. (2.21), (2.22), (2.23), and (2.25), for x>xo, pi(x) satisfies the Schrtidinger equation 
t/f’-&= Vj(X)~, where 

Y,(X) =20j(X)2- Uti-ll (X)=Wj(X)'--WS(X)EL:(XO,co). (4.21) 

Defining V,(X) =0 when x <x0, we-can extend pi(X) to all of R as a solution of the Schrii- 
dinger equation with the potential Vi(x). Then we have 

where a, and a2 are suitabl_e constants and Gili and &/I are the solutions of Eqs. ( 1.5) and 
( 1.6) with the potential Vi. We have (Lemma 6, p. 156 of Ref. 10) that m\‘]’ (ipi ,x), 
G;!“‘($j ,X) + 0 asx-++co and tZi”‘(iflj,*), $.“‘(@j;) E L:(R). Therefore, weobtain 

[e-8jxpj(X)]'+0, X--r f co, (4.22) 

(4.23) 

From Eqs. (4.17), (4.20), and (4.21), we obtain 

[e-‘i”pj(x>l’+ [Oj(X>+fij] [e-BjXyi(X)]‘=oj(X)2e-BjXYj(x), 

and hence 

[eeBjxYj(X)]’ Wj(Xj2 [eB8Qj(X)]’ 
e-pjxYj(X> =Wj(X) +flj- [Wj(X) +Pjl [e-‘j”Yj(X) 1 

Wj(X12 =--8,[a;(x;):8,1 +4(x), x’xo, 
flj 

where 

[e-‘j”pj(X)]’ 
q(x)=m[Olj(X) +pj] [f?-‘i’Yj(X)] * 

(4.24) 
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Since yi(x) > 0, we can find S > 0 such that eeBiXyj(x) > 6 for all x. This follows from Eq. 
(4.16) and standard asymptotic results since, by Eq. (3.6), dj-ll,L’, dj-‘l(iflj,x) >O and 
e -Wgp(ipi,x) + 1 as X+-CO and $,‘-‘I(ipi,x) = c#iX + o(@i’) as x+ + 03 for some 
c>O. Hence, by Eqs. (4.22) and (4.23), we have q~Li(xc,~~) and that q(x) +O as x+ + 0~). 
Using Eqs. (4.24) in (4.19), we obtain 

Y;(x) 2 I-1 Yj(x) 
=26$(x) +/$+2(x), (4.25) 

where the remainder ZE Li(xo, 03 ). Substituting Eq. (4.25) in Eq. (4.18) and using Eqs. (3.30) 
and (3.6), it follows that on the interval x>xo, ~!YIjl(x) is of the form (3.6) and that er= 1. 
Thus e1 does not change if we add a bound state. Next, returning to the beginning of the proof, 
we assume that ei=O for Ulj-‘](x), which means that ~i-‘l~L~(xo,~). Then, forx>xo the 
proof is essentially the same as that in the Li case (Theorem 2, p. 167 of Ref. 10). We find that 
Wj~l~(Xc,~) and wj(X)+O as x-++m. T~LIsJ$/~~ E L:(x~,oo) and hence u[jl~L!, and 
e1 =O. A similar analysis can be given on an interval x <x0 where x0 is sufficiently negative. It 
follows that e2 does not change even if we add a bound state. This proves the assertions 
concerning the form of Ulil(x). As for the behavior near k=O, we note that the Jost solutions 
corresponding to tin(x) are given by (Theorem 2, p. 167 of Ref. 10) 

gj jl (k,x) c-i 
k+$j 

gjj-llyk,x)~yEgj+qk,x) 
YjCx) 1 9 (4.26) 

i 
g;il(k,x) =k+i,jj g~i-ll~(~x)~~;,og~i-~l(~,x) . f 

Yj(x) r 1 
Suppose that the parameter a that specifies fi satisfies 0 <a < 03. By Theorem 3.2 and Propo- 
sition 3.1 this means that E, =e2= 1 and that k=O is a bound state for 6. Then we claim that 
the limits 

lim ikgj j1 (k,x) =yl[ j1 (x) and lim ikgiil (k,x) =pFjl (x) (4.27) 
k-0 k-0 

exist, and that p{“(x) and &j](x) are nontrivial zero-energy solutions of Eq. (3.8) with 
potential fijl(x). The relations (4.27) may also be differentiated. Moreover, &l(x) = - l/x 
+o( l/x) as x+ + 03 and ,&j](x) =1/x+0( l/x) as x+ - CO. For j=O this is clear from Eqs. 
(2.30) and (2.31). Note that y~(X)/yj(X) -+ j I{ kfi. as x+ f CO and hence the asymptotic 
behavior of 4” (k,x) is determined by that of 4 - (k,x), and similarly for $,jl( k,x). Using 
Wronskians, we find that ~~jl(x);~~jl(x)]= -~~j-ll(x);~~i-‘l(x)]. From Eqs. (2.30) and 
(2.311, we know that ~\ol(x);~~ol(x)]=O, and hence the induction gives us b\jl(x);#(x) 
]=0 for all j=O,.../ and so piI’] and &I( x are linearly dependent. Therefore, k=O is a ) 
bound state for C@(x) if and only if it is a bound state for 6. In a similar way, it can be shown 
that if a =0 (a = co ) or in the exceptional case, then k=O is a half bound state for Ulil (x), 
j=o,.../v-. 4 

The relations Eqs. (3.33) and (3.34) can be generalized to the case with bound states. 
Since &l(x) and&](x) are linearly dependent we can set ,u[jl(x) =bjpLjl(x). In the generic 
case, from Eqs. (2.30) and (2.3 1) we have bo=a; then by induction we obtain bj = - bj- i and 
hence 
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Furthermore, if O<a < 00, setting Pi(X) = yj(X)/yj(X), from Rqs. (4.26) and (4.27) we have 

s 
m 

/,icL[j](~)~ dx= 
1 * ~~~~-~~~~X~-PjCL~~-~~~x~l~~~~-1~r(x)-~~~~i~11~x~l~x~ 

--m id J -m 

and hence, by using integration by parts, this is equal to 

1 * 
- 

id 
pji-~l(x)[pJi-ll~~ (x)--p~~~j-~~(x)-~~~~j-~~(x)]dx 

J -02 

1 m 
=- 

d- 
~~j-11(x)2~~~j--ll(x)--p;-~~~dx 

J --m 

s 

cm 
= pjj-11(x)2dx. 

