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Abstract: The inverse problem on the line is studied for the generalized Schrdinger
equation d*y/de? + k2 H(z)%p = Q(z) 1, where & is the wavenumber, 1/H(z) is the
wavespeed, and Q(z) is the restoring foree per unit length, H(z)is a positive, piecewise
continuous function having limits Hi as £ — Foo, and Q(z) satisfies certain integrabil-
ity conditions. This equation describes wave propagation in a nonhomogeneous medium
in which the wavespeed is allowed to change abruptly at certain interfaces. The inverse
problem considered here consists in determining the function K (z) from a suitable set
of scattering data and for a given Q(z). At the heart of the solution are a Riemann-
Hilbert problem and a related singular integral equation, The solvability of the integral
equation is discussed, and the solution method is illustrated by some explicitly solved
examples.

Keywords: 1-D Schrédinger equation, Inverse scattering, 1-D wave equation, Energy-
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1. Introduction
In this article we report on recent work concerning the inverse scattering problem for
the one-dimensional generalized Schrédinger equation

¢"(k,$) + kzﬂ(z)ng(k,x) = Qz)p(k, z), r &R, {1.1)

Where the prime denotes the z-derivative. The functions & (z) and Q(z) obey certain

tonditions that will be detailed below, In the context of this article (1.1) describes
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agation of waves in a nophomogeneous medium where k is the wavenumber,

peed, and Q(z) is the restoring force (per unit len
we allow for the possibility of the physical

the prop
1/H(z) is the waves gth). The function

nuities, that is,

properties of the medium to chenge abruptly at certain interfaces. In the time domain

H(z) may have jump disconti

(1.1) is equivalent to
2 2
Pu_ 1 _FU_ ga)u(z,b), (1.2)

oz c(x)? Of2
amplitude and ¢(z) =1 /H(z) is the wavespeed. Conversely,

where u{z,t) is the wave
n of (1.2). The conditions that H(z) and Q(z) need

(1.1) is the frequency domain versio

to satisfy are as follows:
(H1) H (z) is strictly positive and piecewise continuous with jump discontinuities at

2, forn=1,---,N.

(H2) H(z) - Hrasz~— +o0, where Hy are positive constants.

(H3) H-H:z€ LY(R*), where R™ = (—o0,0) and Rt = (0,+00).
(H4) H'(z)is absolutely contimous on eVery interval (Zn, Tni1) and 28 "H-—3(H'?
belongs to LNza,Topr) forn= 0,--+ , N, where £ = —00C and x4 = +oo.

(H5) Q€ I}, o(R) for some o € [0,1], where Ly(I) is the Banach space of complex-

f{z) on I such that Jpdz(1+ lz|)? | f{2)] < Foo.

valued measurable functions
ent solutions, so-called Jost

Under these conditions, (1.1) has two linearly independ

solutions, satisfying the boundary conditions

eifH1T L o(1), z — 00,
filk,z) = 1 anm LR _iem (1.3)
1 - T - 1 -
P-T;(k)e + ———Tz(k)e +o(l), T - —00
1 igy., B anye
— 4 BE) ikHez (1), &~ oo,
flke) =4 TR MM (14)
e~ tkH-T 3 o(1), z — —co.

Here T, (k) and Ti{k) ate the transmission coefficients from the right and from the left,

and R(k) and L(k) are the reflection coefficients from the right and from

g mattix is defined by

Ti(k) R(k
S(k)z[ﬁ((k)) Tr((k))]‘

respectively,

the left, respectively. The scatterin

The scattering matrix will not play a direct role in this article; we introduce it mainly
al device. For certain negative values of k% (1.1) may have a

as a convenient notation
es of k2 will be referred to as bound state energies

solution belonging to LZ(R); such valu
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and we put k& = ix with & > 0. Our assumptions on H(z) and Q(z) guarantee that the
number of bound states is finite. We will denote the number of bound states by A.
Associated with each eigenvalue —KZ? (k =1ir; j =1,--- ,N) is the norming constant
v; in (3.17).

There are several inverse problems that can be studied in the context of (1.1). For .
example:

1. The classical inverse problem, where H(z) = 1 and one is asked to determine the
function Q{z} from the scattering data consisting of either R(k) or L(k) for k € R,
the eigenvalues —K‘.? and their norming constants v;, j =1,--- | N,

2. The samne as problem 1, but with éx. given H(z) from a suitable ciéss of functions.

3. The problem where Q(r)} is given and one is asked to determine H(z)} from an
appropriate set of scattering data.

The first problem is well understood [1,2,3]. When @ € L}(R) one has a complete
characterization of the scattering data and there is a one-to-one correspondence between
the scattering data and the potentials in L} (R). The second problem was solved in [4]
along the lines of problem 1. The aim of this article is to study the third problem, The

