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ABSTRACT

For a rescaled linear one-dimensional transport equation with spatial depen-
dence describing the evolution of the electron distribution in a weakly jonized host
medium under the influence of a constant electric field, we derive recursively the
n-th term in the Hilbert expansion and prove that the n-th order Hilbert expansion
provides an {n+1)-th order approximation of the electron distribution function and
the drift velocity under certain initial conditions. The proof is based on the pertur-
bation formula for the mild solution of the initial-value problem and an existence

result for stationary solutions in a weighted L;-space.

1. INTRODUCTION

Let us consider the one-dimensional linear Boltzmann equation
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with initial condition

f(:L','U,O) = Q(Iev)a (12)

where a = gE/m. This equation describes the time evolution of the spatially depen-
dent electron distribution function f{x,v,t) in a weakly ionized host medium under
the influence of a spatially uniform time independent electric field. In (1), zeR
and v € R are the space and time variables, t > 01s time, a > 0 {expressed in terms
of the electron charge —g, the constant electric field £ and the electron mass m) is
the constant electrostatic acceleration, »(v) is the collision frequency, and k{v, ")
is the scattering kernel. Under the hypothesis that ionization and recombination
effects balance each other, k(v,v') is a nonnegative measurable function such that

400
j kp,9)dv=1, 8€R. (1.3)

—O

In this article we provide a dimensional analysis of the spatial. velocity and
time variables to show the relative importance” of each term of the evolution
equation. Expressing each of these variables in physical units that are fractions of
suitable intrinsic variables, we introduce the new scaled variables

where zq, vy and fy are reference quantities, v2 being e.g. the average squared
velocity of the gas particles. For a semiconductor! the latter is given by kgT/m
with T' the lattice temperature, kp the Boltzmann constant and m the electron
mass, while for an ideal monatomic gas? it is given by 3kpTp/m with Ty the gas
temperature.

To rewrite the evolution equation in terms of the new scaled variabies we define
the new function

F(z', o', t') = f(zoz’,vov", tat’) = f(z,v,1)

and introduce a reference electric field Ey and a reference voltage Uy = muf /¢ such

that
E a = E = —’UEEO E'.

T E m Uy

One may then show’? that the collision term (Q f)(z,v,t) given by the right-hand
side of {1.1) is rescaled as :

Ef

Q(F) = %Q(f) = 2Q(f),

where £ and T are the mean free path and the mean frec time between successive
collisions. Then (1.1} takes the form
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Henee, returning to the original variables , v and ¢ we find

£

tove

%f{z,v,t} + %va%f(m,v,t) + %E%f{x,v,i} =(@f)z, v, ).
When the electric field is strong enough, one may take the reference clectric field By
in such a way as to make %551 comparable with 1 and hence large in coruparison with
the other coefficients contaming the mean free path ¢ in the numerator, taking into
account that tgug ~ z¢. Introducing the scaling parameter ¢ proportional to the
average time between successive collisions, the initial-value problem finally takes
the form, with obvious meaning of the new symbols

o 00+ v f(e,0,0) + 0 fz 0,1

too (1.4)
= —u(v)f(:c,v,t).-l—[ kv, 0)u(8) f{z,5,t) db, t >0;
flz,v,0) = g(z,v). {1.5)

The existence of a unique solution of problem (1.4)-(1.5) has been studied by
several authors,*~" both the present one-dimensional mode! and the more realistic
three-dimensional model, leading to very similar results. Some of them have also
studied the runaway phenomenon®~'? that occurs when the collision process is not
sufficient to prevent the eclectrons from being accelerated indefinitely under the
influence of the electric field. In this article we give a mathematical justification of
the Hilbert expansion of the solution f(z,v,t;¢) of Eqs. (1.4)-(1.5) to arbitrarily
high order. In particular, we prove the two approximations

n

fm Flz,o tie) - Z & fi(z,0,8)| (1+ o)) dedv = O(™),  k=0,1, (1.6)

—oo =
as € | 0, for arbitrarily large n € N, under suitable assumptions on the initial
condition. We thus generalize a result by Poupaud®?? on the zero-th order (n=10)
approximation. We remark that Poupaud has used methods going back to the
work of Bardos et al.!? As an ancillary result, we obtain an asymptotic series for
the average drift velocity of the electrons, thus justifying an additive decomposition
Skullernd*® obtained for this velocity.

Sinee its first introduction,'* the Hilbert expansion for the linvarized Boltz-
mann equation has been studied extensively by Grad. He explained its scope from
the physical point of view'® and proved it to be an asymptotic expansion of so-
lutions of the linearized Boltzmann equation with Maxwellian initial condition.!®
He also studied the initial layer effect occurring when the initial condition is not a
Maxwellian.’® A discussion of these matters as well as references may be found in
Ref. 3. Recently, Banasiak and Mika!” have obtained first order {n = 1) results for
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the neutron transport equation incorporating the initial jayer effect. In this article
we avoid the initial layer effect by restricting the iritial condition, but we obtain
results for arbitrarily high orders.

In this article we restrict ourselves to a onme-dimensional model. From the
physical point of view, this is a major restriction. Nevertheless, virtually all of the
mathematically interesting features of the three-dimensional problem are already
present in the one-dimensional case and we expect all of our derivations to go
throngh in the three-dimensional situation.

