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The generalized one-dimensional Schriidinger equation d2#/dx2 + k2H( x) ‘4 
=P(x)# is considered. The nonuniqueness is studied in the recovery of the 
function P(x) when the scattering matrix, H(x), and the bound state energies 
and norming constants are known. It is shown that when the reflection 
coefficient is unity at zero energy, there is a one-parameter family of functions 
P(x) corresponding to the same scattering data. An explicitly solved example is 
provided. The construction of H(x) from the scattering data is also discussed 
when H(x) is piecewise continuous, and two explicitly solved examples are 
given with H(x) containing a jump discontinuity. 

1. INTRODUCTION 

Consider the generalized Schriklinger equation 

&(k,x) 
dx2 +~H(x)*W,x) =Q(x)$(k,x), XER, (1.1) 

where H(x)-+H, and Q(x)-0 in some sense as x -+ f 03 ; here H, are some positive con- 
stants. The equation given in ( 1.1) is used to describe the wave propagation in a one- 
dimensional medium where H(x) -’ is the wavespeed, Q(x) is the restoring force per unit 
length, and p is energy; the literature for ( 1.1) or related equations is enormous and it is 
impossible to give a complete bibliography here.lm5 The following conditions are suflicient for 
the results in this paper to hold: QE L!(R), H(x) is positive and bounded above, 
H+-H~L*(o,+co), H--HEL~(-w,O), and GEL;(R), where G(x) is thequantity 

H”(x) 3 H’(x)’ Q(x) 
G(x) = -w(x)z+- 4 H(x) 

3 -- 
H(x) ’ 

(1.2) 

Here LA(R) denotes the space of Lebesgue integrable functions on the real axis with the weight 
function ( 1 + 1 x I)“, and L’ (R) = LA(R) . In Sets. IV and V we discuss the case in which H(x) 
has jump discontinuities at isolated points; at such points G(x) does not exist. 

The generalized Schrodinger equation ( 1.1) has two linearly independent scattering solu- 
tions, the physical solution q$(k,x) from the left corresponding to a plane wave sent from 
x= - co, and the physical solution $,(k,x) from the right corresponding to a plane wave sent 
from x= + 00. These solutions satisfy the boundary conditions 

- +L(k)e-ikH-X+o( l), x+-m, 

yW,x)= e I -iu+x+R(k)eikH+x+o( l), x-. + co, 

T,( k)e-ikH-X +0(l), x-+-co, 
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where Tl(k) and T,(k) are the transmission coefficients from the left and from the right, 
respectively, and R(k) and L(k) are the reflection coefficients from the right and from the left, 
respectively. The scattering matrix associated with ( 1.1) is defined as 

(1.5) 

For the class of functions specified in the sentence following ( 1.1) , there are two distinct cases 
to consider; in the generic case TI(0)=T,(O)=O and R(O)=L(O)=-1, whereas in the 
exceptional case the transmission coefficients do not vanish at k=O. In the generic case the 
transmission coefficients vanish linearly as k-0. The potential Q(x) in ( 1.1) is the only factor 
determining whether we have the generic case or the exceptional case. When H(x) E 1 in ( 1.1)) 
the inverse scattering problem of the recovery of Q(x) from S(k) and the bound state energies 
and norming constants is well understood.2.69 

In this paper we study, in the generic case, the counterpart of ( 1.1) , namely the generalized 
S&r&linger equation (2.1), that corresponds to the scattering matrix 

TO) -R(k) 
JS(k)J= 

--L(k) 1 T,(k) ’ 

where 

1 0 
J= 1 1 0 -1’ 

Note that when H(x) = 1 in (1.1) and (2.1), the relationships between (1.1) and (2.1) and the 
resulting nonuniqueness are well understood; ‘@-i3 when H(x) = 1 the nonuniqueness in the 
generic case results due to the fact that there is a one-parameter family of functions P(x) that 
corresponds to the same scattering data that consist of S(k), the bound state energies, and the 
bound state norming constants; the non-negative parameter a appearing in the potential can be 
fixed and the nonuniqueness can thus be removed by specifying the ratio of the physical 
solutions from the right and from the left, respectively, of (2.1) at k=O. Here we show that 
even when H(x) is not identically equal to 1, there is a one-parameter family of functions P(x) 
that corresponds to the same scattering data that consist of H(x), S(k), the bound state 
energies, and the bound state norming constants. 