“ease when H{z) is continuous was studied in [5]; the case when Q(z) = 0 and H{x)
has jump discontinuities was considered by Grinberg [6,7]. Here we will consider the
general case when ((z) # 0 and H(z) has jump discontinuities. The present article is
based on (8], where more details can be found. The main difference between the case
Q(z) =0 and Q(z) 7 0 is that in the former we have |RB{k)| < 1 for k € R, while in the
latter we may have R(0) = —1. This difference makes the case Q{z) # 0 more difficult
to study. It turns out that for problem 3 “essentially” the same set of scattering data
as for problem 1 is appropriate. We say “essentially” because, as we will see in the
examples, it may be necessary also to know either the value of H; or H_ in order to
determine H(z) uniquely. So we may consider Hy or H_ to be part of the scattering
data. However, we also present an example (Example 2, Section 4), where H, cannot
be chosen freely, but is determined by Q(z) and R(k). This suggests that for problem 3

the characterization of the scattering data is more difficult than for problem 1 and needs

. to be investigated further.

i This article is organized as follows. In Section 2 we present some results concerning

the asymptotic behavior of S(k) as k - 0 and & — Foo. These results are essential for

-.Sg.gction 3, where we formulate a key Riemann-Hilbert problem and solve it by converting
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it into a singular integral equation. We also discuss the unique solvability of this integral
equation. In Section 4 we consider three examples. Examples 1 and 2 have been worked
out in detail in [8] and are included here for illustrative purposes. Example 3 is new

and we give most of the deta,ilé_.

Except in a few instances it is not possible to give detailed proofs in this article. So

we will often refer the reader to [8] for more information.

2. Small-t and Large-k behavior of S(k)

In this section we deterxﬁine the asymptotic behavior of S(k)as £ — 0 and k — +oo.
We let Ct denote the upper-half complex plane and C+ = C* U R its closure. The
transmission coefficients can be extended meromorphically to Ct, and we will analyze
their behavior as k — 0 and k — oo in CF.

Let [f;g] = fg' — f'g denote the Wronskian. From (1.3) and (1.4} we have
H U

. o
[ft(k,l’), fr(k)x)} - _ZZkTr(k) = 21”1‘:Tl(k)s (21)

' Lo LR Lo R(=h)
[f;(k,m),fr(—k,w)] =2kH- T](k} - ——2%kH+ Tr(—k) (22)

Moreover, we have fi(—k,z) = fi(k,z) and fr(—k,z) = f.(k,z} when k € R. The
analyticity properties of the Jost solutions and the asymptotic properties of S{k) are

studied by using the integral equations
.fl,r(k,l') =e:l:ikHia:
1 fF=
+ AL dz [sinkHy(z — z)] [*{H] — H(zYY+ Q=) fir(k, 2),

(2.3)

where the subscripts I and +, respectively r and —, correspond to one another. Based

on (2.3) the following results, Theorems 2.1-2.3 below, can be proved. For details we

refer the réader to [8] (Theorems 2.1, 4.1, and 4.2).

Theorem 2.1 Assume Q € Li, (R) for some o € {0,1) and H — Hy € LY{(R*).

Then, for each z, fi(k,z) and fr(k,z) and their z-derivatives are analytic functions on

C* and continuous on CF. Moreover, as k —»0in k € CcT
fir(k,2) = fi.(0,2) = o(lk|™),  fi.(k,2) — fi(0,2} = o{|R[*), (2.4)

" uniformly in z on any finite interval.
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We can allow & = 1 in (2.4), but then the error terms are O(k). In that case filk,z)
and fy(k,z}) are differentiable at £ = 0. The quantities 7(k), p(k), and £(k) defined next
will play a crucial role in the discussion of the large-k behavior of the scattering matrix,

and they are also convenient to use for small k. We define

(k) =4/ %T,(k)ef“ = 4 /IH{—;Tr(k)e"kA, (2.5)

plk) = R(k)e*™ M+, f(k) = L(k)e*4- (2:6)

where N ‘
Ay :ij ds [H:i:_H(S)L A=A, + A_. (27)
1]

We will call 7(%) the reduced transmission coefficient and p(k) and 4(k) the reduced
reflection coefficients from the right and left, respectively. In the second equation in
(2.5) we have used the relation Hy Ty(k) = H_ Ti.(k), which follows from (21). We
remark that the scattering matrix S(k) is not unitary unless . = H_, but that the

reduced scattering matrix is unitary. In particular, we have that
[r(E)* + lo(k)? = Ir(R)? + |e(k))* = (2.8)

