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The inverse scattering problem on the line is studied for the generalized Schro- 
dinger equation (d* f/V&*) + @H(X)* fi= Q(X) $, where H(x) is a positive, piece- 
wise continuous function with positive limits H, as x --+ 2~. This equation, in 
the frequency domain, describes the wave propagation in a nonhomogeneous me- 
dium, where Q(X) is the restoring force and l/H(x) is the variable wave speed 
changing abruptly at various interfaces. A related Riemann-Hilbert problem is 
formulated, and the associated singular integral equation is obtained and proved to 
be uniquely solvable. The solution of this integral equation leads to the recovery of 
H(x) in terms of the scattering data consisting of Q(X), a reflection coefficient, 
either of H + , - and the bound state energies and norming constants. Some explicitly 
solved examples are provided. 0 1995 American Institute of Physics. 

1. INTRODUCTION 

Consider the one-dimensional generalized Schrodinger equation 

IC/‘(k,x)+k*H(~)‘1C/(k,~)=Q(x>~(k,x), XER, (1.1) 

where the prime denotes the derivative with respect to the space coordinate. This equation, in the 
frequency domain, describes the propagation of waves in a nonhomogeneous medium where k* is 
energy, l/H(x) is the wave speed, and Q(X) is the restoring force per unit length. Our assump- 
tions on H(x) and Q(X) in this article will vary, but several key results will be proved under the 
same set of assumptions listed here for future reference: 

(Hl) H(x) is strictly positive and piecewise continuous with jump discontinuities at X, for 
n=l ,...,N such that xI<*..<xN. 

(H2) H(x) -+ H, as x --+ km, where H, are positive constants. 
(H3) H-H t EL’(R’), where R-=(-m,O) and R+=(O,+m). 
(H4) H’ is absolutely continuous on (x, ,x n+l) and 2H”H-3(H’)*~Li(x,,x,+,) for 

n=O ,,.., N, wherexc=-a andx,,,+,=+m. 
(H5) Q E L; + ,(R) for some a E [0, 11, where Lb(Z) is the space of measurable functions f(x) 

on I such that S, dn( 1 + ]~])~]f(x)] <co. 
The scattering solutions of Eq. (1.1) are those behaving like eikH+ or ewikHzx as x --t +m. 

Such solutions occur when k*>O. There are two linearly independent scattering solutions of Eq. 
(1.1) satisfying the boundary conditions 

ft(k,x)=e ikH+x+~(l), f;(k,x)=ikH+eikH+“+o(l), x -+ +a, (1.2) 

f,(k,x) = e-ikH-x -to(l), f:(k,x)= -ikH-e-ikH-x+o( l), x --+ --M. (1.3) 

We will call ft(k,x) the Jost solution of Eq. (1.1) from the left and f,(k,x) the Jost solution from 
the right. We have 
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1 
fdkx) = T,(k) - eikH-x ; L(k) e-ikH-++o(l) 

T,(k) 
) x--,--a, 

1 
f,tkx) = T,O e 

-ikH+x+ R(k) 
- elkH+++o(l), x 3 +m, 
T,(k) 

(1.4) 

(1.5) 

where T/(k) and T,(k) are the transmission coefficients from the left and from the right, respec- 
tively, and R(k) and L(k) are the reflection coefficients from the right and from the left, respec- 
tively. The scattering matrix associated with Eq. (1.1) is defined as 

S(k)=[ ;;;; irfj. 
The solutions of Eq. (1.1) belonging to L2(R) are called the bound state solutions; to be more 

precise, here we need to use L2(R,H(x)2dx) instead of L*(R,dx), but these two spaces are 
equivalent due to the fact that H(x) is a strictly pdsitive, bounded function. Such solutions may 
occur only at finitely many negative values of k*, known as the bound state energies. Associated 
with each bound state is a positive constant called the bound state norming constant. The purpose 
of this article is to recover H(x) from the scattering data consisting of Q(x), one of the reflection 
coefficients, either of H, , and the bound state energies and norming constants. In the special case 
when Q(x)=0 and H, = 1, Grinberg’ proposed a method to recover H(n) with jump disconti- 
nuities; in Ref. 2 the case Q(x) = 0 and H, # 1 was considered. When Q(x) = 0, the solution of 
the inverse problem for Eq. (1.1) is greatly simplified because in that case there are no bound 
states and the reduced reflection coefficients defined in Eq. (4.1) are strictly less than 1 in absolute 
value; in fact, as noted in Refs. 1 and 2 no abstract Fredholm theory is needed to solve the 
resulting singular integral equation when Q(x) = 0. When H(x) is twice continuously differen- 
tiable, the solution of the inverse problem can be found3 by using a Liouville transformation 
defined on the whole real axis. However, when H(x) has discontinuities, the Liouville transfor- 
mation (3.1) can only be used locally, i.e., only on each interval (x, ,x,+~). In fact, the nonexist- 
ence of a global Liouville transformation greatly complicates the analysis of the inverse scattering 
problem. A discussion of the inverse problem when H(x) has discontinuities was also given in 
Ref. 4, where a different approach was used and an incomplete solution was given. 

The discontinuities in H(x) correspond to abrupt changes in the properties of the medium in 
which the wave propagates. In the inversion procedure described in Refs. 1 and 2 and in the 
present article, neither the locations of the discontinuities of H(x) nor the jumps in H(x) at such 
locations are given as part of the scattering data; on the contrary, these locations and jumps are 
recovered by the inversion method. 

In order to extend our solution of the inverse problem from Q E L;(R) to Q E L:+,(R) with 
(YE (O,l), we relate the key singular integral equation (5.21) to the solution of the vector Riemann- 
Hilbert problem (7.4)-(7.7) whose unique solvability is proved by studying factorizations of 
almost periodic matrix functions.5’6 Although Riemann-Hilbert problems have been found useful 
in solving various other inverse problems,7-” to the best of our knowledge the Riemann-Hilbert 
problem described in Eqs. (7.4)-(7.7) does not appear elsewhere in the inverse scattering litera- 
ture. In setting up Eqs. (7.4)-(7.7) we follow ideas outlined in Ref. 12, where several types of 
integral equations are studied by reducing them to Riemann-Hilbert problems of the type (7.4)- 
(7.7). 

In regard to the problems with discontinuous coefficients, we remark that Sabatier and his 
co-workers’3-1h studied the scattering for the impedance-potential equation and that Krueger 
studied’7”8 the inverse scattering problem for u,,- u,,+cl(x)u,+c2(x)u,i-c-,(x)u=O, where 
x, t E R and the coefficients c L , c2, cg are sectionally continuous functions with support in a finite 
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interval. Krueger also considered u,, - E(x)u~~=O when E(X) is constant forx<O and sectionally 
continuous for x>O, and he developed” an iterative method to recover E(X) when the incoming 
and reflected waves are given. 

This article is organized as follows. In Sec. II we establish the analyticity of the Jost solutions 
of Eq. (1.1) and obtain some estimates on these solutions. In Sec. III we analyze a sequence of 
Schriidinger equations related to Eq. (1.1) in the intervals (x, ,x,+ r) for n = 0,. . . , N. The results in 
Sets. II and III are used in Sec. IV to obtain certain properties of the scattering matrix S(k) needed 
to solve the inverse scattering problem. In Sec. V we give the solution of our inverse problem; 
H(x) is recovered by using in Eq. (5.24) the unique solution of our singular integral equation 
(5.21). In Sec. VI our inversion procedure is illustrated by two examples. The unique solvability 
of Eq. (5.21) is established in Sec. VII. In Sec. VIII we give the recovery of H(x) when bound 
states are present and illustrate the inversion procedure by an example. Finally, in the Appendix 
we give the proof of the second part of Theorem 4.2, establishing the behavior of the scattering 
matrix ask + 0. 

II. SCAlTERlNG SOLUTIONS 

In this section we show that the Jost solutions can be extended analytically in k from the real 
axis to the upper-half complex plane. We let C+ denote the upper-half complex plane and ?? 
= C+ U R. Similarly, C- denotes the lower-half complex plane and c- = C- U R. 

Let If;g] =fg ’ -f ‘g denote the Wronskian. Using Eqs. (1.2)-( 1.5) we obtain 

H+ H- 
pl(k,x);fr(k,x)]= -2ik T,O= -2ik - 

Tl(k) ’ 

Ifi(k,x);fr(-k,x)]=2ikH- g==--2ikH+ 2, 
1 r 

2ikH- 
uL( - k,x);f[(k,x)] = 2ikH+ = T,(k)T,(-k) [l-L(k)L(-k)l, 

2ikH+ 
[f,(-k~);fr(kJ)l= -2ikH-= - T,(k)Tr(-k) [ 1 -R(k)R( -k)]. 

(2.1) 

(2.2) 

(2.3) 

From Eqs. (1. l), (1.2), and (1.3) we see that the Jost solutions satisfy 

fit-k,x)=f,(kx), fr(--kx)=fr(kx), kE R, (2.5) 

where the overbar denotes complex conjugation. Hence from Eqs. (2.1) and (2.2) we have 

S(-k)=S(k), kER. (2.6) 

The scattering matrix S(k) is not unitary unless H+=H_ . However, from Eqs. (2.1)-(2.4) it 
follows that 

T,(k)U-k)+R(k)T,(-k)=O, H+T,(k)=H-T,(k), (2.7) 

Tr(k)TI(-k)+L(k)L(-k)=T,(-k)T,(k)+R(k)R(-k)=l, (2.8) 

T/(k) T,(k) 
det S(k)=T,(k)T,(k)-L(k)R(k)= -=- 

T,(-k) T,(-k)’ 
(2.9) 
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where det denotes the matrix determinant. 
From Eqs. (1.1) and (1.2) we have 

fl(k,x) = eiLH+x+ & 
I 

m dz[sin kH+(z-x)][k2{H: -H(z)2}+ Q(zjlf[(k,z). (2.10) 
f x 

Similarly, from Eqs. (1.1) and (1.3) we have 

fr(k,x)=e-ikH-X+ & I_” dz[sin kH-(x-z)][k2{H?-H(z)2}+Q(z)lf,(k,zj. m 
(2.11) 

Let us define the Faddeev functions, ml(k,x) from the left and m,(k,x) from the right, as 

m[(k,x) = e -ikH+xfl(k,x), m,(k,x)=eikH-Xf,(k,x). (2.12) 

From Eqs. (1.2) and (1.3) it is seen that 

q(k,x)= 1+0(l), mj(k,x)=o(l), x --+ +CQ, 

mr(k,xj= 1 to(l), m;(k,x)=o(l), x --f --co. 

From Eqs. (2.10)-(2.12) we obtain 

q(k,x.l= 1 - & 
I 

m 
dz[ 1 -e2ikH+(z-x~][k2{H~-H(z)2}fQ(z)]ml(krz), (2.13) 

f x 

w.(k,x) = 1 - & I 1 dz[1-e2ikH-1x-z)][k2{H~-H(z)2}+Q(z)]nz,(k,z). (2.14) cc 

Theorem 2.1: 
(i) Assume Q E .Li (R) and H-H, E L’(R’). Then, for each fixed x ER, the Faddeev func- 

tions ml(k,x), m,(k,x) and their derivatives m;(k,x), m:(k,x) are analytic in C+ and continuous 
in c+. Consequently, the Jost solutions fr( k,x), f,( k,x) and their derivatives fi (k,x), f:( k,x) are 
analytic in C+ and continuous in ??. Moreover, the following estimates hold: 

(2.15) 

(2.16) 

Ipn;(k,xjlGeE+(k*X) 
I 

m dz(l+max{0,-z})[~k~2~H~-H(z)2~f~Q(z)~l~ kECf¶ 
x 

(2.17) 

Im~(k,x)lSeE-(kp”) 
I 

’ dz(l+max{0,z})[~k(2~H?-H(zj2~+~Q(z)~], kECf, (2.18) 
--m 

where 

Er(k,x)= 2 (2.19) 
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(ii) Assume Q EL:+,(R) f or some c~~[0,1] and H-H,EL’(R*). If cu~[O,l), then, as 
k + 0 in i? we have 

m~(k,x)-m~(O,x)=o(lklLIj, m;(k,x)-m;(O,x)=o(lkla) 

uniformly on x 2 a, and 

m,(k,x)-m,(O,x)=o(lkla>, m;(k,x)-m;(O,x)=o(lkl”) 

uniformly on xca, for any a E R. If (Y= 1, then the same relations hold, but with U(k) on the 
right-hand sides. Moreover, if cr= 1, then ml(O,x) and riz,(O,x) exist, where the overdot denotes 
the derivative with respect to k. 

Proofi (i) The proof of the analyticity and continuity of m,(k,x), m,.(k,x), ml(k,x), and 
m:(k,x) is similar to the proof of Theorem 2.1 in Ref. 20 and is based on iteration of Eqs. (2.13) 
and (2.14). We omit the details. To prove Eq. (2.15) we note that by Eq. (2.13) 

ImhWl c 1+ 

where we have used the estimate ( 1 - e2ikN+(z-r)j < 2 on the term involving H, -H(z) and used 
1 1 - e2ikH+(z-x) 1 s 2lklH+jz-xl on the term involving Q(z). Defining h,(k,x) 
=ml(k,x)l(l+max{O,-x}), and using 

(1 +max{O,-z}) 
(z-x) (I+max{O,-x})~l+lzl’ zax, 

from Eq. (2.20) we obtain 

l&(kx)l c 
1 

1 +max{O,-x} + g IH:-H(z)~~+(~+IzI>~Q(z>I l&(k,z)l. 
+ I 

Now Eq. (2.15) follows from Gronwall’s inequality. Similarly one derives Eq. (2.16). Inequalities 
(2.17) and (2.18) are obtained by differentiating Eqs. (2.13) and (2.14), respectively, and using 
Eqs. (2.15) and (2.16). With the help of Eq. (2.12), for each fixed x, one obtains the analyticity in 
C+ and continuity in ?? of the Jost solutions f[(k,x) and f,(k,x) and their derivatives f;( k,x) 
and f:(k,x). Hence, the proof of (i) is complete. 

To prove (ii), note that from Eq. (2.13) we have 

where 

mdkx) -mdO,xj =A ,(kx) +Mk,x) +A&kx), (2.21) 

A,(k,x)=- (l-e 2ikH+(z-x)) 
I 
[H: -H(~)~]rn~(O,z), 

A,(k,x) = - 
1+2ikH+(z-x)-e2ikH+(Z-x) 

2ikH+(z-x) 1 (z-x)QWm(O,z), 

Adkx)= - & 
I 

m 

dz[l -e2ikH+(z-X)][k2{H:-H(z)2}+Q(z)][~l(k,z)-ml(O,z)]. 
+ x 

Using 
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1 -e2ikH+(z-x) <c lkl(z--4 Ikltz-a) 
2iH+ - l+jkl(z-x)qC l+jkj(z-a) 

for some constant C, for all xaa we obtain 

IAdk,xjkCblj-P dz 
a 

,$;(;:;, IH:-H(z)211m~t0,z)I=o(k). 

Using 

2ikH+(z-x) 
Iklk-x> Ikltz-4 

SC l+Ikj(~-x)~~ l+lkj(z-a) ’ 

(2.22) 

(2.23) 

(2.24) 

we obtain 

lA,(k,x)jGlk$= dz ‘“;;;$;zb’,” (z-u)‘+“lQ(z)llmr(O,z>l=ot~~~~). (2.25) a 

By using Gronwall’s inequality we see that ml(k,x)-ml(O,x)=o(jkla) uniformly on XZ=U. The 
estimates involving m,(k,x), m;(k,x), and m:(k,x) are obtained in a similar manner. 