Let us give an outline of the article. In Section 2 we study the inhomogeneous
stationary problem in various Banach spaces, obtaining one-dimensional versions
of some of Poupaud’s results.%!! In Section 3 we consider the asymptotic problem,
using its Hilbert expansion. In essence, at each step an inhomogeneous statiorary
problem is obtained with an undetermined constant which is in turn found with the
help of the solvability condition on the right-hand side of the stationary equation.
In Section 4 we prove the Hilbert expansion in the form (1.6) for & = 0,1, which
shows the Hilbert expansion to be an asymptotic series for the solution of the initial-
value problem (1.4)-(1.5) as € | 0. The k = 1 expansion then yields an asymptotic
expansion for the average drift velocity of the electrons.

For later use we define a number of function spaces. Letting 4 be a measure
on E, by L1(E;dy) and Loo(E;dp) we mean the Banach spaces of y-measurable
functions on F that are bounded with respect to the norms |}fjl; = [z |f{£)idpu(t)
and ||fllo = p — esssupeeg | f(t)|, respectively. In this article we always deal with
E=Ror E =R? and p a suitably weighted Lebesgue measure. Next, if X is a
Banach space, I is an interval and § € N, then C7(2/; X) denotes the Banach space
of all vector functions & : i — X that have j continuous strong derivatives and are
bounded with respect to the norm

H
I2lles aesxy =sup Y 1-9()]|x-
ek
If X = C we write CV(If) instead of C7(i4; C). Finally, if n € N, then by H{{R)
we denote the Sobolev space!® of all functions ¢ € L;(R?;dvdz) whose first n
distributional derivatives befong to L (R?; dvdz), endowed with the norm

n oo
Hgllzn (my = Z /; 1ot (z)| dz.

2. STATIONARY PROBLEM WITH INHOMOGENEQUS TERM

In this preliminary section we study the inhomogeneous stationary problem

022 1 uw)o(v) = (Ke)w) +6(0) (2.1)



DRIFT VELOCITY 245

where

+oo
(K)e)= [ b ooy v,

under the gereral assumptions of Ref. 4 and then impose some restrictions on v(v)
and I to get similar results in Ly (R; {1+ {v[)dv). Let us first assume that a > 0,
v(v) is an almost everywhere positive function in L1 joc(R; dv), and K is a positive
operator from L (R;v(v)dv) inte Li(R; dv) satisfying

Kol =lell.. ¢ 20in Ly(R;dv),

where floli, = ||vpll;. Let us define

o= [ sew{-1 [ (0 | (o' !

Then L is a bounded positive operator from Li{R; dv) into L, (R; »{v)dv) satisfying
1Lel < el @ > 0in Ly(R; do).

Writing

+oo +co
(o) = ] P@Wp(v)dv, (), = f oYp(v)v() dv

—00

we easily derive
(Kol = (0,1)ss € Ly(Rov(o)de), (22)

where 1{v) = 1.
Suppose ¢ € L1{R;dv). Then by a solution of Eq. {2.1) we mean a function
¢ € L1(R;v(v)dv) that is absolutely continuous on every compact real interval and

satisfies (2.1). Using the arguments of the proofs of Theorems 2 and 4 of Ref. 4 we
obtain

Proposition 1. Let ¢ € Li(R;dv). Then cither of the Jollowing two situations
oceurs: .
1. fjoo: v(vjdv = +o00: A function ¢ € Li(R; v(v)dv) is a solution of (2.1} if and
only if
¢ = LK + L, (2.3)
end in that ease o(—co} = p{+o0) = 0.
2. f v{v)do < +o0: A function ¢ € Ly(R; U(U)dv) s @ solution of (2.1) if and
only if p{—c0) = 90(+00) and

= LKy 4+ o{foo)e + L¢,

where e(v) = exp {—% ffoo v{0) dﬁ}.
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Moreover, if LK maps L1(R; v(v)dv) into Li(R;dv) and Lé € Li(R: dv), the solu-
tions ¢ € Li(R;dv) whenever, in the second situation, p(+oo) = 0.

The two situations show a very different physical behaviour also for nontrivial
sources. When the collision frequency is not integrable on R, absorption is still
significant for large values of |v|, and so a stationary solution can exist also when ¢
is nonnegative and large. When the collision frequency is integrable, the absorption
for large values of |u] is so insignificant that the source can be assigned arbitrarily
{see (2.6)). Now we examine these two situations in detail.

The existence and uniqueness issue is easily resolved if

+oo
f v{v)dv < +o0.
In that case LK is a bounded positive operator on Li(R; v(v)dv} of norm strictly
less than ! and hence for each choice of equal values (+o0) there is a unique
solution of (2.1) and this sclution is nonnegative if and oaly if @(Zo0) and ¢ are
nonnegative.

On the other hand, if

+oo
] v(v)de = +oo, (2.4}

we have

(Lo, 1), = (p,1), 9 € La(Rsdv). (2.5)
Therefore, by (2.2) and (2.5), a necessary condition for the existence of a solution
of (2.1) 18

+o
(¢, 1) = / #{v)dv = 0. (2.8)
-—00
Condition (2.4) turns out to be a necessary (but not a sufficient) condition'® for
the existence of a steady state, i.e. a nontrivial solution of Eq. (2.1) with ¢ = 0. A
sufficient condition? for the existence of a steady state is the weak compactness of
LK on Li(R;v(v)dv). It should be noted that if there exists a steady state there
is & one-dimensional subspace of steady states' ¢ € L;(R;dv) such that ¢ = LK.
The next result gives the necessary and sufficient conditions for the existence
of a solution of (2.1). Poupaud® has obtained the analogous result for the three-
dimensional BGK model.