Moreover, for k € R we have 7(k) = 7(—F), p(k) = p(<F), and £(k) = -F).
Theorem 2.2 Assume Q € L}(R)and H — Hy ¢ LY(R*). Then:
(i) k/7(k) is analytic in C* and continuous in C+; (k) is continnous at k = 0, and
either 7(0) # 0 or 7(k) vanishes linearly as £ — 0 in C+. The bound states for (1.1)
correspond to the (simple) zeros of k/7(k} in C* and can only occur on the i imaginary
axis in C*t. There is never a bound state at & = 0. _
(i) p(k) and £(k) are continuous for k € R. Either lp(k)| = |¢(k)] < 1for all k € R, or
lp(k)| = [£(k)| < 1 for % 0 and p{0) =£(0) = —1. .
We will refer to the case when 7(0) = 0 (r(0) # 0) as the generic (exceptional) case.
By (2.1), the exceptional case occurs if and only if the Jost solutions £;(0, z) and f£,.(0, z)
a.f_e_ linearly dependent, i.e. if

Ji0,2) =7 £,(0,z) (2.9)

_fOIIfISOme nonzero constant y. In the exceptional case fi{0,z) and f{0, ) are bounded,
_.-'whiIe in the generic case f;(0, z) (f+(0,z)) behaves linearly as ¢ — —co (z — +oc).
When Q(z) = 0, which is the case considered in [6,7], we have fi(0,z) = f.{0,z) =1

: a.nd_rtins corresponds to the exceptional case with v=1
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The next theorem describes the small-k behavior of S(k).

Theorem 2.3 Assume H — H: € L'(R*) and Q € Lito(R) for some « € [0,1).
Then:

(i) In the generic case

p(k) = =1+ o[k"), k)= -1+o(t|%), E-0inR,

7(k)=ick + o(|k]'T®),  k—0in CTF, (2.10)
where
2/H H_
e= — MR (2.11)

B [ff(os .'.L-'); f,.(o,.’l':}] )

(i1) In the exceptional case

2 H_|.H_"Y o e O
(k) = H oA+ H, -+ o |&]™), E—0in CT, (2.12)
_ H+ - H.."}’2 e s
2 _
=2 =B | ey ko R,

| S H.P?+Hy
where 7 is the constant defined in (2.9). Both (i) a.nd.(ii) remain valid for o = 1,
provided we replace the error terms by O(k).

We remark that (i) follows directly from (2.1), (2.2), and (2.4)-(2.6). The proof of (ii)
is more involved [8].

Next we consider the large-k behavior of S{k). We use the fact that although H(z) is
discontinuous at z; (j = 1,--- ,N), we can, on each interval (zj,2541) (7 =0,--- ,N)

b

perform a Liouville transformation of the form
e 1
=y{z) = ds H(s), k,z) = ———=¢(k,y). 2.14
v = [CBEE), ) = i) (219

Under this transformation, in each interval {z;,z;4;), {1.1) is transformed into the

standard Schrédinger equation

D | ko,0) = V) 80k,

where for z € R\ {z1,--- ,zx}

H'(z) 3H'(z)’  Qz)
Viy) = V{y(z)) = 2H(z)® 4 H(z)* ' H(z)2

(2.15)




E
E
3
4
i

- One can show that (see [8], Section 4) as k — co in CF
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Note that since H{xz) is strictly positive we have that y; < y;41, yo = —o0, and yy41 =
+oo. Here y; = y(z;) for j=0,--- , N+ 1.
Let V} ;41(y) be the potential defined by

V(y), v €y v
Vii+ri{y) = (2.16)
0) yeR\{yl:"'&yN}s

where V(y) is given by {2.15). By hypothesis (H4) we have that V;;41(y) € L}(R),
=0,---,N. Let gy j41{k,y) and gr;;+1(k, ) denote the Jost solutions from the left
and right, respectively, associated with the potential V; ;11(y). Define

1 1
n5,5+1(k, 2) = ﬁm;mﬂ(k, v),  &ijn(kz) = \/—H—(—m—) gr;5.+1(k, 1)

‘Then nj,5+1(k, ) and & j4.1{k, x) are two linearly independent solutions of (1.1} in the

interval (z;,zj41) for j = 0,---,N. Hence, on this interval, they can be related to
the Jost solutions fi(k,z) and fr(k,z) of (1.1). It is shown in [8] (Section 3) that for
z €{xj,zj41) with0<j <N -1

[fr(k::"”)] =Tj i1k, z)G;(k) [\/11_4_&""“”} ’

THUX3! )
where
N1
G;(k)= H Tt (ks Tag1 — 0) 1 Tnpa npall, 2nps +0),
n=j

N

? 3

itk ) €5k, T) )
(k) = i+ ( S+l , —0,--
J'J+1( JT) [n;,j-l-l (k,z) E_;',J'-i-l(k: ) J

‘with Ay as defined in (2.7). Let t;;41(k), 7jj41{k), and I; ;51(k) denote the transmis-

ston and reflection coefficients corresponding to the potential V; j11(y) given in (2.16).