Now suppose a=l. From Eqs. (2.21)-(2.25) it is seen that the error terms are O(k). The 
proof of the existence of riz[(O,x) and lit,(O,x) is complicated by the fact that under the assump- 
tion H-H, E L’(R’) we cannot simply differentiate Eqs. (2.13) and (2.14) under the integral 
sign. Since the detailed estimates are standard but lengthy, we only outline the proof. Let 
A(k,x)=[m,(k,x)-q(O,x)]k-‘. Then using Eqs. (2.21)-(2.25) and Gronwall’s inequality, we 
show that I A(k,x) I s C’ uniformly for x>u and k near 0. Using this bound and the integral 
equation satisfied by A(k,x) we estimate the difference IA(k, ,x) - A(k,,x)l and show that it is 
Cauchy as k, , k, 4 0. Thus A(k,x) has a limit as k --) 0 and hence riz[(O,x) exists. A similar 
argument works for m,(O,x). n 

The statements in (ii) of Theorem 2.1 also apply to the Jost solutions and their derivatives, but 
in that case the uniformity in x is only valid when x is restricted to a bounded interval. 

If LY= 1, using Eq. (2.10) as k --+ 0 and Eq. (2.12), we find that fI(O,x) obeys the integral 
equation 

fl(O,x)=iH+x+ 
I m dz(z-x)Q(z)jr(O,z). 

x 

This integral equation can be solved. by iteration, and it is used in Sec. V (Theorem 5.4). Using 
Eqs. (2.20) and (2.26) we see that Lfi(O,x);fr(O,x)] = - iH+ and hence we have 

(2.27) 

which will be used in Sets. VI and VIII. 

Ill. A LOCAL LIOUVILLE TRANSFORMATION 

In this section we relate the Jost solutions of Eq. (1.1) to solutions of a sequence of Schro- 
dinger equations on the intervals (xi ,xi+ t ) for j = 0,. . . , N. We use the fact that although H(x) is 
discontinuous at xi, the Jost solutions of Eq. (1.1) and their x-derivatives are continuous even at 
these points. The results here will be used in the next section to establish the properties of the 
scattering matrix. 
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Under the Liouville transformation 

Y =utx>= 
I 

’ ds H(s), 
0 

Gtkx) = & 4(ky), 

the generalized Schrijdinger equation (1.1) is transformed into 

where 

H”(X) 3 H’(x)~ Q(x) 
vb’(x))= 2H(x)%- 4 Hi + ma 

(3.1) 

(3.2) 

(3.3) 

Since H(x) is assumed to have jump discontinuities at Xi for j= 1,. ..,N, the quantity V(y) is 
undefined at yj = y (xj). However, V(y) is well defined in each of the intervals (yj ,Yj+ ,> for 
j=O , . . . , N; thus, we can only use the Liouville transformation locally, i.e., only on each interval 
Cxj 9xj+ 1). Since H(x) is strictly positive, it follows that yo= y(xo) = - 00 and 
YN+I=Yh+l)= +a* 

Let Vj,j+ t(y) be the potential defined by 

f elsewhere, (3.4) 

where V(y) is the quantity in Rq. (3.3). We have Vj,j+l E L;(R), which is satisfied because 
2H”H-3(H’)2EL~(Xj,Xj+l) for j=O,..., N, i.e., because (H4) is satisfied. The Faddeev func- 
tion from the left, Y,;j,j+,(k,y), associated with the potential Vj,j+l(y) satisfies the differential 
equation 

with the boundary conditions Yl;j,j+l(k,yj+l)= 1 and Y;;j,j+l(k,yj+l)=O; thus we see that 
Yl;j,j+ t (k,y) satisfies the integral equation 

Yl;j,j+l(k,y)= 1 + & 
I 

y”‘dt[e2’k(‘-y)- l]Vj,j+l(t)YI;j,j+l(k,t). 
Y 

Recall that the prime denotes the derivative with respect to the space coordinate, and hence 
Y’(k,y) denotes dY(k,y)ldy. Similarly, the Faddeev function from the right, Y,;j,j+ ,(k,y), as- 
sociated with the potential Vj,j+l(y) satisfies the differential equation 

with the boundary conditions Y,;j,j+l(k,yj)= 1 and Y:;j,j+ t (k,yj)=O; hence Y,;j,j+l(k,y) satis- 
fies the integral equation 

Y,;j,j+ ltk,Y)= 1+ Z$ I ’ dt[e2’k(y-‘)-l]Vj,j+l(t)Y,;j,j+I(krt). 
Yi 

Let Sj,j+ ,(k) be the scattering matrix for the Schrijdinger equation with the potential 
Vj,j+ 1 (y) such that 
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Sj,j+ l(k)= 
rj,j+ lCk) ‘j,j+ lCk) 

lj,j+ l(k) I lj,j+ l(k) ’ 

where tj,j+ ,(k) is the transmission coefficient and rj,j+ t (k) and Zj,j + i(k) are the reflection coef- 
ficients from the right and from the left, respectively. The following facts about the entries of 
Sj,j+,(k) and the Faddeev functions are well known (Refs. 21-24): kltj,j+l(k) is analytic in C+, 

+ continuous in C , and 

Then we have 

tj,j+t(k)=l+O(llk), k + OJ in C+. I (3.5) 

j=l,..., N, kEC+, 

y + -03, j=O, kER, 

-2ik zj,j+l(k) e-2iky + 
fj,j+ l(k) 

, y~yj, j=l,..., N, kEC , 

Yl;j,j+l(k,Y)= 
-2ik lo l(k) Le-2ikY+O(ee2ikY), y + -co, j=O, kER 

to,l(k) 

and furthermore, for j31, [Zj,j+l(k)ltj,j+l(k)le -2ikY is analytic in C+ and for ysyj it vanishes 
when k -+ 00 in ??. In fact, we have 

Yl;j,j+l(k,y)- l=O( l), Y;;j,j+l(k,y)=o( l), k + 03 in C+ (3.6) 

uniformly in y ER. Similarly, we obtain 

tj j+lltk) El + rj.j+ l(k)e2’kYly YaYj+ 1, j=O ,..., N-l, kEC+, 

Yr;j,j+l(k,Y)= ’ 1 
tN,N+,(k) [1+rN,N+l(k)e2ikyl+0(1), Y + +a, .i=N, kER, 

2ik 
rj,j+ l(k) 
fj,j+ l(k) 

e2iky 
9 Y>Yj+l? j=O,...,N- 1, kEC+, 

Y:;j,j+l(k,Y)= 
2ik rN,N+ 1 (k) 

fN,N+ 1 (k) 
e2’kY+O(e2ikY), y -+ +a, j=N, kER. 

Furthermore, forj<N- 1, [rj,j+l(k)ltj,j+l(k>le 2iky is analytic in C+ and for y>yj+, it vanishes 
when k + ~0 in c’. In fact, we have 

Y,;j,j+l(k,y)-l=o(l), Y:;j,j+i(k,y)=o(l), k -+ ~0 in C+ (3.7) 

uniformly in YER. For each fixed YER, the functions Y,;,,j+l(k,y), Y,;j,j+l(k,y), 
Yj’,j,j+,(k,y), and Y:,j,j+l(k,y) are analytic in Cf and continuous in C+. 

Let us define 
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Vj,j+l(kJ)= & eikyY~;j,j+ltk,y), 5j,j+ l(kvx)= & e - -ikYY,;j,j+l(k,Y)* (3.8) 

Then vj,j+ r(k,x) and 5j,j+ ,(k,x) are two linearly independent solutions of Rq. (1.1) in the 
interval (Xj,Xj+l) for j=O,..., N. After using dyldx=H(x), for x E (xj,xj+,) we have 

ik JH(x) - +,tkyL (3.9) 

[j,j+l(k,x)= -ikm- ,~~~~,, 
i 

e-‘kyY,;i,j+l(k,y)+ $$TJemik”Y~;j,j+,(k,y). 

(3.10) 

Moreover, by letting y + + ~0 we obtain 

-2ik 
[Y ~;n,n+l(k,y);Y,;,,,+~(k,y)l-2ikY~;,,,+~tk,y)Y,;,,,+,(k,y)= t,,,+,ckj. (3.11) 

Let us define the Wronskian matrix 

(3.12) 

wheref[(k,x) andf,(k,x) are the Jost solutions of Eq. (1.1). From Eq. (2.12) and Theorem 2.1 it 
follows that for each fixed x ER, the matrix F(k,x) is analytic in Cf and continuous in C?. Let 
us also define 

rj,j+ 1 (k,x) = Vj,j+ I(k,x) tj,j+ ltk,x) 
rlj’,j+ l(k,x) I tj’,j+ l(k,x) ’ j=O,...,N. 

Using Eqs. (3.8)-(3.11) we obtain 

2ik 
det r n,n+l(krx)= - tn,n+l(k). 

In the interval (Xi ,Xj+ r ), we have 

F(k,x)=rj,j+ l(kvx)Aj,j+ l(k)* 

(3.13) 

(3.14) 

(3.15) 

Aj,j+l(k)= 
aj,j+ l(k) cj,j+ l(k) 
bj,j+l(k) dj,j+ltk) 1 

is to be determined using Eqs. (3.8)-(3.10). Since f[(k,x), f,(k,x), f;(k,x), and f:(k,x) are 
continuous at each xj , the following matching conditions must be satisfied: 

rj-I,j(k,xj-O)Aj-I,j(k)=Tj,j+I(k,xj+O)Aj,j+I(k), j=l,...,N. (3.16) 

Let us define 
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I 

2m 
A,=% 

0 ddff,-H(s)], 

I 
0 

m A=A-+A+= ds[H- -H(s)] + 
-21 I 0 

ds[H+ -H(s)]. 

Note that from Eqs. (3.1), (3.17), and (3.18), we have 

y=H+x-A++o( l), x --f +m, 

y=H-x+A-+o(l), x --) --co. 

Hence, using Eqs. (1.2) and (3.8) in (3.15) we obtain 

a,v,N+l(k)= d%eikA+, bN,N+l(k)=o, 

and similarly, using Eqs. (1.3) and (3.8) in (3.15), we obtain 
f 

d,,,(k)= zeikA-, co,l(k)=O. 

Using Eqs. (3.16) and (3.21) we have 

2889 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

N-I 
n rn,n+l(k,Xn+l-0)-1rn+I,nf2(k x ) n+lfO) n=j 

and using Eqs. (3.16) and (3.22) we obtain 

ii rn,n+ltk,x,+O)-lr,-l,,(k,x,-O) ,/j+)&,- . i! 1 (3.24) n=j 
Thus, from Eqs. (3.12), (3.15), and (3.23), for x E (xi,xj+t) with OS~=GN- 1 we have 

(3.25) 

and similarly from Eqs. (3.12), (3.15), and (3.24), for 1 GjsN we obtain 

The notation in Eqs. (3.24) and (3.26) means that n decreases from j to 1. For future use we define 
the matrix 

N-l 

Rk)= n rn,n+,(k,xn+l-O)-‘r,.I,n+2(k,x~+~+o). 
n=O 

(3.27) 
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IV. PROPERTIES OF THE SCATTERING MATRIX 

In this section we establish some properties of the scattering matrix that are needed in later 
sections. Let us define 

dk)=[ ;; $;]. 

p(k)=R(k)e2’kA+, /(k)=L.(k)e2ikA-. 

(4.1) 

Then from Pqs. (2.6)-(2.9) it follows that u(k) is unitary. We will call a(k) the reduced scattering 
matrix for Eq. (1. l), and hence 7(k) will be called the reduced transmission coefficient and p(k) 
and e(k) the reduced reflection coefficients. Using Eqs. (1.4), (1.5), (3.19), (3.20), (3.25), (3.26), 
and (4.1), we have 

&= & [l OlTkl[ ;]= tNN;ltk) LO WW-‘[ ;], 

rN,N+ l(k) 
IN,N+ 1 tk) 

(4.2) 

(4.3) 

(4.4) 

where F(k) is defined by Eq. (3.27). Note that from Eqs. (3.14) and (3.27) we obtain 
det ,F(k)=to~l(k)lt N,N+ r(k) and hence from Eqs. (4.2)-(4.4) we have 

to ,tk) L 
T(k) 

~tk)-~o.~tk) 

7(k) 

to,l(k) %yv+Itk)-P(k) 

fN,N+ ,tk) 7.(k) 
r(k) %,N+ltk)-P(k) 

IN,N-t l(k) 
+ dk)-z,,,(k) 

?N,N+ 1 (k) r(k) 

Theorem 4.1: Assume QEL~(R) and H-H, eL’(R’). Then 
(i) kltik) is analytic in C+ and continuous in c+; 7(k) is continuous at k = 0, and either 

r(O) # 0 or r(k) vanishes linearly as k ? 0. The bound state energies for Eq. (1.1) correspond to 
the (simple) zeros of k/7(k) in C+ and can only occur on the imaginary axis in C’. There is never 
a bound state at k=O. 

(ii) p(k) and e(k) are continuous for kER. Either ~p<k>~=~~(k>~<l for all kER, or /p(k)1 
=l/(k)l<l fork # 0 and p(O)=/(O)=-1. 

Proof: The analyticity of k/7(k) in Cc and the continuity in s\(O) follow from Eqs. (2.1), 
(2.12), (4. l), and Theorem 2.1. The continuity and asymptotic behavior of r(k) near k = 0 and the 
resulting dichotomy are established in the Appendix in connection with the proof of Theorem 4.2. 
The assertions about the bound states are proven as in the proof of Proposition 5.1 of Ref. 20. We 
omit the details. The proof of (ii) follows from part (i), Eqs. (2.1), (2.2), and the unitarity of 
u(k). n 
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We will refer to the case when 7(0)=0 [7(O) # 0] as the generic [exceptional] case. By Eq. 
(2.1) the exceptional case occurs if and only if the Jost solutions fi(O,x) and f,(O,x) are linearly 
dependent, i.e., if, for some nonzero constant ‘y, we have 

fi(OJ) = rf,(%x). 

Theorem 4.2: Assume H-H, E L’(R’) and Q G Li + JR) for some a~[O,l). Then 
(i) In the generic case 

p(k) = -l-l-o(jkl”), f(k)=-l+o(jkla), k + 0 in R, 

flk)=ick+o(lkj’+*), k + 0 in c+, 

where c is a nonzero real constant. 
(ii) In the exceptional case 

2KxY 
7(k)=v+o(lkja), k + 0 in 2, 

H+-H-9 
pCk)= H_j2+H+ +o((kl”), k --+ 0 in R, 

H-$-H+ 
ek)= K&zy +o(lkj”), k --t 0 in R, 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

where y is the constant defined in EQ. (4.5). Both (i) and (ii) remain valid for (Y= 1, provided we 
replace the error terms by 0 (k) . 

Proof: Equations (4.6) and (4.7) follow from Eqs. (2.1), (2.2), (4.1), and Theorem 2.1. We also 
find that 

IzJH,H_ 
c= - Lfi(O,x);fr(o,~)l~ (4.11) 

The proof of (ii) is given in the Appendix. H 
Next we consider the large k behavior of the reduced scattering matrix. Using Eqs. (3.5)- 

(3.10), we obtain 

r n,n+l(kxn+l -O)-‘r,+l,n+*(k~X,+l+o) 

= 
1 

a,+t(l +o( 1)) Pn+le-2ikyn+l(l +o( 1)) 

P n+1 elikym+l(l +o( I)) %+,(1+0(l)) 1 (4.12) 

as k + CO in CT+, where 

1 H(x,-O)+H(x,+O) 1 H(x,-0)-H(x,+O) 
an=- 

2 \Iz-I(x,-O)H(x,+O) ' 
A=- 

2 JzY(x,--O)H(x,+O) * 
(4.13) 

Let us define 

0 1 
Q=l o’ 1 I (4.14) 
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ffn Pne -2iky, 

Etk.4 = pne2iky, 1 an ’ 
(4.15) 

Note that E( - k,x,)=qE(k,x,)q, and we also have E( -k,x,)=E(k,x,) for k ER. Hence 
ll~zl E(k,x,) has the form 

ij, E(k,x,) =[ a(k) 
n=l 

b(k) ], 
b(-k) a(-k) 

where for kER, a(-k)=a(k) and b(-k)=b(k). By Eqs. (4.13) and (4.15) 

det E(k,x,)=ai-&= 1, 

and hence from Eq. (4.16) we obtain 

det =lu(k)12-lb(k)12=1, k E R. 

