Printed in Great Britain. All rights reserved

J. Quant. Spectrosc. Radiat. Transfer Vol. 55, No. 5, pp. 649-661, 1996
Pergamon Copyright © 1996 Elsevier Science Ltd
S50022-4073(96)00008-8 0022-4073/96  $15.00 + 0.00

TESTING SCATTERING MATRICES:
A COMPENDIUM OF RECIPES

J. W. HOVENIER and C. V. M. VAN DER MEE*t

Department of Physics and Astronomy, Free University, De Boelelaan 1081, 1081 HV Amsterdam,
The Netherlands

Abstract—Scattering matrices describe the transformation of the Stokes parameters of a beam
of radiation upon scattering of that beam. The problems of testing scattering matrices for
scattering by one particle and for single scattering by an assembly of particles are addressed.
The treatment concerns arbitrary particles, orientations and scattering geometries. A synopsis
of tests that appear to be the most useful ones from a practical point of view is presented.
Special attention is given to matrices with uncertainties due, ¢.g., to experimental errors.
In particular, it is shown how a matrix E™ can be constructed which is closest (in the sense
of the Frdbenius norm) to a given real 4 x 4 matrix E such that E™ is a proper scattering
matrix of one particle or of an assembly of particles, respectively. Criteria for the rejection
of E are also discussed. To illustrate the theoretical treatment a practical example is treated.
Finally, it is shown that all results given for scattering matrices of one particle are applicable
for all pure Mueller matrices, while all results for scattering matrices of assemblies of particles
hold for sums of pure Mueller matrices.

1. INTRODUCTION

By grouping the four Stokes parameters I, @, U and V of a beam of quasi-monochromatic radiation
into a column vector one may describe scattering of this beam by means of a real 4 x 4 matrix
that transforms this vector into a similar column vector of four Stokes parameters. Such a matrix
is called a scattering matrix if the scattering is caused by one particle or if we are dealing with single
scattering by an assembly of independently scattering particles.'? Scattering matrices can be
obtained by performing calculations or experiments and their elements may be given in the form
of numbers, graphs or formulae. In this paper we are concerned with arbitrary particles,
orientations and scattering geometries.

The main problem we wish to address is the following. Suppose we have a real 4 x 4 matrix,
E, and we wish to know if E can be a scattering matrix. Which tests are available for that purpose?
This is an important problem since there are many possibilities to make errors in determining
scattering matrices.

A large variety of tests for scattering matrices can be found, scattered all over the literature.
The primary purpose of this paper is to present a synopsis of tests that appear to be the most useful
ones for practical purposes in terms of simplicity, convenience and/or completeness.
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2. PURE SCATTERING MATRIX

Suppose a plane wave with a certain frequency is scattered by an arbitrary particle in a fixed
orientation. For the radiation scattered in an arbitrary direction without change of frequency we

can write
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Here EY° and EY denote the electric field components of the scattered beam, parallel and
perpendicular to the scattering plane, respectively, while the directions of r, 1 and propagation
are those of a right-handed Cartesian system. Similarly, £ and E™ relate to the incident beam.
Using Stokes parameters’ the scattering of monochromatic or quasi-monochromatic radiation can
also be written in the form

Isc Iin
Q ¢ Q in
Usc = F Uin (3)
ys Vin

Here, the 4 x 4 scattering matrix F can be derived from the 2 x 2 amplitude matrix, A, and may
thus be called a pure scattering matrix, in analogy with the definition of a pure Mueller matrix.*
Each element of F can be expressed explicitly in the elements of A,! but the relationship between
F and A can also be expressed by the matrix relation®

F=T(A®A®I "}, 4)
where
10 0 1
1 |10 0 -1
N=-—— 5
Zlo1r 1o ©)
0 i —i 0
is a unitary matrix with inverse
1 1 0 0
110 01 —i
rit=— 6
\/5 0 01 i’ ©
1 =1 0 0
while the Kronecker product is defined by
A, A* A A*
* _ 7

where an asterisk denotes the complex conjugate.