-03 

Now pi’](x)= -ac,v(x;a) by Eqs. (2.30) and (2.31), and so, by Rq. (3.34) 

1 

Later we will need the expressions corresponding to Rqs. (4.8)-(4.13) for the potentials 
U(x). In analogy with Eq. (4.5) we introduce the norming constants 

m 
Vj= 

(s -02 

and in analogy with Eq. (4.6) we define 

F=2(-1)i-1Bj 
i vi (*ggg f(iP,), i=l,...*/v: 

Suppressing the parameter a, in analogy with Eq. (4.8) we then define 

Zj(X)=(-l)j+‘~[(ipi,X)+@r(i~j,X). 

In Eqs. (4.9) and (4.10) replacing II, jr, w, by &, &, z,, respectively, we obtain 

Y d2 
U(x) = U(x) -2 -&log n[Zr,...,ZM], 

g&x)=(--r) . x( J$ &) “[z;;~~*~~t:,x)17 

g,(k,x) =Yy ii (j=, &) n[zL;:::~)l * 

(4.28) 

(4.29) 

(4.30) 

(4.31) 

(4.32) 

Theorem 4.2: Suppose that the scattering matrix in the Riemann-Hilbert problem ( 1.18) 
corresponds to a potential VE L: with JV bound states. Then, in the exceptional case there is 
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a (2&‘) -parameter family of solutions of Eq. ( 1.18)) the parameters being the norming con- 
stants K , ,..., KA’, VI,..., Vx. In the generic case, there is a (w+ 1 )-parameter family of solu- 
tions of Eq. (1.18), where the additional parameter is a. 

Proof: The scattering matrix in Eq. ( 1.18) uniquely determines the potential P whose 
scattering matrix s(k) is in Eq. (4.1). Then using the positive constants aj in Eq. (4.8) and 
t$ in Eq. (4.29) for j= l,...,..,&‘, we construct the potentials V(x) = fifl(x) as in Eq. (4.11) 
and U(x) = &q(x) as in Eq. (4.30). In the generic case the additional parameter a is 
already present in I$‘l(x). The corresponding Jost solutions given in Eqs. (4.12), (4.13), 
(4.31), and (4.32) then determine the solutions m(k,x) of Eq. (1.7) and n(k,x) of Eq. (1.12). 
Hence the solution of Eq. ( 1.18) is given as in Eq. ( 1.15). n 

We conclude this section with a remark about the determinant of M( k,x) when there are 
bound states. From Eq. (3.32) we obtain 

fi (k2+f$)T( -k)det M(-k,x)=T(k)det M(k,x) ,cr (p+g). 
j=l 

By Liouville’s theorem, both sides must be equal to a polynomial of degree 2.,V in k, where the 
leading term has coefficient 1 and the remaining terms have real coefficients depending on x. 
Moreover, by Eq. (3.32) this polynomial is even. Thus we have 

kLy+Z$!lIll Cj(X)@j 
det M(k’x)= T(k)II;Y,, (#+@ * 

Hem+ det M( k,x) vanishes at the zeros of the numerator, at least M of which must lie 
inC . 

V. SOLUTION OF THE RIEMANN-HILBERT PROBLEM 

Theorems 3.3 and 4.2 guarantee the existence of solutions of the Riemann-Hilbert problem 
( 1.18) when the underlying scattering matrix comes from a potential in L:. This raises the 
question whether the solutions found there constitute all solutions that can be associated with 
a Schrodinger equation. A priori we do not want to restrict the potentials V(x) and U(x) that 
can possibly arise as a result of such a solution of Eq. ( 1.18), except, of course, for minimal 
requirements which insure that the differential equations (1.7) and (1.12) along with the 
transmission and reflection coefficients are well-defined. In particular we will not a priori 
restrict the rate of decay of the potentials. Furthermore, we will require that M( k,x) = 0( l/k) 
as k-+0, as it is the case for the solutions constructed in the previous section. If this condition 
is weakened, the problem gets much more complicated and we will not consider it here. The 
smoothness of M (k,x) in the variable x will not be specified at the outset, but of course we will 
naturally have to make some assumptions if we want to associate M( k,x) with a Schriidinger 
equation. From a practical point of view, since the solution of the Riemann-Hilbert problem 
allows us to solve the inverse scattering problem by recovering V(x) from m( k,x), it is of 
interest to know whether the two components of m(k,x) automatically yield the same poten- 
tial. The condition that according to Eq. ( 1.9) both components of m(k,x) must lead to the 
same potential is known as Newton’s “miracle” condition.’ A similar question can be asked 
with regard to n(k,x) and U(x). 

Theorem 5.1: Suppose that the matrix G( k,x) in Eq. ( 1.18) is associated with a potential 
VE Li with no bound states. Let M( k,x) be any solution of Eq. ( 1.18) such that 

(i) M (k,x) is analytic in C+ and continuous in C+ \ {0} for each x, 
(ii) M(k,x) +I as k+ CO in C + for every x, a nd M( -k,x) = M(k,x) for keR, 
(iii) M(k,x)=O(k-‘) as k-0 in C+ for every x. 
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We then have the following: 
(a) Let V(x) be generic. Then m( k,x) =M( k,x) i satisfies Eq. ( 1.7) with V(x) as the 

potential. Furthermore, there exists a potential U,(x) corresponding to nl(k,x) if and only if 
there exists a potential U,(x) corresponding to n,(k,x) and then U,(x) = U,(x) = U(x;a) for 
some ae[O, 001, where U(x;a) is a Darboux transform of V(x). 

(b) Let V(x) be exceptional. Then there exists a potential V,(x) corresponding to ml( k,x) 
if and only if there exists a potential V,(x) corresponding to m,(k,x) and then V/(x) = V,(x) 
= V(x). Furthermore, there exists a potential U,(x) corresponding to nl(k,x) if and only if 
there exists a potential U,(x) corresponding to n,(k,x) and then U,(x)=U,(x)=U(x) is 
unique. The associated solution M (k,x) of Eq. ( 1.18) is continuous at k= 0. 