(4.16) 

(4.17) 

(4.18) 

By using induction on n it follows from Eqs. (4.13), (4.15), and (4.16) that 

N 
a(k)= I-I a, + 2 yse2ikbs, (4.19) 

II=1 s 

where the summation runs over a finite number of terms, and where ys and 6, are real constants. 
Moreover, b,> 0 owing to the fact that each b, is a sum of terms of the form Yj-Yi with j>i. If 
N= 1, i.e., if H(x) has only one discontinuity, the summation in Eq. (4.19) is absent and a(k) is 
constant. From Eqs. (3.27), (4.2), (4.12), and (4.19) we obtain 

1 
-=u(k)fo(l), k 3 a~ in c+. 
r(k) 

(4.20) 

Proposition 4.3: Suppose assumptions (Hl)-(H5) are satisfied. Then [a(k 1 in c’. 
Proof: From Eq. (4.13) it is seen that cy n> 1, where the equality holds if and only if 

H(x, - 0) = H(x, + 0). This proves the proposition when N= 1, since then u(k) = LY, . So we can 
assume Na2. We first claim that l/u(k) is the reduced transmission coefficient for a Schriidinger 
equation with Q(x) =0 and a piecewise constant function H(x) = H,(x) with jumps at 
x0, I ,--.,Xl,,N; let To(k) be the corresponding reduced transmission coefficient. Note that if 
Q(x)=0 and H(x) is piecewise constant, then the potentials Vj,j+ l(y) in Eq. (3.4) are zero. 
Therefore, if we evaluate l/To(k) by using Eq. (4.20), the o( 1 )-terms are all zero and 1 /To(k) is 
of the form (4.19). The choice of H,(x) is not unique and we can find infinitely many H,(x) all 
of which lead to the same ro( k) . For example, let 

Ho,- 9 XE(-mJo,*) 
Ho(x) = Ho,- 

rr,“,,(cUj+pj)2’ x E txo,n ,xo,n+ I>* n=l,...,N, 

where Ho, - > 0 is an arbitrary positive constant, x0,, is arbitrary, and 
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xo,n+ 1 =xo,n+ 
Yn+l-Yn 

Ho _ fi (Ujuj+pj)“t n= l,...,N- 1. 
j=l 

It is straightforward to check that CY~,~= a,,, &n=/3n, and yO,n+l-yO,n=yn+l-ynr where LYE+, 
&, and yO,n are given by Eqs. (4.13) and (3.1) with H(x) replaced by H,(x). Hence 
u(k) = 1 /ro( k). Using the analog of Proposition 5.4 of Ref. 20, we obtain that Eq. (1.1) with 
Q(x) = 0 and H(x) = Ho(x) has no bound states. Hence, by Theorem 4.1, To(k) does not have any 
poles in Cf and so u(k) # 0 in ??. Furthermore, u(k) is an entire function of order 1. Let 
&?(~)=fin[k&(k)l f or r>O. Then, by a result in Ref. 25 (Theorem 2.7.4) we have e(r) 
f 0 (exp(-r’+“)) as r -+ ~0 for any E>O. In other words, there is a sequence r, -+ 03 and s>O 
such that e(r,)?=Sexp( - rA+“) as n -+ ~0. Thus 

&q ,k,=rnG f exP(r!l+‘). (4.21) 

For kER we have the bound ll~u(k)~=~~O(k)~~l, and on the positive imaginary axis we have 
1 /Ia (k) I c M for some constant M. Together with Eq. (4.2 1) this implies by using a Phragmen- 
Lindelijf theorem (Ref. 25, Theorem 1.4.2) that l/la(k)1 <max{ 1, M} in the first quadrant of the 
complex plane. A similar argument applies to the second quadrant; hence 1 /I u(k) I Gmax{ 1 ,M} in 
cc. Another a$ication of a Phragmdn-Lindelof theorem (Ref. 25, Theorem 1.4.3) yields 
lllu(k)(Gl in C . n 

Proposition 4.3 implies that we can write Eq. (4.20) in the form 

&=4k)ll+o(l)l. -7 k-+w in C. (4.22) 

In an analogous manner, from Eqs. (3.27) (4.4), (4.12), (4.18), and (4.22) we get 

p(k)= g +0(l), k--, 503, (4.23) 

Theorem 4.4: Under assumptions (Hl)-(H5), if Eq. (1.1) does not have any bound states, 
17(k)lSl in c+. 

Proof: Assume I 7(k0)) > 1 for some k. E 3. By taking reciprocal expressions in Eq. (4.22) 
and using Proposition 4.3 we have 1 T(k) - l/la(k)] I = o( 1) as k --+ 03 in c+. Hence there exists 
a number R>lk,j such that Is-(k)- l/~u(k)~~<~~(kO)~- 1 for lkl=R, k E ??. Since /a(k 1 
by Proposition 4.3, we conclude that I r(k)] < I 7(k0) 1 on the semicircle Ikl = R with k E c+, and 
also on R since I T(k)1 G 1 there. This contradicts the maximum modulus principle. Hence 
Ir(k inCf. n 

Let APW stand for the algebra of all complex-valued functions f(k) on R which are of the 
form f(k)=ZyE--m fje jkXi, where fj EC and Xj ER for all j and Cjlfjl <m. Then the closure of 
APW in L”(R) is the algebra AP of almost periodic functions. 

Theorem 4.5: Under assumptions (HI)-(H5), we have 
(i) u(k), b(k), l/u(k), and b(k)lu(k) belong to APW. 
(ii) lim supkicmlp(k)lC 1. 
Proof: Since by Eq. (4.19) and Proposition 4.3 fork E c+ we have l=~lu(k)l~C<~ for 

some constant C, we see that u(k) is an invertible element of L”(R). Since the invertible elements 
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of APW are exactly the elements of APw that are invertible in L”(R) (cf. Ref. 26, Corollary 1 of 
Sec. 29.9), u(k) is invertible in APW. Hence l/u(k) and b(k)lu(k) belong to APW, proving part 
(i). Using Eq. (4.18) we get 

I$# d&l, kER. (4.24) 

Now part (ii) follows from Eq. (4.23). n 
When H(x) is discontinuous, although T(k) does not converge to a constant as k --f CO in 

3, it is still possible to construct 7(k) explicitly and uniquely in terms of 1 p(k)/ and the bound 
state energies, thus generalizing a procedure found in Ref. 22 for the case H(x)= 1. We will not 
give the details here, but we refer the reader to Sec. 2 of Ref. 27 where this construction is given. 

We conclude this section with a result that will be needed in Sec. VIII. Let sgn(x) denote the 
sign function, i.e., sgn(x) = 1 when x>O and sgn(x) = - 1 when x<O. Let h“denote the number 
of bound states of Eq. (1.1). Then we have 

Proposition 4.6: sgn(c) = ( - 1). ’ ‘+’ and sgn($=( - 1) ’ ; where c and y are the constants in 
Eqs. (4.7) and (4.5), respectively. 

Proofi Let k = is with s > 0. Then l/ 7(is) is real and, by Theorem 4.1 (i), has .,!“simple zeros 
corresponding to the A’- bound states. Moreover, by Eqs. (4.13), (4.19), and (4.21), 
1/7(is) -+ IIIf(=l (~,a1 as s + +a. Thus (-1).‘;7(is)>O for s>O small enough. Therefore, 
in the generic case, we find that c = -lim,,, T( is)ls is positive if .&” is odd and negative if Jz“ is 
even. In the exceptional case we may set s=O so that (- 1) ’ )7(0)>0, and by using Eq. (4.8) we 
see that y is negative if “fl is odd and positive if H is even. n 

V. SOLUTION OF THE INVERSE PROBLEM 

In this section, when there are no bound states we obtain H(x) from the scattering data 
consisting of Q(x), one of the reflection coefficients, and either of H, . The recovery of H(x) is 
accomplished by using in Fq. (5.24) the unique solution of the singular integral equation (5.21). 
The proof of the unique solvability of Eq. (5.21) will be given in Sec. VII. In Sec. VIII the method 
described here will be generalized to the case when there are bound states. 

Let us write the Jost solutions of Eq. (1.1) in the form 

fkk,x)= "$$ eiky+‘“+ZI(k,y), (5.1) 

J H- 
fr(kx) = - e-ib’fikA-zr(k,y), H(x) (5.2) 

where y is the quantity in Eq. (3.1) and At are the constants in E$ (3.17). The functions Z,(k,y) 
and Z,(k,y) defined in Eqs. (5.1) and (5.2), respectively, will be called the Faddeev functions 
associated with Eq. (3.2); in particular, we will call Z,(k,y) the Faddeev function from the left and 
Z,(k,y) the Faddeev function from the right. From Eq. (3.3) we see that eikYZ,(k,y) and 
e -ikyZ,(k,y) satisfy Es. (3.2) on every interval (Yj ,Y~+~) with j=O,...,N. 

Proposition 5.1: Under assumptions (H l)-(H5) the quantities Z,( k,y) and Z,( k,y) defined in 
Eqs. (5.1) and (5.2), respectively, as well as Zi(k,y) and Z:(k,y) are analytic in k EC+ for each 
Y ER\{Y, ,...,yN}. Whenx -+ l km in Eq. (5.1) we have Z,(k,y) -+ 1, and whenx --f --c4 in Eq. 
(5.2) we have Z,(k,y) + 1. 

Proofi The analyticity in k for Z,(k,y), Z,(k,y), Z;(k,y), and Z:(k,y) follows from the 
anWcity OffLkx), f,(k), fi(k,x), and f:(k,x) via Eq. (2.12) and Theorem 2.1. Using Eqs. 
(1.2), (3.19), (5.1), and that H(x) + H, as x -+ +m, we see that Z,(k,y) -+ 1 as x -+ -tm. 
Note that the o( 1) term in Eq. (3.19) is equal to - -f,” ds [ H( s) - H, ] and hence goes to zero as 
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x --+ +m. Similarly, using Eqs. (1.3), (3.20), (5.2), and that H(x) -+ H- as x -+ --co, we s; 
that Z,(k,y) + 1 as x --t --co. 

Note that in Proposition 5.1, if we also require H’(x) -+ 0 as x + + 03, we then have 
Zi(k,y) -+ 0 when x -+ +m, and Zi(k,y) --+ 0 as x -t -a. 

+ For any &(0,~/2) let Ss denote the sector Ss={k E C :SGarg ksrr- 8). 
Theorem 5.2: Under assumptions (Hl)-(H5), for each fixed y ~R\{yt ,...,yN} the functions 

Zl(k,y) and Z,(k,y) are bounded in c+. Moreover, as k -+ 03 in S,J the following asymptotic 
relations hold: 

+0(l), YE(Yj,Yj+l), j=O,*..,N-l, 

Zdk,y)=l+o(l), YE(YN,+~), 

Z,(ky)= h 

(’ i 

(Yn +0(l), YE(yj,Yj+l), j=lv.--9N, 

n=l 

Z,(k,y)=l+o(l), YE(-@‘,Y~), 

Z;(k,y)=o(l), Z:(k,y)=o(l), Y ER\{YI,. . . ,YN}. 

Proof: We set 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

N-l 

rIr n,n+l(kXn+l -O)-‘rn+l,n+z(k,Xn+1+0) 
n=j 

) [ ;] =[ ;(B;;;;;;;;:::;;;;]. (5.8) 

where j=O,...,N- 1. As k --+ 00 in C+, A(k,yj+l,.**tyN) and B(k,Yj+l,-*.,YN) behave as 

+ C Cp(k,Yj+lv.**, (5.9) 
pccj+l 

N 

B(k,yj+l,.--~YN)= C Cn(k,Yj+l....,YN)e2ikYn n=j+l 
N-2 + C e2ikyn c dp(kyn+l ,---y (Ys-Yr) . n=j+l p=cn+1 

(5.10) 

Here C,, rz= l,..., N- 1 with N>2, is the set of ordered pairs {r,s} such that r,s ~{rr,...,N} and 
6s. The letter P denotes any nonempty subset of C,. The coefficients cp(k,yj+l,...ryN), 
cn(k,Yj+l,-**, YN), and dp(k,y,+lr...r yN) depend on k through the o( 1) terms in Eq. (4.12) and 
on ys through Eq. (4.13) for s = 1,. . . , N. Therefore, these coefficients have finite limits as k -+ NJ 
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in ??. It is also understood that the sum in Eq. (5.9) is absent if j = N- 1. Similarly, the second 
sum in Eq. (5.10) is absent if j= N- 2 or j= N- 1. The proof of Eqs. (5.9) and (5.10) is straight- 
forward by using downward induction on j, starting with j = N- 1. The details are omitted. From 
Eqs. (3.8), (3.13), (3.25), (5.1), and (5.8), we get for y E (yj ,yj+ l) 

Moreover, from Eq. (3.13), (3.15), and (3.21), we get Z,(k,y) = Y,.,,+,(k,y) whenever 
YE(YN,f@J). 

. 7 

Now Eqs. (5.3) and (5.4) follow from Eqs. (3.7), (5.9), (5.10), and using y<~~+~. The proof 
of Eqs. (5.5), (5.6), and (5.7) is analogous. H 

Eqs. 
Theorem 5.3: Under assumptions (Hl)-(H5) the functions Z,(k,y) and Z,(k,y) defined in 
(5.1) and (5.2), respectively, satisfy for k ER and y ~R\{yt ,.. .,yN} 

[ ~~~~::~~]=[ -/(::-2iky -pzj;Ziky][ %ii:ii]. (5.11) 

Proof The physical solutions +!(k,x) = T,(k)f,(k,x) and ICr,(k,x) = T,(k)f,(k,x) satisfy4 

[ c;;;:;]=[ ;;;; $j[ ;;:;;;;]v kER, (5.12) 

and hence using Eqs. (4.1), (5. l), and (5.2) in Eq. (5.12) we obtain Eq. (5.11). 
From Eq. (5.11) we have 

~(k)Z,(k,y)=Z~(-k,y)+~tk)e2ikyZ~tk,y), kER, Y ~R\{yl,...,y~}, (5.13) 

~(O)Z,(O,Y)=Z~(O,Y)+~(O)Z~(O,Y), Y EWY~,-.,YNI. (5.14) 

Let us define 

F+(k,x,y) = q& [~k)Z,tk,Y)-7(O)Z,(O,Y)l, 

F-(k-w) = $=#A-W-ZDWl~ 
X 

(5.15) 

(5.16) 

Then from Eqs. (5.13)-(5.16), for keR, XER\{X~ ,..., n,}, and y~R\{y, ,..., y,.,} we obtain 

Z,(OYY) 
F+(k,x,y)-F-(k,x,y)= -p(k)e2ikyF-(-k,x,y)+ i [p(k)e2iky-p(0)] - 

&a’ 
(5.17) 

Since we assume there are no bound states, by Theorems 4.4 and 5.2, for fixed x ER\{x, ,. ..,x,,,} 
and Y ER\{YI ,...,yN}, the functions F,(k,x,y) have analytic extensions in k to C’, and as 
k + 03 in c’, F,(k,x,y) --t 0. The behavior of F,(k,x,y) at k=O depends on the falloff of 
Q(x) and H(x)-H, at infinity. If QEL~+,(R) with a~(O,l) and H-H, EL’(R’), then by 
Theorem 2.1 (ii), (5.1), and (5.2), we have 

Zl(k,Y)-Zl(O,Y)=o(Ikla), Z,(k,y)-Z,(O,y)=o(lkja), k -+ 0 in Cf. 
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Also 7(k)- ti:O)=o(lkl”) by Eq. (4.7) and (4.8). As indicated by Theorem 5.2, Z,(k,y) and 
Z,(k,y) are bounded fork E ??, and hence it follows with the help of Eqs. (5.15) and (5.16) that 
F,(k,x,y) belong to the Hardy spaces H%(R) for p< l/( 1- a); if a= 1 a similar argument shows 
that F,(k,x,y) belong to H”+(R) for all p E ( 1 ,w). Recall that the Hardy spaces H$ (R) are the 
spaces of analytic functions f(k) on C* for which SUP,,~ Izm dklf(k k ie) IP is finite. Associated 
with these spaces are the projection operators nr projecting tP(R) onto H<(R). They are given by 

W.f)(k)= k& I;= s&o f(s). (5.18) 

It is known28 that II, are bounded and complementary projections on Lp(R) when 1 <p-Cm. 
Applying II+ and IL to Eq. (5.17) and using ntF,(k,x,y)=F,(k,x,y) we obtain for k ER 

Fz(kw)= & I 

m ds 

I 

p(s)e2iSy- P(O) Zl(O,Y) ~- --cI? s-k-iO -+ s JHO p(s) 
e2jSyF-( -s,x,y) . 1 

(5.19) 

From Eq. (5.19) we see that for k ER, x ER\{x,, . . .,x~}, and y ER\{Y 1 ,. . .,y,,,}, the function 
F-(k,x,y) obeys the singular integral equation 

F-thy) = & 
f 

Cc ds p(s)e2’SY- P(0) Zl(O,Y) 
--m s-k-tiO S m 

1 m ds 

+zi I --‘Li s+k-iO p(-s)e-2i”yF-(s,x,y). 

