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Abstract

An overview is given of simple properties of the scattering
matrix of an arbitrary particle and of a general assembly of such
particles. Matrices that are linearly related to the scattering
matrix, such as the coherency matrix, are also considered. Tests
are provided to establish whether a particular calculated or
measured real 4 x 4 matrix can be a scattering matrix,

1 IntroducHon

The scattering of radiation by a parkcle may be described by
means of a 4 x 4 scattering matrix F satisfying

L=FI,. (1)

Here I; and I are the Stokes vectors of the scattere and incident
wave, respectively. A Stokes vector is a column vector whose
elen.ents are the Stokes parameters I, Q, Uand V [1,2]. Equation
(1) also holds for scattering by an assembly of independently
scattering particles, but in this case the scattering matrix of the
assembly is the sum of the scattering matrices of the individual
particles. A large number of relationships {(scalar as well as
mairix equalities and inequalities) have been reported for the
elements of both types of scattering matrices [3-8).

Many of the relationships reporited are rather complicated.
Moreover, it is often not clear whether a particular collection of
relationships is equivalent to another one or not. The first
purpose of this paper is to present and discuss an overview of
simple properties of the scattering matrix of an arbitrary particle
and of an assembly of such particles. We will mainly consider
properties that hold for arbitrary directions of the incident and
scattered beams. As an application we will give examples of
other relationships that can easily be derived from our simple
ones. The second purpose of this paper is to provide tests for
investigating whether a particular calculated or measured real 4 x
4 matrix can be a scattering matrix. These tests are important
because in practice many types of errors may play a role, both in
experiments and in computations.
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2 Main resulis

21

Suppose Fy, withi, j=1, 2, 3, 4, is the element on the i-th row and
jth column of the scattering matrix F of an arbitrary particle. We
then have the following simple properties.

A) All sums of the rows and columns of the matrix

= ~Fy, ~F |

R F Fas Fos
_F§1 F§2 ng F;‘l
~Fyy Fo s FEA_

are the same and equal d?, where d is the absolute value of the
determinant of the amplitude matrix from which F is derived. By
eliminating d2 we thus find seven equations for the squares of the
elements of F.

B) Thirty relations involving products of different elements of F,
A quick overview of these relations may be obtained by means of
a graphical code. Leta 4 x 4 array of dots in a pictogram represent
the elements of F, a solid curve or line connecting two elements a
positive product and a dashed curve or line a negative product.
Let us further adopt the convention that all positive and negative
products in a pictogram have to be added to get zero. The result
is shown in Figs. 1 and 2. For example, the pictogram in the
upper left corner of Fig.1 means

FiyFra - PPy - FyFyp - FyyFpp = 0 @

and the pictogram in the upper left comer of Fig. 2 stands for
)]

Together all 120 possible products of two distinct elements
appear in the thirty relations and each such product occurs only
once. The thirty relations subdivide into the following two types.
The 12 equations shown in Fig. 1 carry corresponding products of
any two chosen rows and columns. The 18 equations shown in

Fi1Fp - FioFy - F3aFyy + PPy = 0.




— o |
.o %

Fig. 1. The 16 dots in each pictogram represent the elements of the scattering matrix of an arbitrary particle. A solid line ar curve
connectng two elements stands for a positive product and a dashed line or curve for a negative product. In each pictogram, the
sum of all positive and negative products vanishes,

Fig. 2. AsFig, 1
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Fig. 2 express that the sum or difference of any chosen pair of
complementary subdeterminants vanishés. Here the word
“complementary” refers to the remaining rows and columns.
Sums and differences of subdeterminants alternate in each
column and row of the logical arrangement of pictograms shown
in Fig. 2. Keeping the signs in mind for the first pictograms in
Figs. 1 and 2 one should have no trouble reproducing all
pictograms, and thus all 30 equations, by heart. Figs. 1 and 2 are
based on Fig. 2 of Hovender et al [5] but they present a clearer and

more systematic overview.

Q)
Fyp 2 | Fyjl @)

which impilies that Fy; is non-negative.

The simpie properties mentioned above can be used to derive a

lot of corollaries. To clarify this point we give the following

examples.

(i} Figs. 1 and 2 show that sums and differences of the
elements in the first and second column obey the two
equations

(Fy £ Fpof? - (Fy £F 9 - (Fyy + Py - By £ FpP=0 (5
and similarly for all six combinations involving the first
row or column. However, the sums and differences of the
elements in the third and fourth column obey

(Fi3 £ Fy0% - (Fi3 £ Fpp)? - (Fpa £ Fy)? - (Fp + Fypt = 242 (6)

and similarly for all 6 combinations of rows or columns,
(it} The well-known relation

4 4

2 _ 2
2 X TR @
i=1 j=1

is easily obtained from the simple property A) considered

above.
(ii) As shown by Barakat [6] and Simon {7] we have the matrix
equation
FGF=d>G ®

where a tilde stands for the matrix transpose and

G =diag (1, -1, -1, -1). &)
By writing out Eq. (8) for each element of G we readily
verify that Eq. (8) follows from properties A) and B)
whereby the relations for the non-diagonal elements
correspond to the top six pictograms in Fig. 1.
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We now consider a scattering matrix F of an arbitrary assembly of
arbitrary particles that scatter independently. We then have the
following properties:

A) Six inequalities [4,5] which may be written in the form
(Fjy + Fpp)? 2 (Fjp £ Foy? + (Fag £ Fy)l? + (Fyu F B> (10)
(Fly £ Fpol? 2 (Fy £ Fpp? + (Fyy £ Fppf + (P £ (1D)
(P £ Fop)? 2 (Fp 2 Pl + (Fis # Fpp + (Fy # Fp®. (12)

It is important to note that Eq. (10) does not follow from the
requirement that the degree of polarization of the scattered beam
carmot exceed 100% [9]. Although this requirement must be met
by any physically meaningful matrix that transforms Stokes
parameters, additional constraints apparently exist for scattering
matrices.