Proof: (a) Let l&( k,x;b) deno:e a particular solution of Eq. ( 1.18) as constructed in Sec. 
III, that is, mo(k,x):=w(k,x;b) 1 obeys Eq. (1.7) and no(k,x;b):=JMo(k,x;b)e^ obeys Eq. 
( 1.12) with the potential U(x;b) for some bE[O, 001. Consider b to be fixed. Then &(k,x;b) 
provides us with a matrix factorization of G( k,x), namely, 

(5.1) 

where the first factor has an analytic continuation to C- \{O} and the second factor (in 
brackets) has an analytic extension to F\{O}. In the generic case, the factor M,,( - k,x;b) has 
a l/k singularity at k=O while the second factor is continuous at k=O. In the exceptional case, 
both factors are continuous at k=O. Let M( k,x) be an arbitrary solution of Eq. ( 1.18). Then 
we can write Eq. (1.18) as 

(5.2) 

Since M,(k,x;b)-’ is continuous at k=O by Theorem 3.3, both sides of (5.2) are of 0( l/k) as 
k+O. Hence, by a variant of Liouville’s theorem, both sides of Eq. (5.2) must be equal to 
(i/k)A(x) +I for some matrix A(x). By Eq. (5.2) and assumption (ii), we have that qA(x)q 
= -A(x) and A(x) = A(x). Therefore, A(x) must be of the form 

A(x) B(x) 
A(x) = 

-B(x) 1 -A(x) ’ 

where A(x) and B(x) are real functions. Thus, by Eqs. (1.16), (1.17), and (5.2), we have 

43x) 
m(k,x) =mdk,x) -k Jno(k,x;b), 

where c(x) =A(x) + B(x) and 

i7(x) 
n(k,x;b) =no(k,x;b) -k Jmo(k,x), 

(5.3) 

(5.4) 

with r(x) =A(x) - B(x). First take V(x) to be generic. Then we conclude that c(x) =0 in 
view of assumption (iii) and the fact that n,( k,x;b) has a l/k singularity at k=O. Hence 
m (k,x) = mo( k,x) and the first part of assertion (a) is proved. 

To prove the second part of (a), we let 

1 

U,(x) 0 

U(x)= o 1 U,(x) ’ 
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and suppose that n (k,x) =JM( k,x)e^ is a solution of Eq. ( 1.12) with the matrix potential 
U(x), namely, 

n”(k,x;b) +2ikJn’(k,x;b) =U(x)n(k,x;b). (5.5) 

Since nl(k,x)-+l as x--* + co and n,(k,x)+l as X+-CO, we must have that 7(x)+0 as 
x--r f ~0. Set Udx) =U(x;b) and pb(x)=p(x;b), where p(x;b) is defined in Eq. (2.19). 
Substituting Pq. (5.4) in Eq. (5.5) yields 

Ugo--f ?Jrn,-; r’Jm;-i rJVmo+2r’mo=U~o-~ rUJmo. 

Using that mo(k,x) -+ f and no(k,x;b) + i as k+ + ~0, from Eq. (5.6) we obtain 

(5.6) 

(ub+2T’)I=u. (5.7) 

Hence U,(x) = U,(x) = U,(x) +27’. Set U(x) = U,(x). From Eqs. (2.28) and (2.29) we have 

no-n=; J[mkpml, (5.8) 

and from Proposition 2.1, we have 

mi(k,x) +O and nh(k,x;b) +O, k+ + 03. 

Using ENS. (5.7), (5.8), and (5.9) in Eq. (5.6), we obtain 

2T’pb+?+TV=T[ U,+2r’]. 

By using Eq. (2.24) we get 

2r’pb+rN= -227p;,+27’7, 

and hence by integration, we have 

(5.9) 

rt= -2rpb+?+c, (5.10) 

where c denotes the integration constant. Since r-+0 as x+ f CO, we have r’ +O and thus c=O. 
It then follows from Fq. (5.10) that pb(x) --7(x) satisfies the Riccati equation 

(p&--T.)‘+ (pb-d2=p;+p;= v. 

Therefore p6-7 must be of the form JI’/$ where + > 0 is a solution of Eq. (2.5). In other 
words, pb-r=p, for some a with O<a< CO, and by using Eq. (5.7), U = U, + 2~; - 2~: 
= Y - 2~: = U,. Part (a) is proved. 

In the exceptional case we cannot immediately conclude from Eq. (5.3) that c(x) =0 since 
no( k,x;b) is continuous at k=O. Letting 

[ 
V,(x) 0 

V(x)= o 1 VAX) ’ 

and substituting Eq. (5.3) in 

m”(k,x) +2ikJm’(k,x) =V(x)m(k,x), 

J. Math. Phys., Vol. 34, No. 7, July 1993 

Downloaded 15 Aug 2002 to 129.74.199.113. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



Aktosun, Klaus, and van der Mee: Riemann-Hilbert problem for 1 -d SchrBdinger equation 2675 

and using an argument similar to that following Eq. (5.5), we obtain 

(V+29’)I=V, (5.11) 

(5.12) 

where c is the integration constant and p(x) = m61(0,x)/mo,r(0,x) with mo,J k,x) being the 
first component of the vector mo( k,x). From Eq. (5.11) we obtain V/(x) = V,(x). As in the 
case of Eq. (5.10), since c(x) +O and p(x) -+O as x -+ f CO, we must have c = 0. Then Eq. 
(5.12) becomes a Bernoulli equation and apart from the trivial solution, its general solution is 
given by 

g(x) =- 
m0,kW)2 

c- J~mo,k0,Y)2 dy ’ , 
(5.13) 

where E is an arbitrary constant. Since mo,]( 0,x) approaches nonzero limits as x -+ =t CO, the 
denominator in Eq. (5.13) has a zero. Hence c(x) =0 is the only acceptable solution of Eq. 
(5.12) because otherwise m( k,x) given in Eq. (5.3) cannot be continuous in x. This proves the 
assertion concerning m (k,x) of part (b) . As for n (k,x), an argument similar to that used in the 
generic case again shows that pb--r=pn for some a. However, since pa=pb for any a in the 
exceptional case, we have r=O. Hence U(x) is uniquely given by U(x) = U,(x). In the 
exceptional case since r(x) =c(x) =0, it follows from Eqs. (5.3) and (5.5) that any solution 
M(k,x) of Eq. ( 1.18) satisfying (i)-(iii) must be equal to Mo(k,x); hence in the exceptional 
case (i)-(iii) imply that M(k,x) is continuous at k=O. Thus the proof is complete. n 

Now we turn to the case when V has X bound states with energies p> < * * * < -&. In 
analogy with Eq. ( 1.18), we introduce the Riemann-Hilbert problem 

6i( -k,x)=&k,x)qE;l(k,x)q, keR, (5.14) 

where 

&k,x)=eiJkrJg(k)JeWGk.‘= 
f(k) -l?(k)e2ikr 

- i(k)e--zib f’(k) ’ 1 
withS(k), ?(k),i(k),and i(k) asinE+. (4.1)-(4.4).In (5.14) welookforM(k,x) which 
is continuous in k for kER\{O} and has an analytic extension in k to C!+ such that M( k,x) +I 
ask-co incforeachx. 