Theorem 2. Suppase ¢ € L1(R;dv) and fj;c v(v)dv = +oo, and let LK be @
weakly compact operator on Li(R;v{v)dv). Then there exists a selution ¢ of {2.1)
if and only if (2.6) 15 satisfied.

Proof: Since LK is weakly compact on Ly (R; »(v}dv), (LK)? is compact on Li{R;
v{v)dv) and hence 1 — LK has a closed range. Thus the nonzero spectrum of LK
consists of a sequence of isolated eigenvalues of finite algebraic multiplicity with
zero as the only possible accumulation point. Writing

My ={v € Li(R;v(v)dv) : LKy = del,
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we have

Li(R;v(v)dv) = M1 @ N, @ N, (2.7)

where N is a closed invariant subspace of LK on which LK has spectral radius
strictly less than I and My = @xj=1,a¢1 M. Further, M has dimension 1. Indeed,
there exists* a unique nonnegative pg € M; such that

(‘Pﬂa 1) =1

Moreover, if LKy = % + g for some o € Li(R;dv), (LK)"¢ = ¢ + nyo and
hence |[¢ + npoli = |[(LE)"¥fli < {|¢]l: for all » € N, which is a contradiction.
Therefore such 4 does not exist and M; has indeed dimension 1.
There exist C > 0 and € € (0,1) such that for any n € N
IZEY el < Cetlielle, @ € AL

Therefore if ¢ ¢ A7 we have
(e, )t = (LK) ¢, 1}] < LK) @luilllloe < Ce®llefly,  m €N,

and hence {y,1), = 0 for every p € N).
If » € M, for some A # 1, we have

(Wul)u “'A(Saal)u (@_LI(Q‘QS]-)V

(@,1);,: 1 A = TREY =0.

For general ¢ € Li(R; v(v)dv) we have
@ = o+ @1+, (2.8)
where ¢ € C, ¢y € N} and p; € A, Thus
(1) = cleo, 1 + (91, 1)u + (2, 1w = .

Hence :
N BNy = {p € Li{R;v(v)dy) : (p,1), =0}. (2.9)

We may thus write Lé = (Ld); + (L¢); with (Do) € N7 and (Lé)z € Mo if ¢
satisfies (2.6).
Finally, from (2.3) and (2.8) we get

w1+ 92 = LK (1 +¢2) + Lo, (2.10)

with (L¢,1), = {¢,1) = 0. Equation (2.1) can be decomposed into equations on
Ni and N, separately

w1 = LK1+ (L), w2 = LK@z + (Lé)s, (2.11)
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where ((Lé)2,1), = 0 [because (L¢)2 € Ny] and hence ((L)1,1), = 0. Because
the spectral radius of LK on N is strictly less than 1, the firsi of (2.11) has a
unigue solution given by the absolutely convergent series

p1 =Y (LK) (Lé)s,
n=0
whenece
¢=coo+ Y (LK) (Lé) + (I — LK) (L)s, c€C, (2.12)

n=0
is the general solution of (2.3). =

It is easily shown that A2 = {0} under the condition that k{(»,v") > 0 for
almost every (v, v'), which is satisfied for every realistic scattering model. Indeed,
the spectrum of LK on the unit circle is cyclic {¢f. Ref. 20, Theorem V 5.2), i.e.
there exists n € N such that the point spectrum of LK on the unit circle coincides
with the group of n-th roots of unity. Moreover, because the eigenvalue of LK at
A =1 is simple, all eigenvalues of LK on the unit circle are simple. Further, there
exists a function e(v) with |e(v)]| = 1 such that LK {wpe*) = e2™*/mppe* . In addition,
under the above condition on k(v,v') one has f_'l':; (LK ¢)(v)h(v)t{v)dv > 0 for all
nontrivial and nonnegative ¢ € L1(R;dv) and k € L(R;dv), and hence A =1 is
the only eigenvalue of LK on the unit circle.

If »(v) is bounded, (2.4} is fulfilled and LK is weakly compact on L;{R; dv),
then there exists a solution ¢ € I;(R; dv) of (2.1) for given ¢ € I,(R;dv) if and
only if (2.6) is satisfled. Uniqueness is guaranteed if we require the solution ¢ to
satisfy (¢, 1} = 0. In fact, once a solution ¢ is found, ¢ — {(, 1)/(420. 1) }ioq satisfies
this requirement. Moreover, if we write

w=M¢

for the unique solution of (2.1} satisfying (, 1) = 0, then, by the inverse operator
theorem, M is bounded on {p € Li(R;dv}: (p,1} = 0}.
To deal with the stationary problem (2.1) on L (R;(1 + |v|)"dv), we make the
following assumptions:
Al. w(v) is bounded and satisfies (2.4).
A2-n. L maps L;{R; (1 4+ |v|)"dv} into itself. This is equivalent to the requirement

+oo RN o'
A, = sup 5/ (1 alid !) exp ~l/ v(8)dd | dv' < too. (2.13)
vER & Jy I+ |'U| ¢ Sy

Actually, the real number A, is the norm of L as an operator on Li(R; (1 +
|v])"dv).
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Adn. K is a bounded operator on L,(R;(1 + [v{)*dv) such that LK is weakly
compact on both Ly (R;dv) and L(R; (1 + [o|)"dv).