"Then the following relations are the basis for studying the large-k behavior of S{k) :

5=t 6 [) ]=M—;(,;~jm ugo(k)-l[?], (2.17)

I_‘ﬂ,n-i—l(k, N 0)_1Fn+1,ﬂ+2(k1 Tty + 0}

[ amn+0(1)  Bupaem¥Rn(1 4 o(1))
= [ﬂn+1821kyn+1(1 + 0(1)) an-i-i(l + 0(1)) :I 3 (219)
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where
au:lH($"—0)+H($n+O), ﬁnilﬂ(mn_o)”H($”+0)_ (2.20)
2 /H(z, — 0)H(za +0) 2 /H{zy — 0) H(22 +0)
Define |
Bk, o) = [ 5, Fkan ’B“e;iiky“] : (2.21)

and note that B(—k,2.) = qE(k,z,)q, where g = [g é ,and E(—k,z,) = E(k, zn)

for k € R. Hence Hi:;l E(k,zn) is of the form

N -
I] Bk ) = [b‘{’ff“g) alf(_kz)c)_ (2.22)

n=1

such that a(—k) = a(k) and b(—k) = b(k) for k € R. By (2.20)-(2.22), det E(k,za) =

ol — B2 =1, and hence

N
det (1‘[ E(k,a:,,)) — la(k)? - p(R)E=1, keC.

n=1

By using induction on n it follows from (2.21} and (2.22) that

N
a(k) = H n + nyse%kc’, (2.23)
n=1 K]

where the summation runs over a finite number of terms, and where v, and ¢, are real

constants. Moreover, ¢, > 0 owing to the fact that each ¢, is a sumn of terms of the form

y; —yi with j > i. H N <1, the summation in (2.23) is absent and a(k) is constant.
Let APW stand for the algebra of all functions f{k) on R which are of the form

f(k) = i fie*, keR,
fa——

where f; € C and A; € R for all j and 33; |fi| < +co. Then the closure of APW in
L*=(R) is the algebra AP of almost periodic functions. The next theorem is proved by
using (2.8), (2.17)-(2.19), (2.23), and by exploiting the analyticity properties of a(k)
and using the growth properties of entire functions. It summarizes several results given
in Section 4 of [8]. .

Theorem 2.4 (i) |a(k)| > 1 and |7(k)| <1on C+.

(i)

lim sup;_, 400 1P(K)] < 1.
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1 . = _ —b(k) .
(i) ® = a(k) [11+ o(1)] a;s: — o0 in CF; p(k) = alF) +0(1) as k — +oo in R.
(v) a(k), b(k), ok and % belong to APW.

Theorem 2.4 plays a crucial role in proving the solvability of a key Riemann-Hilbert

problem studied in the next section. The reader is referred to [8] {Section 7} for the

details,

3. Solution of the inverse problem
PFirst we assume that there are no bound states. The formulation of the Riemann-Hilbert

problem will involve the functions Zik,y) and Z,(k,y) which are defined by

filk,2) = Efi"(—;‘—)ef“*f’“**rzz(k,y), Flkz) = g%;—)e-*w“—zr(k,y), (3.1)

where y is defined in (2.14) and Ay are the constants from (2.7). Let us introduce the

vector function

Zi(k,y) ]
Z(k,y) = ’ . 3.2
(k. y) [Zr(k,y) (3.2)
Theorem 3.1  Under assumptions (H1)-(H5) the vector Z{k,y) defined in (3.2) sat-
isfies

Z(—k,y):g(k,y)qZ(k,y), kER3 yER\{yI:"' }yN}s (33)
where J = [[1) _01] , q is the matrix introduced below (2.21), and

; '- r ol E)e2ik
gk, y) = T o(k)e™H = [ﬁf(k)(?my p(f()k) y] :
PROOF: The solutions #y(k,z) = Ti(k) filk,z) and ¥, (k,z) = Tr(k) folk, z) of (1.1)
satisfy

D] =[50 B [GCka]. rer o

and hence using (2.5), (2.6), and (3.1) in (3.4) we obtain (3.3).
Eq. (3.3) constitutes a Riemann-Hilbert problem for the vector function Z(k,y); how-
ever, it is not a standard Riemann-Hilbert problem because Z{k,y) does not converge

to & constant vector as k — oo in CF. Our goal is to recast (3.3} as an integral equation.

For each fixed y € R\ {y1,-*- ,yn}, from {3.3) we have

k) Zo(k,y) = Do~k p) + p(k) M Zukyy),  keER, (3.5)
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(0} Z+(0,y) = Z:(0,y) + p(0) Z1(0, ). (8.6)

Define
F+(k) T,y 'y) = ﬁ [T(k) Z,-(k, y) - T(O) Z,(O, y)} y (37)
F (k) = s (B() = 20,0 (3.8)

Using

Zi(0,y) _ f1(0,x) Ze(0,y) — (0, z)
VI® ~ VE, VAR VA

from (3.5)-(3.8), for k e Rand y e R\ {31, -- , y~} we obtain
Fi(k,2,y) — F_(k,2,y) = — p(k) " F_(~k,z,y)

i ; fi(0,z) (3.9)
+ = [p(k) €Y — p(0)] ===
& [P( ) ol )] \/H_+
Since we are considering the case without bound states, for z € R\{z1,--- ,zn}andy €