In Refs. 14 and 15, when H += 1 we presented a method to recover H(x) from the 
scattering data consisting of S(k) , Q(x) , and the bound state energies and norming constants. 
In Sec. IV we generalize that method to the case where H, are not necessarily equal to 1; in 
this section we also obtain ~ik~~~(X) ,,S( k) in terms of S(0) and vice versa, as these two 
matrices are not necessarily equal if H+#H- . In Sec. IV we also discuss the inverse problem 
of recovery of H(x) when H(x) is piecewise continuous and give two examples. Finally, in 
Sec. V we present two explicitly solved examples of construction of H(x) with a jump discon- 
tinuity. Recently, Grinberg’ presented a method to recover H(x) having jump discontinuities 
when Q(x) = 0; in this method a singular integral equation is solved iteratively to recover H(x) 
from one of the reflection coefficients. 

The methods given in this paper as well as the nonuniqueness in the inverse problem for 
(2.1) are readily generalizable to the differential equation 

I 
+-W*W.d =J’(xb,W,x), 

J. Math. Phys., Vol. 35, No. 2, February 1994 

Downloaded 15 Aug 2002 to 129.74.199.147. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



T. AMosun and C. van der Mee: Nonuniqueness in 1-D inverse acoustic scattering 695 

where one recovers P(x) from the scattering data consisting of S(k), h(x), H(x), and the 
bound state energies as well as the bound state norxning constants.16 

II. RECOVERY OF P(x) AND NONUNIQUENESS 

In this section in the generic case we investigate the generalized Schrkiinger equation 

(2.1) 

corresponding to the scattering matrix JS(k) J. The physical solutions of (2.1), &(k,x) from 
the left and +,(k,x) from the right, respectively, satisfy the boundary conditions 

Mb) = 
I 

Tl(k)eim+“+o(l), X++CO, 
eim-x- L(k)e-im-x+o( l), x-+ - CO, (2.2) 

h(h)= e I -im+x-R(k)eikH+x+o( l), x+ + 03, 
Tr(k)eeim-” +0(1), x+-w. (2.3) 

Using the Liouville transformation $( k,x) = H(x) - “‘c( k,y ) , we associate with ( 1.1) the 
S&r&linger equation 

&Wv) 
yp-+%W = WX(~,.Y), 

where 

v=v(x)= c s 
xds H(s), 

(2.4) 

(2.5) 

V(y) = -G(x)/H(x), (2.6) 

in which G(x) is the quantity defined in ( 1.2). Let a(k) denote the scattering matrix of (2.4); 
it is related to S(k) in (1.5) as 

g(k)= c;; I:;;] = !;;I: ;;Iiu , 
r + 

(2.7) 

where 

A,=& 
s 

*a ds[H,-H(s)], 
0 

I 0 

A=A++A-= ds[H- -H(s) I + ds[H+-H(s)]. 
--m 

(2.8) 

(2.9) 

We have S( -k) = S(k) for ksI%, where the overbar denotes complex conjugation. From 
(2.7) we obtain 
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S(k) =e- ikAe-(L/2)lkM+--4-)[ 7 &] EE: @: 

and hence using (1.3) and (1.4) we obtain 

H+T[(k)=H-T,(k), 

T,(k)Tl(--k)+R(k)R(-k)=l, 

e(i/2)Jk(A+--A-) 
, 

T,(k)L(--k)+R(k)T,(-k)=O, 

T[(k)L(-I-k)+R(k)TI(-k)=O, 

(2.10) 

(2.11) 

(2.12) 

T,(k)TI(-k)+L(k)L(--k)=l. 

As a result, a(k) is unitary. Note that y-H+x+A+=o(l) as X-P + 03 and y-H-x--A_ 
=0(l) asx+ - co. Let &(k,y) and &( kg) be the physical solutions of (2.4) from the left and 
from the right, respectively, satisfying the boundary conditions 

~l(k~y) = 
I 
~,tk@‘+o(l), Y+ + ~0, 
e’b+&k)e-i@+o( l), ~-+-CO, 

(2.13) 

Mb) = I e-‘b+p(k)e”y+o( l), y-, + CO, 
T(k)e-‘b+o( l), y+ - co. (2.14) 

Let us also define the Faddeev functions Z/(k,y) from the left and Z,(k,y) from the right, 
respectively, associated with (2.4) as 

ZAks) =&e -‘kYShW, 

ZAkv) =& e’kyW,d. 

Then Zl(k,y) satisfies 

Zf’(ky) -t-2ikZ;W) = Y(y)Zl(k,y), 

and the boundary conditions 

ZAk,y)=l+o(l) and Z;(kLY)=o(l), y-+03, 

and Z,( k,y) satisfies 

Z;(ky) -2ikZ;(k,y) = Y(y)Z,(ky), 

and the boundary conditions 

Z,(ka)=l+o(l) and Zi(kJt)=o(l), Y--CO. 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 
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Similarly, let US detine the Faddeev functions m l( k,x) from the left and m ,( k,x) from the right, 

respectively, associated with ( 1.1) as 

1 
mAk,x) = T,(k) - e-im+xt/l( k,x), 

1 
m ,(kx) = T,(k) - eim--“$J k,x). 

