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1 Introduction

Consider the generalized Schrodinger equation

Yk, 2) ‘Z(x'“z 2 L R HE 6k 2) = Q) ik, 2), (1.1)

where H(z) — 1 and @Q(z) — 0 in some sense as ¥ — Zoo. The following
conditions are sufficient for the results in this paper to hold: Q € Li(R), H(z) is
positive and bounded above, 1— H € L!(R), and G € L}(R), where G(z) is the
quantity given in (2.4). Here L. (R) denotes the space of Lebesgue integrable
functions on the real axis with the weight function (1+|z|)* and L}(R) = Li(R).
The physical solution of (1.1) from the left 4;(k, z) corresponds to a plane wave
sent from r = —oo and satisfies the boundary conditions

T(k)e*® 4 o(1), r — 400
%7 4+ L(k)e~** + o(1), x — —oo.

Tb:(’“ﬁ”) = {

Similarly, the physical solution of (1.1) from the right +,(k, ) corresponds to a
plane wave sent from » = +oco and satisfies the boundary conditions

e~tkr R(k)eik""' +o(1), z — oo
T(k’)e"““U + 0(1), r — —00.

Pr(k,z) = {
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Here T'(k) is the transmission coefficient, R(k) and L(k) are the reflection co-
efficients from the right and from the left, respectively. The scattering matrix
associated with (1.1) is defined as

T(k) R(k
o1 8)

In this paper we study an inverse scattering problem for (1.1), namely the
recovery of H(z) when one knows S(k), Q(z), and the bound state energies as
well as the bound state norming constants, Our purpose here is twofold. In [4]
we presented a method to recover H(z) when one knows S(k), Q(z), the bound
state energies and the bound state norming constants, and either of AL, where

A = /Oioo dz[1— H(z)]. (1.3)

Our first goal is to show that in the method of [4] neither of A, are needed to
recover H(z). The same thing is true for the method of [3] to recover H(z) in
the differential equation

d

2@ s ey v = e v, 09

when one knows S(k), a(z), @(z), and the bound state energies as well as the
bound state norming constants; neither of Ay are needed to recover H(z) in
(1.4).

Currently, we are developing another method of recovery of H(z) that may
be generalizable to the multidimensional generalized Schrodinger equation

Ak, z) + E*H(z)? y(k, 2) = Q(z) v(k, z), reR”,

where n > 2; this method [8] is based on the Wiener-Hopf factorization of an
operator function related to the scattering matrix. Our second goal in this paper
is to explore the connection between the method of [4] and a variation of the
method of [8].

This paper is organized as follows. In Section 2 we outline the method of
[4] to recover H(z) in (1.1). In Section 3 we show that in the method of [4],
neither of Ay are needed to recover H(z), and this is illustrated by an example.
In Section 4 we discuss a Riemann-Hilbert problem related to the scattering
matrix of (1.1); this Riemann-Hilbert problem has infinitely many solutions,
one of which leads to the solution of the inverse scattering problem for (1.1)
of the recovery of H(z). In Section 4 we also present a lemma that shows the
equivalence of L!(R;dz) and L1(R;dy), which is useful in demonstrating the
connection between (1.1) and (2.2).



39

2 Recovery of H(x)

In this section we outline the method of [4] and show that we can recover H(z)
when we know S(k), Q(«), either of Ay, the bound state energies and the bound
state norming constants. In the next section we will show that neither of Ay are
needed to recover H(z).

Associated with (1.1) are the two Schrédinger equations

d—z%zﬁm—) + k2 9Pk, ) = Q(z) Yk, x), (2.1)
TUED 4 kg(k,) = V() 8(k,0) (22)
where N
y=y(z) = /0 dz H(z), (2.3)
V(y) = —%,
Gy = -2 | 3T Q) (2.4)

" 2H(2)? ' 4 H(z)® H(x)
Let o(k) denote the scattering matrix of (2.2). We then have
_[rR) p(B)] _ | T(k)e*4 R(k)eZiEA+
o(k) = [ﬁ(k) (k)| = | L(k) o2tk A_ T(k) k4 | (2.5)
where A4 are the constants defined in (1.3) and

A=A, + 4. :/ dz[1 - H(z)].
Note that when S(k) is known, one also knows A because 7(k) in (2.5) converges
tolask — oo in Ct. Let ¢i(k,y) and ¢,(k,y) be the physical solutions of (2.2)
from the left and from the right, respectively; we then have

r(k)etFy + o(1), y — 400

qsl(kiy) = 'ky —ik
e + L(k)e™ Y 4+ o(1), y — —o0,
b0 (k. y) = e~ Y 1 p(k)etty + o(1), y — 400
YT k)em iy 4 o(1), Y — —o0.