As noted in Ref. 1, the 16 elements of a pure scattering matrix contain seven independent
parameters, resulting from the eight real parameters in A minus an irrelevant phase. So a large
number of relations can be formulated for the elements of a pure scattering matrix or, in other
words, a pure scattering matrix has a lot of structure. However, as noted in Ref. 6 several authors
have reported sets of equations for the elements of a pure scattering matrix that are not complete,
i.e., not all relations which follow from the fact that there are only seven independent parameters
involved can be derived from such sets. In Ref. 6 it was shown that four cases can be distinguished
and the authors presented for each case a complete set of nine independent relations. The entire
structure of a pure scattering matrix (or, equivalently, a pure Mueller matrix) in terms of very
simple relations can be found in Ref. 4. [We note here that in that paper the indices 1 and 2, as
well as 3 and 4 should be interchanged in Eq. (22), after which Eq. (25) should be cancelled. These
corrections have no effect on the rest of that paper.]

3. TESTS FOR PURE SCATTERING MATRICES

This section is devoted to the following problem. Suppose we have a real 4 x 4 matrix E with
elements E;. We may have obtained it from calculations or experiments. If we wish to know if E
can be a pure scattering matrix, then what tests can be applied?

Obviously, many tests can be performed. From a practical point of view, however, we are mainly
interested in tests that are either very easy to perform or are complete. Complete tests provide



Testing scattering matrices 651

sufficient conditions for E to be a pure scattering matrix, whereas incomplete tests only give
necessary conditions. A number of easy as well as complete tests will be described below, arranged
into six types. For derivations we refer to the literature mentioned above.

(i) Visual tests, i.e., tests that can easily be performed, often at first sight. We mention the
following:

(a)
E,>0. (®

(b)
E, 2 |E, ©

©
TrE >0, (10)

where Tr stands for the trace (the sum of the diagonal elements).

(d) Seven relations for the squares of the elements of E. A convenient way to execute this test
is to construct the array

EL —E, —E, -E,
—-Ey E3, EL E4
—E% E%, EL  E
—-Ey EL, EL Eq

)

and to check whether all sums of a row or column are the same.

(e) Thirty relations that only involve products of different elements of E. Pictograms can be used
to facilitate using these tests.*

(®

-

i=1

4
Y. Ej=4E} (12)
j=1
is a well-known test’ which follows from the more detailed test (d) given above.
Each of the above tests is incomplete.

(ii) Tests consisting of nine relations each. The relations involve products and squares of sums
and differences of the elements of E. Here one first considers the expressions

e =E,+Ey—E,—Ey, (13)
f=E,+Eyn+E,+E, (14)
g =E, —Eyp— E,+ En (15)
h=E,—Ep+E;,—E,. (16)

If at least one of e, f'g and k is negative, E is not a pure scattering matrix. If e =f =g =h =0,
summation shows that E,, = 0, which implies that E can only be a pure scattering matrix if all of
its elements vanish, but in that case there would be no scattering at all. If e > 0, a complete test
is provided by the following set of nine equations:

(Ev+ En) —(Epy+ Ey )= (Eyy + Ew)’ + (Ey — EY 17
(Ell - Elz)2 - (E2l - Ezz)z = (E31 - Eaz)2 + (E41 - E42)2 (18)
(En - E2] )2 - (EIZ - E22)2 = (Eu - Ezs)2 + (E14 - E24)2 (19)
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e(Ey+ Ep)=(E; — Ey)(En+ Ey)—(Ey — Ey)(Eyy— Eg) (20)
e(Ey+ Ey) = (Ey — En)(Ejy— Ey) + (Ey — Ep)(E;; — Ey) 21
e(Eyy— Ey)y=(E; — Ep)(E;;— Ey)—(Ey — Eg)(E,— Ey) 22)
e(Ey+ Ey) =(Ey) — Ep)(Ey— Ep) +(Ey — Ep)(Eyn+ Ey) (23)
e(Ey + Ep)=(Eu+ Eu)(Ez— Ep)+ (Eyy— Eg)(E,— Ey) 249
e(Ey+ Ep)=(Eyu+ EL)(E,— Eyy) — (Esy — E)(Ey — Ey) (25)

In practice, the case e =0 will not often occur. However, if ¢ = 0 and at least one of £, g and A
is larger than zero, there is a set of nine relations differing from Eqgs. (17)—(25) that can be used
as a complete test.® Thus a complete test exists in all cases.