Using (1.3), (1.4), (2.7), and (2.13)-(2.16), we obtain 

ml( k,x) = 

iM-+ikfLx-iky(x)z, (ky(x))e 

(2.22) 

(2.23) 

(2.24) 

Associated with (2.4) is the Schriidinger equation corresponding to the scattering matrix 
Ja(k)J 

d2dk,r) djZ++(W = Wy)rl(kyh (2.25) 

where a(k) is the matrix in (2.7). In the generic case there is a one-parameter family of 
functions Ub) depending on a parameter UE [0, + CQ], and this parameter does not appear12T13 
in the scattering matrix S(k). Let us deiine 

dy;a) = 
z;(oY) +~z:(o,Y) 

WAY) +G(o,Y) ’ 
(2.26) 

where Z,( k,y) and Z,( k,y) are the Faddeev functions given in (2.15) and (2.16), respectively. 
In terms of the solutions of (2.4), the physical solutions of (2.25), qr(k,y) from the left and 
q,(k,y) from the right, respectively, are given by12V’3 

rlr(ky) = (Wk) k$(k,y) -Wb)a(y;a) I, (2.27) 

dka)=-(ll/ik)K(k,y)-&(k,y)a(yp)]. (2.28) 

We also have 

W> =a(y;~)2+a’(y;~), (2.29) 

U(y) =a(y;u)2-a’(y;u). (2.30) 

In analogy with (2.15) and (2.16), the Faddeev functions associated with (2.25) are given by 

YAka) =&e -iky 
w(kyh Y,(b) =& eikyv,( ky 1, 

and they satisfy 
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From (2.27) and (2.28) we obtain 

YAka) =Zdk,y) - (i/k) [Z;(O) -Z~(k,y)a(y;a)], 

YAka) =Z,W) + (i/k) [ZXka) --Z,(k~)dx~) 1. 
It is also known’3 that 

(2.31) 

(2.32) 

a(y;a)= - 
y;(oY) +ay:(QY) 
Ym.Y) +aYr(%Y) * 

Let nl( k,x) and n,(k,x) denote the Faddeev functions from the left and from the right, 
respectively, associated with (2.1) corresponding to the scattering matrix JS (k) J. In terms of 
the physical solutions of (2.1)) in analogy with (2.2 1) and (2.22)) we have 

1 
n&x) = Tl(k) - e-im+X#l(k,x), n,(k,x) =& eiwi-x+,(k,x). 

r 

Theorem 1: The potential P(x) in (2.1) depends on the parameter a and is given by 

H”(x) 3 H’(x)2 
fYx) = -w(x) +z ~(,)z+~~x~~~aOl~X~;a~*-~‘~~x~;o~1, (2.33) 

or equivalently is given by 

JYX) =QW -=w2a’(vW4, (2.34) 

where Q(x) is the potential in (1.1) and cr(~(x);a) is the quantity defined in (2.26), v(x) is the 
travel time coordinate given in (2.5), and a’~(x);a)= (d/dy)a@(x);a). ‘I’he Faddeev func- 
tions of (2.1) are given by 

@+-im+X+iku(X) yl (ky(x)), (2.35) 

(2.36) 

where Yl (k,y(x)) and Y, (k&x)) are the Faddeev functions given in (2.31) and (2.32), 
respectively. 

P~cx?$ Using (2.6) and (2.30) it can be directly verified that the quantity nl( k,x) defined 
in (2.35) satisfies 

nT(k,x) +2ikH+n;(k,x) =k2[Ht-H(x)‘lq(k,x) + [Q(x) -W(x)2a’(y(x);a)]nl(k,x), 

and hence Tl(k)eim+3zl(k,x) satisfies (2.1) with P(x) given in (2.33). From (1.2) and (2.29) 
we then obtain (2.34). Similarly, the quantity n,( k,x) defined in (2.36) satisfies 

4’(k,x) -2iFdi-$(k,x) =k2[H?-H(x)*]n,(k,x) + [Q(x) -2H(x)*a’(y(x);a)]n,(k,x), 
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and hence T,(k)eaim--” n,(k,x) satisfies (2.1) with P(x) =Q(x> -W(x>‘a’(v(x>;a). The 
Faddeev functions Yik,y(x)) and YJk,y(x)) satisfy 