Let us also define the Faddeev functions Z;(k, y) from the left and Z,(k, y) from
the right, respectively, associated with (2.2) as

Zi(k,y) = ;(ikje"”“y oi(k, ),
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Zp(k,y) = —~e"*¥ ¢.(k, ).

1
(k)
Similarly, let us define the Faddeev functions m;(k, z) from the left and m.,(k, z)
from the right, respectively, associated with (1.1) as

my(k, ¢) = e i(k, z),

(k)

my(k, ) = T(lk) e ¢ (k, T).

We then have [4,5]

il )= s O () 26)
1 RL Jo_-H i
mr(k’x)_\/H—(:c—)— Zr(k, y(=)). (2.7)

Associated with (2.1) we have the scattering matrix

. ©1(k) RL
e 1= [0 5]

The physical solutions ij)ED](ic,a:) and w,[n[’](lc, z) of (2.1) from the left and from
the right, respectively, satisfy
W (k) = {

T[U](k)eik‘” + 0(1), T — 400
e'*? 4+ LIO(k)e~**% 4 o(1), £ — —oo,

o, gy = § 7 RIE +oll), 2 — oo
| TO(k)et*= + o(1), £ — —oo.

The Faddeev functions m; ](k z) from the left and mL](k z) from the right,
respectively, associated with (2.1) are then defined as

1 —ikw

i ) = gy ),
1 7- T

mi)(k, z) = TOI(k) £ Pl (k, ).

When Q(z) is known, m ](Ic ¢) and mi (k, ) are uniquely determined. Fur-
thermore, it can be shown that for k = 0, the scattering matrices S(k) and S[%(k)
coincide, namely S(0) = SI°)(0). It is seen that as k — 0, (1.1) and (2.1) reduce
to the same equation. Hence the physical solutions of (1.1) and those of (2.1)
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coincide at k = 0. Thus, the Faddeev functions associated with (1.1) and those
associated with (2.1) coincide at k£ = 0, and we have

m(0,z) = mED](O, ), (2.8)

m,(0,2) = ml%(0, z). (2.9)
Hence, from (2.6) and (2.7), one obtains

1

mi(0, z) = mzl(oﬂl(m)),
1

m,(0,2) = mzr((),y(w))-

From (2.3) it is then seen that

dy

2 = 2.1
Y _ (), (2.10)
and hence one has
dy dx
= , 2.11
Z0,07 ~ mll0 2y (211
dy _ __do (2.12)

Zr(0,y) " (0, m)z‘

The first order ordinary differential equations given in (2.11) and (2.12) are both
separable; their solutions with the initial condition y(0) = 0 give us y(z). Using
y(z) in either of the two equations

Zl(oﬂ y(.’L‘))Z
H(z) = 2808 2.13
(=) mEU]((],:tc)2 ( )
H(z) = Z,(0,y(2))* (2.14)

mi(0, )2’

one then recovers H(x). From (2.13) it is seen that, in order to obtain H(z), one
needs to know mED](O, x) and Z;(0, y(z)). Equivalently, from (2.14) it is seen that,
in order to obtain H(x), one needs to kndw m,[po]((], z) and Z,(0,y(z)). When one
knows Q(z), one then also knows mED] (0, z) and mi (0, z). If one knows S(k),
the information on the bound states, and either of Ay defined in (1.3), one can
then obtain Z;(k, y) and Z, (&, y) from ¢ (k) given in (2.5) by solving a Riemann-
Hilbert problem [4,5]. Hence, S(k), the bound state information, and either of
Ay are sufficient to obtain Z;(0,y(z)) and Z,(0,y(z)). Thus, knowing Q(z),

S(k), the bound state information, and either of A4, one obtains H(x) using the
method of [4].
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3 Phase Independence

Instead of using o (k) in (2.5), let us define

L) — T(Ic) p(k) eikb T(k) ezkA R(k) eikb+25kA+
a'b( ) = f(k) e—ikb T(k') ] [L(k) —1kb4+2ikA_ T(k) eikA 3

where b is an arbitrary real parameter. This is equivalent to shifting the phase
of the reflection coefficient p(k) in (2.5) by b. Such a phase shift causes the shift
y +— y + b in the Schrédinger equation (2.2), and it is known that the Faddeev
functions for (2.2) are then transformed according to Zi(k,y) — Zi(k,y+b) and
Zy(k,y) = Z.(k,y+b) [1,2,11]. Then in the solution of the first order differential
equations (2.11) and (2.12), the initial condition is replaced by y(0) = —b; as
seen from (2.10), H () is independent of the shift y — y+b and hence no matter
how the phase of p(k) is chosen, we are led to the sarhe H(z) in the solution of
the inverse problem for (1.1).