R\ {y1, - ,un}, Fu(k,z,y) have analytic extensions in k to C*, and Fy(k,z,y) — 0
as k — oo in C%, The detailed justification for this conclusion is given in {8] {Theorems
4.4 and 5.2). The behavior of Fy{k,z,y} at k£ = 0 depends on the decay of Q(z) and
H(z) — Hy as ¢ — +o0. If Q € L}, (R} with a € (0,1) and H(z) ~ H+ € L'(R%),
then, by Thecrem 2.1 and (3.1), we have '

Zik,y) — Zu0,y) = o(kl*),  Zo(k,y) = Z,(0,9) = o(lk|*),  k—0in CF.

Also 7(k) — 7(0) = o(|k|*) by (2.10) and (2.12). It follows that Fi(%,%,y) belong to
the Hardy spaces Hi(R) for 1 < p < 1/(1 — «); if &« = 1 a similar argument shows that
Fy(k,z,y) belong to HL(R) for all p € (1, +00). Recall that the Hardy spaces HY (R)
are the spaces of analytic functions f(k) on C* for which sup,q [7o dk|f(k £ ie)|?
is finite. Associated with these spaces are the projection operators 11 which project

I?P(R) onto HL.(R) given by

(M) =25 [ Z L fe) (3.10)

It is known that II; are bounded and complementary projections on LP{R) when 1 <
p < 0o, Applying I, and II.- to {3.9) and using I Fy (k, 2,y) = Fu(k, z,y), we obtain
forkeR,zeR\{zy, -+ ,zn},andy € R\ {y1, -~ ,y~n}

F:I:(kaz"a y)

+o0 g 8) ey — z .
L [p() : P(0>f$‘;;_+)—p(s)e“m(—s,w,y}]-

T om

w S§—FEF0
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Hence F..(k,z,y) obeys the singular integral equation

1t ds pls) e — p(0) i(0, 7)
] Fo(kzy) =5 j_m k4340 s H: (3.11)

1 oo ds -~2isy
P f_m poreynu LIRS SRR )L

- VH
Defining F_{k,y) = e F_(k,z,y) we can write (3.11) in the form

fi(0,2)
P(k,y) = Xo(ksy) + (OyF_)(k,v), (3.12)
: where : .\ N 7
o0 s e2iy _
Xo(k,y) = % f_ — z - p(s) : pO) 813

(O, F)(k )——L]m—f—s—(—) 2% f1_(5,4)
V=5 | sr -t —\8:¥):

Note that, since there are no bound states, fi(0,z) > O forall z € R. The next theo-

i e e e i

rem establishes the connection between F_(k,y) and y{z). Let an overdot denote the

derivative with respect to .

Theorem 3.2 Suppose that assumptions (H1)-(H5) hold with & = 1 in (H5). Then
F1(0,z) is determined by Q{z) alone and f1(0,z) is determined by Q{z) and H alone.
Furthermore, we have )

—iF_(0,y) =1 F0.2) Ly 4, (3.14)

£1(0,z)
PROOF: From (2.3) it follows that fi(0,z) and £1(0,z) obey the integral equations

f(0,2) =1+ /00 dz (2 — 2)Q(2) fi(0, 2), (3.15)

0,2y =iHyz + / " & (z — 2) Q(2) £(0, 2). (3.16)

‘Eqs. (3.15) and (3.16) can be solved by iteration and the first assertion follows. Eq.
(3.14) follows on taking k — 0 in (3.8) and using (3.1). §

Note that f;(0,z) is purely imaginary and hence the right-hand side of {3.14) is real.

.- Hence F_(0,y) must be purely imaginary. This can also be seen from (3.12) using the

fa.ct that p(k) = p(—k) for k € R. In order to find F_(k,y) we need to know Xo(k,¥)

: ﬁrst. We see from (3.13) that Xo(k, y) is completely determined by p(k). Provided (3.12)

ha.s a unique solution, F_(k,y) is also completely determined by p(k). However, there

1s ‘_’Fl.le'possibility that a restriction on Hy arises from the solution of (3.14), since y(z)
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must also be such that y(z) — +oco as z — F00. As we will see this situation oceurs in
Example 2, Section 4. Once ﬁ',.(k,y) has been obtained, the value of A, is determined
by setting x = 0 and y = 0 in (3.14), so that

o - fl(()}())
Ay =—i (F_(O,D)+ f,(o,O)) .

Then y(z) is found by solving (3.14) for y in terms of z. Finally, H(z) can be obtained
by using H(z) = dy/dr.