I 

1+0(l), y++co, 

Y&y)= 1 0) ---e-2iky+o(l), y+.--, 
T(k) T(k) 

Yr(k,.xx) = I p(k) 
&-;i;GTrky’“(l), y-r+co, 

1+0(l), y-+-co, 

and hence T(k)eik”q(k,x) satisfies the boundary conditions in (2.2). Similarly, 
T,( k)e-iwi-x n,( k,x) satisfies the boundary conditions in (2.3). n 

In the generic case the Faddeev functions nl( k,x) and n,( k,x) depend on the parameter a 
whereas in the exceptional case they are independent of a; this is because in the exceptional case 
a is absent in a(y;a) in (2.26) due to the fact that Zl(O,.v) and Z,(O,y) are linearly dependent. 
One possible way to fix the parameter a is to use 

because we havet 

where JV is the number of bound states. 

III. AN EXAMPLE OF NONUNIQUENESS 

In this section we present an explicitly solved example to illustrate the method given in 
Sec. II and obtain a one-parameter family of functions P(x) corresponding to the same scat- 
tering data consisting of H(x) and S(k) . 

Assume that 

I 

~+~e-“, x>Q 
H(x) = 

;+g, x<o. 

We thus have H, =$, H- =$ ad 

$x+&k-“, x)0, 

Y(X) = 
&-4x-$+$8, x<o. 

(3.1) 

ThequantitiesA, in (2.8) arethengivenbyA_=-$andA+=-&andhenceA=-2,where 
A is the constant in (2.9). Assume that S(k) is such that the matrix c(k) in (2.7) is given by 

r(k) =- k:i’ p(k)=&c)=& 
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Using the method in Ref. 11 or 13, the potential in (2.4) is obtained as 

UY) =mJJ), 

where S(y) is the Dirac delta function; the Faddeev functions associated with (2.4) are given 

Using (2.26), we obtain 

ZAk,y) = I 
1, Y>Q 

l+(i/k)(l-e-2ikY), y<O, 

l+(i/k)(l--e2’@), y)O, 

, 
y<. 

I 
2a l+a+Mv’ Y>Q 

a(y;a) = 
-2 

l+a-2y’ Y<O, 

where a is an arbitrary parameter with O<a< + CO. Thus, we obtain the potential in (2.25) are 
given by 

8a2 8 
u(y)=-2s(y)+~~) (l+a+zav)2+e(-Y) (l+a-2y)*, 

where 0(y) is the Heaviside function; the Faddeev functions associated with (2.25) are given 
by 

1 
(3.2) , YdJ, 

Y,(ky)= 

From (2.35) and (2.36) we obtain n!(k,x) and n,(k,x), and P(x) is constructed using (2.33) 
and Q(x) is constructed using (2.34) or using ( 1.2). We have 

w4 = -%s(d +e(dp+ cd +e( -x)P- (x), 

where 
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Q+(x) = -’ e-x 3 e--2X 
2 3+e-x+4 (3+e-92’ 

3 d( 27 ez” 
Q-(x)=-Z 1+3d’+4 (1+38)2 

p (x)=--l e-x 
2a2(3+e-x)2 

+ 2p+3 e--2r 4 (3+e-“)2+(l+2a+3ax-ae-x)” 

3 d( 27 8 
P-(x)=--- 

2( 1+3eX)2 
2 1+3e”+4 (1+3e”)2+(4+a-x-3e’)z* 

The Faddeev functions n/(k,x) and n,(k,x) can be computed explicitly in terms of x from 
(2.35) and (2.36) by using Yl(k,y) and Y,(k,y) in (3.2) and (3.3), respectively, and y(x) in 
(3.1). 

IV. RECOVERY OF H(x) 

In this section we generalize the method of Refs. 14 and 15 in order to recover H(x) where 
the scattering data consist of S(k), Q(x), H, , the bound state energies, and the bound state 
norming constants. We also discuss the recovery of a piecewise continuous H(x) when the 
points of discontinuity for H(x) are known. At the end of the section we study the relationship 
between the scattering matrices of ( 1.1) and of (4.5) at k=O, as S( 0) and Srol (0) are not 
necessarily equal if H+#H- . 