Put 

1 +dw) +n’/(k,x) Ijtl(k,x) -&(k,x) 
ti(k,x) =- 

I 1 2 &(k,x) -n’,(k,x) lii,(k,x)+n’,(k,x) ’ 
(5.15) 

so that 

&(k,x) =ti(k,x)i, (5.16) 

n’(k,x) =Jlii(k,x)e^. (5.17) 

Then &(k,x) and n’(k,x) are solutions of Eqs. (1.7) and (1.12) with the potentials p(x) and 
b(x), respectively. The parameter a will be suppressed. By Eqs. (3.31) and (4.2), we have 
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det M( k,x) = 
$)=( J$, 2)&f 

and hence M( k,x) is invertible for k E ??\{O}. The solution of the Riemann-Hilbert problem 
(5.14) provides us, as in Eq. (5.1)) with a factorization of G( k,x), namely, 

&k,x)=+( -k,x) [qM(k,x)-‘q], kER. (5.18) 

In the generic case we ctn without loss of generality assume that 0 <a < 00, since the only 
purpose of introducing M( k,x) is to obtain a factorization of the form (5.18). Note that 
G( k,x) and G( k,x) are related by 

G(k,x) = ( Jfj 2) JJyhWJs/. 

It is convenient to define 

N(k,x) = J%l(k,x)J? 

Inserting Eq. (5.19) in Eq. (1.18) and using Eqs. (5.18) and (5.20), we obtain 

(5.19) 

(5.20) 

qN(k,x)-‘M(k,x)q, keR. 
(5.21) 

As in the case with no bound states, we impose the condition that 

M(k,x)=O( l/k) as k-+0 in C+. (5.22) 

By Theorem 3.3, M (k,x) -’ and thus N( k,x) -’ are continuous at k=O. Hence, as in the proof 
of Theorem 5.1, using Liouville’s theorem we conclude that both sides of Eq. (5.21) must be 
equal to a matrix function in k of the form 

Psr(k,x)=kY I+ c [ T:l’ (i)k,cx)] (5.23) 

Thus, by Eqs. (5.21) and (5.23) we obtain 

M(k,x) = nT z+iojj N(kx) [I+ Tf$’ ( i)jqAdx)q]- 
J-l 

(5.24) 

Since N( -k,x) = N(k,x) and M( -k,x) = M(k,x) for kER, from Eqs. (5.21) and (5.23) 
we conclude that the matrices Ai are real and that Ai = (- l)jqAj(x)q. In other words, 
Aj(x) is of the form 

Aj(x)= I 
Ai Bj(x) . 
Bj(x) Aj(x) ’ ’ even’ 1 

Aj(x) = 
Ai Bj(x) 

-Bj(x) 1 -Aj(x) ’ 
j odd, 

(5.25) 

(5.26) 
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where Aj(x) and Bj(x) are real functions. Let ~j(X)=( - l)j[Aj(x)+ Bj(x)] and 8j(X) 
= (- l)‘[Aj(x) -Bj(x)]e Then, using 3s. (5.25) and (5.26) in Eq. (5.24) we obtain 

,. kiy 
m(k,x)=M(k,x)l=n~=l(k+ia,) N(b) [ f+ Till (L)‘Y,(XlJ’i], (5.27) 

F A 
n(k,x)=JM(k,x)e=nCl(k+ip,) JN(k,x) e^+ 2 [ T:l’ (f)‘Oj(X)J’8]. (5.28) 

Looking at Eq. (5.27) as k+O, using Eqs. (5.20) and (5.17), we see that 

m(k,x)=i 

In the generic case, since n’(k,x) has a l/k singularity at k=O, Eq. (5.22) is violated unless 

yJv+1(x)=O. (5.29) 

In the exceptional case, Eq. (5.22) is not violated even if we assume ~N+l(~)#O. However, 
we will assume Eq. (5.29) also in the exceptional case due to the reason given following the 
proof of Proposition 6.3. The situation is different with respect to B~+i(x); from Eq. (5.28) 
we see that 8&~+~(x) can be nonzero without violating Eq. (5.22). 

Using Eqs. (5.16), (5.17), (5.20), (5.27), (5.28), and (5.29), whenNis even we have 

m(k,x) = n;~,~+ia,, [n(k,x,( 1+ x (f)Vnjtxl)+Jd(kxl x (~)“-‘~~j-ltXl], 
(5.30) 

n(k’x)=~jC,(k+i~j) [ri(k,x)( l+ 7: (f)“%j(xl)+JA(kx) 21 (f)2i+1&j+lCxl], 
(5.31) 

and when Jlr is odd we have 

kiy 
m(k,x) = 

n$l(k+iDj) 
[n’(b) (I+ (Tz,‘” ( f)2’y2j(x)) 

(M-1//2 i 2j+l 

+ J*(b) 
= 0 k Y2j+lCx) 9 

j=O 1 (5.32) 

WY 
n(k’x)=II~l(k+i~j) [ a(k,,)( l+ (T$l)‘2 (f)2’e2j(X)) 

(N-1)/2 i 2j+l 

+Jn’(k,x) c 
j=O T; 0 

@?j+l(x) * I (5.33) 

In Eq. (5.32) the first summation is zero when JV= 1. We now insert Eqs. (5.30) and 
(5.32) into Eq. (1.7) and insert Eqs. (5.31) and (5.33) into Eq. (1.12). We also use Eqs. 
(2.28), (2.29), (3.3), and (3.4) to replace n’(k,x) and n”(k,x) by their equivalents in terms of 
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iii (k,x) and &’ (k,x) and apply Eq. (2.24) in subsequent calculations. Since 6 (k,x) = 1^ + o ( 1) 
and ti’(k,x) =o( 1) as k+ f 00, we can then separate the terms of 0( l/k”) and o( l/k”) for 
n)O. Hence we obtain for j> 1 the following necessary and sufficient conditions for m (k,x) and 
n(k,x) to be solutions of Eqs. (1.7) and (1.12), respectively. In Eqs. (5.36), (5.37), (5.43), 
and (5.44) the upper (lower) sign refers to JV even (odd). 