We remark that if, in addition to p(k) and @(z), H_ is known instead of H,, then
we can first compute H as follows. In the exceptional case (Le. if —1 < p(0) < 1}, we

get from (2.13) : 0
Y21 + p(0)]
@

In the generic case (i.e. if p(0) = —1), using (2.8) we first compute [7(k)| = /1 — |p(k)|?
for k € R, and then find |¢| = Emy_.g |7(#)|/ik], where ¢ is the constant given in (2.11).
Thus, by (2.11),

Hy =

fel? [L£1(0, z); £-(0, 2)]I*
4H_ ’

Theorem 3.2 no longer applies if we only have @ € LI(R), but @ ¢ L3(R). Then
F_(k,z,y) in (3.8) will in general diverge as & — 0. In this case we have a ‘partial result

Hy =

under specific assumptions on the fall-off of G(z) at either +oco or —oc (see [8], Theorem
5.5). An alternate inversion method that works in the generic case when @ € L, (R)
(& > 0), and in the exceptional case when § € L{(R), is available [9].

Now we consider the case when there are bound states at energies —fi? with j =
1, ,N. Then the reduced transmission coefficient 7(k) has simple poles on the positive

imaginary axis at k = ix;. Let

oo -1
,,jz(/_ dxf;(ifcj,r)QH{x)2) , o i=1,0 N, (3.17)

denote the norming constants. The norming constants are part of the scattering data.
We only list here the main steps of the inversion procedure, so that we can apply it in

the next section. A detailed derivation is given in Section 8 of {8]. Let

w(k) = (—1) H PR k) = pk)w(e)

(£, X)(E) = “;_U“z) f_ o %K(s), (3.18)
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X(k)=G-(k,z,y) = k__\/% [Z{—k,y) — Z2(0,y)], (3.19)

where G_(k,z,y) is the analog of F_(k,z,y) in (3.8). In analogy to (3.12) we ha,ve.the

singular integral equation

X(k) = B(k)+ (L, X)(k), kcR, (3.26)

where
Py . (k,z,y)

H?ilck ~in;) (321)

Here P,,_,(k,z,y) is a function of the form

B(k)=B(k,z,y) =

PM1k$1y} an ,y)k

n=0

with p{z,y) = (—l)N +ntlp (2, y), which follows from an application of Liouville's the-

orem (8], Section 8). The functions p;{z, y) for j = 0,--+ , &'~ 1 are to be determined.

In order to accomplish this we introduce the function

Y . w
Uk, ,4) = — (1) BR) HHG_ (b, 2,9) + T2 [a(k) 240 — 35(0) fi(};)
(=1 - fi(0, z) '
-+ k [w(k) 1o 1]-—“\/f
(3.22)

Let Qu(k,z,y) = (I8, z,y))(k), where Il is the projection operator defined in
(3.10). Then we have [8]

)NP.N‘ 1(7’5“7$7 y) ____z'.N'H+ _Iif_l__e—2x,,(y-§-A+) PN—:.(_iﬁn:x:y)
T (ke + 5 T e 4e
[Tjzi(fn + 55) 26n [Foi(fn+ 55)

+ﬁ VEH-5 e 040 5i(0,5) = (1Y (0f:(0,7)] -
(3.23)

The equations (3.23) constitute a set of A equations for the N unknowns pe(z,7), -,

Qi (i8n, 2, y)+{—1

. Py_.(z,y). Note, however, that £4(i5n,2,y) also depends on o2, 4), s Par_1 (2, Y1)
: via, B(k,z,y) in (3.21) and G_{~k,z,y) in (3.19). Once the polynomial P,_, (k,z, )
Hy
has been found, H(z)} can be obtained by using ——~ 7(0.2) X(0) on the left hand side of
i
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(3.14). The zeros of fi(0,¢) give rise to singularities in (3.14). This need not cause any
trouble as Example 3, Section 4, will show. Note that in the generic case 7{0) = 0 and
in the exceptional case 7(0) = (—1)¥ 4/1 — p(0)2 by (2.12) and Proposition 4.6 of [8].

We conclude this section with a theorem on the solvability of the singular integral
equation (3.12). A similar theorem can also be given for (3.20). It is clear that O,
is a bounded operator on HY (R) for 1 < p < +00. Using the results of Theorem 2.3
we deduce that Xo(k,y) in (3.13) belongs to H?. (R) provided @ € L, ,(R) for some
a € (0,1] satisfying o > 1 — {1/p). Indeed, this is immediate since

p(k)eziky — 0(0) B { o(]k|°’“1), k-0,
k O(1/k), k- Foo.

So it is natural to study (3.12) in H? (R).

Theorem 3.3 For 1 < p < oo, (3.12) has a unique solution X € H? (R} for every
Xo € HZ(R). This solution is given by X(k) = },._,[OpX0](k), where the series
converges absolutely in the norm of H? (R).