From (l.l>, (1.3), (1.4), (2.21), and (2.22), it is seen that we have 

my(b) +2ikH+m;(k,x) =k2[Ht-H(x)2]mr(k,x) +Q(x)tq(k,x), (4.1) 

m:‘(k,x) -2ikH&(k,x) =k2[Hf--H(x)2]m,(k,x) +Q(x)m,(k,x), (4.2) 

w(k,x)=l+o(l), m ;(k,x)=o(l), X++CO, (4.3) 

m,(k,x) = l+o( l), m;(k,x) =o( l), x--r - m . (4.4) 

When H(x) = 1, ( 1.1) is reduced to the Schriidinger equation 

&t,b[“] (k,x) 
~+#~[O](k,x)=Q(x)t,b[ol(k,x). (4.5) 

Associated with (4.5) we have the scattering matrix 

Sf”l (k,x) = 
T[‘](k) R[‘l(k) 

d’](k) 1 T[‘](k) * 

The physical solutions &‘I( k,x) and T,$~~]C k,x) of (4.5) from the left and from the right, 
respectively, satisfy 
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Iltfol (k,x) = 
T[‘](k)eikr+o( l), x-+ + CO, 
e’k*+L[o](k)e-ikx+o( l), x-+ - WI, 

Jt[‘](k,x)= e r 
i 

-ikx+R[o](k)eikx+o( l), X-P + CO, 
T[“](k)e-ikx+o( l), x-r - CO. 

The Faddeev functions m\‘](k,x) from the left and m~ol(k,x) from the right, respectively, 
associated with (4.5) are defined as 

m/‘](k,x) =& e-ikx@lol(k,x), 

1 
ml’] (bx) =T[OI ei%)~ol (k,x) . 

From (4.1)-(4.4) it is seen that they satisfy the following differential equations and the 
boundary conditions: 

mjol”( k,x) +2ikm fol’ULxx) =Q(xhjol(k,xx), (4.6) 

mb’]“(k,x) -2ikm, [ol’(k,x)=Q(x)m~ol(k,x), (4.7) 

m fol(kx)=l+o(l), 9 mj”‘(k,x) =o( l), x--r + co, (4.8) 

m, tol(k,x)=l+o(l), mL’]‘(k,x)=o(l), X-+-W. (4.9) 

When Q(x) is known, m[“]( k,x) and rnL’]( k,x) are uniquely determined. The potential Q(x) in 
( 1.1) and (4.5) is the only factor determining whether we have the generic case or the 
exceptional case. For (4.5) the generic case occurs if T[‘](O) =0 and the exceptional case if 
Trol(0)#O. 

From (4.1)-(4.4) and (4.6)-(4.9) it is seen that 

m,(O,x) =mj’](O,x) and m,(O,x) =mL’](O,x), XER. (4.10) 

In the exceptional case rnp( k,x) and rnL’]( k,x) become linearly dependent at k=O; however, 
in the generic case rnp (k,x) and rn\‘]( k,x) remain linearly independent at k=O. From (2.23) 
and (2.24) we have 

H+ 
mAOSc) = H(x) 

r 
- z, KAY(X)), 

H- 
m,(b) = H(x) 

r 
- z, (O,Y(X)), 

and hence using (2.5) and (4.10)-(4.12), we obtain 

4 dx 
z,(os)2=H+ ip@j$ ’ -w-, 

(4.11) 

(4.12) 

(4.13) 
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du dx 
Zr(Ofi)2=H- m~01(0,x)2 ’ x’yER* 

(4.14) 

The first-order ordinary differential equations given in (4.13) and (4.14) are both separable; 
their solutions with the initial condition y(0) =0 give us y(x). Using y(x) in either of 

g=H(x) =H+ 
zxosYw)2 

?=H(x) =H- 
GaY(x))* 

mj”](0,x)2 ’ dx m!01(0,x)2 ’ 
(4.15) 

one recovers H(x) for XER. The corresponding Faddeev functions ml( k,x) and m ,( k,x) can 
be constructed using (2.23) and (2.24) as 