Then it is easy to see that the nonzero spectra of LK as operators on Li{R;dv) and

Li(R; (1 + |v|)"dv) coincide, to the extent that even the multiplicities of the corre-

sponding eigenvalues are the same. Also all (generalized) eigenvectors of LK cor-

responding to nonzero eigenvalues belong to the smaller space Li(R; (1 4 [v])™dv).

In particular, po € Li(R; (1 + {v|)"dv). In analogy with (2.7) we have

Li(R; (1 + |o])"dv) = M1 @ [Ny 0 Li(R; (1 + [v])"dv)] 5 A,
where all subspaces oceurring in the direct sum are ciosed in Li(R; (1 4 |v])"du).
Given ¢ € Li(R;dv) we have Lg & L;(R;(1+ [#])*dv), which. via (L¢,1), =
(#,1) = 0, implies
Le € M N LR (1 + [o))dv)] @ A

Thus (2.10) has at least one solution in L;(R;(1 + |v])"dv} and the general solution
in Ly (Ri(1 + [v])"dv) is given by (2.12). Taking

- o0}

e=— ((LE)"L$,1}/(p0,1)
n=0

we obtain ¢ = M¢ € Li(R; (1 + jv|)"dv) satisfying (¢,1) = 0. Moreover, by the

inverse operator theorem, M is a bounded operator on Li(R; (1 + iv|)®dv). We
have

Theorem 3. Let v(v) and K satisfy the conditions (Al), (A2-n) and (A3-n) for
some n 2 0. Then for every ¢ € Li(R;(1 + |v|)"dv) with (¢, 1) = 0 there exisis o
unique solution o = M¢ of (2.1) in Li(R; (1 + )" dv) satisfying (v, 1) = 0 end

12610 < plidllin, ¢ € Li(Rs (1 + [o])"dv), (2.14)
for some constant y,,, where || - |z » denotes the norm on Li(R; (1 + |v|)™dv).

Let us consider the BGK model where
kv, v") = Fin(v)

for the nonnegative function Fin(v) = (8/#)1/2eF*" with I Fm|ly == 1, for collision
frequencies satisfying (A1) and (A2-n) for every n > 0. Then {A3-n) is satisfied for
every n > 0, the nonnegative homogeneous stationary solution of unit Li-norm is

given by pg = LFn/LFu|1 and

M¢=L¢—(Lé,1)po (2.15)
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For v(v) = vy we easily find
(M)o) = (Le)w) ~ (G DEF)0) = L) = - [ F 500 v,

because the solvability condition for (2.3) is (¢,1) = 0.

3. ASYMPTOTIC EXPANSIONS IN POWERS OF ¢

In this section we derive a recursive expression for the n-th term of the Hilbert
expansion of Eqs. (1.4)-(1.5). For the sake of clarity, we will at first disregard the
spaces to which various functions belong and disregard smoothness conditions. At
the end of this section we will derive some preliminary estimates. In Section 4,
where the approximation result for the n-th order Hilbert expansion is established,
we will specify the regularity required for the initial condition and discuss the spaces
to which all functions appearing in the expression belong. For the time being we
will take derivatives with respect to z and t without worrying about regularity. In
Section 4 the functions appearing in the initial condition will be required to belong
to suitable Sobolev spaces, thus justifying taking these derivatives.

We Iook for solutions of (1.4) as power series in ¢ and consider the formal
expansion® of f(z,v,t) in powers of ¢

o0

Fa,v,56) =" € filz,0,t) = fo(z,v,t) + efi(z,0,8) + E oz, 0,) . (3.1

=0

Substituting (3.1) inte Eq. (1.4) and equating corresponding powers of € we find

a
oS 4 Qi) = (3:2)
and for 7 > 1

94 3o {8 | O _
a— +Qf;) = { s TR [ (3.2);

where we have abbreviated the collision operator as

foo
(QR)(v) = w(v)h(v) — [ k(o, o' }(v' h(o") do'.

For the sake of general}ty we expand ‘the function g{z,v) appeanng in the initial
condition (1. 5)

g(z,v;€) Z e’g_,(:: v) = gg(:r v) + egl(a: v) + et gg(z, v) + - (3.3)
j=0
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although in the most common applications we have
g(z,vie) = golz,v),  gila,v)=0, 721

In general, the sequence of initial conditions

f_f(z7v>0) :gj(.i.",?)) (34)1
is not satisfied. Notice that each one of Eqgs. (3.2); has the form

a% + Q(f;) = Rhs;(z, v, 1},

where only the right-hand side Rhs;(z, v,?) depends on (2,t) and Rhay{z,v,t) = 0.