Let us write Eq. (5.20) in the form 

where X(k,x,y) = F-(k,x,y) and 

&(k-w)=; I 

ds 
yw s-k+iO 

p(s)e2i”Y- P(O) Zl(%Y) 

S 4%’ 

(@yX)(k4= & I 1 ,+f”, p( -s)e-2iSyX(s,x,y). 
m 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

In Sec. VII we will discuss the solvability of Eq. (5.21) in H%(R). Here we will only describe 
the recovery of H(x) from the solution X(k,x,y) of Eq. (5.21). The next proposition establishes a 
connection between X(k,x,y) and y(x). 

Theorem 5.4: Suppose assumptions (Hl)-(H5) hold with LY= 1 in (H5). Then the Jost solution 
f/(0,x) is determined by Q(x) alone and fl(O,x) is determined by Q(x) and H+ alone. Further- 
more, we have 

X(O,X,Y) = & [i~l(O,x)+fl(O,x)(~~A+)l, (5.24) 
f 

where A+ is the constant in Eq. (3.17). 
Proof: From Eq. (2.13) we see that f&0,x) is a solution of the integral equation 
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fr(O,x) = 1 + I a, dztz-x)Q(zl.fr(O,z). (5.25) 
x 

Since Eq. (5.25) can be solved uniquely by iteration, f/(0,x) is determined by Q(x) alone. 
Similarly, using Eq. (2.26) fr(O,x) is determined by Q(x) and H, alone. Furthermore, from Eq. 
(2.26) it follows that f&0,x) is purely imaginary. From Eqs. (4.1), (5.1), and (5.16) we have 

1 
F-(k,x,y) = - e 

kJH, 
ik(y+A+)Cfi( -k,x)-fi(O,x)]+ ’ -ffrtO,x)[e 

kJH, 
Wy+A+)...- 1 I, 

(5.26) 

and hence letting k -+ 0 in Eq. (5.26), since X(O,x,y)=F-(O,x,y), we obtain Eq. (5.24). n 
Note that since f[(O,x) is imaginary, the term in brackets in Eq. (5.24) is real. Hence 

X(O,x,y) is purely imaginary. In order to find X(k,x,y) we need to know Xo(k,x,y). Now it 
follows from E&s. (2.12), (5.1), and (5.2) that 

Zl(O,Y) 1 
x= Ji;;fl(OJ), 

Zr(O,Y) 1 
JHo= J==pw’ (5.27) 

and hence we see that Xa(k,x,y) in Eq. (5.22) is completely determined by p(k), Q(x), and H+ . 
Provided Eq. (5.2 1) has a unique solution, X( k,x,y) is also completely determined by p(k), Q(x), 
and H+ . Once X(k,x,y) has been obtained, the value of A+ is determined by setting x= 0 and 
y=O in Eq. (5.24), so that 

A 
fr(OJJ) . (5.28) 

Note that24 since there are no bound states, f[(O,x) >O for all x E R. Then y(x) is found by solving 
Eq. (5.24) for y in terms of x. Finally, H(x) is obtained by using H(x)=dyldx. 

We remark that if, in addition to p(k) and Q(x), H- is known instead of H, , then we can 
first compute H+ as follows. In the exceptional case (i.e., when p(0) # -l), from Eq. (4.9) we 
have 

1+ P(O) 
H+=+H- - 

l-p(O)’ 

In the generic case (i.e., when p(O)= - 1) we first compute [7(k) I= dw for k E R and then 
find ICI =limk,,~7(k)~/~k~, h w ere c is the constant given in Eq. (4.11). Thus 

(5.30) 

Proposition 5.4 no longer applies if QEL~(R), but Q $ L;(R). Then F-(k,x,y) will in 
general diverge as k -+ 0. So far we have only worked out some cases in which this divergence 
is of the form of certain inverse power laws. To be specific, we assume that for some EE (0,l) 

lim k’-‘F-(k,x,y)= & Fo(x,y) 
k-0 

(5.3 1) 
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exists for every x~R\{x~,...,x~} and y~R\{y t , . . .,yN}. Here and in the sequel it suffices to 
consider k> 0. Some conditions on Q(x) that guarantee a behavior like (5.3 1) will be given below. 
To find an expression for Fa(x,y) in terms of Jost solutions we insert Eq. (5.1) in Eq. (5.16) and 
obtain 

k’-~~-(kx,Y)= & - k-“[Z,(-k,Y)-Z,(O,Y)l 

=&+ k-yf,( -k,x)-f,(O,x)+f1( -k,x)(eiky+lkA+- l)]. 

Letting k --+ 0 in the above equations, we see that Fe(x,y) in Eq. (5.31) is of the form 

Fcb,Y> =f&h 
(5.32) 

where 

k-0 k’ . 
(5.33) 

Provided the functionfo(x) can be determined from Q(x) alone, Eq. (5.32) takes the place of Eq. 
(5.24). This is the content of the next theorem. 

Theorem 5.5: Suppose Q EL;(R) and lim,,,, x2+‘Q(x)=qo exists for some E in the in- 
terval O<e<l. Then y(x) and thus H(x) (i.e., dyldx) can be obtained by solving 

Fo(x,y)= -qoH:2’[E( c+ l)]-‘r( 1- tz)e(“2)m’ff,(0,x) (5.34) 

for y(x), where IY denotes the Gamma function and Fo(x,y) is defined in Eq. (5.31). 
Proof We denote by f,,+ (k,x) the Jost solution from the left associated with the Schrijdinger 

equation 

$“(k,x)+k2H:cjl(k,x)=Q(x)$(k,x), XER. (5.35) 

The reason for considering Eq. (5.35) is that when we write 

fit-k,x)-f,(O,x)=A,+A,, (5.36) 

with A,=fr(-k,x)-f,,+(-k,x) and A2=fi,+(-k,x)-f,(O,x), we can estimate A, and the 
small-k asymptotics of A, have already been worked out in Ref. 29. We begin with A,. By means 
of the variation of constants formula we obtain 

fdk)=fl,+(kx)+ &- Irn dzlfr,+(k,xlfr,+(k,z)-fi,+(k,x)fl,+(k,z)l + x 

x CH: -H(z>*lfrW,z), (5.37) 

where we used Lfr,+(k,x);fl,+(k,x)]= -2ikH+. Since the Jost solutions appearing in Eq. (5.37) 
are all bounded, it follows from Bqs. (2.5) and (5.37) that for some constant C we have 

]A.,]<Ck [” dzIH:-H(z)2j=O(k), k + 0. 
JX 
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To estimate A2 we consider Eq. (5.35) with Q(x) replaced by Q,(x)= Q(x+ w), where a is 
arbitrary. Let fr,+,m(k,x) denote the Jost solution from the left associated with Q,(x). Then 
fi,+,,(k,x) andfi,+(k,x) are related by 

fr,+,,(k,x)=e- ikH+=fl,+(k,x+m). (5.39) 

Using Eq. (5.39) with x=0 and k replaced by -k, and fr(O,m)=fl,+(O,~)=fi,+,,(O,O), we 
can write 

f~.+(-k,~)-f~(O,~)=(e-ikH+“-l)fi,+,,(-k,O)+lfi,+,,(-k,O)-fl + ,(o,o)]. 9 7 
(5.40) 

The first term on the right-hand side is O(k) as k t 0. To estimate the second term, we note that 
Q,(x) has the same asymptotic form as Q(x), i.e., lim,,+, x2+‘Q,(x) =qo. Using the results 
of Ref. 29 [Theorem 3.1 (i)] together with EZq. (2.5), we have 

(5.41) 

where 

(5.42) 

Replacing w by x and inserting Eq. (5.41) in Eq. (5.40), we get 

A2=u0e(i’2)a’f~(0,x)H~kc+o(~k~E). (5.43) 

Substituting Eqs. (5.38) and (5.43) in Eq. (5.36) and evaluating the limit in Eq. (5.33), we obtain 

fo(x) =aoe’i’2’“‘fr(0,x)H: . (5.44) 

Now Eq. (5.34) follows from Eqs. (5.32), (5.42), and (5.44). n 

VI. EXAMPLES 

In this section we illustrate the inversion method described in the previous section by two 
examples. In the case of no bound states, we will solve Eqs. (5.21) and (5.24) starting from a given 
reduced reflection coefficient p(k) both in the generic and exceptional cases. We will also discuss 
the connection between p(k) and R(k) or L(k) in conjunction with the solution of the inverse 
problem. Even though the reflection coefficients in these examples are simple, the solution of the 
inverse problem involves extensive calculations. 

We begin with the observation that the operator GY :H?(R) -+ H’?(R) in Eq. (5.23) has the 
form 

where 3 is the reversion map (.Yf)(k) =f( - k). Furthermore, X,(k,x,y) can be written as 

f/(07X) nr_ 
Xo(kx,y) = - - 

p(s)e2iSY-p(0) 

K 
f s (6.2) 

where we have also used Eq. (5.27). 
Example 6.1: Suppose there are no bound states and 

dk)=wikp, P~,PER, IPol<l. (6.3) 
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Hence we are in the exceptional case. We also assume that (Hl)-(H5) hold with CY= 1, and hence 
Q E L:(R). Since (llk)[e ik(2y+/3- l] belongs to H:(R) when 2y+p>O and to H?(R) when 
2y+psO, from Eq. (6.2) we obtain 

0, 2y+pzo 

Xo(k,.w) = fdO,x) e Wy+P)- 1 
-po K k * 2y+P<O. 

64) 

Considering the operator ey, we first note that eY = 0 for 2y + pa 0. When 2y + /?< 0: using the 
Fourier transform .EH?(R) -+ L2( 0,~) defined by 

V%)(t)= /yrn dk eik’g(k), 65) 

we obtain 

(F@~lh)(t) = I 
poh(-t-2y-P), O<t<-(2y+P) 

0, t>--(2y+jq. 

The spectrum of 3GYJr’ (and hence that of @“) consists of the three points -po, 0, and po, each 
of which is an eigenvalue of infinite multiplicity. Indeed, let N- , No, and N, denote the corre- 
sponding eigenspaces of .9-eyF1. Then 

NS:={h~L2(0,~):h(t)=7h(--t-2y-/I), h(t)=0 for t>-(2y+P)}, 

No={h~L2(0,w):h(r)=0 for O<t<-(2y+/3)}. 

So, (“; is bounded and self-adjoint, but not compact. Taking the Fourier transform of Xo(k,x,y) 
we obtain 

i 

f,(O,x) 
29ripo - 

JH,’ 
O<t<--(2ySP) 

t~o(-?x,Y))(~?xtY)= 

and hence 3X0 E N+ . Therefore, the solution to Eq. (5.21) is given by 

X(k,w)= 
Xo(kw) 

l-po . 

Now we distinguish the two cases /3~0 and p<O. 
Cuse (a): p30: On the interval y> -p/2, Eq. (5.24) assumes the form 

O=ifdO,x)+fdO,x)(y+A+), 

where, by Eq. (5.28) we have 

hi;(0~0) 
A+=--i f,o- 

Hence y(x)= -i~~(O.x)/f~(O,x)]+iLi‘,(O,O)/fl(O,O)], and so 

(6.6) 

67) 

(6.8) 

J. Math. Phys., Vol. 36, No. 6, June 1995 

Downloaded 15 Aug 2002 to 129.74.199.113. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



2 9 0 2  Aktosun,  K laus,  a n d  van  de r  Mee :  inverse scat ter ing with d iscont inuous wave  speed  

Hb)=y’(x)=- i  (6.9)  

F r o m  Eqs.  (2.27),  (3.17),  a n d  (6.9)  it fo l lows that the constant  A +  in  E q . (6.8)  can  b e  wri t ten 
as  

A ,=-H,  I c m  dx  
l- f i (w2 

0  fr(W 2  . 

Us ing  E q . (2 .27)  in  E q . (6.9)  w e  obta in  

H +  
H(x )=  fr(o,x>zv x’wl, 

(6 .10)  

w h e r e  wl  is such  that Y ( w  t) =  -p/2. It wil l  turn out  that, in  the notat ion of assumpt ion  (Hl), 
w  1  = x 1  is the point  w h e r e  H(x)  has  a  discontinuity.  B y  E q . (6.1 l), wt is de te rm ined  un ique ly  by  
the equa t ion  

p  0  dx  - =  
2H.v I 03,  fiW F  

(6.12)  

It rema ins  to so lve E q . (5 .24)  w h e n  y <  -p/2, i.e., x<wt  . F r o m  Eqs.  (6.3),  (6.4),  a n d  (6.6)  w e  
h a v e  

P O  fl(O J )  
X ( O ,x,y)= -i -  ~  

l - P O  JH, 
( 2 Y  + p > *  

So lv ing  E q . (5 .24)  w e  get  

P P O  I - P O  y(x)  =  -  - -  -  
i 

Mx)  

l fP0 l+ P o  A + + i  f r(o,x) i T  

a n d  after us ing  E q . (2 .27)  

~ - P O  H +  
H(x)  =  - 

l+pof~(o ,x )~’ x<wls  

(6 .13)  

C a s e  (b):  /3<0:  T h e  analys is  in  this case  is s imi lar  to that in  (a),  except  that n o w  the constant  
A +  has  to b e  eva lua ted  by  us ing  the solut ion for y <  -p/2, i.e., E q . (6.13).  T h e  va lue  wl, wh ich  
is n o w  posit ive, is de te rm ined  un ique ly  by  

IP I ~ + P O  = I dx  - - =  
2 H +  ~ - P O  I 0  frcwZ’ 

a n d  A  +  is g iven  by  

1  -fi(w * 
f / (0,X)2 -p  l”“,,. 

T h e  result  for H(x)  is the s a m e  as  in  par t  (a),  E q . (6.1 I), a n d  E q . (6.14).  

(6 .15)  

(6 .16)  

J. Math.  Phys. ,  Vol .  38,  No.  6, June  1 9 9 5  

Downloaded 15 Aug 2002 to 129.74.199.113. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



Aktosun, Klaus, and van der Mee: Inverse scattering with discontinuous wave speed 2903 

We add a few more details concerning the function H(x) constructed above. First we observe 
that H( ‘13 i + 0) = H( w t - 0) if and only if po=O, i.e., if and only if the potential is reflectionless. 
Then H(~)=H+/f,(0,x)~ forxER. 