We will illustrate this phase independence by an explicit example. Let Q(x)
in (1.1) be given by

B —b(e 2/3e”
Q) = VBo(e) ~0) (3.1)

where §(x) is the Dirac delta function and é(x) is the Heaviside function. The
Faddeev function from the right corresponding to Q(z) is given by

m,[po](k, ) =1, r <0,
k+i i 1
[0] -
m; (k, ) k+i/2 [H k-i/21-|-\/?_,e“’]

\/_3/2 szr [1_ g 1 ]
z/2 E+i/214+/3e%]’

z > 0.

Thus, we have
m(0,2) =1, r<0,

n0,0) = 2+ VB L,

Consider the scattering matrix S(k) in (1.2) with

8
v
=}

T(k) — %eik(1+3ﬁ) ,

R(k) = 3Lt (VB4 (k) = 238 ki 2ik(V3-1), (3.2)

— k42{ k— z

Note that the constant A in this example is seen to be A = —1 — 3+/3, which is
obtained from the large k asymptotics of T'(k). Let us define

V3i pika \/gz k+7 _ika

k)= et (k)= L e ()

k 4+ 2¢’

Ta(k) =
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where a is an arbitrary real parameter. The Faddeev function from the right
corresponding to the scattering matrix in (3.3) can be obtained by solving a
Riemann-Hilbert problem [5,6], and we have

k+21 4 \/_Z sz(y_*_a)

ia) = > — 3.4
Zr(k,y,a) k‘-l—l k+2 Yy 2 —a, ( )
: 2
; < —a. 3.5
Zr(k,yia) = 1+k+z\/_e~2(y+a_1 y=—a (3.5)
We then have
Zr(oa v a) =2+ \/ga y2 —a, (3‘6)
\/§+ g2a+2y
1Q) = —————— < —a. .
Ze(0,y;a) N perrem y<-—a (3.7)
From (2.14) we obtain
2
2a42y
H(z) = (-\@-L) , ©20,y< —a, (3.8)
\/g__ e2a+2y
V3% + 1
H >0,y> —a. 3.9
(+) = (fem__l 2203 (3.9
In solving (2.12) we need to use the initial condition y(0) = —a; we then obtain
2/3 2v/3
m_y+a_\/§+1+\/§+62y+2a’ xSO)yS_a7 (3‘10)
\/_+1 \/_e +1
=z >0, y> —a. 3.11
y=z—a+2 v \/_e-“'”—l ©20,y2-a (3.11)

Since y appears as y +a in (3.4)-(3.11), we see that no matter what a is, we get
the same H(x). Once H(x) is obtained, we can then evaluate AL by using (1.3)

to find
+=-23-2, A_=1-V3

4 Riemann-Hilbert Problem

Associated with the scattering matrix S(k), we define another matrix

T(k) ~R(Ic)ez““’]

G(k,z) = e IS(k)Te~ 1% = [—L(k)e—zikf (k)

10

where J = 0 ul] . Let us define the vectors m(k,z) and ml®l(k, ) in terms of

the Faddeev functions for (1.1) and (2.1), respectively, as

m(k,z) = [TTZ:((]IZ, Z))] , [0](Ic ) [ hg: z)]
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It is known that m(k,z) is analytic in & € C* and continuous in C+, that
m(0,z) = m[‘_’l(_O, z), and when H(z) < 1 the vector m(k, z) remains bounded
as k — oo in C*, Furthermore, we have

m(—k, z) = G(k, z) am(k, z), keR, (4.1)

01
10
converge to constant limits, and hence the standard techniques on Riemann-
Hilbert problems [9,10] cannot be applied to (4.1). In terms of S(k) of (1.2) or
o (k) of (2.5), let us define

where q = [ ] . As k — Zoo, the quantities G(k,z) and m(k,z) do not

Ak, ) = e*AG(k, z) = e T*EFD I g (k)T e Tk @) (4.2)

where vy = $A_ — %A+.