m jol(O&x) 
mdkJx) =zxoy(x)) e~~+-i~+x+iky(x)zl(k,y(X)), 

mrol (0,x) 
mr(kTx) =zio,y(x)) 

~~~+i~-x-iky(~)z~kty(x)), 

(4.16) 

(4.17) 

andthephysicalsolutionsof (1.1) canbeconstructedusing (2.21), (2.22), (4.16), and (4.17). 
The physical solutions of ( 1.1) and their derivatives are required to be continuous in x. [If 

Q(x) contains any delta function singularities, then the derivatives of the physical solutions are 
required to have jump discontinuities to account for these singularities; for example, if Q(x) 
has a delta function singularity ciS(x-x1) at x1 of strength cl, then we require that the 
physical solutions satisfy t,V(k,x, + ) -$‘(k,x,- ) =cl$(k,xl).] In case H(x) has a jump dis- 
continuity at some x value, say x0, the physical solutions of ( 1.1) and their derivatives are still 
required to be continuous at x0; in that case, however, as seen from (4.16) and (4.17), the 
Faddeev functions Zlk,y(x)) and ZJk,y(x)) have jump discontinuities at y(xo) and their 
derivatives contain delta function singularities at y ( x0>. In that case the quantity G(x) in ( 1.2) 
is not well defined at x0 because H’(x) has a delta function singularity at x0. However, the 
method of recovery of H(x) given above does not actually use the derivatives of the Faddeev 
functions Zik,y(x)) and ZAk,y(x)), but only Z[(O,y) and Z,(O,y) are used to construct H(x). 
Thus, the construction method outlined above remains valid even if H(x) has a jump discon- 
tinuity at x0. The construction of Z[(k,y) and Z,( ky) can be achieved by solving the 
Riemann-Hilbert problem 14$ l7 

[ pI Ix’,] = [ -~~~~-2i~ -p~~~~] [ ~~~~~] 9 keR (4.18) 

where given the matrix a(k), for each y one seeks Z,( k,y) and Z,( k,y) such that they are 
analytic in k for ke C+, the upper-half complex plane, for y > y (x0) we require Z,( k,y) + 1 and 
for y<y(xo) we require Z,(k,y) -+ 1 as k+ CO in CT+, the closure of the upper-half complex 
plane. In case there are more points of jump discontinuity in H(x) than one, as seen from 
(4.16) and (4.17), we then require the continuity in y of Z/(k,y)/Z,(O,y), Z,(k,y)/Z,(O,y), 
z,(oy)2(d/du)[ei~Z~(ky)/Z,(O~)l, and Z,(O,y)*(d/dy) [emikyZr( k,y)/Z,(Oy)], which is 
equivalent to the continuity in x of the physical solutions of ( 1.1) and of the derivatives of 
those solutions. Once the solution of (4.18) is obtained, H(x) can be constructed as outlined 
above. 
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In a standard Riemann-Hilbert problem, r(k) -+ 1 as k + 00 in c+, and p(k) , 4 k) + 0 a 
k-+ f 00. In general, when H(x) has discontinuities the Riemann-Hilbert problem given in 
(4.18) is a nonstandard problem. For example, when Q(x) =0 and 

I 1, x<o 
H(x)= 2, o<x<l 

1, x> 1, 

we have 

T(k)= _“‘-” ge ik-,3iE 3 

3e-ik-3e-5ik 

t p(k)= ge-ikDe3ik t 

and consequently the corresponding Riemann-Hilbert problem is a nonstandard one. When 
the existence of H(x) is assured, even in the nonstandard case, the corresponding Riemann- 
Hilbert problem (4.18) must have a solution that leads to the reconstruction of H(x) via 
(4.15). However, in the nonstandard case there does not yet exist a theory on the existence and 
uniqueness of the solutions of (4.18). In the next section we will present two examples dealing 
with (4.18) corresponding to discontinuous H(x). 

The next theorem shows that the functions in (4.16) and (4.17) can still be used to obtain 
the physical solutions of ( 1.1) even when H(x) has jump discontinuities. 

Theorem 2: Relax the conditions on Q(x) and H(x) stated in the first paragraph of the 
Introduction by allowing Q(x) to have delta function singularities at isolated points and H(x) 
to have jump discontinuities at isolated points; let Xj denote a point where Q(x) has a delta 
function singularity or H(x) has a jump discontinuity or both. Let y(x) be the continuous 