The proof of this theorem is given in [8] (Theorem 7.1). We add a few remarks about
the proof. When p = 2 the result follows from a contraction argument. That Oy isa
strict contraction is obvious in the exceptional case, since |0y < supgeg [p(k)| < 1.
Moreover, by using p(k} = p(—k) we see that O, is self-adjoint. As shown in [§], O,
is also a strict contraction in the generic case (when- p(0) = —1). To deal with p # 2
we derive a (vector) Riemann-Hilbert problem satisfied by any solution of {3.12) which
is in HZ (R). The accompanying Riemann-Hilbert problem, where only the asymptotic
part —% of p(k) is retained, can be shown to be uniquely solvable by factorization
of an almost periodic 2 x 2 matrix function. It is here where Theorem 2.4, in particular
(iv), enters. As a result, (3.12) is a Fredholm integral equation of index zero in HY. (R).
A Fredholm argument then leads to the unique solvability of {3.12) in H? (R}, where
1 < p < +eo. As a further result it follows that the spectral radius of O, is strictly less

than one in any space HY (R) {1 < p < o0).

4. Examples

In this section we consider three examples. Since the first two examples have been
worked out in detail in [8}, we will only state the main results here. The third example

is new and we give most of the details. We also comment on the spectrum of Oy in
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the first two examples. The spectral properties of O, in another example can be found
in [9]. Here we confine curselves to constructing H(z) from a given reduced reflection
coefficient p(k), H, and bound state data. The problem where one starts from R(k)
requires some additional steps, which are outlined in [8]. In all three examples it is
assumed that @ € Li(R), so that Theorem 3.2 applies, and we are allowed to consider
the singular integral equations (3.12) and (3.20) in the space H2 (R).

Example 1  Suppose that

p(E)=poe*,  po,BER, |pl <1

Since p(0) = py # —1, we are in the exceptional case. We also assume that there are
no hound states. It turns out that the spectrum of O, consists of the three points —pp,
0, and py, each of which is an eigenvalue of infinite multiplicity. So, @, is bounded and
self-adjoint, but not compact. The function H{z) is given by

H, .
— T >n
0, 27 b
H(z) = £i(0,z)
1=pe _Hy =,
1+ p0 fi(0,2)*’ "
where z; is such that y(#;) = —8/2. A more explicit equation for determining z; is

given in [8]. It can also be verified that H{z) satisfies the conditions (H1)-(H5).
Example 2 Suppose that there are no bound states and

p(k)=f:—£;ce"kﬁ, —1<é<1i, BeER, u>0.
Since p(0) = —1, we are in the generic case. In this case the spectrum of O, consists of
the eigenvalue zero and two infinite sequences of eigenvalues that converge to +¢ and
—&, respectively. For y < —f/2, by solving (3.14) we find

_ 2H(§ -1+ pB)e(z) —28¢ — up®
21+ &+ pB ~ 2pHy ()]

y(zx) (4.1)

3

where @(z) = f: dz fi(0,z)~2. Now the denominator in (4.1) must be nonzero and
¥(z) must behave linearly as  — —oo. Since fi(0,z) behaves lineatly as ¢ — —oo,
¢(—~o00) = lim,_,_, ¢(z) is finite. Hence, in order for y(z) to be unbounded as z — —oo,
it is necessary and sufficient that 1+ £ 4+ uf8 — 2uHp(—oc0) = 0. This says that H is
determined by p(k) and Q(x), namely

_1+e+pb

T dpp(—o0)
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The function H{r) is given by

A >z
. _— T ,
Ay =4 "0 1
1-¢ (0, 2); (0, =)} <z
41”2H+ fr(01"1")2 ' "
and z; is determined such that y(z;) = —5/2.
Example 3 Suppose that
k+in
P(k):PO k_::ekﬁa POJﬁER: lp0!<11 £ >0

We also assume that there is a bound state at —&* with norming constant ». Evaluating

the integral in {3.21} we have

p?O(i—.:i), 2y+ﬁ g 0:

Bk, = ;
{k,z,y) po(e,y)  k+ik {eik(2y+ﬁ) _1] 10D +6<0
kix Pk —in Ry '

Using the Fourier transform (Fg)(?) = ffom dk e"** g(k), we obtain
(FB(,z,y)}t z,y) = ZWipo(m,y)e"m, Iy+ 620,

and when g+ 2y < 0,

2mipg(w,y)e™ " + Dy, O<t<—(2y+75),

(FBC 2, m)(ts2,9) = { 2mipo(z,y)e "+ Dy, £ —(2y 4 B),

where
Dy = 4mipge " fil02) _ 2mipy (0, 2) ,
VI
fl(oa :i.':)

Dy = dmipee ™1 e_-'“(zy"'ﬁ))
VH;

Let R(t} = (FG_(-,z,¥))(t,z,y) = (FX())(2). For the operator £, in (3.18) we have
that £, =0, when 2y + 8 > 0, and when 2y + 5 < 0