Since we are dealing with the exceptional case, fr(O,x) = yf ,(0,x) by Eq. (4.5) and 
f,(O,x) -+ 1 as x + --03. Evaluating H- by using Eq. (6.14) we obtain the expression already 
found in Eq. (5.29). Furthermore, sincef[(O,x) has no zeros and fi(O,x) -P 1 as x -+ +w, the 
following estimate is valid: 

Now, from Eqs. (2.15) and (2.19) it follows that 

~l-fl(O,x)~~eE+fo~x)-l~C Xwdz(l+lz[)lQ(z)l, 
I 

x>O. (6.18) 
. 

Since Q EL;(R), it follows by using an integration by parts that the right-hand side of Eq. (6.18) 
is in L’(R+). Together with Eq. (6.17) this implies H-H, E L’(R+), which is consistent with our 
assumption (H3). Similarly, one argues that H-H- E Lt (R-). 

The Jost solutions from the left associated with H(x) can be obtained from Eqs. (5.1), (5.16), 
(6.4), and (6.6). We have 

f eik(y+A+)fi(O,x), x>wl 

fi(O,x) ik(y+/,+)- PO (6.19) 
l-pee 

~fi(O,x)e-ik(Y-A++p), x<wl. 

It follows from Eqs. (1.4), (3.20), (4.1), (5.29), and (6.19) that T(k) = d=i and 
G(k)= -p(k), and one verifies that T(k)= l/u(k)= l/at, where u(k) and I+ were defined in 
Eqs. (4.19) and (4.13), respectively. 

We have so far discussed the recovery of H(x) in terms of p(k), Q(x), and H, under the 
assumption that there are no bound states. From the viewpoint of physical applications it seems 
more appropriate to replace p(k) by R(k), in analogy to the standard case where H(x) = 1. As an 
example, let us assume that R(k) = R, is constant with - 1 CR,< 1. From Eq. (4.1) we obtain 
p(k) = Rge2ikA + , where for the moment A + is considered to be a parameter. So p(k) is of the form 
(6.3) with /3=2A+ and po=Ro. Let 

1 -fl(0,x)2 
fi(OJ)* * 

(6.20) 

From Eqs. (6.10) and (6.16) we have A + =dH+ when A +- ==-O,andA+=dH+[(l-Ro)l(l+Ro)] 
whenA+<O. HenceA+- ‘0 if and only if d>O. If da0, the function H(x) is given by Eqs. (6.11) 
and (6.14), where wt is given by Eq. (6.12) which can be written as 

l-fl(0,X)2 - 
dx fi(O,x)* = 

(6.21) 

If d<O, the function H(x) is given by Eqs. (6.11) and (6.14) with at determined by Eq. (6.15), 
i.e., 

1 -fr(0,n)2 dx 
dx fr(O,x)* = fr(OJ)z* 

(6.22) 
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Therefore, we see that corresponding to the reflection coefficient R(k)=R,, there exists a one- 
parameter family of functions H(x) with H, as the parameter. The point CJ~, where H(x) may be 
discontinuous, is determined by Eqs. (6.21) or (6.22) depending on whether da0 or d<O. The 
sign of d is determined by Q(X) alone. 

Example 6.2: Suppose there are no bound states and 

PfiSk ikp 
p(k)= ~ e -p+ik ’ @-O, -l<&l, PER. (6.23) 

Note that 1 p(k) I< 1 for k E R\(O) and p(O) = - 1; thus this is the generic case. From Eq. (6.2) we 
obtain 

Xo(k,x,y) = t+ 1 ik(2y+B)_ t+ 1 
+k+iCL’ -e 

C1(2y+p) 
kfip. I 

) 2y+p<o. 

Using the Fourier transform defined in Eq. (6.3, we have 

i 

-2rri fr(OJ) 

(*=o(*AY)Nr,-LY)= 
--[1-(~+l)e~(2y+B+z)], O<t<-(2y+P) 

JH, 

I 0, t> -(2y+p). 
(6.24) 

Moreover, similarly as in Example 6.1, we have 

@y=o, 2y+p>o, (6.25) 

and when 2y + P-C 0 we have 

(2-0,2wz)(t) 

@(-t-2y-P)-p(5+ l)eP(‘+2J’ffi) -2y-B-rdx epLXh(x), O<t<-(2y+P) 
= I 0 

(6.26) 

We first determine the spectrum of ~9~. From Example 6.1 we know that the spectrum of the 
operator h --t &z( - t-2y-j?) restricted to L2(0, -2y-j?) with 2y+/?<O consists of the two 
eigenvalues +&, each having infinite multiplicity. According to Eq. (6.26) this noncompact opera- 
tor is perturbed by a compact integral operator. Hence, on L2(0, - 2y -p), the spectrum of fly 
consists of the two points +l and possibly a countable number of eigenvalues A that can accu- 
mulate only at +t. We also know that [Xj~l because [p(k)]< 1, and hence I@,ll~l by Eq. (6.1). 
The following analysis confirms this expectation. For simplicity we set p=O in the following. The 
case /3 # 0 can be handled by the substitution y + y + p/2. It also suffices to consider fi,, on the 
invariant subspace L2(0, - 2y) with y<O since on its orthogonal complement 0, is the zero 
operator. On L2(0, - 2y) the eigenvalue problem for .P-$.ljrt reads 

@z(-r-2y)-,u(5+ l)epL(2Yf’) dx ePxh(x)=Xh(r), (6.27) 

or equivalently 
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dx eYz(x)=Xh(-t-2y). (6.28) 

Now let 

U(t)= dx e@‘h(x). (6.29) 

Our goal is to convert the eigenvalue problem (6.27) to a second-order differential equation for 
U(t). In order to justify the following steps we must first show that U’(t) is absolutely continu- 
ous. Writing Eqs. (6.27) and (6.28) in terms of U(t) we obtain 

tU’(-t-2y)-p(5+ 1)U(-t-2y)=Xe-2’L(‘+Y)U’(t), (6.30) 

(6.3 1) 

Every solution of Eq. (6.30) [resp. (6.3 l)] that also satisfies U(0) = 0 gives rise to a solution of 
Eq. (6.27) [resp. (6.28)] an d vice versa. Now Eqs. (6.30) and (6.31) can be solved for U’(r) and 
U’(-t-2y) in terms of U(t) and U(-t-2y), provided h # 25. So let us assume h # +lfor 
the moment. As a result, U’(t) can be expressed in terms of U(t) and U( - t-2y), both of which 
are absolutely continuous by Eq. (6.29). Hence U’(t) is absolutely continuous. Multiplying Eq. 
(6.31) by 5 and using Eq. (6.30) to replace .$U’( - t- 2y) in Eq. (6.31) we obtain 

42U”(t)-pLg(e+ l)U(t)=hp(E+ l)e2~L(‘+y)U(-t-2y)+h2U’(t). (6.32) 

Differentiating Eq. (6.32) we obtain 

Now in the above equation, we replace U( - t-2y) and U’( - t--2~) by their equivalents in 
terms of U(r) and U’(t) by using Eqs. (6.32) and (6.31), respectively. After some simplifications 
we arrive at the differential equation 

(52-X2)U”(r)+2&+~~)U’(t)+~~(52-1)U(t)=O. (6.33) 

When A=+[, we can no longer conclude that U’(t) is absolutely continuous. However, Eq. (6.32) 
is still valid except that the terms involving U’(r) cancel out, i.e., we have 
U(t) = 7 e2p(t+Y)U( -t-- 2y) when X= +e. Proceeding with this equation as with Eq. (6.32), we 
arrive at Eq. (6.33), but without the terms involving U’(f) and U”(t). Hence U(r) = 0 and so +t 
cannot be eigenvalues of c$. The roots of the characteristic equation of (6.33), i.e., the roots of 

are given by r = p t ( /.L dm/ dm). It can be checked that when the roots are real, the 
resulting solution for U(t) does not satisfy (6.30). Therefore, the roots must be nonreal, which 
means I~<l~l<l. The function U(r) is then of the form U(t)=el*‘sin St, where S 
=&i=sf~~. Thus 

h(t)=p sin &+6cos St. (6.34) 

Substituting Eq. (6.34) in Eq. (6.28) we see that the following two equations must be satisfied: 
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p=X(p cos 2Sy+S sin 2Sy), (6.35) 

&3=X(S cos 2Sy-p sin 26~). (6.36) 

Solving Eq. (6.35) for h and substituting the result in Eq. (6.36) we obtain 

fal-5) 
ta2Slyl=- 5s2+p2 * (6.37) 

This equation determines the values of S that are allowed. Assume for the moment that 5>0. From 
a graphical solution of Fq. (6.37) it follows that there are infinitely many solutions and that each 
solution S is associated with a certain sign of cos 2 Sy. We therefore distinguish the two increasing 
sequences 8, and 6; of solutions of Eq. (6.37) such that cos 2 6iy>O and cos 2 6;~ CO, respec- 
tively. From Eq. (6.35) we then see that there are two infinite sequences of eigenvalues given by 

(6.38) 

It follows that Xz + t 5 as n t *; in particular, when t=O the eigenvalues accumulate at zero. 
This is in agreement with the fact that when t=O the operator ey is compact. Equations (6.37) and 
(6.38) remain valid when @CO. However, a special circumstance arises when ,$S2+p2=0. This 
occurswhen2Sly/=(~/2)+n~forn=0,1,2...,i.e.,if2LLlyl/~=(~/2)+n*. Inthiscase,as 
can be seen from Fqs. (6.35)-(6.37), X= + m 
X = - $$ is an eigenvalue when IZ is odd. 

is an eigenvalue when n is even and 

We now turn to the solution of Eq. (5.21). Since X,(k,x,y)=O when 2y+paO, it follows 
from Eqs. (6.24), (6.25), and (5.21) that X(k,x,y) =0 when 2y+B>O. Hence we can assume 
2y+p<O. From Eqs. (6.24) and (6.25) we see that X(k,x,y)=O when t>-(2y+P). For O<t 
< - (2y + p), IQ. (5.21) can be written in the form 

h(t)-@z(-t-2y-P)+~([+l)e~(‘+2Y+P) 
I 

-2y-P-r dx ewh(x)=g(t), (6.39) 
0 

where h(t)=(a(.,x,y))(r) and 

g(f)= -2ri 
fi(OJ) 
~ [ 1 -(t+ l)eg(2y+p+t)]. 

JH, 
(6.40) 

Proceeding with Eq. (6.39) similarly as with Eq. (6.27), using U(t) from Eq. (6.29), we derive the 
differential equation 

(1-~2)U~(t)+2~(~2--1)U’(t)+/L2(1-~z)U(t) 

=[pg(-t-2y-/3)-~g’(-t-2y-~)]ep’-[pg(t)-g’(t)]ecl’. (6.41) 

Using Eq. (6.40) the right-hand side of Eq. (6.41) simplifies and we get 

fl(OJ) 
(1-~2)UN(t)+2p([2-l)U’(t)+p2(1-~2)U(t)=-27ri- JH /-G2-l). (6.42) 

+ 
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The solution of the homogeneous equation corresponding to Eq. (6.42) is of the form 
U(t)=c,epr+c2te **. A particular solution of Eq. (6.42) is given by U(t)=2rriCfl(O,x)l 
(Kp)]. Taking into account the condition U(O)=O, we get cl=-2ai[fl(O,x)l(&p)], 
and hence 

U(t)=27ri 
fl(OJ) 
- ( 1 - eP”‘) + c2tepLT, 
JH,P 

which gives 

h(t)= -27ri 
fl(OJ) 
-+c2+c2pt. 

K 
(6.43) 

In order to determine c2 we substitute Rq. (6.43) in Eq. (6.39) and use Eq. (6.40). This yields 

c2=2T; fdOJ) l 
JH, 1-5-2PY-PP’ 

fl(OJ) &!+2PY+PP+Pt 
h(t)=2?Ti - 

JH, 1-5-2PY-LLP ’ 

Using the inverse Fourier transform with the convention (6.5), we get 

Why) = V-‘W(kx,y) 

dt evirkh(t) 

f1(09x) 1 5(e Wy+B)- 1) p(e ik(2y+P) - 1 _ 2iyk - ipk) . 
=z 

‘JH,1-5-2py-@ ’ k + k2 1 , 
(6.44) 

and hence 

fi(OJ) (2Y+P)(25+2PY+PP) 
X(O,x,y)= -i ~ 

2&c 1-E-2PY-PP ) 
2y+p<o. 

As in Example 6.1 we distinguish the two cases: 
Case (a) PXJ: The solution of Eq. (5.24) when y> -p/2 is the same as in Example 6.1, i.e., 

given by Eqs. (6.11) and (6.12). When y< - /3/2 the solution of Eq. (5.24) is [cf. Eqs. (2.27) and 
(6.10)1 

Y(X) = 

2H+(5- 1 +PPMxWV~-PP~ 
2[1+5+/-4-2~H+cp(x)l ’ 

(6.45) 

where cp(x)=J~[dz/fl(O,.~)~]. The denominator in Eq. (6.45) must be nonzero and y(x) must 
grow linearly as x + -a. Since fl(O,x)=-c,x+o(x) as x -+ --co, where 
cl=Lfi(O,x);f,(O,x)]>O [cf. Eq. (2.15) in Ref. 241, cp(-@J)=lim,,-, q(x) is finite. Hence, in 
order for y(x) to be unbounded as x -+ -a~, it is necessary and sufficient that 
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l+c$+p/3--2pH+(p(-a)=O. 

This says that H, is determined by p(k) and Q(x), namely, 

H+= 
l+t+PP 
md--~) 

With the help of Eq. (6.46) we can write Eq. (6.45) as 

y(x)= 
2H+(5- 1 +iMMxPW5-,@2 

4~H+[v(-w)- dx)l ' 
Since 

f,&Y 
fr(OJ) ' 

= fro ' fr(iIx)2=- ~ ( i ff(OJ) ' 
( 1 f,(OJ) ' 

we have 

f,(W) fr(OJ) f,(U) ~-- 
c~~(x)=fi(o,o) f,(O,x)' "~(-m)=fr(o,o). 

Hence 

Y(X) = 2p --- 
1 -Pclm+PP) 1 ~PH+ 

Differentiating this expression, using Eqs. (6.46), (6.49), and (6.50), we obtain 

H(x) =y’(x) = 
l-62 d 

4p2H+ f,(O,x)” x<wl’ 

(6.46) 

(6.47) 

(6.48) 

(6.49) 

(6.50) 

with wl given in Eq. (6.12). 
Case (b) /?-CO: One proceeds as in case (a) with similar modifications as in Example 6.1. The 

constant A + is now given by 

Pcx+PP) cc 
A+=- q1+&3p+ I dx 

1 -fr(0,X)2 
o fl(OJ)2 * 

(6.52) 

When y> -p/2, y(x) is obtained by solving Eq. (6.7), that is y(x)= - ivl(O,x)/fr(O,x)] -A + ; 
when y < - PI2 we have 

H+(t- 1+ /-M2dx) 
y(x)= t2- 1-2pH+(t- 1 +,@)cp(x) * 

(6.53) 

The point al where y(wr) = --p/2 is determined by 

dx P 1+5 
fi(O,d = - - 2H, l-t-/.@’ (6.54) 

In place of Eq. (6.46) we have from Eq. (6.53) the condition 

t2- 1-2pH+(5-- 1 +/@)cp(-m)=O, (6.55) 
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and so 

H+= 
(2-l 

2/45-1+pFLp)rp(-m)’ 

Using Eq. (6.55) we can write Eq. (6.53) as 

(5- 1+ PP)cp(X) 
y(x)= 2p[cp(-a)-cp(x)]’ 

(6.56) 

(6.57) 

Proceeding with EQ. (6.57) as with Eq. (6.48), using Eqs. (6.49) and (6.50), we see that H(x) is 
given by Eq. (6.11) when x> w t and by Eq. (6.51) when x< w t . Furthermore, from Eq. (6.5 1) we 
see that 

(6.58) 

This agrees with Eq. (5.30) if we observe that by Eq. (6.23) we have 
\ 

Icl2= lim l-ikp(k)iz _ ’ ,f. 
k-+0 

Moreover, we can evaluate the difference H( a t + 0) - H(w t - 0) as follows. Write Eq. (5.24) as 

i f,(W l y+A+‘- (2Y+P)(25+2PY+PP) 
fr(OJ) 2(1-&--2PY--PLp) . 