To solve (4.1) one needs a variant of the Wiener-Hopf factorization of the
matrix function A(k, z) in (4.2) with special symmetry properties [6,7]; such a
special factorization of the matrix function A(k, z) can be given in terms of the
solutions of the Schrodinger equation (2.2) [6,7]; that factorization can also be
obtained by solving the matrix Riemann-Hilbert problem

P(—k,z) = A(k,z)qP(k, ) q, keR, (4.3)

where given A(k, z), we seek the matrix function P(k, z) such that it is analytic
for k € CT, continuous for k € C+\ {0}, P(k,z) — I as k — oo in C+, where I
is the identity matrix. Furthermore, in the exceptional case, i.e. when T'(0) # 0,
P(k,z) is continuous at k& = 0 whereas in the generic case, i.e. when T'(0) = 0,
it has a 1/k-singularity at k¥ = 0. When (1.1) has no bound states, the matrix
Riemann-Hilbert problem (4.3) has a unique solution in the exceptional case
and there is a one-parameter family of solutions in the generic case. If there are
N bound states then the matrix Riemann-Hilbert problem (4.3) has a (2A)-
parameter family of solutions in the exceptional case and (2A + oc)-parameter
family of solutions in the generic case [7]. The special factorization of A(k,z)
given by

A(k,z) = P(—k,z) qP(k,z) ! q, (4.4)

exists whenever G € Li(R) and H(z) is positive and bounded above, where
G(z) is the quantity defined in (2.4); equivalent conditions for the existence of
the special factorization of A(k,z) can also be given directly in terms of S(k),
and the following lemma will be useful for that purpose.

LEMMA 4.1 Assume 1 — H € L}(R). Then V € LL(R;dy) if and only if G €
Ll(R;dz), where V(y) is the potential in (2.2) and G(z) is the function in (2.4).
PROOF: From (2.3) and (1.3) we obtain the identity

T

y=o-Ay+ [ [-m=sta - [ [-m,

-0

and hence we have
r-pLyLz+p
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for a suitable 8 > 0. Then

1+ |z|+ 8
1+ |z

1+ |yl +5
1+ |y

1+ [yl < (1+[=]) < (14 B8)(1 +[2]),

14 2] < (1+[y) < (1+8)(1 +lyl),

so that

o0

/”@u+mmwmsu+mﬁ/ dz (1 + |2))|G(a)],

-~ 00 - 00

o0

[ aasirie@i<asa [ vl

-0 - 00

Hence the spaces L. (R;dz) and LL(R;dy) coincide. I
Using (4.2) and (4.4) in (4.1), we obtain

P(—k, :L')"l m(—k,z) = e~i4kq Pk, z)" " m(k, ). keR. (4.5)
From (4.5) at k¥ = 0 we have
P(~0,2)"" m(0,2) = qP(0,2)! m(0, z),

and hence )
P(0,2)~  m(0,z) = P(0,2)~  ml%(0, x) = ¢(2)1, (4.6)

where 1 = [i] and e(z) is a scalar function determined by Q(z), S(k), and

the bound state norming constants. It is possible to evaluate c¢(x) explicitly.
For simplicity, let us assume that there are no bound states. Let a denote an
arbitrary real parameter in [0, co]. Let us also define p;(k, z) and p,(k, z) as in

P(k, )l = [g((];i))] .

Both in the generic and exceptional cases, p;(k, z) and p,(k, z) are well defined
and correspond to the Faddeev functions from the left and from the right, re-
spectively, for the scattering matrix JA(k, 0)J.

Using (2.8), (2.9), Theorem 2.3 of [7], and (4.8) of [5], in the exceptional

case we obtain

14p,(0,2)? 1-p (0,:1:)2
P(O’w)-l — pf(ojx)pT(O)-’L') p,-(U,:L‘) pl([),g;)
pl(O, m)Z + pr (0, CL')Z 1—p,(0,2)? 14pi(0,2)? 3
P,-(U,:B) Pl(D,LL‘)

pr(0,2) m!_ol(D,:l:) 14+ R(0) we find

and after using P0,2) = mbl(0,z) TE)

mEU](O, z) 7 m[rO](O, ) 3
pl(ozw) Pr(osfc)

P(0,z)" ' m(0,z) = , (4.7)
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and in the generic case we obtain

-1 _ 1 la
P0,2)7 = pi(0,z) + apr(0, ) [1 a]’

0](0 :L')+am ](0 :c)

PO m0.2) = = 6 o) ¥ apn(0,2) (48)
Hence, from (4.6) and (4.8) we see that
0] T ml(0,
o(z) = (0,2) + am; (0, ). (4.9)

pz(O, z)+apr(0, )

Note that both the numerator and the denominator in ¢(z) are strictly positive
[7]. In the generic case c(z) depends on the parameter a whereas in the ex-
ceptional case ¢(z) is independent of a because in the generic case the Faddeev
functions from the left and from the right are linearly independent at £ = 0
whereas in the exceptional case they are linearly dependent at &£ = 0.