(iil) A test based on analogy with the Lorentz group. This involves testing whether we have
E,>0, detE>0, and EGE = [det E]'*G, (26)

where a tilde above a matrix symbol denotes the transpose of the matrix, det its determinant and
G =diag(1, —1, —1, —1). This is a complete test. Since for a pure scattering matrix det F =|det A|*
[see Ref. 5], E is not a pure scattering matrix if det E < 0. If det E = 0 we must try another test.
The relevant literature for the test given by Eq. (26) includes Refs. 8-11.

(iv) A test based on constructing the underlying 2 x 2 amplitude matrix, up to an arbitrary phase
factor. In view of Eq. (4), E is a pure scattering matrix if and only if there exists a 2 x 2 matrix
A such that

E=T(AQAYI . (27

In other words, a complete test is provided by checking if I' "'EI’ can be written as

A AY A, AT A;AF Az AT
Ay AY A A% A AF A AY
A AY A AY A AF A AF
A, A¥ AAY A AF A AX

AR A*= (28)

This can be verified, for instance, by trying to construct A as follows. Suppose [I' "'El'],, > 0. Put

A, =e" /[ "El],, (29)

where a is an arbitrary angle. Then 4} =¢ *(I ~'El],)"? and

Ay= [ "'El'],/A} (30)
Ay =[[T'El],/A} (1)
A,=["'El],/A}. (32)

Using Eqgs. (29)—(32) all elements of A ® A* can be computed and compared to all elements of
I ~'Er’. Equivalently, one can use Eqns. (29)-(32) to recover E by employing Eq. (27). Clearly,
if at least one of the corner elements of I' "'EI is negative, A cannot be found and E is not a pure
scattering matrix. If all corner elements of I' 'EI” vanish, E can only be derived from an amplitude
matrix if the latter is the zero matrix, which corresponds to no scattering at all. Clearly, to make
construction of A possible one needs the corner elements of I' 'EI" to be non-negative and at least
one of them positive. Apparently, the situation is the same as for test (ii), since e, f, g and 4 are
the elements of the matrix 2(I' ~'EI') with indices 44, 11, 14 and 41, respectively. Using different
arguments, a similar reconstruction test was presented in Ref. 16. An alternative reconstruction
was reported in Ref. 25.
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(v) Tests based on the coherency matrix. The coherency matrix T is easily derived from E and
is defined as follows:

T, =YE 4+ En+ E;+ Ey)
Ty, =5(E, + Eyp — Ey; — Ey)
Ty =3(E, — En+ Ey— Ey)
Ty =Y(Ey — Ep — Eyy + Ey) (33
T, =3E,—iEy+iEy+ Ey)
Ty, =Y(E,, + Exy + Ey, — iEy)
Ty =3(—iE + Ey + Ey, + iEy)
T, =NE s+ iEy — iEyy + Ey) (34)
Ty, = 3(E\; + Ey — iEyy + iEy;)
Ty =YE,, + Ey + iEy — iE,)
Ty, =3(E,, — iEy + Ey+ Ey)
Tyo=Y(—iEy, + iEy + Esy + Eyy) (33)
T3 =3(E;s + Ey + iy — iEy)
Ty = 3(E\s + E;) — iE,, + iEy,)
Ty = 3(—iE\; +iEy + Ey + Ey)
Ty =3(E; — iEy + Ex + Ey) (36)

In fact, T depends linearly on E and the linear relation between them is given by four sets of
linear transformations between corresponding elements of E and T (Fig. 1). Moreover, T is always
Hermitian, i.e., T, = T¥, so that it has four real eigenvalues. If three of the eigenvalues vanish and
one is positive, E is a pure scattering matrix. This is a simple and complete test. It was discovered
in the theory of radar polarization [see Ref. 12, where T is defined with factors § in Egs. (33)—(36)

instead of factors j]. Another complete test using the coherency matrix is
TrT=0, T*=(TrTT. (37)

This test is based on Refs. 9 and 13 where a Hermitian matrix N was used which is unitarily
equivalent to the coherency matrix, i.e.

N=rI""TT. (38)
L4 ] o o L [ ] o o
] e O O ] e O O
—
O o @ | o o e [ ]
0o O = @ o O [ | ®

E T

Fig. 1. Transformation from the 4 x 4 matrix E to the coherency matrix T. The four basic groups of
elements are distinguished by using four different symbols.
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Fig. 2. As Fig. 1, but for the transformation from E to N.