Differentiating both sides of the above equation, using Eq. (2.27) and setting y= -p/2 (i.e., 
x = w ,), we obtain 

l-5 H+ 
H(wal-O)=y’(wl-0)= - 

1+5fruJm~z' 

Comparing this with Eq. (6.11) we obtain 

25 H+ 
H(wl+O)-H(wl-0)= - 

l+tflwJ,)T' 

Hence H(w t -0) =H(w t + 0) if and only if t=O, i.e., if and only if eY is compact. As in 
Example 6.1, we also see that H-H, E L’(R’). 

For x<wt the Jost solution f[(k,x) can be evaluated by using Eqs. (5.1), (5.16), and (6.44) 
[recall that F-(k,x,y)=X(k,x,y)]. One finds 

fi(k>x) = 
ifdO,x) 

1-5-2~.y-N3 
~ e-‘kWA++P)+ - e p-ik ik(y+A+) 

k 1 , x<wirl. (6.59) 

Letting x + ---to in Eq. (6.59), using f,(O,x)=-c!x+o(x), Eqs. (1.4), (3.20), and (4.1), we 
obtain 

7(k)= 
2pdm ik 

c, - ik-p’ (6.60) 
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With the help of Eq. (6.58) we can write Eq. (6.60) as r(k) = ik dv/( - p + ik). Furthermore, 
from Eqs. (1.4), (3.20), (4.1), and (6.59) we obtain /(k)=[(p--ikt)l(--,~+iik)]e-‘~~. 

As in Example 6.1 we discuss in a particular case the possibility of recovering H(x) from 
R(k) instead of p(k) . In contrast to Example 6.1, we will see that it is not always possible to find 
an H(x) for a given reflection coefficient R(k) and an arbitrary Q(x). Assume R(k) is of the form 
(6.23) with p=O, i.e., R(k)=(p+i&)l(-pfik). In view of Eq. (4.1) we put 
p(k)=R(k)ezikA+, where A+ is considered to be a parameter. Hence, we are trying to find a 
function H(x) whose corresponding reduced reflection coefficient is of the form (6.23) with 
p= 2A + . First assume that p?=O. Then 2dH+ = /? by Eq. (6. lo), where d is the constant defined 
in Eq. (6.20), and hence dS0. Combining Eqs. (6.10) and (6.47) we see that p= d( 1 f5-C p/T)/ 
[p.50( -co)], and hence 

Since Pa0 and d>O, Eq. (6.61) implies that d<q( -w), i.e., 

- dx 1 -$(O,X)~ 
fr(W2 < 

(6.61) 

(6.62) 

In view of Eq. (6.21) the inequality in Eq. (6.62) is also necessary and sufficient for TJ~ to exist. 
If Eq. (6.62) is not satisfied, there is no function H(x) corresponding to the given R(k) with 
A + 30. However, there may still be a function H(x) with A ,. CO. If Eq. (6.62) is satisfied, then a 
function H(x) exists and it is given by Eqs. (6.11) and (6.51). By using Eqs. (6.21) and (6.61) we 
can write Eq. (6.47) as 

H+= 
1+5 

W-“I dx fitO,~)-~ ’ 
(6.63) 

We now look for possible H(x) corresponding to our reflection coefficient when A+<O, i.e., 
p<O. From Eqs. (6.52) and (6.56) we obtain 

(6.64) 

Since /?<O, we have d<O. Therefore, if da0 and Eq. (6.62) does not hold, a function H(x) with 
A + <O does not exist either, and hence no function H(x) exists at all. If d<O, using Eq. (6.64) in 
Eq. (6.54) we obtain f~‘[dx/fl(0,x)2]= -d, and this equation always has a solution. Thus we 
see that when d<O there always exists a function H(x). The expression (6.56) for H+ can be 
rewritten by using Eq. (6.64). The result is again Eq. (6.63), where now at>O. We will demon- 
strate by a simple example that Eq. (6.62) can indeed be violated. Let Q(x) = c 6(x- 1 ), where c 
is a positive parameter and S(x) is the Dirac delta function. The fact that Q $ L:(R) is not 
important, since we could replace the delta. function by a step function concentrated near x = 1. 
Thenfi(O,x)=l for x>l andf!(O,x)= I-c(x- 1) for x<l. An easy computation shows that 
the left-hand side of (6.62) is equal to cl( c + 1) and the right-hand side is equal to 1 /c( c + 1) . So 
Eq. (6.62) does not hold when CZ= 1. 

VII. THE SINGULAR INTEGRAL EQUATION 

In this section we study the singular integral equation (5.21). In Eq. (5.21) x and y appear only 
as parameters, and hence we can suppress these parameters in X(k,x,y) and Xo(k,x,y). Thus, we 
will write X(k)=X(k,x,y) and Xo(k)=Xo(k,x,y) and analyze 
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X(k)=(@yX)(k)=Xo(k), PER, (7.1) 

such that y E R is a parameter and X,(k) is a given function. Using the operators IIIr in Eq. (5.18) 
and 9 in Eq. (6.1), we can write Eq. (7.1) as 

X-IL[p( .)e2i(‘)y9X]=Xo (7.2) 

on a suitable Banach space of scalar functions on R. Recall that 1111, are bounded and comple- 
mentary projections of Lp(R) onto the Hardy spaces H$ (R) for 1 <p<m. A function f EH~ (R) 
can be identified with its nontangential limits which exist and agree with f at almost every point 
of R (Ref. 30, Chap. 8). For p=2 the projections l-I, are orthogonal. By H”,(R) we denote the 
Banach algebra of bounded analytic functions on C’, identified with their almost everywhere 
existing nontangential limits as k --+ R, which makes it into a closed subalgebra of L”(R). 

From Eq. (7.2) it is clear that QY is a bounded operator on HP-(R) for 1 <p<m. Using Eqs. 
(4.6) and (4.9) we can easily prove that Xo(k,x,y) defined by Eq. (5.22) belongs to HP-(R), 
provided Q E L f + ,(R) f or some LYE (O,l] satisfying LY> 1 - ( l/p). Indeed, this is immediate from 
Eq. (6.2) and the identity 

p(k)e2iky-p(0) = 4lkl”-‘), k-+0 
k O( Ilk), k + ?=J. 

We will establish the unique solvability of Eq. (7.1) in H!.(R) for 1 <p<m. The proof will 
consist of several parts. First we prove the unique solvability of Eq. (7.1) in H:(R) by a contrac- 
tion argument. Then we derive a two-vector Riemann-Hilbert problem satisfied by any solution of 
Eq. (7.1) in HP-(R). Th e accompanying Riemann-Hilbert problem, where only the asymptotic part 
- b(k)la(k) of p(k) has been retained, will be shown to be uniquely solvable by factorization of 
an almost periodic 2 X2 matrix function. As a result, Eq. (7.1) will be a Fredbolm integral equation 
of index zero in HP-(R). A Fredholm argument then leads to the unique solvability of Eq. (7.1) in 
HP-(R) with l<p< ~0. Its solution X(k) will then belong to HP-(R) for every finite p satisfying 
cu> 1 -(l/p). Consequently, the solution X(k,x,y) of Eq. (5.21) will belong to HP-(R) for every 
finite p satisfying a> 1 - ( 1 lp) whenever Q E L’ t+,(R) for some G-0. In particular, if Q s L:(R), 
the solution of Eq. (5.21) belongs to HP-(R) for every p E ( 1 ,w). 

Theorem 7.1: For 1 <p < 00, Eq. (7.1) has a unique solution X E H!.(R) for every X0 E HP_(R). 
This solution is given by X(k) = ZrZo[qXo] (k), where the series converges absolutely in the 
norm of HP_ (R). 

Proof(forp =2): Here we will give the proof for only p = 2; the proof for p # 2 will be given 
at the end of this section. Since K&!G'f =0 for every f EH?(R) if IYEH”,(R) (in particular, for 
constant a), we may replace p(k)e2’ky by p(k)e 2iky+ E for any constant E= e(y)30 without 
changing the operator c”; and hence Eq. (7.1). Using Theorem 4.5 we see that there exists 
E= e(y)?=0 such that 

In the exceptional case, where I/P]]~= supkERIP(k) I< 1, we may take e=O. Because II- and Sare 
both operators of unit norm, we have in the norm of H:(R) 
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II~yXII~llXllsupIp(k)e2iky+ E] 
ksR 

Consequently, Eq. (7.1) has a unique solution X EH?(R) for every X0 EH!.(R), and this solution 
can be obtained by iterating Eq. (7.1). n 

The exact expression for the norm of fiy in H?(R) follows from Nehari’s theorem [Ref. 31, 
Theorem 1.3 and the discussion following Eq. (2.1); Ref. 32, Corollary 4.71, namely, 

]/@y]] = inf suplp(k)e2’kY-6(k)]. 
ihI%; keR 

(7.3) 

Since p( -k) = p(k) for k E R implies that C, is self-adjoint in H?(R), Eq. (7.3) also yields the 
spectral radius of Gy in H?(R). Note that the expression in Eq. (7.3) is nonincreasing in y ER. 

In the exceptional case ]@,]]=~]]pll~< 1 and hence the spectrum of flY is bounded away from 
I, uniformly in y. Therefore, ]]X]]G( 1 -]]~ll~)-‘]]X~ll an so X(k) is bounded in the L2-norm d 
uniformly in y. In the generic case, X(k) will generally not be bounded in the L2-norm as 
y --+ --co. This can be seen from Example 6.2. Indeed, consider Eq. (6.44) with p=O and hence 
y<O. Since 

for each fixed x the L2-norm of X(. ,x,y) diverges like ]y( 1’2 as y + --00. This divergence is to 
be expected in view of the fact that as a consequence of Eqs. (6.37) and (6.38), the eigenvalues of 
Py approach _t 1 as y --+ --03. Hence ]](I-G~)-‘I] is unbounded as y --+ -a, where we use I to 
denote the identity operator. 

Before studying Eq. (7.1) in HP-(R), we derive a Riemann-Hilbert problem satisfied by any 
solution of Eq. (7.1) in HP-(R), using a procedure essentially originating from Sec. 2 of Ref. 12. 
Writing X-=X and X+(k)=II+[p( .)e2’(‘)Y.EC-](k), we extend Eq. (7.2) to an equation in 
Lp(R), namely, 

X+(k)+X-(k)-p(k)e2’kyX-(-k)=Xo(k), PER. (7.4) 

Changing the variable in Eq. (7.4) from k to -k one gets 

X-(-k)+X+(-k)-p(-k)e-2ikyX-(k)=XO(-k), kER. (7.5) 

From Eqs. (7.4) and (7.5) we obtain the vector Riemann-Hilbert problem 

1 1 -p(k)e2iky 
0 1 ][iE,]+[ dp(m:)e-2iky ~][~~Y~)]=[<~Y~)]* ~ERV 

which is equivalent to 

where 

G(k)= 
1 -p(k)p( -k) p(k)e2’ky 
-P(-k)e-2iky 

1 1 9 F(k)= 1 X0(k) +p(k)e2’kyXo( -k) 1 X,(-k) ’ 
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By the same token, replacing p(k) by its asymptotic part p,(k) = - b(k)la(k) given in Eq. 
(4.23), we prove that any solution X E HP_(R) of the singular integral equation 

X-II-[p,(~)e2’(‘)y9X]=X0 

satisfies the Riemann-Hilbert problem 

[xl;~~)]+G,(k)[,Z;~~)i=F,(k), kER, 

where 

(7.6) 

G,.dk) = 
1 - p,(k)p,( -k) pas(k)e2iky 
-ep,( -k)e-2’kY 1 

‘1, F,.(k)_[Xo(k)+~~)‘%rYXo(-k) 
1. (7.7) 

Let Hy*2’(R)=HP+(R)@Hs(R), L o’.2’(R)=Lp(R)@Lp(R), and II(,2)=IIt@IIt. We have 
Proposition 7.2: For 1 <p<m, the vector Riemann-Hilbert problem 

Y+(k)fG,(k)Y-(k)=F(k), kER, (7.8) 

has a unique solution Y + EH(,P*~‘(R) for every F EL(~~‘)(R). 
Proofi From Eqs. (4.24), (7.7), and p,( - k) = p,(k) for k E R, we see that the diagonal entries 

of G,(k) are strictly positive. Hence (Ref. 33, Lemma III l.l), there exists a constant 0-O so that 
supk E nl]sG,( k) - 111~ < 1. Here ]].]I2 denotes the operator norm associated with the Euclidean 
vector norm on C2, and I is the unit matrix. Since p,(k) and hence all elements of G,(k) belong 
to the algebra APW [cf. Theorem 4.5(i)], there exist, according to Theorem 1 of Ref. 6 (See Ref. 
5, Theorem 1, for the same result with a different proof), matrix functions G,(k) with invertible 
values for k ER such that all elements of G,(k) and G,(k)-’ are almost periodic functions (in 
APW) that extend to bounded analytic functions in C!’ and satisfy G,(k) =G+(k)G-(k) for k ER. 
Premultiplying Eq. (7.8) by G+(k) -I, we obtain uniquely 

which completes the proof. n 
Proposition 7.3: For 1 <p < 00, Eq. (7.6) has a unique solution X EHP_(R) for every 

X0 EHP_ (R). This solution is given by X(k) = Er=,[(p,(.)e 2i(‘)Y9)nXO]( k), where the series con- 
verges absolutely in the norm of HP-(R). 

Proof: Let F,(k) be defined by Eq. (7.7) where X0 E HP_(R) is a given function. Then we can 
write Eq. (7.8) as 

1 - pas(k)e2iky 

0 1 1 [ Y+(k) + ’ o]Y-(k)=[;f$j, PER, -pas(-k)e-2iky 1 

which has a unique solution Y + E Hz (p*2)(R) Changing k to -k and switching the two components . 
of the two-vectors we find for k ER 

1 - p,( k)e2iky 
0 

1 ][ ;;;;;;;;I+[ ’ “I[ Y+.2(4)]-[ X0(k) 1, 
-pas(-k)e-2iky 1 Y+,,(-k) - X0(-k) 

where Y,(k) =(Y .,,(k), Y ,,2(k))T with the superscript T denoting the matrix transpose. Since 
the solution of Eq. (7.8) is unique, we must have Y+,t (k)=Y-,,(-k) and Y+,,(k)=Y-,,(-k), 
so that one has in fact found a solution of the Riemann-Hilbert problem for k ER 
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[ 

1 

0 -p,(:)e2ib][Xl;~~)]+[ ePaa(Tk)e-2j” y&!!;)]=[$!!;)]. (7.9) 

The top equation of the pair (7.9) then implies Eq. (7.6) on applying II-; conversely, every 
solution of Eq. (7.6) leads to a solution of Eq. (7.9). Consequently, Eq. (7.6) has a unique solution 
X E HP_ (R) for every X0 E HP_(R). 

To see that Eq. (7.6) can in fact be solved by iteration, we replace p,(k) by cp,(k) for some 
complex number c with /cl 6 1. Then G,(k) is replaced by G,,,(k) = 8G,(k) + G,(k) *], given 
by 

I 1- 3(~~+E~)]p,(k)]~ 
GsJ(k)= gp-C)p,(k)e-2iky 

$(c-E)p,(k)e2iky 

1 1 7 
which has a strictly positive real part if ]Re cI<(l//]~.&). Here the superscript * denotes the 
adjoint. Since ]]p,J,,< 1, the real part of the matrix G,,,(k) exceeds d for some 00 independent 
of k c R. As a result, Eq. (7.6) with p,(k) replaced by cp,( k) has a unique solution X E HP_ (R) for 
every X0 EHP_(R). Hence the integral operator in Eq. (7.6) has spectral radius strictly less than 1 
in HP-(R). n 

The following proposition follows directly from the Hartman-Wintner theorem [Ref. 31, 
Theorem 1.4 and the discussion following (2.1); Ref. 32, Corollary 4.71. Here we present a direct 
proof. 