—2y—4
— 2pgre” " g HZYER) / du e h(u)
—2y—p—t
(FL,FTR)(t) = oo h{~t=2y—F), 0<t<—(2y+4),
~2y—f

— 2ppre " e“"(zy'w)-/ due”™™h(u), t> -(2y+5).
0

Then h(t) obeys the equations

h(t) = 2mipo(z, y)e™™, 2y + 820,
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and when 2y + 8 < 0

0
h(t) =2mipo(z, y)e ™" + dmipge ™" (1 — e""(zy*'ﬁ))L};f)
: +

_yp {4.3)
— 2ppre KR 2yt f due™™ h(u)
0
ift>—(2y+4), and
h(t) =2xipo(z, y)e ™ + 47ripne_”tm - 2:n'ri,a[;-‘)M
v vV (4.4)

—y—

y=p
- 2p0fse_”te_”(2y+ﬂ)/ due ™" h{u) + poh{—t — 2y — )
—2y—fF—t

if 0 < £ < —(2y + ). We first solve (4.4) and then use the result in (4.3). Following (8]
(Example 6.2) we can solve (4.4) by converting it to a second-order differential equation

for the function fot du e™** h{u). The solution is

dripy fif0,z)

po__ fi(0,2) L : —nt
t)= -2 2 — . (4.
h( ) 71'31 + PO {_‘H+ 1 o PUBK(2y+ﬁ) TWPO(:L'v y) + PO _I_ 1 ,f‘""'"‘H+ € (4 5}
: From (4.2)-(4.5), evaluating the inverse Fourier transform of A{t), we get
z
G.(k,z,y) = %, 2y+ 520, {4.6)
Gz, y) <PUBV L= e D) py kot in IO 1 £i(0,2)
—\E &Y T k—ir 1 —pges@H8 14 ppk—ik k Hy
9,2 s(2y+8) . oik(291+8) £,
+ & : - M02) -y, <o
(14 po)(1 — ppexZy+A)) k—ix Hy
(4.7)

Inserting (4.6) and (4.7) in (3.22), projecting {2(k, z,y) onto H2 (R) and putting k = ix,

after tedious computations we obtain

o popo(T. y) e~ 2y +8)

ﬂ+(i.‘€,$,y) = 9% ,
: (4.8)
PO —n(2ytA) fi(0,2) @ fi(0,z)
i -1 - ] 2 > 0:
< (8 ) \/H: o \/}I_+ yv+82>

_ ;Popo(2,y) e"PIHD) - p
2 1 — poex(2y+h)
_ ;3= po)(1 4 po — poe™ B8 (0, )
&(1 — pyer(Zy+8)) [Hy '

Q‘l'(?:na Z, y) =

(4.9)

2y+ 5 <.
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_ (0P

Using (3.23), (4.8), (4.9),and 1 — pg =1+ p(0) = i we get
H_«

2de= WA - poe= O] £(0,2)

PUE—-E(?!J“"IB) +1-— de#2'€(y+A+) \/HT ] 2y + }6 2 0,
po(z,y) = Ui ful0,x)
—2 T 2+ <0,
U2 .H+
H
where d = bl and

U (1= pe)po _ VH+6—2n(y+A+)
I— poe“s(z'y‘}‘ﬂ) 25 ?

U — 1 - IO% . VH+ e—Zﬁ(y+A+)
2Ty poer2ytE) 2k ’

Note that v < 0, since there is one bound state [8]. To solve (3.14) we let z = e®(2v+8)

and a = e®2A+=7 Then {3.14) can be written in the form

2d—poa] 1 il0,2) B
S il i R R P4 > 4.
klez + ppa—d]  2x bz =1 filo,z) 2 tAe y+ =20, (4.10)
—2py gc_fl —po ' 1 _1—po In #
(T+po)e & L+po zla(l—pf)+dpoj —d 201+ po)e (4.11)
_ _f:;(e.,ﬂ:) _fB_ .
_2f;(0,a:) 2+A+, 2y + B < 0.

So, in terms of the variable z, (4.10) holds when z > 1 and (4.11} holds when 0 < 2z < 1.
Differentiating (4.10) and (4.11), using dz/dz = 2« H(z)z and solving for H{xz) we get

H, az + ppa —d z
2 >
oy (res) v+a20

1—py Hy (Zia(l ~ o)+ dp] — d
T+p0 fil0,z)? \z[a(l —pf) + dpo] +4d

H(z) = (4.12)

2
) , 2y+ A8 <.

Note that f;(0,z) has one zero. It can be seen from (4.10) and (4.11) that this zero is
canceled by the zero of the numerator in (4.12).

The jump in H{z) occurs at z;, where y = ~3/2, 1.e. z = 1. Then, by (4.12) we have

H(:’Cj—O) - l—po
H(z; +0)  1+pp

When pg = (0 we see that H(2) is continuous. This special case is worked out in [8]

{Example 8.1).
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