The transformation from E to N is displayed in Fig. 2. In fact, in Refs. 9 and 13 the relation
N2 = (Tr N)N 39

was presented as a sufficient condition for E to be a pure scattering matrix, but this does not hold
unless Tr N > 0 is also fulfilled. The latter is readily verified, since

TrN=E,, (40)

and Eq. (39) does not change if N is replaced by —N. The case Tr'T = Tr N =0 is very special,
since, according to Eqgs. (8), (33) and (40), E can then only be a pure scattering matrix if all elements
vanish, which corresponds to no scattering at all. It may be noted that the eigenvalues of N are
the same as the eigenvalues of T.!"

At this point the reader may wonder which test to use. The answer depends on several things,
e.g., on (i) the properties of E, such as its complexity and the form in which it is available (as
numbers, formulae, or graphs), (i) the number of matrices one wishes to test, and (iii) the
computational skills and means that are available. For a quick inspection one may use one or more
visual tests. E cannot be a pure scattering matrix if E does not meet these simple tests (within the
accuracy involved). Otherwise, further testing is needed and applying a complete test is rec-
ommended. Several options are available for that purpose. An advantage of computing the
eigenvalues of the coherency matrix in that case is that it also yields a test for establishing whether
E can be a scattering matrix (and not just a pure scattering matrix), as will be shown in the next
section.

4. TESTS FOR SCATTERING MATRICES OF ASSEMBLIES OF PARTICLES

In this section we consider a real 4 x 4 matrix E and address the problem whether E can be
a scattering matrix describing single scattering of quasi-monochromatic radiation by an assembly
of independently scattering particles. Nonlinear effects and interference phenomena are excluded.
The problem is equivalent to asking if E can be written as a sum of pure scattering matrices.
As in Sec. 3 we focus on visual tests and complete tests. For derivations and other details we refer
to the literature mentioned above.

Since the quadratic relations involving elements of a pure scattering matrix are, in general, lost
by taking a sum of pure scattering matrices, such a sum has much less structure than its individual
terms. Yet two types of test may be formulated here.

(i) Visual tests, such as
(a)
E,>0. (41)
(b
E, = |E|. 42)
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(c)
TrE=0. (43)
@
4 4
Y Y EI<A4E}. (44)
i=1j=1
(e)
E Wt Ep>2ExtEy (45)

and six somewhat less simple but more informative inequalities, namely

®

(Ent EpY —(Eut Ey) —(Ent Eu) —(EuFE5)' 20 (46)
(8)

(Eq+ Ep) —(Ent En) —(Ey £ En) — (En £ Ep)Y 20 (47)
(h)

(En + Ey) —(Ent Ep) —(Eis £ En) — (Ent Ey)' 20. (48)

None of these tests, nor their combinations, constitute a complete test. They are only necessary
conditions.

(i) A test based on the coherency matrix. As before [see Eqs. (33)—(36)], we can compute the
coherency matrix T from E. If all eigenvalues of T are nonnegative, then E is a sum of pure
scattering matrices or, in other words, can be a scattering matrix of an assembly of independently
scattering particles. This is a complete test.'?

As in the case of a pure scattering matrix, one may first apply one or more visual tests and then
compute the eigenvalues of the coherency matrix to obtain a complete test.

5. MODIFYING SCATTERING MATRICES

In Secs. 3 and 4 we have given tests to determine if a real 4 x 4 matrix E is either a pure scattering
matrix or a scattering matrix of an assembly of independently scattering particles. Experimentally
or numerically obtained scattering matrices, however, contain errors which may have a multitude
of causes depending on the specific way in which the experiment has been done or the computations
have been performed. In some cases we are not even sure what is causing the errors or if we know
all relevant error sources. Nevertheless, a test to determine if a given real 4 x 4 matrix can be
a pure scattering matrix or a scattering matrix of an assembly of independently scattering particles,
ought to take account of errors in the real 4 x 4 matrix to which it is to be applied. For some tests
it is not difficult to establish whether they have been passed within the uncertainty in E. An example
is provided by Tr E > 0 in case the uncertainties in the elements of E are independent and random.

To study the problem of testing a given real 4 x 4 matrix E with uncertainty +AE in a general
way we will now discuss the following two optimization problems. Given a real 4 x 4 matrix E,
find a real 4 x 4 matrix E™9 such that the distance between E and E™ is minimized and E™* can
be (i) a pure scattering matrix, or (ii) a scattering matrix of an assembly of independently scattering
particles. This way of looking at the problem means in particular that E™¢ and E coincide if E
already is a pure scattering matrix or a scattering matrix of an assembly of independently scattering
particles, respectively.