solution of the differential equation (4.13) with the initial condition y(0) =0, and let Yj 
=Y(Xj) . Let Zl( k,y) be the solution of (2.17) on each interval @ j aj+ 1) with the potential 
V(y) related to H(x) =dy/dx as in ( 1.2) and (2.6). Choose the boundary conditions on 
Z,( k,y) such that (2.18) is satisfied and such that at each discontinuity of H(x) we have 

Zl(hj+ 1 Zl(krYj-1 
zL"sYj+ )=Zl(04yi-) ' 

(4.19) 

and at each point where Q(x) has a delta function singularity or H(x) has a jump discontinuity 
we have 

Zl(Oaj+ I* $ [ eiky ~]y_,+=&(O~j- I2 $ [ eikv z]y=yjF e (4.20) 

Then the physical solution of ( 1.1) from the left is given by 

mjol(Ox) 
‘,W,x) = TOI z, (oy;x)) erM++ikY(x)Zl (k,y(x)). (4.21) 

Similarly, let Z,( k,y) be the solution of (2.19) on each interval (yi ,yj+ i) such that (2.20) is 
satisfied and such that at each discontinuity of H(x) we have 

Zr(kYj+ 1 Zr(ktYj- 1 
zr(“,Yj+ 1 =Z,(Oa.Yj- 1 ’ 
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and at each point where Q(x) has a delta function singularity or H(x) has a jump discontinuity 
we have 

1 d 
=Z~(Ofijyi-)2 & 

I 
e- 

ikv z,( k~v) 
v=vi+ WAY) 1 v=vj- * 

Then the physical solution of ( 1.1) from the right is given by 

I&( k,x) = T,(k) mP (OJx) eiM---ib(x)Zr (/&y(x)). 
z, KtYY(x)) 

P m @  We will only give the proof related to the solution from the left as the proof related 
to the solution from the right can be obtained in a similar way. Using (2.8), (2.18), and (4.8), 
we see that t,l$ k,x) defined in (4.21) satisfies the boundary condition at x= + CO stated in 
( 1.3). From (4.19) and the continuity of m [‘](O,x) we are assured that $I( k,x) defined in 
(4.2 1) is continuous in x for XE R. Taking the x derivative of both sides of (4.2 1) and using 
(4.15), we obtain 

j&j tCt;(kx) =FJ’~~J~~ eiM++ib(x)ZI (k,y(x)) 1 

(4.22) 

and hence, using (4.19), (4.20), (4.22), and the continuity of m [‘](O,x) and of m~]‘(O,x), we 
are assured that tCl;(k,x) is continuous in x for XER. From (4.22), using (2.17), (4.6), and 
(4.15) we obtain $r(k,x) = [Q(x) - k2H(~)~]$,(k, x , and hence ( 1.1) is satisfied in each ) 
interval (Xj,Xj+*)* 

Note that if Xi is a delta function singularity in Q(x), we simply replace the continuity 
requirement for $; (k,x) at x =Xj by $; (k,xj + ) - 111; (k,xj - ) = Pj$l( k,xj), where Pi is the 
coefficient of the delta function at x=Xj in Q(x). Using (4.22) and @ ]‘(O,Xj + ) 
- mp (O,Xj - ) = pjmSo]( OJj) one can verify that the condition in (4.2 1) also covers this 
case. n 

As explained in Ref. 15 one does not need to know A, in order to recover H(x) by the 
above method. When the phase of the reflection coefficient p(k) in (2.7) is shifted by A, the 
travel time coordinate defined in ( 2.5 ) is shifted as y I+ y + A in the Schrijdinger equation ( 2.4) 
and the Faddeev functions for (2.4) are then transformed’~” as Z,( k,y) H Z,( k,y+A) and 
Z,( ky) H Z,( k,y + A). Then in the solution of the first-order differential equations (4.13) and 
(4.14), the initial condition is replaced by y(O) = -A; since H(x) =dy/dx, H(x) is indepen- 
dent of the shift y H y+ A and hence no matter how the phase of p(k) is chosen, we are led 
to the same H(x) in the solution of the inverse problem for ( 1.1) . 

We will end this section by exploring the relationship between S( 0) and Srol( 0), where 
S(k) and #‘l(k) are the scattering matrices of ( 1.1) and (4.5), respectively. From ( 1.3) and 
( 1.4) we obtain 

[ ;;z;] = [ ;;‘;; $))I [ ;;:;;;I, keR. (4.23) 

Note that the Faddeev functions rn[‘l(k,x) and mL’](k,x) of (4.5) satisfy the analog of the 
Riemann-Hilbert problem given in (4.18); we have7~1”‘3 

[ $;I I;;‘;] = [ _ $;;:e)-‘” -$$:“I [ $; ;;I;;], kER. (4.24) 
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In the generic case, S(0)=SIol(O), and in fact we have R(0)=L(O)=R[ol(O)=Llol(O) 