Proposition 7.4: Let 1 <p <co, and let 6(k) be continuous in k ER and vanishing as k -+ 
+ 00. Then the operator K on HP_ (R) defined by KX = II - 6.ZX is compact. 

Proofi Since 6(k) can be approximated in the L--norm by continuous functions of compact 
support, it suffices to.consider 4(k) vanishing outside (- S,s) for some s>O. Then (Ref. 28, 
Theorem I 4.3) the operator .%’ defined as 5’=6S--Sa, where 

@f)(k) = -$9’j-T, ds s 

is compact on Lp( - S, s>; here prepresents the Cauchy principal value. If we extend J5’ to Lp(R) 
by defining (A”)(k)=0 for k $ (- S,s), then .%‘=4S-S4 is also compact on Lp(R). Accord- 
ing to Plemelj’s formulas, we have S=II+ -II- . Hence 

Then for XEHP_(R) we have 

so that K is the restriction of the compact operator &%‘.Y to HP-(R). Hence K is compact. H 
Next we give the proof of Theorem 7.1 for p f 2. 
Proof (of Theorem 7.1 for p # 2): We have ~;X=HI_p,(.)e2i(‘)Y~+H-~~ with 

X E HP_(R) for some continuous 4(k) vanishing as k -+ +- ~0. Hence, by Propositions 7.3 and 7.4 
the operator I-4 is Fredholm of index zero, and by Theorem 7.1 with p = 2 the operator 1-C y 
is invertible on H-(R). Making HP_(R)nHb?(R) into a Banach space by equipping it with the sum 
of the Lp- and the L2-norm, we see that 1-G; is the sum of an invertible and a compact operator 
and hence a Fredholm operator of index zero. Since it must be injective in view of the invertibility 
of 1-Q; on H?(R), it is invertible on HP_(R)nH’?(R). As a result, it has a dense range on HP-(R). 
Being Fredholm of index zero, I--ey must be invertible on HP-(R). 
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To prove that ECq. (7.6) can be solved by iteration, we repeat the above Fredholm argument 
with p,(k) replaced by cp,(k) for some complex number c with I c( < 1. Then I-c@ is Fred- 
holm of index zero on HP-(R) and is invertible on H?(R). Thus I-c@~ is invertible on HP-(R) if 
(c]<l. n 

VIII. BOUND STATES 

When there are bound states for Eq. (1.1) with energies - KJ? with j= l,.. .fl, the reduced 
transmission coefficient T(k) has simple poles on the positive imaginary axis at k= ‘fcj . In this 
section we modify the inversion procedure described in Sec. V to include the bound states. In this 
case the scattering data will consist of Q(X), a reflection coefficient, either of H, , the bound state 
energies, and the norming constants. We assume that (Hl)-(H5) hold with (YE (O,l] in (H5). 

From Eqs. (2.1) and (4.1) we see that at the bound states, the Jost solutions f,(k,x) and 
f,(k,x) are linearly dependent. Associated with the bound states are the norming constants 

if m -1 
Vj= dx fr(iq,x)2H(x)2 , j= l,..., Jt/: --m * 

The ratios cj= f,.(iKj ,x)/fl(itcj ,x) are related to the norming constants by 

k=iK,’ 
j= l,...,N. 

J 

From Eqs. (5.1) and (5.2) we have 

Z,(iKj,y)=Cj H_ e-2KjY-Kj(A+-A-)Zl(iKj,y). 

Let us define ?(k)=(- l).“~(k)w(k)-’ and ,$k)=p(k)w(k)-‘, where 

“’ k+ifcj 
w(k)=(- l).“fl - 

j=l k--iKj’ 

(8.0 

(8.2) 

(8.3) 

Multiplying both sides of Eq. (5.13) by (-1) ‘w(k)-‘, for k ER and y ER\{~~ ,...,yN} we obtain 

?(k)Z,(k,y)=(-l).‘b(k)-‘ZI(-k,y)+(- I).‘s(k)e2’kYZl(k,y). (8.4) 

At k= 0 from Eq. (8.4) we have 

~,“)z~(o,Y)=(-l)“i~(o~Y)+t-l)“~to)z~to,Y)~ YEtYj,Yj+l)+ 

In analogy with Eqs. (5.15) and (5.16), let us define 

(8.5) 

1 
G+(k,x,y) = ~ [+(k)Z,(k,y)- ~O)Z,(O,Y)& 

kJH(x) 
(8.6) 

1 
G-tk,w)= - C&t-k,y)-ZdO,y)l. 

kJH(x) 
(8.7) 

Then from Eqs. (8.4) and (8.5), for k ER, x eR\{x, ,..., xN}, and y eR\{yl ,..., yN} we obtain 
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G+(k,x,y)-(- 1 I ’ w(k)-‘G-(ktx,y)=~n(k,x,y), (8.8) 

where we have defined 

(-1)” 
fI(k,x,y)= -(- 1).‘&k)e2”YG-(-k,x,y)+ 7 [fi(k)e2iky-fi(0)] g 

(-I),” 
-I- k [,,,(k)-‘- l] ‘l(o,y). 

m 
(8.9) 

Note that for fixed x E R\{x r , . . . ,xN} and y E R\{y i ,...,Y~}, G,(k,x,y) have analytic extensions in 
k to C?, and as k -+ CO inC’, G,(k,x,y) -+ 0. Thus we have a scalar Riemann-Hilbert prob- 
lem in Eq. (8.8). Since Q E L:+,(R) f or some CZE (O,l], we have R( . ,x,y) E Lp(R> when p< I/ 
(1 -a); hence we have the decomposition ,R(k,x,y)=R+(k,x,y)-&I-(k,x,y), where we have 
defined fII,(k,x,y)=t[rI,fl](k,x,y). Thus, for fixed x~R\{x, ,..., xN} and yoR\{yi ,..., yN}, 
fi?(k,x,y) have analytic extensions in k to C’, and as k + ~0 in c”, fIt(k,x,y) -+ 0. Let us 
write Eq. (8.8) in the form 

(5 ,,+iKj)) G+,k,x,y)-(h tk-iKj)) G-(kx,y) 

\j=I 
or equivalently in the form 

I 

11 (ki-ifcj) j=l 1 G+(k-w)- 
(8.10) 

In Eq. (8.10) the left-hand side has an analytic extension in k to C!+ and that extension does not 
grow faster than a polynomial in k of degree A”‘- 1 as k -+ CO in c+; analogously, the right-hand 
side has a similar analytic extension in k to C-. Thus both sides must be equal to 

I ‘- 1 

P, / ,- l(k,-w) = c pnCwWn, (8.11) 
n=O 

which is a polynomial in k of degree .A’- 1 such that the coefficients are functions of x and y. By 
Eqs. (8.7) and (8.9), G-( - k,x,y) = - G-(k,x,y) and fi( - k,x,y) = - fi(k,x,y) when k ER; thus 
p,(x,y)=(- l)J’+n+’ p,(x,y). From Eqs. (8.10) and (8.11) we have 

P,, .-~tk,-w) 
n-(k~x~Y)+ njLI(k-iKj) ’ (8.12) 
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G+(kw)=fl+(kw’)+ 
f’. I .- ,(k,x,y) 
n L tk+iK,) - 

j-l J 

Using Eqs. (8.3) and (8.9) we can write Eq. (8.12) in the form 

w(k) m 
G-(k,x,y)=B(k,x,y)+ z 

I 

ds fi( -s)e-2isy 
G-(~,x,Y), --m s+k-i0 (8.13) 

where we have defined 

P, ,.-l(k,x,y) w(k) m ds Zl(O?Y) 
Wkx,y) = 

II)Ll(k-iKj) 
+- 

2rri I --m s-k+iO [p(s)e 2i”y-cj(o)- 1 +w(s)-1-j ~ 
SJHO’ 

(8.14) 

In analogy with Eqs. (5.21) and (7.1), we can write the singular integral equation in (8.13) in the 
form 

X(k)=B(k)+(SyX)(k), kER, (8.15) 

where we have defined B(k)=B(k,x,y), X(k)=X(k,x,y)=G-(k,x,y), and 

w(k) co (~yWW = K I 
ds b( - s)e-2isy 

X(s). -cc s+k-i0 

By using the method of Sec. VII, we find that Z’,, has a spectral radius less than 1 on HP-(R) 
for every l<p<w. Since eeLi+, f or some (YE (O,l], the function B(k,x,y) given in Eq. 
(8.14) belongs to HP-(R) for p>ll(l-cr). Thus, Eq. (8.15) is uniquely solvable in HP-(R) for 
p > 1 /( 1 - (u), and the solution can be obtained by iteration. 

Note that the norming constants associated with the bound states are used to determine the 
coefficients in the polynomial P, , ‘- 1 . In fact, solving Eq. (8.15) we obtain 

G-(-iK,,x,y)=i.” 
P, I.-I(--iK”J,Y) 

IIji,(~n+Kj) ’ 
(8.16) 

G+(iK, ,X,Y)=a+(i% JpY>f(-i)’ 
, P,, .-l(iK, ,x,y) 

nj;,tK + K,) - 
n J 

Using Eq. (8.2), from Eqs. (8.6) and (8.7) we obtain 

G-(-iKn,x,y)=- [Zl(iK,?Y)-Zl(OTY)L 

G+(iK, ,w)= iK,& [ S(iK,)c, J$ e-2KnY-Kn(A+-A-)ZI(iKn ,y)- tfO)Z,(O,y )]. 

(8.19) 

Eliminating Z,(iK,, ,y) in Eqs. (8.18) and (8.19) we obtain 

G+(iK, ,x,y)= -c, )e-2KnY-Kn(A+-A-)G-( -iK, ,x,y) 
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H_ ;i(iK,)e-2”“y-Kn(A+-A-)Z~(0,y)-~(0)Z,(0,y) . 1 
(8.20) 

Using Eqs. (5.27), (8.16), and (8.17) in Eq. (8.20) we obtain the J” equations for n = 1,. ..A” 

fi+(iK,,X,Y)+(-i)“’ 
P.,,-,(iK,,JrY) 

llj.I’,(~,+~~) 

?( iK,)e -2~,y-K,(A+-A-) 
P.,.-,(-iK,J,Y) 

~I)~,(K,+K~) 

+ i,.&- 
[C,?(iK,)e-z”“Y-Kn(A+ -A-w-w- ~~0)f,(0,~)1. (8.21) 

In Eq. (8.21) the products c,$~K,) can be expressed in terms of the norming constants v, using 

-I= I/=v,~-~“~ rll k-iKj 

2%&n j+n 
k+iKj’ 

(8.22) 

which follows from Fqs. (8.1) and (4.1). Using Eq. (8.22) and replacing 30) by (- 1) “7(O), Eq. 
(8.21) can be written as 

n+(iK”,x,y)+(-i),” 
P.,.-l(iK,,X,Y) 

II>‘,‘l( K,f Kj) 

= -f 1 h v, e-24~+A+) 
P., ‘- 1( - iK, J,Y) 

+ 2K, ~~~l(K,fKj) 

-2K~(Y+A+)f,(0,~)-(-l)~“r(0)fr(0,~) . (8.23) 
I 

Note that bothf,(O,x) andf,(O,x) are determined by Q(x) alone. In the generic case r(O)=0 and 
in the exceptional case r(O) = ( - 1) ’ ‘dw by Proposition 4.6 and Eq. (4.8). Furthermore, 
H- can be obtained from H, , Q(x), and p(k) using Eq. (5.29) in the exceptional case and using 
Eq. (5.30) in the generic case. The equations (8.23) constitute a set of N equations for the JV‘ 
unkmms PO(X,Y>, . . . . p. I .- l(x,y). Note, however, that fi+(i~, ,x,y) also depends on 
pe(x,y) ,..., p,,,-i(x,y) via B(k,x,y) in Eq. (8.13) and G-(-k,x,y) in Eq. (8.9). Once the 
polynomial P, , .- ,(k,x,y) has been found, H(x) can be obtained as described following the proof 
of Theorem 5.4 by using X(0) = G-(O,x,y) on the left-hand side of Eq. (5.24). 

Example 8.1: Let us illustrate the inversion method outlined in this section by a simple 
example. Although H(x) will turn out to be continuous in this example, the example shows how 
the inversion method works when bound states are present. A more elaborate example with a 
discontinuous H(x) is given in Ref. 34. Suppose p(k) = 0 and there is one bound state at - 2 with 
associated norming constant V. Thus, we have the exceptional case. The solution of Eq. (8.13) is 
given by 
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G-(k,x,y)=B(k,x,y)= pg , 

and hence G-c- i~,x,y) = i[po(x,y)/(2~) 1. From Eq. (8.9) we have 

2 
f-J(k,x,y) = - 

-uO,Y) 

k+iK dm’ 

and hence we obtain 

i U%Y) 
,R+(iK,x,y)= - - 

KJHo)’ 

Solving Eq. (8.23) for po(x,y), we obtain 

Po(x,Y)= 
WK 

2Ke2K(Y+A+)-H,vfl(O’x). 

In deriving Eq. (8.25) we have also used the fact that 

which follows from Eqs. (4.5) and (4.10). Now Eq. (5.24) takes the form 

X(O)=G-(O,x,y)= f po(x,y)= - k [:iJ;‘r(o,x)ffl(O,x)(y+A+)l, 
+ 

or equivalently 

Define 

H+v 
W=W(Y)=e2~(~+A+), - 5= ZK . 