Let us now assume that the homogeneous stationary problem (2.1) has a non-
trivial solution o(v) belonging to L;(R;{1 + |»|)dv). Then we may suppose? that
o is nonnegative and normalized in L; (R; dv), i.e. ff:; wo(v)dy = 1. Moreover,
the steady state’s average velocity

-+oa
{wo) = [ vipe{v) du

—

is a finite real number, Then Eq. (3.2); has the general solution

Jolz,v,8) = mgp{z, t)en(v), (3.5)

where mp(z,1) is a scalar not depending on v to be specified later. As a result, the
average velocity

[ vflemt)d
{vho(z,t) = f_“;" folz,v,1) dv

is identical to the average velocity {(ug) of the steady state and hence does not
depend on x and {.
Next, we solve Eq. (3.2); with fo(z,v,%) given by (3.5). This equation takes

the form of s p
o+ Q) = o) { T 405

which leads to the necessary condition for solvability

-0

or in other words
5m0

ot

Grmqy

(1) + (o0} S5

(z,t) =0
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The solution of the latter equation is an arbitrary function Ay of the variable
z — {vg}t, Le.
mg(:::,t) = ho(.r - ('U(])t).

Using the initial condition (3.4)o we find ho(z) = [ go(2,v) dv. Hence

Solz,v.1) = wo(v) holz — {wo)t).

Equation (3.2); now takes the form

a2l 1 Q) =~ — od)go(wha' (e - (oot (5:6)

where the right-hand side integrated with respect to v € R yields zero. Letting
¢1(v) be the unique solution of the stationary equation

%i + Q1) = (v = (vo))pol()

in Ly(R; (1 + [v|)dv) that satisfies [ 27 1 (v)dv = 0, we obtain

fi(@,0,t) = —p1{v)ho’ (2 — {va)t) + ma(z, thpo(v), (3.7

where m(z,t) is a v-independent constant to be determined below.
Next, we solve Eq. {3.2); with fi(z,v,t) given by (3.7). This equation takes
the form

a%é +Q(f2) = (v — (v (v)he" (z — {va)t) — o(v) {3;11 + t;fja%} . (3.8)

i

The necessary condition for solvability thus leads to the equation

3m1 am

_6?— + {Uu)—“a;}v = a]hg”(m - (U(})i)

with &y = f:: (v ~ (v0) J¢1(v) dv where the right-hand side is easily found from
the initial condition. This equation has the solution

ml(:c,t) = hy (.T — ('Uo)t) + tlfltho”(I - (Uu)t)
for some function £y of the one variable = — (vp)t. Hence (3.8) reduces to

%i +Q(f2) = {(v = (w))e1(v) ~ a190(v)} ho"(z — {vo)t)

~ (v — (vo))po(v){hs'(z — (v0)) + n ANz — (ug)2)}.
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Usmg the initial condition (3.4); in combination with (3.7) we readily find hy(z) =
f_ g1{x,v) dv. Letting 2(v) be the unique solution of the stationary equation

a%’%z + Qie2) = (v — {wo) )1 () — cr00()
in Li(R; (1 4+ |v|)dv) that satisfies f @a{v) dv = 0, we obtain

f2($=v$t} = WZ{U)hOH{z - ('U())t)
= p1(oHha'(z = fo0)t) + @rthg’ (v — (wo)1)} + ma(e, heo(v),
where my{z,t) is a v-independent constant to be determined befow.

Let us now proceed as above for f; with the help of an induction argument
involving some bookkeeping. Let us start from the hypothesis

Filz,v, ) = (=1)7 (0 )Nz — (wo}e)
m{j} 9(3.9) g

(3.9
+ Z Fio{v) Z k1GLJS(T (o) | +mj(z, t)po(v),
s=1

where j > 2, m;{z,t} is some v-independent constant to be determined below, and
f+°° Fjs(v)dv =0. Then Eq. (3.2);4, reads

PR+ Qi) = =utw) { 402

F 1P [0 = foo))es (00 Tz ~ (o))
m(j} q(.s} *

+ 20 ) ,Q(U)Zk,cm ~ ey 310

mij) q(7,8) k1

+ Z F}s('v) Z Gkgs(x (Uﬂ)t)]

The necessary condition for solvability and f+°° Fio(v)dv = 0 thus lead to the
equation

. i) ¢(4,%) ik
= (<1)* | bt (z_ t)+Z s Z “Gm (& — (ve)t)] ,
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where aj = f+ —{vo})pj{v)dvand f;, = +;° {v—{vo))F;s(v) dv. The equation
has the solution

my{a1) = hye ~ (o)) + (—1F* JagthE e — (wot)

mG) ) (3.11)
+ Z f;a Z }'C-i— l)leJa ('I (Uﬂ)t)

for some function k; of the one variable z ~ {vo)t. Using the initial condition (3.4);
in combination with (3.9) and [*5° #;,(v) dv = 0 we find

+oo
hifz} = / gi{z,v)dv.