I F(x)-2y;(x), JV even 
V(x) = 

G(x)--2y;(x), .A’- odd, 
(5.34) 

6(x)-20;(x), JV even 
U(x) = 

f(x)-28;(x), N odd. 
(5.35) 

(5.36) 

(5.37) 

8~j_,+28;82j_1-22B;j+28,j_1p’+ [2e;e2j--2+e~j--2-2e~j--2~l~=0, JV even, 
(5.40) 

8~j+28;82j-28~j+,+[28;82j11+e~j_,-2(e2j--~)’]P=O, JV odd, (5.41) 

where i;=k’/ji in analogy with Eq. (2.19) and 

f(x) =+wAx) +aMO,x), (5.42) 

in analogy with Eq. (2.18). Using Eq. (5.36), we can reduce Eqs. (5.38) and (5.39) to 

-2y;j+*+y~j+2y;yZj~2y;j2=o, (5.43) 

and using Eq. (5.37), we can reduce Eqs. (5.40) and (5.41) to 

(5.44) 

In Eqs. (5.36), (5.37), (5.43), and (5.44) we can let j range from 1 to + CO if we assume that 
Yj(X) =0 for j >X and 6,(x) =0 for j >X+ 1. Note that this convention is consistent with 
Eq. (5.29). Since m[(k,x), nl(k,x) --+ 1 asx--++m, m,(k,x), n,(k,x)-+l asx-+--00, andalso 
m;(kx), 46%x) -* 0 as x+ + CO and mi(k,x), n:(k,x) + 0 as X+-CO, we see from Eqs. 
(5.30)-( 5.33) that the following boundary conditions must be satisfied: 

e,+,bd=o, (5.45) 

and for j= l,...,.A’-, 

(5.46) 
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ej(-W)=Yj(-m)=(-1)’ 2 fli,“*fiij, 
il < “‘<ii 

(5.47) 

y;cx),e(icx) +o as X+ f oo. (5.48) 

From Eqs. (2.30), (2.31), (5.31), and (5.33), we find that 

1 
p,(x) = lim iknl( k,x) =- 

acp,v(x) 
- 

II;",lpi jf(x) 
-mlm)eN+,(x) , 

I 
(5.49) 

k-.0 

. . (-UN 
PFL,(x) =;z h(k,x) =ng, pj 

CBAX) 
--++b(o,x)e~~+lw , 

f(x) 1 (5.50) 

where p/(x) and p,.(x) are solutions of $“= U(x)+, and jj is the quantity in Eq. (5.42). From 
Eqs. (2.15), (5.49), and (5.50) we obtain 

~w-4 = [ “;= 1 pi] 2 crY)” [e~~,r+,-e~~+,-82,+,-2pe~.,+,i. (5.51) 

The Wronskian in Fq. (5.51) is independent of x, and using Eqs. (5.45)-(5.48) we obtain 

ek-tv+ 1 - cd*$+ 1 - G+ 1 - vb4,+ 1 =o, (5.52) 

and thus p/(x) and /L,.(X) are linearly dependent. Letting 

w(x) = 
b-w 

e,+,(x) 9 
(5.53) 

from Eq. (5.52) we obtain 

w’-22rjw= 1. (5.54) 

For 0 < a < CO, X(x) grows linearly as x -, f CO, and we can write the solution of Eq. (5.54) in 
the form 

IS 

x 

w(x) =i(x)2 f(r) -2 dysc ) 1 (5.55) 
--co 

where c is an arbitrary constant. Note that Eq. (5.52) is satisfied also when e,+ I (x) vanishes 
identically. 

Proposition 5.2: yx+ 1 (x) = ON+ t (x) = 0 if and only if N( k,x) - ‘M( k,x) is continuous 
at k=O. 

&OC$ From Eq. (5.24) it is seen that the continuity of N( k,x) -‘M( k,x) at k=O is 
equivalent to the continuity of the matrix PM( k,x) in IQ. (5.23), which holds if and only if 
A.,-+,(X) = 0. This is equivalent to yJy++,(x) = e,+,(x) = 0. n 

VI. FURTHER ANALYSIS WITH BOUND STATES 

In this section we construct the solutions of the Riemann-Hilbert problem ( 1.18) by using 
the norming constants for the bound states. 

Proposition 6.1: For the solutions n(k,x) corresponding to the potential U(x) in Eq. 
(4.30), we have that N(k,x)-‘M(k,x) is continuous at k=O and hence e,,+,(x) = 0. 
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proof: By Proposition 5.2 it suffices to show that the solution M(k,x) of the Riemann- 
Hilbert problem ( 1.18) associated with U(x) has the property that N( k,x) -‘M( k,x) is con- 
tinuous at k=O. Considering the (1,l) entry, from Eqs. (1.15), (3.31), (5.15), and (5.20) we 
have 

” 

111= y [A,(k,x ) 

where 

+A,(k,x) +Mk,x) I, (6.1) 

a,nd the upper (lower) sign applies if N is even (odd). Clearly, the terms ?( k)A, (k,x) and 
T( k)A,( k,x) are continuous at k=O. If &” is even, in terms of g = eiJkrn and 2 = e”% and 
using Bqs. (4.31) and (4.32), we obtain 

n’Pr-n’Fr=&341gr= ( ,t, &) n:,;:y;vl ~~Iz,,...,z,Y,a -8&2[Z1,...,Z.,v,B,1), 

where Zj is as in Eq. (4.29). Using Eqs. (4.9) and (4. lo), expanding the determinants 
n[z, ,... ,z,~&l and ai? , ,.. .,z, ,&I by their last columns and using the fact that &(I( k,x), &:,( k,x), 

where we have defined 

z; *** z> 

01(x)= i : 

and their derivatives are of 0( l/k) near k=O, we obtain 

~[z,,...,cv,&(kx)l =~l(k~x)D,(x)-~;(k,x)D2(x)+O(k), 

IDi% *-- &v 
and D2(x)= 

Similarly, as k+O we obtain 

n[Zl ,...,zx,B,(k,x) 

and hence 

1 =&(kx 1 Dl(x) -#:(k,x) &(x) +0(k), 

I. 

A3(ICJ)= ( ,g &) (;;:fl;l;’ [Br(k,x)~:(k,x)-~,(k,x)~~(ksc)l+O(k). 