Using Eqs. (8.25) and (8.27) we can write EZq. (8.26) as 

f(w)=&), 

f(w)=:--&-&In 0, g(x)=i !!j$$ 
1 9x * 

(8.24) 

(8.25) 

(8.26) 

(8.27) 

(8.28) 

(8.29) 

Here f(w) is defined for o~(O,r)U(&a), and on this domain f’(w) CO. Also, f ( o) --+ + M as 
w-+0, f(w) -+ --M as ~-+{-0,f(~) --+ +w as o-+5+0, andf(o) -+ --co as o-++w. 
The function g(x) obeys 
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(8.30) 

which is obtained from Fq. (2.27). Note that g(x) has a singularity whenever f,(O,x) is zero; this 
follows from the expression for g(x) in Eq. (8.29) provided we can show that f[(O,ae) # 0, 
where w. is a zero off,(O,x). Indeed,f[(O ,wo) # 0 due to the behavior of the Jost function near 
k = 0 corresponding to Eq. (1.1) restricted to the semi-infinite interval (wo,w) [cf. Ref. 29, where 
the case H(x)= 1 was considered, and the Appendix]. Together with Eq. (8.30) this implies that 
g(x) + --m as x -+ wo-0 and g(x) --$ +=J as x -+ wo+O. Furthermore, g(x) --, -m as 
x-+ +mandg(x)j +masx+ - ~0. It follows from these properties of f(o) and g(x) that 
Eq. (8.28) has a solution w(x) such that w(x) -+ 0 as x --t --oc) and w(x) --t +m as x + +w 
[i.e., y(x) -+ --c4 and y(x) --f fw, respectively] if and only if f/(0,x) has exactly one zero. 
Note that by Eqs. (3.1) and (8.27) the function o(x) must be continuous and monotonically 
increasing. The fact that fl(O,x) has exactly one zero is in agreement with the oscillation proper- 
ties of f!(O,x) and with Proposition 5.4 in Ref. 20, which says that the number of bound states of 
Fq. (1.1) is independent of H(x) and hence is the same as that for Fq. (1.1) with H(x) = 1. So we 
assume f I(O,x) has one zero located at x = w. . The monotonicity properties of f(o) and g(x) 
also imply that Fq. (8.28) can be uniquely solved to obtain o in terms of x; since 
y = -A + -I- [ l/( 2 K)]ln o by Eq. (8.27), it then follows that the solution y(x) is also unique. From 
Eq. (8.27) we see that dwldx=2KH(x)m; hence by differentiating both sides of Eq. (8.28) with 
respect to x and using Eq. (2.27), we obtain 

Using the initial condition y=O when x= 0 in Eq. (8.27) we obtain 

(8.3 1) 

where o, obeys f( oo) =g(O). Note that Eq. (8.28) does not contain A+ explicitly and so once 00 
is known, A + can be obtained from Eq. (8.27) by setting wo= w(O) = e2KA+. One can verify that 
this value for A+ is consistent with Eqs. (3.17) and (8.31). For the convenience of the reader we 
give the detailed calculation. We have 

A+= 1: ds[H+-H(s)]= lim I,” ds[H+-H(r)]=H+N-/oN ds H(s) 
N+m 

=H+N- 
do H(sto)) 

o’(s( 0)) = H+N- 

W(w)) 
d” ~KH(( w))o 

=H+N- & [In w(N)-In wo]= H+N- $1, w(N) +&ln wo. I (8.33) 

Now by using Eqs. (8.28) and (8.29) we can write 

1 &W) 25 1 
H+N- z-;; In 4N =i f~ +H+N- y w(N) _ 5 , 

and we see that the right-hand side goes to zero as N 4 00. Hence, after taking N --f ~0 in Eq. 
(8.33), we obtain Eq. (8.32). Furthermore, since the denominator in Eq. (8.25) must go to zero as 
x -+ wo, using Fqs. (8.27) and (8.32) we obtain 
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lim y(x)=y(me)=& In $ , 
.X-+=0 i 1 

and from Eq. (8.31), using L’Hopital’s rule, we get 

lim H(x)=H(wu)= 
fl(OmoY 

x-tug 
H K2 , 

+ 

and hence H(x) is continuous at mo. For the Jost solutions we obtain from Eqs. (5.1), (8.7), and 
(8.24) 

fr(k,x)=eiky+ikA+ &T 1 & Po(x9Y>+frtoJ) * 1 
Hence, letting x + --oo in Eq. (8.34), we conclude that L(k) =O; using Eqs. (1.4), (3.20), and 
(4.5) we also obtain 

(8.35) 

where A is the constant defined in Eq. (3.18). Thus, from Eq. (4.1) we get 

Since p(k) = 0 implies &(k) = 0, we conclude from Eqs. (4.9) and (4.10) that g= H+IH- . Since 
A“= 1, by Proposition 4.6, y<O and hence y= - dm. Hence using Eqs. (4.1) and (8.35) we 
get 7-(k) = (k + iK)/(k - iK). We have also computed the potential V(y (x)) in Eq. (3.3). The result 
is (after lengthy calculations) 

V(y)= 
-81K2$K(Y-A+) 

(e2Ky+ (e-2KA+)2 ’ 

This is a standard reflectionless potential (cf. Ref. 24, Example 2), as it must be the case since 
p(k)=O. 

APPENDIX: PROOF OF THEOREM 4.2 (ii) 

In this appendix we give the proof of Theorem 4.2 (ii). We first prove a proposition. 
Proposition A. 1: Let $(k,x) denote the solution of Eq. (1 .l) satisfying $(k,O) = a, 

$’ (k, 0) = b, where a and b are arbitrary real numbers. Suppose I+%( 0 ,x) is bounded on x 2 0. Fix 
k,>O. Then, for -k,<k<k, and x20, we have 

(Al) 

Proof: Since @( - k,x) = @(k,x) it suffices to consider 0 C k< kO. By variation of parameters, 
#(k,x) is a solution of the integral equation 
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$/(k,x)=b 
sin(kH+x) 

kH+ 
3-a cos(kH+x) 

1 x 

+W- o -I 
dz sin(kH+[x-zl)[k2{H~-H(z)2}+Q(z)l~~.(k,z), (A21 

which for k = 0 reduces to 

$(O,x)=bx+a+ 
I 

’ dz(x-z)Q(z)$(O,z). 
0 

Since @(0,x) is bounded, Eq. (A3) implies 

(A3) 

b+ 
I m dz Q(z)@(O,z)=O, tA4) 

0 

cCl(O,x)=u- fern dz zQ(z)@(O,z)+o(l), x ---) +m. (A5) 

Then, by using Eqs. (A2)-(A4), we can write cj/(k,x)- t,h(0,x)=ZI+Z2+Z3+Z4+Z5+Z6+Z7, 
where 

dz Q(z)tcl(W, 

Z2=a[cos(kH+x)- 11, 

dz[cos(kH,z) - 1 IQ(z) Jl(O,z), 

z4= -!-- [l -cos(kH+x)]/; 
kH+ 

dz sin(kH+z)Q(z)$(O,z), 

1 zQ(z)tcl(O,z), 

X dz sin(kH+[x-z])[H:--H(z)*]qWO,z), 

1 
Z’=kH, o - 1” dz sin(kH+[x-z])[k2{H: - H(z)2)+ Q(z)][qKk,z) - $(O,z)l. 

The estimates 

lsinzlsz, il-~l~~~~, 11 -cos ZIG 
C,Z2 

(1 +z12’ 

where ~20 and C1 is a suitable constant, and the monotonicity of the function z H z/( 1 + z) 
imply 
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lZ&C,( kH+x )2fm dz zlQ(~,IlWd l+kH+x x 

IWC,o( l;;x,i27 + 

lZ&C:( l;;:x)2j-; dz zlQ(z>II~I(O,z)l, 

IZ,l=,( kH+x )‘j-; dz zlQ(z>lI$,(Od 1 +kH+x 
s=4,5, 

1~61~ 
Clk2x x 

I l+kH+x o dzlH2,-H(z)2111Cr(0,z)I, 

lZ,l~ clx 
f 

’ dz[k21H2,-H(z)21+lQ(z)lll$(k,z)-$(0,z)l. 
l+kH+x 0 

c 

By combining Eqs. (A6)-(AlO), for some constant C2 we obtain 

(‘46) 

647) 

C.48) 

649) 

(AlO) 

(All) 

1~11+l~*l+I~3l+I~4l+l~5l+l~&c2 [ ( lzgxi’+ ,+:;+,I* 

Hence by using Eq. (All), it follows that 

ClX 

u(k’x)cC2+ [ 1 +kH+x]h(k,x) 

where 

f 
x dz{k21H2, - H(z)2j + lQ(z)l}h(k,zb(k,z) 
0 

h(k,x) = 
k2x 

1 +kH+x’ 

1 7 
(A121 

6413) 

u(k x> = 1 glr(kx) - Icl(O,x)l , h(k,x) * 
6414) 

Thus, from Eqs. (A12) and (A13) and the fact that h(k,z)Sh(k,x) for OCzGx, we obtain 

C,k x 
u(k,x)sC2+ H 

f 
dzjH2,-H(z)21u(k,z) 

+ 0 

C,k2x 
+(l+kH+x)h(k,x) 

zlQ(dl u(k z> 
l+kH+z ’ ’ 

Hence 

Clk x 
u(k,x)sC2+ H f dzjH: - H(z)21u(k,z) + 2C1 

+ 0 f x dz zlQ(z)l4k,z). o 
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Using Gronwall’s inequality we obtain 

u(k,x)GC2 exp 

Now Eq. (Al) follows from Eqs. (A13), (A14), and (A15), where the right-hand side of Eq. (A15) 
and the factors H, in Eq. (A13) have been incorporated into the constant Cko. n 

Proposition A. 1 remains valid for x<O if @(0,x) is bounded on xc0. Then x has to be 
replaced by 1x1 in Eq. (Al). In place of Eqs. (A4) and (A5), we then have 

b- f ' dz Q<z)r?/(O,z)=O, 6416) --m 

$(O,x)=a+ f ' dz zQtz)~tO,z)+otl), x -+ --co. 6417) -co 

Proof of Theorem 4.2 (ii): In the exceptional case it does not immediately follow from Eq. 
(2.1) that r(k) is continuous at k h 0 .*The situation is similar as in the case H(x) = 1, which was 
studied in Ref. 35. Here we follow the method of Ref. 35 and generalize it to the case when H(x) 
is not constant. 

We continue to assume that k is real. Let v(k,x) and s(k,x) denote the solutions of Eq. (1.1) 
satisfying u(k,O)=s’(k,O)=O and u’(k,O)=s(k,O)=l. Let q2(k,z)=k2[Hi-H(z)2]+Q(x). 
By using the definition of the Wronskian and the integral equations satisfied by u(k,x) and s(k,x) 
[see Eq. (A2)], we obtain the relations 

[f,(k,x);v(k,x)]=f,(k,O)= I+ f O” dz e’kH+zq+(k,z)v(k,z), 
0 6418) 

’ Lf,(k,x);vtk,x)l=f,(k,O)= l- f dz e-‘kH-Zq-(k,z)v(k,z), 6419) -co 

Lfr(kvx);s(k,x)]=-fl(k,O)=-ikH++ f 
ow dz eikH+z q+tkz)stk,z), WO) 

’ If,(k,x);s(klx)]=-f:(k,O)=ikH_- f dz e-ikH-Zq-(k,z)q(k,z). 6421) --m 

Let &k,x) denote the solution of Eq. (1.1) such that 

$(k,O)=f,(O,O), c?i'(k,O)=f;(O,O). (‘422) 

Thus 

~(k,x)=f,tO,O)s(k,x)+f;(O,O)u(k,x), 6423) 

and in particular &0,x) =f&O,x). Since we are in the exceptional case, &0,x) is a bounded 
solution of Eq. (1.1) for k = 0. From Eqs. (A18)-(A23) it follows that 
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fr(OlO)lfr(k,x);f,(k,x)l=f,(k,O) -ikH+fl(O,O)+f;(O,O)+ f m dz eikH+Zq+(k,z)&k,z) 
0 I 

-fdk,O) ikH-f~(O,O)+f;(O,O)- f:- dz e-ikH-Zq-(k,z)$(k,z) . 
I 

(~24) 

We first assume fi( 0,O) # 0. The case when f 1( 0,O) = 0 will be considered separately. In order to 
analyze the integral in the first bracket on the right-hand side of Eq. (A24), we write 

f m 
dz e ikH+z 

0 
q+(k,z)&(k,z)=J,+Jz+J~+J~+J~, 

where 

J, = f m dzQtz)&tO,z), 
0 

J2= f m dzQ(z)[eikN+“- l]$(O,z), 
0 

J3=k2 m f dz eikH+z[H:-H(z)2]J/(0,z), 
0 

J4= m f dz e ikH+zQtz)[&k,z) - $(0,&i, 
0 

J5=k2 m f dz e ikH+z[H2+-H(z)2-j[~(k,z)- &AZ)]. 
0 

By Eq. (A4) with b=f;(O,O), we have 

J1= -f;(O,O). (~25) 

Note that fr( 0,x) + 1 as x --) + ~0; hence using Eq. (A5) with a = f)(O,O) and the estimate 
leikH+z- ikzH+ - 1 I c C[k2z2/( 1 + lklz)] [cf. Eq. (2.25)] we obtain 

J2=ikH+V,(0,0)-l]+o(lkl’+“), k 4 0. (AW 

It is clear that 

J3=O(k2), k + 0. (A27) 

Using Proposition A.1 we obtain 

(lkjz)‘7” 
lJ,l+?+a]; dz (1 +Iklz)f z1+“lQtz)l+k2j-om dz zlQ<z>l=&(‘+“), k + 0. 

WfO 

Finally, since LYE [O, 1) we have 

J5=o(k2), k * 0. (A29 
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Using Eqs. (A25)-(A29) in Eq. (A24) we obtain 

I 
33 

dz e 
0 

ikH+zq+(k,z)&k,Z)= -fj(O,O)-kikH+lf,(O,O)- l]+o(]k]‘f”), k -+ 0. 

(A30) 

Similarly, using Eqs. (A16) and (A17) which imply that f&0,x) = y as x + --co, where y is 
the constant in ECq. (4.5), we obtain 

I 

0 
dz e -‘kH-‘q~(k,z)~(k,~)=f~(O,O)-ikH~[y-fi(0,0)]+o(~k~1+a), k -+ 0. 

--m 
(A31) 

Substituting Eqs. (A30) and (A31) in Eq. (A24) we get 

fi(o,o)lfr(k,x);f,(k,x)l= -NHi,fAk,O)+ rH-f,(k,O)l+o(lkl’+“), k ---) 0. 
(~32) 

Similarly, starting from 

fi(O,OlYr(k~);frt -b)l 

=f,(-k,O) -ikH+fi(O,O)+f;(O,O)+ 
1 I 

1o dz eikH+Zq+(k,z)&k,z) 
0 I 

-fi(k,O) 
[ 

-ikH-fi(O,O)+f;(O,O)- I_“.. dz e’kH-Zq-(k,z)J/(k,z) , 
I 

we deduce that 

Using Eqs. (2.1), (2.2), (4.5), (A32), (A33), and Theorem 2.1 (ii) we obtain 

2H- y 
Tl(k) = H_y”+H, +dlkl”), k + 0, 

T,(k) = 
2H+ Y 

H- y’+H+ -Wlkl”>, k -+ 0, 

R(k)= 
H+-H-9 
jjyqqjy+4blaL k + 0, 

H-Y-H, 
L(k)= H_ +o(lkl”), k + 0. ’ 

(A34) 

(A3.5) 

(A36) 

(A37) 

The relations (A34)-(A37) are also valid if fr(O,O) = 0. To see this, assume fr(O,O) = 0 and 
consider Eq. (1.1) with Q,(x) = Q(x+ m) and H,(x) = H(x+ re), where a will be specified 
later. Let f,,,(k,x) and f,,,(k,x) denote the Jost solutions and T,,,(k), T,,,(k), R,(k), and 
L,(k) denote the transmission and reflection coefficients associated with Q,(x) and H,(x). 
From Eqs. (2.1), (2.2), (2.10), and (2.11) it follows that 

f~,,(k,x) = e- ikH+mfl(k,x+w), fr,m(k,x)=eikH-w~~(k,x+~), tAW 
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Tl,,(k)= T,(k)e-‘k(H--H+)“, T,,,(k) = Tr(k)e-ik(H--H+)m, 

R,(k)=R(k)ezikH+“, L,(k)=L(k)e-2’kH-m. 

6439) 

6440) 

Now pick m such that fl(O,w) # 0. Then f[,,(O,O) # 0 and Eqs. (A34)-(A37) apply to 
T,,,(k), T,.,(k), R,,,(k), and L,(k). Note that by Eqs. (A38) and (A39), when considering 
Q,(X) and H,(x), we remain in the exceptional case, and that the constant y defined in Eq. (4.5) 
does not change. It then follows from Eqs. (A39) and (A40) that Eqs. (A34)-(A37) remain valid 
even whenfl(O,O)=O. 

NOW I%+. (4.9) and (4.10) follow from Eqs. (A36) and (A37) by using Eq. (4.1). Relation 
(4.8) also follows from Eqs. (A34) or (A35) and (4.1), but so far only when k is real. In order to 
extend Eq. (4.8) to complex k E Cf, we fix s>O and note that by Eq. (2.1) the estimate 

6441) 

holds on c’fl{\kl s S}. The validity of Eqs. (A34) and (A35) for real k together with Eq. (A41) 
allows us to appeal to theorems of Phragmin-Lindelof (Ref. 25, Theorems 1.4.1 and 1.4.4) and to 
conclude that T,(k) and T,(k) approach finite limits [T,(O) and T,(O), respectively] as k -+ 0 
uniformly in Osarg(k) c rr. By considering [T,,,(k) - Tl,,(0)]lk” we can see that also the error 
term o(lkl”) is valid for k E c+. f Hence Eq. (4.8) holds if k -+ 0 in C . n 
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