Now (3.10) reduces to the equation

af_1+1

FQUis1) = —(v = (oo)Jpa(w)h'(z — {wo}t)
+ (=17 [—azt(o — (o koo () * Iz — (w0t

+ {(v — (vo)}p;(v) — ajpa ()R (2 — (vo)t)
mi{3) g(4,8) L1

+ Z {(v = (00} Fja{v) = Fispo(v)} Y Eijs’(I — {wo)t)
k=90

m(J) q(,8) k=1
+ Z Fjs(v) Z (k G-LJS("I ( )t)
s=1

- m{p) qli,s) tk‘l'l
- ('U - (Uo))l,.?u('u) Z fjs Z k+ 1);ij5”(5'3 -~ {Uﬂ}t)
a=1 k=0 ‘

. (3.12)
Letting ¢;51(v), Fjs(v) and Hj.{v) be the unique solutions of the stationary equa-
tions ’

aff;h + Qejs1) = (v — (o) )ps(v) — ajpolv); =12
o2t 4 QFy) = (0~ (o) Fyu(2) = fragalo)s s = L. om(i;

v

OHj,
0t + QU = Finlv),




DRIFT VELOCITY 255

in L1{R; (1 4 [v])dv) that have zero integrals for v € R, we obtain

firi(z, vt} = —p1(v) [hj'(z - {ve)t) + (—1)j+lajfhu[3j+2](x — {vo}t]

m(f} q{J,5) tk+1

+(=1)y*? Z Fis Z (k-i—l)‘Gk]s (2 — (Ug)t)}

m(j} a(i.8) 1
T s e = w0+ 3 Filv) 3 giGun'(e = (l)
=1

m(J) (3,9} 1

+Z@@Z@ Gmeﬂwwwmm

(3.13)

where m;41(z,t) is a v-independent constant to be determined. Hence Fip1(z 0, t)
has the form (3.9) with j replaced by j+1, which completes the induction argument.
Before giving a description of how the functions Fj,(v) look like, we study the
number N(j) of terms in the expansion of fj(z,v,t). From (3.9} and (3.13) one

finds immediately
m(f)

NGY=2+) q(i.s)
5_
m(§) m{j) m(j)

NG+L =4+ q(s)+ Y {als) -1} + > 4i.s) = 3N() = m(F) - 2.
s=1 s=1 s=1

For low values of j we have N(0) = 1, N(1) = 2, N(2) =4, N(3) = 9. N(4) = 21,
N(5) = 53 and N(6) = 140 so that

NG <Cp-8, 2k, (3.14)

where Cy is a suitable constant. However, to find a recurrence relation that allows
one to calculate N{j) for every j without evaluating f;{z,v,t) one has fo sort
the terms appearing in (3.9) according to their factors (¢*/k!). Writing p(j, k) for
the number of terms having a factor (#*/k!), by inspection we obtain for j = 2
2{2,0) = p(2,1) = 1 and for j = 3 p(3,0) = 4, p(3,1) = 2 and p(3,2) =
Comparing {3.9) with (3.12) we find the recurrence relations for j > 2

2+ p(4,0) +p(5, 1), k=0
+1,k) = { P ok :
7 : 1P, =D +p5,5 - 1), kF=j-1

1, k=g

Hemnce the total number of terms in f;(z,v,):1s

il
NGy =243 plik)-

k=0
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Starting from the first known values p(2,0) = p(2,1) = 1, it is now clear how
we have evaluated N(j} for j < 6. As an ancillary result all functions Gygj,(2)

have the form hLQ](z), i.e. the g-th derivative of h,, where the highest derivative
of h.(z) appearing in f;(x,v,t) is the (2 — 2r — 1)-th, occurring as one of the
functions Gg;,(z) with k = j v — 1, with r ranging from 0 to j — 1. More precisely,
Grjo(z) = BV (2) for some 0 < r < j— b — 1.

Let us now discuss the general form of the functions Fj,(v) as well as upper
bounds for their norms in L;(R; (1 + |v|)"dv), putting

5 = sup 2 ()l

= max(1, {v .
sup S (L, 1w}

We have in fact five ways to generate Fj;1 4(v) from some Fj,(v), namely as either
Fio(v)y, Hjs(w), = fiep1(v), or, for k = 0, —g1(v) or —aje:i(v). Using Theorem 3
for n = r repeatedly we have

| = eillir < pefl(e ~ (woh)eolls,r < verliwolls e (3.15a)

I = ajerlle < loglvedieollirer € ¥ pclleelin e lleillg,

which, in combination with the estimate

lesillig < 260ll(® = (vo))pi-1flg < 2vpglleiallngsr.

yields
I =esprle < v pelollirss - (2v¥ s piflpollr, s (3.15b)
=277 (g - p)ellpolly,ran ol s
The other three basic estimates are given recursively. Indeed,
E:llr < 2p00(0 —~ (vo) ) Fjallre < 2vpal| Fallirss; (3.15¢)
”H..'f‘i”l,f < urHFjsHl,r; (315d)

1= fiseille < sl leillsr < vl Fialiialleillie € Y2iellool s, el Fialle,y. (3.15¢)

As a result, every ||Fj, |1~ has a compound of constants involving varions norms of
o as its upper bound, provided, of course, conditions (A1), (A2-n) and (A3-n) are
satisfied for n = j + 1.