As in Eq. (2.16), we have 

2ik 
BLk,x)#;‘:(kx) -&W)g’; WI = M(kxM,(k,x) I= -Y T(k) ’ 

and hence f(k)A3(k,x) in Eq. (6.1) is o( 1) as k+O. The argument for JV odd and for the 
other entries of the matrix N(k,x)-‘M(k,x) is similar. Thus the proof is complete. n 

Theorem 6.2: The Eqs. (5.36), (5.37), (5.43), and (5.44), with the boundary conditions 
(5.45)-(5.48), have exactly one solution satisfying 8 A~+ 1 (x) = 0. The potentials V and U 
obtained from Eqs. (5.34) and (5.35), respectively, are of the form of the potentials fiJll and 
flJvl in Bqs. (4.7) and (4.15). 
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Proof: By Proposition 6.1, a solution satisfying e,+,(x) = 0 exists. So it suffices to prove 
the uniqueness. Then it follows that V(x) and U(x) must be of the form (4.7) and (4.15) with 
j=&“, respectively. Define the ratios 

fS&x) 
cs=fMLx) ’ 

d =gA&x) 
’ sf(iP,,x) ’ 

(6.2) 

(6.3) 

which are related to the constants a, and 4 of Eqs. (4.6) and (4.28), respectively, by 

(-l)Jy-s 
c,= 

a, 
, (6.4) 

d=(-lY-” 
s 

4 * 
(6.5) 

Note that Eq. (6.4) can be obtained by using Eqs. (4.2), (4.6)) and the relation (pp. 286-287 
of Ref. 13) 

h-F,=; [1 (&)]k=iB** (f-5.6) 

Similarly one can derive Eq. (6.5). Inserting Eqs. (5.30)-(5.33) with e,+,(x) = 0 in Eqs. 
(6.2) and (6.3), for even JV we obtain 

q&-%% 
M&x) [l +z;:” Y2j(X)/Lfjl -Wi&,x)$2~ 3/2j-*(X)/~j-’ 
M&x) 11 +X$ y2j(X>/Df’l +n’f(i&,x)Xy_:2 y2j-*(X)/&‘-r ’ (6.7) 

W&,x)[l+~~~ &j(x)/@] -rii,(iP,,x)Z~foe2)‘2 e2j+l(x)/#+l 
d’~w~=M@s,x) [1+X(12 e2j(x>/&] +riif(iB,~)2~$o-2)/2 02j+,(x),&J+1 ’ 

(6.8) 

and for JV odd we obtain 

c&?-2+% 
n’,(i&,x) [ 1 +X~~l-1)‘2 Y2j(X)/Dz!'] -rit,(i8,,X>Ej,o- (Jy 1)‘2 y2j+l(X)/fltj+l 

~f(iB,,x>[1+~~~l-1)‘2 y2j(X>/p,2/] +ti~(i~s,x)Z~fo~1)‘2 ‘y~~+~(x)/@+~ 
(6.9) 

dg-%L 
ti,(i&,x> [ 1 +Xi<i-1)‘2 62j(x)/By] -iin’,(iP,,x)B~fo~1)‘2 e2j+l(x)/&j+1 
&(i&,x) [ 1+8jf1-“‘~ e2j(x)/@] +Z~(i/3,,x)Zjfoy1)‘2 e2j+l(x)/8f’+1 * 

(6.10) 

If we view the constants c,, s= l,...,.A’” as given, then Eqs. (6.7) and (6.9) each constitute a 
system of JV equations for the JV unknowns yl (x),...,yx(x>. Similarly, if the constants d, 
s= l,..., .M are given, then Bqs. (6.8) and (6.10) each constitute a system for the unknowns 
8, w,..., e,,p (x). Now let A’” be even and consider the system in Eq. (6.7). Define 
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x/2 

u,(x)= c 
Y2jCx) 

j=l pz’ ’ 

Jr/2 
Y2j-lCx) 

v,(x) = j;, F * 

Then from Eq. (6.7)) we get 

j(;(i&,x) [ 1+4(x> 1 -&:,(@s,x)vs(x> cs= ” 
fiM%,x) [l+u,(x>l +BMWb,(x> ’ s=17e”A (6.11) 

Therefore, by using Eqs. (2.26) and (2.27), we can convert Rq. (6.11) into the system 

Jr 
C Ds,j(X)Yj(x)=hs(x), 

j=l 

where 

D,2j-l(XI=$ [h~(x)-~(X)‘,(x)I, 
s 

Ds,2j(X) = - &h,(x), 

(6.12) 

(6.13) 

with p(x) being the quantity defined before Eq. (5.42) and 

h,(x) =c~MLx) -.frj;cj&,x>. 

Let D(x) denote the matrix with entries given by Eqs. (6.12) and (6.13). We want to show 
that det D(x)#O. Define the matrix E(x) with entries 

&j-l,s(X) = -DTx-2j+2(X) =fl/+2j-2hs(X), (6.14) 

E2j,,(x)=D~~-2j+l(X)=~+2’-2[h:(X)-i)(X)h,(X)1, (6.15) 

where the superscript T denotes the matrix transpose. Then det D(x) =det E(x) by using 
standard properties of determinants. We see that when we compute det E(x) the terms con- 
taining i;(x) can be dropped without changing the value of the determinant. Comparing the 
entries of E(x) with those of the matrix Sz in Eqs. (4.9) and (4.10), we obtain 

(6.16) 

where R[h, ,...,hN] is the determinant defined following Rq. (4.8). We have (Ref. 10) 
f@l ,...,wN] > 0, and hence det D(x)#O. Similarly, again for even N, considering the system 
(6.8), we let 

N/z 8 .tx) 
P,(X)= c $p-, qs(x)= 

W-2V2 02j+ ,(x) 

j=l s j~0 ~’ 

Then, by using Eqs. (3.1) and (3.2) we obtain 
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,$, Fs,j(x)ej(x)=rJx)9 

where 

FQj-1(x)=$ [rs)(x)+/3(x)rS(x)19 
s 

Fs,2j(x) = -+, Rex), 
s 

rs(x) =&(Q%,x) --d,&:l(jP,,x). 

Proceeding as in Eqs. (6.14)-(6.16) one obtains det F(x)#O. 
The proof when JV is odd is similar to that when JV is even. Thus, in both cases we find 

that given the constants c, and d,, there are unique solutions {yl(x),...,yX(x)3 and 
{&(x),...,e,,(x)), respectively, of the systems (6.7)-(6.10). n 

We now consider the possibility that 8 M+, (x&=0. Thus far, in the generic case, we have 
only studied this problem in detail under the assumption that w(x) in Eq. (5.55) has no zeros. 
From Eqs. (2.39) and (3.34) it follows that the values of the integral ST, k@)-2 dy lie in 
[O,l/(ac,)]. Hence in order for w(x) not to vanish, c in IQ. (5.55) must be in 
( - 03, - l/( ac,)] U [0, CO >. Later we will comment on the case when w(x) has a zero. In order 
to emphasize the dependence of jj on the parameter a, we will write f(x;a) =i(x) =*/(0,x) 
+udir(O,x). Define 

&x) =f(x;a) [ j- i(m) -’ dyf c]. (6.17) 
-co 

Then g(x) and ?(~;a) are two linearly independent solutions of rj” = p(x) +. Using Eqs. 
(2.10), (2.12), (2.39), and (3.34) we obtain 

S(x)= cr 
I 

( 1 
l+uc &(0,x) +0(x), x-+ + cu 

c6(O,x) +0(x), x+ - co. 