B} Asin the case of scattering by a single particle we have
Fu2 I Kl (13}

The simple properties A) and B) can be used to derive many
corollaries, such as

@ 4 4
> ¥ FL <4 F (14)
i=1 j=1
(i)
'F33+P44F+[F34~F431$(F11+F22)\;2 (15)

(it}
| F33+F44 [ F34-F43 |+ F12+F2] i S(F]] +F22)'\i3 {16)

(iv} 4

)

4
1 j=

[Fy $F, 1+ ﬁg) <8 Fyq. an
1 _

i
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Let E be a real 4 x 4 matrix whose elements may be numbers or
functions of one or more variabies, Evidently, if the elements of E
do not obey one or more of the simple properties or corollaries of
Section 2.1 then E cannot be a scattering matrix of a single
particle. Similarly E cannot be a scattering matrix of an assembly
of independently scattering particles if the elements of E violate
at least one of the simple properties or corollaries given in Section
2.2. In particular, Eq. (4) provides a simple eyeball test, especially
for a matrix consisting of numbers, to judge whether such a
matrix can be a scattering matrix [See also Eq. (13)].

As an exarnple of a matrix of functions we consider

1 0 0 0
0 cos0 gsinf
0 sin 6 cos§ @
0

U 0 3 (18)

where 81s an angle and q is a real number. Clearly, for arbitrary 8,
property A} of Section 2.1 is only fulfilled if | g | = 1, whereas
property B} of that section requires g = -1, as may be seen from
the pictograms in Fig. 2, Similarly, for an arbitrary value of 8, Egs.
(10) and (11} are fulfilled for arbitrary values of g, but Eq. (12)
only if

lgi<1.
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A general procedure to exclude a real 4 x 4 matrix E from the set
of all possible scattering matrices may be obtained from an
analogous problem in the field of radar polarimetry. Following
Cloude [10,11] we may transform a scattering matrix Finto a 4 x4
coherency matrix T by the linear transformation

1
11 = 7 (Fy #Fpy +E +F)

B

33~ F

1
T —E(FH+F 44)

27
(19)
=1 ~F,, +F,, —F,)
Tgg =5 (Fyy ~Fpp gy —Fy)

1
Tgg = 7 (Fyp —Fypp —Fa +Fy)
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H
T1y = 3 (Fyy —iFp +iFy, +F,)
2 = g Pyt +Fp —iR )
e | 20
2 = 3 -1y F Py + By +iF,)
T, =+ ; i
41 = 5 (Fyg+ iy —iFy +F,)
T, =4 + i -
12 = g (Fpp # By —iFy, +iF,5)
H
Ty =3 (i’-']z +Fp +iFy, ~iF,,)
1 {21)
T34 =1 (1F]2 —iFy FFy + F43)
1
Ty =71 (-;F]2+ iFy +Fy + F43)
T, =1 (F, +F,, +iF,, —i
13 = g (Fig ¥ Fy +iFy —iF,,)
Tay = S (F.o +F. —iF, +
31 = g (Fig ¥ 8y —iFy +iFy,)
1, . Q20
Tos = 3 (-1t-"13 +iF, o+ Foy +F)
— 1 . N
Typ = 3 (iFj3 —iFy +Fp +Fp).

Note that the coherency matrix may have complex elements, but
is always Hermitian, so that its eigenvatues are real. Using fairly
elementary mathematics we may show that for scattering by
particles all eigenvalues of the coherency matrix are non-negative
and that only one non-zero eigenvalue exists for scattering by a
single particle. The same results may be obtained by using group
theory {10,11]. Thus we can exclude a real 4x4 matrix E from the
set of all possible scattering matrices if its coherency matrix has a
negative eigenvalue. Further, E cannot be a scattering matrix of a
single particle if its coherency matrix has more than one non-zero
eigenvalue.

25
Simon [7,8] used a matrix N which is easily seen to be unitarily
equivalent to twice the coherency matrix, i.e.

(23)

N=2UTU"
where U and its inverse U™ are the unitary matzices given by
P 100 100 1
Loo1-) -1 _ 111001
= ] = . 24)
J2j0 0 1 J2lot1 o
I-100 0i-io0
The eigenvalues of N are twice the eigenvalues of T and
TTN=2TrT=2F, (25)

where Tr denotes the trace of a matrix.

Clearly the eigenvalues of N can be used instead of those of T
when testing a given real 4 x 4 matrix E. It also follows from the
work of Simon [7,8] that E cannot be a scattering matrix of a
single particle unless its N-matrix satifies

N2=(IrN)Nand TrNz0. 26)
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3 Conclusions

The scattering matrix of an arbitrary particle in an arbitrary
orientation with respect to the incident and scattered beams has
many simple characteristics. This is also true for the scattering
matrix of an arbitrary assembly of particles. These simple
characteristics are the sources of many other properties of -
scattering matrices. Apart from their intrinsic value for the theory
of light scattering each property can be used to unmask a given
matrix as not being a proper scattering matrix for either one or
more particles, depending on the property considered. This goal
can also be achieved by analyzing the number and signs of the
eigenvalues of the coherency matrix or Simons N matrix. Thus
many errors can be detected in scattering matrices that are
computed or experimentally determined.
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