Let us study f;(z,v,# = 0). We readily find

Solz,v,0) = ho(2)po(o),

filz, U,O) = h1($)‘P0(U) - ho'(I)(Pl{U)a

fa(z,v,0) = hy(xhpo(v) — Ri'(2)p1(v) + ho"{2)pa(v),

fal@,w,0) = ha(@)po(v) — ha'(2)p1 (v} + ba"(2)oa(2) — RSN (2} {ps (1) — aribi(v)},
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where (v} is the solution of Eq. {2.1) with ¢ = y; satisfying (¢;,1) = 0, while
for j > 2 '

m{ )

Fila,,0) = hi(z)po(v) + (=1F | 3 Gojole)Fyu(v) + Bl (@) v} |,

g=1

where Gy;,(z) = hg-j_'](m) for some 0 < r < j — 1. Hence

i—1
(3.16) filz,0,0) = hj(z)po(v) + > (—1)7 "R (2)d,,(v)

r=0
for certain ¢;, € L1(R;dv). As a resuls,
f'('a '10) S LI(R- d“T) ®HJ

where H7 is a (j + 1)-dimensional space of functions of v only. Note that H; C H;y
and that f;(-, 1) € Li(R;dz)@H for every t > (. As aresult, the initial condition
(3.4); is generally not satisfied, although always

+o0 +oc

filz,v,0)dv = / gj(z,v)dv = h;{z), zeR.

—xX —00

If g(:c v) does not depend on € and hence g;(x,v) = 0 for j > 1, we have &; Hz)=0
for j > 1, so that the expressions for f;(z,v,t) simplify for ; > 1. Tn pa,rtlcula.r, in
this case

Filz,0,0) = (=1 bz )0 (v)
for a particular function ¢j € Li(R;dv).

4. GENERALIZED DIFFUSION APPROXIMATION
Truneating the formal Hilbert expansions (3.1) and (3.3} we introduce
Folz,v,te) = Z & fi(z,v,1).
i=0

We then easily derive

E{aF,, vaﬁ} 2 )
ot dz *
=Z=j %402 }+Z v au)

= —¢" { Bfwnr +Q(fn+1)}
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Hence, introducing the error Dy(z,v,t;¢) = f(z,v,t;€) — Fo(z,v, t;€) in the n-th
order approximation and subtracting the above equation from (1.4) we obtain the
initial-value problem

9D.  ODn) . ODa
E{ o T ax}”av + QD) -
= e {aPht s g s

Da(z,0,0;€) = g(z,v;¢) = ¥ g;(z,v). (4.2)

j=0

The initial-value problem (1.4)-(1.5) is uniquely solvable in the follswing sense.*~>

There exists a strongly continuous positive contraction semigroup {S(¢}}i>0 on
L:(R?; dvdz) such that for every ¢ € L {R?; dvdz) there exists a unique solution of
Eqs. (1.4)-(1.5) given by f(z,v,t;¢) = {Siq(t)g)(z, v), and this solution is nonneg-
ative if g is nonnegative. Moreover, since v{v) is assumed bounded, the L;-norm is
preserved, ie. [[Siq{t)gils = llgili if ¢ > 0 in Li(R? dvdz). Using the variation of
constants formula we get for the unique solution of (4.1)-(4.2}

wlT, v, € ()_Zj'}zufjgi
% [S () T} (z,v} s
1t a a+1i\T I
+ [ [sute - {e222D 1 g ] ey
where g(e)(z,v) = g(z,v; €), so that in the norm of L;(R;dv)
”D ( :H’.f é)”; Hg(e) - eznf;jﬂ € 91‘”1 +1 TSE‘[lﬂ : fn+1(1-) + Q( fn+1('r)) 1
(4.4)

On the other hand, if one were to derive the analogous estimate in L; (R?; {1+ |v|)
dvdr) one must use the fact that under suitable hypotheses on the collision operator
{51q(t)}120 is a strongly continuous semigroup on L {(R%; (1 + |v])dvdz) satisfying
1Sig(glley < C(E 4 t)|lglia for all ¢ € Li(R?;(1 + [v])duvdz). Here C is some
constant. Instead of (4.4) one then finds the estimate

Du(y el llg(e) — 35en #asl
IDus s ¢ gy 4 ey 3l y
+C(t+2t2) sup- aaf"gl( )+Q(fn+1(7)) |
1,1

TE[0,1]

The first term on the right-hand side of {4.4) [(4.5), respectively] generally does
not remain bounded as € | 0. This is only the case if g(-, -, €) € C™(U; L1{R?; dvdz))
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[g(-, &) € C™{(U; Ly (R?; (1 + |v])dvdz)), respectively] and go,- -+, gn are the first
n + 1 coefficients in the Taylor series expansion of g(-, -, €) at ¢ = 0 [Cf. the vector
version of Theorem 5.15 of Ref. 21]. In other words, the initial conditions (3.4);
should be satisfied for 7 = 0,1,++-,n. For n = 0 this means requiring go(z,v) =
h@(m)pg(v) for some hy € L, (R dz) For n = 1 we should require go(z,v) =
hc.{x)cpg( ) and g1{z,2} = Ri(z)po(v) — Bo'(z )(pl(v} for certain hg € H}{R) and
ki € Li(R;dz). For n = 2 we must require go(x,v) = hg(m)z,og(v), qi{z,v) =
Fa (2)p0(2)— o' ()1 (v), a0 g3(2,0) = ha(@)0(v)—ha/ (2 )1 (v)+ A (2 )3pa () for
certain ho € HE(R), by € H}(R) and hy € Li{R;dz). For n > 3 the requirements
on gg, -+, §n become more comphcated If g(z,v) does not depend o ¢, all of these
requirements simplify considerably.