Hence c(x) is of the form c(x) =Q(x;b), where 

bx+$. (6.18) 

Note that the value b=O corresponds to c= - l/( UC,) and the value b= 03 corresponds to 
c=O; note also that b can take any non-negative value except a. Letting 

C(x) 
iXx;b) = g(x) , 

and using Eqs. (5.55) and (6.17), we obtain 

Pkb) =i;(x;u) +A. (6.19) 
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Proposition 6.3: Suppose that V(x) is generic and that {0,(~),...,0~+,(x)} is a solution of 
Eqs. (5.37) and (5.44) such that Eqs. (5.53) holds with w(x)=+0 for all x. Then the potential 
U(x) is of the form (4.30). The associated potential fiis equal to fi(x;b) where b is given by 
Eq. (6.18). 

Proof: If X is even, define 

&j(X) =tl,,(x), 
dv 

j= l)..., 2, 

e2j(X) 
gU+l(x)=e2j+*(X) -w(x>, 

.N 
i=O ,..., 2-1, 

where e,,(x) = 1. If &‘” is odd, define 

B”zj+l(x)=e2j+l(x), M-1 
j=0 ,..., 2, 

e,,-dx) “K-1 
e,(x) =e,,(x) - w(x) ’ 

j= l,..., - 
2 * 

(6.20) 

(6.21) 

(6.22) 

(6.23) 

Note that g~+r(x) is not defined and that Cj(X) obeys the boundary conditions (5.46), 
(5.47), and (5.48) since l/w(x) -+O as x+ =t CO. For X even, let 

n (k,x;b) = n.lz+ia,, [W&b) (l+ z; (;~e,cx~) 

-t Jrii(k,x) g2j+l(X) 2 1 
and for Jzr odd, let 

(6.24) 

F 
n(k,x;b) = n$l(k+@j) [ ti(k,X) (1+ ‘T<“2 ( k)2’C2j(X)) 

(,Y--1)/2 i 2j+l 
+ Jn’(k,x;b) 

= 0 k g2j+l(x) * 1 (6.25) 
j=O 

In other words, n (k,x;b) is of the form (5.31) and (5.322, respectixely, where the parameter 
of the Darboux transformation is 6, Bj(X) is replaced by 8j(x) and 0x+l(x) = 0. Let n(k,x) 
denote the solution of Eq. ( 1.12) associated with the given solution (~,(x),...,~,+,(x)} of 
Qs. (5.37) and (5.44). By substituting Eqs. (6.20)-(6.23) in Eqs. (6.24) and (6.25) and 
using Eqs. (6.19), (2.28), and (2.29), one finds that n(k,x) =n(k,x;b). Hence the potential 
U(x) has the stated properties. n 

If cc (- l/(ac,),O), then W(X) in Eq. (5.55) has exactly one zero x0, where 

s 
x0 ~-*(y;a)dy+c=O. 
-co 

A similar situation occurs in the exceptional case; since f(x) =rii,(O,x) approaches nonzero 
constant limits as X-P f CO, we replace Eq. (5.55) by 
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[I 

x 

w(x) =si~(o,x)2 ~~~O,Y) -2 &+c . 
0 I 

Thus w(x) has exactly one zero for any c. A similar situation arises if we consider Eqs. (5.38) 
and (5.39) in the exceptional case and do not restrict the solutions by imposing Eq. (5.29). We 
will omit a detailed analysis of the case when w(x) has a zero; a special case has been worked 
out in Ref. 14. 

We will end this section with a simple observation that is easily obtained from Eqs. (6.2), 
(6.4), and (6.6). If we require that a potential VE Li has support contained in a half line; i.e., 
if V(x) = 0 for x > al or x < a2, then, as already mentioned in the Introduction, the bound state 
norming constants for V(x) are determined by the scattering matrix corresponding to this 
potential and cannot be chosen arbitrarily. Consequently, in solving the inverse scattering 
problem for such potentials, contrary to the case of potentials whose support is not contained 
in a half line, the norming constants need not be specified and in fact cannot be specified 
arbitrarily. To see this, note that if V(x) =0 for x > (I~, we have m!(k,x) = 1 and m,(k,x) 
= l/T(k) +R(k)e2’&/7’(k) for ~>a,, and hence R(k) has a meromorphic extension to C+ 
such that the poles of R(k) and those of T(k) are the same; furthermore R( k)e2’kx+0 as 
k -, CO in ?? for ~>a,. Thus at the bound state k= iP,, from Eq. (6.2) it follows that 

(6.26) 

Using Eqs. (6.4) and (6.6) we then see that the norming constant for the bound state at k=iP, 
is uniquely determined by the scattering matrix. If the potential vanishes for x < u2, a similar 
computation gives 

(6.27) 

and in this case L(k) has a meromorphic extension to C+ with its poles identical to the poles 
of T(k), and L(k)emzik” -+O as k+ 00 in C+ for x<u2. Thus, potentials whose support is not 
contained in a half line cannot have bound state norming constants chosen arbitrarily. Let 

[m,(k,x) - l]e- iky dk, 
m 

[m,(k,x)-l]e-ikydk. 
co 

In the Marchenko theory2P’0P’3 of inverse scattering, the potential V(x) is obtained as 

dfVx,O + > 
V(x)=-2 dx 

d&(x,0 + ) 
=2 dx . 

If a nontrivial reflection coefficient R(k) has a meromorphic extension to C? with poles 
identical to the poles of T(k) and R(k)e2ikx+0 as k+ 0~) for x>ai, then from Eq. (3.13) of 
Ref. 15 it follows that 

B[(x,y) = $ 2P,~(iP,)e-2i~~mI(iP,,x) c,- (- lY------- 
i(iP,) 

s=l 1 f(iP,> ’ 1 (6.28) 
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and hence for such a reflection coefficient R (k), the potential V(x) vanishes for x > ur if and 
only if the norming constants are chosen as in Eq. (6.26). In a similar manner, we obtain that 
if a nontrivial reflection coefficient L(k) has a meromorphic extension to C!+ with poles 
identical to the poles of T(k) and L ( k)e-2ih +O as k+ 00 in 3 for x<a2, then the potential 
V(x) vanishes for x < a2 if and only if the norming constants are chosen as in Eq. (6.27). 