- 1 and Tl( 0) = T,( 0) = Tl”l( 0) =O. In the exceptional case, if H, = H- , we have S(0) 

= PI =S (0); in fact, in this case we have R(O)=-L(0)=Rlol(O)=--Ll’](O), which can be 
obtained from (4. lo), (4.23), and (4.24). However, if H, # H- , we no longer have S(0) 
=Slol(0). The next proposition gives the relationship between S( 0) and Slol(0) in the excep- 
tional case when H, and H- are not necessarily equal to each other. 

Proposition 3: In the exceptional case we have 

[H++H-lL(O)+[H+-H-l 
L[O1(0)=[H++H-]+[H+-H~]~(O)’ 

[H++H-lR(O)-[H+-H-l 
RLol(o)=[H++H-]-[H+-H-]R(0)’ 

(4.25) 

(4.26) 

2Hm T,(O) 
TroI’O)=~H++H-~+~~(+(!!H~l~(~)~~~++~~]-[H+-H-l~(O) * (4.27) 

Pruo$ From (2.11) or (2.12) we have R(O)=--(O) even when H, and H- are not 
necessarily equal to each other. Hence (4.26) can be obtained from (4.25). So let us prove 
(4.25) iirst. From (4.10) as x+ - 00, we obtain 

l+L(o) l+Llcl(o) 
T[(O) = T[‘](O) ’ 

(4.28) 

and from (4.10) as x+ + a, we obtain 

1 +R(O) 1 +RlO’(O) 
T,(O) = Ttol(0) ’ 

(4.29) 

Hence, using (4.10), (4.28), and (4.29) weobtain (4.25). Using (4.25), (4.28), and (4.29) we 
obtain (4.27). Note that when H+=H-, (4.25)-(4.27) give us S(0) =S1ol(0). w 

Note that, using (4.25)-(4.27), we can also express S(0) in terms of St’](O) in the 
exceptional case as follows: 

[H++H-]L[O1(0)-[H+-H-l 
L(“)=[H++H-]-[H+-H-]L’ol(0) ’ 

[H+ +H-]Rtol (0) + [H, --H-l 
R(“)=[H++H-]+[H+-H-l~rO1(0)’ 

2H-T[‘](O) 
T’(“)=[H++H-]-[H+-H-]L[ol(0)’ 

W, TLol (0) 
Tr(o)=[H++H~]+[H+-H-]~~ol(0) ’ 
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V. EXAMPLES IN RECOVERY OF H(x) 

In this section we illustrate the method of Sec. IV by two explicitly solved examples, and 
recover H(x) from the scattering data. In the first example H(x) is continuous although it has 
different asymptotics as x+ f 00. In the second example we give the construction of H(x) with 
a jump discontinuity. 

As a first example, assume H+=2, H-=1, Q(x) =O. Since Q(x) =O, we are in the 
exceptional case. Consider the scattering matrix S(k) in (1.5) with 

T/(k) =f, T,(k) =$, L(k) = -4, R(k) =f 

so that A + =A _ =A =O. The matrix a(k) in (2.7) is then formed from 

2Jz 
dW=T, p(k)=;, e(k)=-;. 

In this case the Riemann-Hilbert problem in (4.18) has the solution Z,( kg) = 1 for y > 0 and 
Z,(ka)=l fory<O. Thus, from (4.13) and (4.14) we obtain 

dy = 2dx, x,y > 0, 

dy=dx, xg < 0, 

and hence using y( 0) = 0, we have 

i 

2x, 64 
Y(X) = 

x, x<o, 

and thus we obtain H(x) = 1 for x < 0 and H(x) =2 for x > 0. Using (4.16) and (4.17) the 
physical solutions of ( 1.1) are constructed as 

$Pk, x)0, 

yW,x) = 
e ikx -ie-ik”, 

e-2ikr+i&2ikx, 

4Akx) = 
4 -ikx 
9 , -3, 

x<o, 

x4 

where we have used (4.23). 
As a second example, assume H, = 1 and 

Q(x) = @ (xl - 
2438 

m  e(x)* 

Thus we have m~ol(O,x)= 1 for x<O and mjol(O,x) = (KW- l)/(KW+ 1) for x)0. Consider 
the scattering matrix S(k) in (1.5) with 

T/(k) = T,(k) =; pk(fl+l), fi L(k) = -2, R(k) =?!! e4ik(fi+I) 
2 , 

so that A+=A= -2(fi+l) and A-=0. The matrix a(k) in (2.7) is formed from 
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fi 6 r(k)=;, dk)=-T, p(k)=T. 

The solution of the Riemann-Hilbert problem in (4.18) is given by Z,( k,y ) = 1 for y > 0 and 
Z,(k,y)=l for y<O. From (4.13) and (4.14) we obtain 

dx, w>O, (5.1) 

dy=dx, x,y<O. (5.2) 

Integrating (5.1) and (5.2) with the initial condition y(0) =O, we obtain 

I 
$+I 

Y(X) = 
x+2,-2$3 x>o, 

Ix, x<o. 

Thus we have 

H(x)+ 

Using (4.16) and (4.17) the physical solutions of ( 1.1) are constructed as 

II&?-1 
zpz 

erk[x+2(~+1)/($5-1)-2(JJ~+1)/(J5d(-l)l, x>o 2 

Mb) =I 

e ikx 

\ 

x<o f 

I 

$k$p(fl+l)[ e  -ik[x+2($5+l)/(JS-lI)--2(JfZC+1)/(~~-11)] 

+,(k,x) = @  +-e~k[x+2(J5+‘)/(J3-‘)-2(J5~+‘)/(J3di-l)l , x>~, 
2 1 

I 
f $k(sJ+l)-ikr, xGo 
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