Let us define

r(k,z) = —ﬁ[P(k ,z)" L m(k, z) — P(0, z) "t ml(0, z)). (4.10)

We can then write (4.1) as
— r(—k,z) = e~ Eq r(k, z) + %[e“mk ~1i, keR. (4.11)

Note that for +4 > 0 we have

+A . i )
f dt e~ = —I;[e-*rmk - 1]. (4.12)
0

If H(z) < 1, in which case A > 0, we have the vector (-, z) belonging to the
Hardy space H'*' (R) and hence its Fourier transform has support on the half
axis, namely,

r(k,z) = /600 dt ((t, ) e'F*. (4.13)

Using (4.12) and (4.13) in (4.11) we also see that ((t,z) = 0 when ¢ > A, and
hence

Gt z) = [_W(Awf’tf:)v) _ 1] : (4.14)

where w(-,¢) € L?(0,A) and is otherwise arbitrary. In terms of w(t, ) and
P(k,z), from (4.7), (4.10), and (4.12) we then obtain

m(k,z) = ¢(z) P(k, z) {%/DA dt [_w‘(”jgt’__“’t),x)] ekt 4 I:ei%A:I } (4.15)
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If H(z) > 1, in which case A <0, we have e *%45(.,z) € HI (R) and hence
its Fourier transform has support on the half line, namely,

s(k,z) = e *Ar(k,z) = / di &, ) €', (4.16)
0
In this case, from (4.11) we obtain
— s(—k,z) = e“*qs(k, z) + -I::_[l — eH4F1, keR. (4.17)

Using (4.12) and (4.16) in (4.17), we see that £(t,z) = 0 when ¢{ > —A, and

&t x) = [_q(_j(ﬁ :)m) + 1] ’

where ¢(-,2) € L?(0,—A) and is otherwise arbitrary. In terms of ¢(¢,z) and
P(k, ), from (4.10) and (4.16) we obtain

m(k,2) = o(z) P(k, ) {-’“—A [ a7, e [ha] } ,

or equivalently

m(k, ) = (z) P(k, z) { ‘IE /D—A it [c(?;l(; ;)w)] =ikt | [eiA]}. (4.18)

If 1 — H(z) has mixed sign, then one can modify the above procedure by
using an analog of the method outlined in Section 10 of [8].

As seen from (4.15) and (4.18), the general solution of (4.1) by the above
method is not unique; in order to solve the inverse scattering problem of the
recovery of H(z), among all the solutions of (4.1), either we must pick the one
that will give us the Faddeev functions of (1.1) or we need to find appropriate
restrictions on the solutions of (4.1) so that they will lead to H(x). Currently,
we are working on this problem.

Next we will illustrate the method outlined in this section on the example
used in Section 3 with the scattering matrix given in (3.2). Corresponding to the
potential Q(x) in (3.1), we have

0] _ E+i  k+i k—i/2
ST(k) = [_\/ﬁi/z k+i/2

k+i/2  V/3i/2 k-{-z'/zjl
E+i k14

Solving the Riemann-Hilbert problem (4.3) by the method of [1,7], we obtain

1 0 1
Pk, z) = l:;@ezik:c-{-sik.{.\/ﬁik kizi] 5 z 2> —5(3 + \/ﬁ)
k+i P
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Thus from (4.7) we have

_ V3e® — 1
B V3er +1°
In this example, the Faddeev functions for (1.1) are given by

Pt e N
V3e? +1 -

L))

x> 0.

my(k, z

’

m (k .’L') — k + 21‘ \/ger — 1e—ik(1+3\/§)e4ik/(\/§€’:—-l)
r v, k+i \/ge‘” n 1

V3i /3¢ — 1eik(\/ﬁ+3)62ikxe—4ik/(\/§e‘—1)
k+1./3e® +1 ’

The vector in (4.10) is given by

x> 0.

, ; e—dik/(V3e™~1) _ 1
r(k,2) = k Ak (VBem 1) =ik (143V3) _ 1|

From (4.13) and (4.14), we then obtain

s(t,x) =08(t —1—3v3) -6t + 4_ ~1-3v3), z>0. (4.19)

V3er — 1

Although an arbitrary ¢(Z,z) leads us to a solution of (4.11), the solution of
(4.11) that gives us the Faddeev function for (1.1) through (4.18) must be cho-
sen with ¢(¢,z) as in (4.19). The quantities corresponding to negative values of
z can be obtained in a similar way, but they will not be listed here,
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