VII. WIENER-HOPF FACTORIZATION 

By a Wiener-Hopf factorization of the matrix function G( k,x) we mean a factorization of 
the form 

G(k,x)=G-(k,x)D(k)G+(k,x), kER (7.1) 

where 

The matrix functions G, (k,x) are continuous in k for keR with continuous inverses and have 
analytic extensions into C’. Moreover, G, (k,x) + I as k+ CO in 3. The matrices Q, are 
complementary rank-one projections. The numbers p1 and p2 are integers called “partial 
indices,” and they are uniquely determined by G( k,x) . If pl = p2 =0 the factorization (7.1) is 
called canonical, otherwise noncanonical. For more information on Wiener-Hopf factorization 
of matrix functions, we refer the reader to Refs. 16 and 17. The following results are merely 
stated here since they can be easily verified using the results of the previous sections. They can 
be obtained by the method of Ref. 15. In Eqs. (5.1) and (5.18) we used a factorization that is 
not of the above form since the first factor there is not continuous at k=O in the generic case. 
Instead of the factorizations used in Rqs. (5.1) and (5.18), one can also use the Wiener-Hopf 
factorization given below. 

In the exceptional case, when there are no bound states, G(k,x) has the canonical factor- 
ization with 

G-(k,x)=M(-k,x), G+(k,x)=qM(k,x)-‘q, D(k)=% 

where M( k,x) is the solution of Eq. ( 1.18) constructed in Sec. III. In the exceptional case with 
bound states, we have a noncanonical factorization with factors 

G-(k,X)= ,pl k-fpj ( JV -i)N(-k,x), 

G+(kx)= ( ii1 ~)qN(kx)% 

Here the matrix N(k,x) is given by Eq. (5.20). The partial indices are p1 =p2= -A’. 
In the generic case, with or without bound states, we have a noncanonical factorization, 

We state the factors separately for N even and JV odd. For A’” even, we have 
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G- (k,x;a) = ( ,Tl ~)Ww)[Q++(~)Q-] n , (7.2) 

G, (kx;a) = ( ,r, 2) [Q++ (y)Q-]dWw;o)-'q, n (7.3) 

(7.4) 

and for .N odd, we have 

G- (k,x;a) = ( ,rl &)Wkx;d [ (A),,+,_], n 

G, Uw;a) = ( ,Tl 3) [ (~)Q++Q-i,N(k,*;a)-‘q, n 

Do=(~)N[ (s)Q++Qm], 

where the projections Q* , are given by 

1 1 *l 
Q*=z h1 1 - 1 1 

Hence, in the generic case with bound states the partial indices are 

I -M, M even 
PI= --A’-+ 1, A’- odd, 

-dV+ 1, N even 
p2= -Jy; Jy‘ odd. 

In the generic case without bound states, we can use Eqs. (7.2)-(7.4) with X=0. 
The sum of the partial indices of G(k,x) is equal to 

pl+p2=inddetS(k)=&argdet [S(k)ll:_=l g 
2Ja’ s%]:,~ 

where “ind” stands for the index.” Letting O(k) =arg T(k) and using the argument principle 
and the continuity of T(k)/T( -k), we have 

inddetS(k)=i [@(+,I-@CO+)]= 
I 

- W+ 1, generic case 
-w , exceptional caSe , 

which is equivalent to Levinson’s theorem.lP’l 
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VIII. EXAMPLES 

The following examples have been included in order to allow the reader to check the 
various statements in the article. In Examples 1 and 3, we have chosen a scattering matrix that 
does not come from a potential in ~5: in order to avoid lengthy formulas. 

Example I: Let V(x) =26(x). This is the generic case without bound states. The scattering 
matrix is given by 

T(k)=&, R(k)=L(k)=$.. 

Then 

I 
1, 00 

ml(k,x)= ’ 
1 +i (1 -e-2ikx), x<O, 

m,(k) = I 1+; (l&q, x>o 

1, x<o. 

(8.1) 

(8.2) 

Hence 

I 
2a 

l+a+2ux’ 00 

pW)= -2 

l+a-2x’ x<o, 

and thus 

(8.3) x<o, 
1 l+a:2ax, x>o 

(8.4) 

The potentials U(x;a) are given by 

8a2 8 
Ww) = --26(x) +H(x) ( 1 +a+k)Z+~( -x) (l+a-2x)” 

Example 2: Let 

k+iD T(k) =jqj. R(k)=L(k)=O, 
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where j3> 0. Since T(0) = - 1, Jhis is the $xceptio+ case with one bo:nd state, Then using 
Eqs. (4.2)-(4.4) we obtain T(k)=l, R(k)=L(k)=O, and thus V(x)=U(x)=O and 
S,(k,x) =&Jk,x) =&(k,x) =Z,(k,x) = 1. By solving Eqs. (5.36), (5.37), (5.43), (5.44) with 
y2(x) =e,(x) =o, we get 

y(x)=/3 ;,:I:, e(x)+ 1-de-;, l+de- 

where y(x)=yr(x), e(x)=&(x), and c=cl, d=d, are the constants in Eqs. (6.2) and (6.3), 
respectively. Then 

i/3 2c 
ml( k,x) = l-- 

2ij3 eZsX 
k+@-’ mSkx> = 1 -k+i~ -, 

if3 2d 2ifl &3X 
q( k,x) = l-- 

k+@-’ n,(kx) = 1 -k+iSw, 

and the potentials are given by 

- 8cP2e2sX 
V(x)=-, u(x~=~~ 

respectively. 
Example 3: Consider the generic case with one bound state with 

T(k)=&, R(k)=L(k)=&. 

Then f(k), I?(k), and i(k) agree with the T(k), R(k), and L(k) of Example 1. Thus 
rii(k,x) is given by Eqs. (8.1) and (8.2), and n’(k,x) is given by Eqs. (8.3) and (8.4). One 
finds 

I 2+(1--c)emti 2a 

2-(1-c)e-2r-l+a+2ax’ -00 . y(x)= 
I 1 --c-22cemti 2 

1-C+2ce-2X+l+a-2x’ xa, 
(8.6) 

2+(l+d)e-2r 2a 

1 2-(l+d)e-2r-1+a+2ax’ G-0 

e(x)= 1 +d+2de-b 2 
l+d-2de-h+l+a-2x’ x<o, 

with the same notation as in Example 2, and where a is the parameter of the Darboux 
transform. Having obtained y(x) and e(x), one can use them in Eqs. (5.32) and (5.33) and 
thus obtain m (6,x) and n (k,x). The associated potentials can be found from Eqs. (5.34) and 
(5.35), where U(x;a) is given by Eq. (8.5). From Eqs. (5.35), (8.5), and (8.6) it can be seen 
that the potential V(x) only depends on the constant c. When c= 1, we obtain V(x) 
=--26(x). 
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