Theorem 4. Let the conditions {A1), (A2-(n+1)) and (A3-(n+1)) be satisfied. In
eddition, let us meake the following assumptions:
1. As a function of ¢, g{-,-,€) € C™*{U; L1(R?; dvdz)) on some interval U = [0, ();
2. Forj=0,1,---,n the initial conditions {3.4); are fulfilled;
3. For0 <r <n, h, belongs to H:" " *"T{(R).
Then ase | 0

1oty =3 e f5( il = O™+, (4.6)
=0
uniformily on compact time intervels.
Proof: From (3.12) we easily find

’ Ohtr 4 o fenlls < e — (ea)olla 'l + letlio — (o)l 152

+ (v = {20} )pn — angola IR

min o(n,8)
+ (Z) (v = (w0} ) Frs — frswolls Z T |G sl
m(n) e ko1 =
+ 2 1Pl Z A
m(n) a0 g
+ (v = {vo))eolls Z; | fos] Z G 1l

(4.7)
Using (3.15a)-(3.15e) one obtains an upper bound involving the norms |ws|1,1,
lonla.1, [ Fnallas and | Fagily, the norms fika'fl, 185+ i, [1Gknsll1, | Gnslly and
|Grns"|l1, as well as factors (#%/k!) for 0 < k < n + 1. To mention some of
the details, when checking the regularity of the functions Gina, notice that every
such function is of the type hf(-), the g-th derivative of h,(-), where 0 < ¢ <
In —2r+1withk = n-~rand 0 €< r < n. Further, note also that g¢(n,s)
does not exceed n. Next, when inspecting the spaces to which the functions (v —
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(ve))o, (v — {vo) )pn — ana, (v — {v0)}Fns — fnatpo and Fn, belong, note that
(v — {vo))po € L1(R;dv) whenever o € L1(R;(1+ [2])dv), (v = {vo))pn — &gy €
L,(R; dv) whenever @, € Li(R;(1 + {v]}dv) which is true whenever @y € Liy(R; (1+
[u])*+1du), Frs € L1(R; dv) whenever g € Ly (R; (1 + [v})"dv), and {o—{vg) ) Frs—
frswo € Li{R; dv) whenever Fy, € Li(R; (1 + |v|)dv) which is frue whenever g €
Li(R;(1 + {v|)"1dv). Thus, indeed, we must require po € Li(R; (1 + |v])™t do).
Summarizing,

o1,
|2 + atran

k
< 3N(n)72M12Mgmax{tk—1 0Lk n+1} ,

1 1
where M, is the maximum of the norms in the group of quantities Fo, and M,
is the maximum of the norms in the group of gquantities Gins. Note that the
number of terms in the sum equals 3N (n) — m(n) - 3, which is bounded above by
3N(n). Consequently, the expression (4.7) is bounded uniformly in £ on compact
time intervals.

From the vector version of Theorem 5.15 of Ref. 21, the differentiability re-
quirement on g{-,-,€) and the initial conditions (3.4); for j = 0,1,---,n, it follows
easily that [lg(€) — 37—y €gilli = O(e™*?) as e | 0, which completes the proof. =

I one employs (4.5) instead of (4.4) and modifies the regularity assumptions
of Theorem 4, we obtain the following result.

Theorem 5. Let the conditions (A1), (A2-(n+2)) and (A3-(n+2)) be satisfied. In
addition, let us make the following asaumplions:
1. As a function of ¢, g(-,-,€) € C™(U; Li(R? (1+ |v])dvdz)) on some interval
U= [01 ) '
2. Forj=0,1, --,n the initial conditions (3.4); are fulfilled;
3. For0 <r<n,h, belongs to Hf’”‘zﬁLI(R).
Then ase | O

“f(u 1 e} - Z e fj('1 '3t)H1,1 = O(en_H)& (4-8)

uniformly on compact time intervals.

Proof: The proof of Theorem 4 can be repeated almost verbatim with the fol-
lowing two modifications. Fisst, one employs (4.5) instead of (4.4), which is a
nonessential alteration. Secondly, note that (v— {vo) o € L1(R; (1 + |v[)dv) when-
ever o € Lyi(Ri(1+ [0])dv), (v — {ve))on — anpo € Li{R;(1 + [v])dv) when-
ever wn € Ly(R; (14 {v])?dv} which is true whenever ¢ € Li(R; (1 + [v]) 2 dw),
Fre € Li(R; (1 + jv|)dv) whenever ¢ € Li(R; (1 + [v]}**1dw), and (v~ {vo} ) Frs —
Faswo € Li(R; (1 + v|)dv) whenever Fi, € Ly (R; (1 +|v])?dv) which is true when-
ever o € L1(R; {140} 2dv), so that we must require g € L1 (R; (1+ o))" 2du}.
Nothing changes in the discussion of the functions Grjs. ®

Theorem 5 implies a Hilbert expansion result on the drift velocity. The only
thing one has to do is to integrate the Hilbert expansion with respect to the (signed)
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measure vdw, assuming that g(z,v;€) > 0 and has unit norm in L) (R% dvdz). Thus
we obtain

Corollary 6. Under the conditions of Theorem & we have es ¢ | 0

=0

+oc  ptoo n
/; »[“ v {f(x, v, b€} — Z ejf_,-(:r:,v,t)} dzdv = O(e" ™).
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