To measure the distance between two real or complex 4 x 4 matrices we use the Frobenius norm?
which for a 4 x 4 matrix C is defined by

4 4 1/2 .
ICl = (Z ) |C.-,»|2> : (49)

i=1jf=1
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Then the Frobenius distance between two 4 x 4 matrices CP and C? is given by

4 4 12
diStF(C(l), C(Z)) — ||C(l) - C(Z)“F - (Z Z |ngl) — Cf]?)lz) . (50)

i=1j=1
Letting C' stand for the Hermitian conjugate (i.e., conjugate transpose) of C, we immediately have
IClI} = Tr(CC") = Tr(C'C), (51

so that the squared Frobenius norm of a matrix C is the sum of the eigenvalues of CC', which
are nonnegative. We will use this theorem below to convert the optimization problems for E into
optimization problems for Hermitian matrices.

A real or complex 4 x 4 matrix C can be written as the sum of four matrices C®, C°, C® and
CY, where C® has the same elements as C in the four positions indicated by @ (see E and T in
Fig. 1) and zeros as its remaining 12 elements and C©, C™ and C" are defined analogously. Then,
as one easily verifies,

ICIE = IC®E + ICHE + C™F + [CUIIE. (52)

As discussed in Sec. 4 the linear transformation from a real 4 x 4 matrix E into its coherency
matrix T can be considered as four independent linear transformations mapping elements of E
encoded by a particular symbol in Fig. 1 into elements of T encoded by the same symbol. By
restricting ourselves to real 4 x 4 matrices having 12 zero elements in all positions not denoted as
one of @, O, M or [J in Fig. 1 and by using Egs. (33)-(36) and (52), we easily find the equality

[Tl = 1Ele- (53)

Since the complex Hermitian matrix T has only real eigenvalues which we denote as 4,, 4,, 4; and
A4, we obtain [cf. Eq. (51)]

4 1/2
IEle = ||T||p=(Z l}) . (54)
j=1

As a result, the Frobenius distance between the two real 4 x 4 matrices E and E® is given by
the expression

4 1/2
IEV — E@|lp = ( 'ﬁ) ; (55
=1

J

where 7, n,, 1, and 7, are the eigenvalues of the difference between the coherency matrices
corresponding to E and E®.

Equations (54) and (55) allow one to convert the optimization problems stated above into
optimization problems for Hermitian matrices. To start with the second optimization problem, let
E be a real 4 x 4 matrix, and let us first seek a real 4 x 4 matrix E™ that can be the scattering
matrix of an assembly of independently scattering particles such that |[E — E™¢||; is minimized.
Now let T be the coherency matrix of E. Then, denoting its eigenvalues by 4,, 4,, 4, and 4,, there
exists a unitary matrix U (i.e., U' = U™'") consisting of an orthonormal set of eigenvectors of T
such that

T = U diag(i,, 4y, 43, A)U". ' (56)
If we replace the negative eigenvalues by zeros we obtain the Hermitian matrix defined by
T4 = U diag(max(4,, 0), max(4,, 0), max(4,, 0), max(4,, 0)U~. (57)

Using Eq. (55) it is clear that E™ is the real 4 x 4 matrix having T™ as its coherency matrix.
In fact, E™ can be found from T™ by solving the four linear systems in Egs. (33)—(36) with the
elements of E and T replaced by the corresponding elements of E™® and T™4, respectively.
The result is that explicit expressions for the matrix elements of E™ in terms of those of T™* are
obtained by replacing the elements of E and T in Egs. (33)-(36) by the corresponding elements
of T™? and E™, respectively. Thus our second optimization problem has been solved. On the other
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hand, if we seek a real 4 x 4 matrix E™ that can be a pure scattering matrix and such that
I|IE — E™¢||; is minimal, we choose U such that the eigenvalues of T are arranged in descending
order, 4, = 4, = 4; = A,, define T™ by

T = U diag(max(4,, 0), 0,0, 0) U, (58)

and let E™¢ be the real 4 x 4 matrix having T™ as its coherency matrix. This solves our first
optimization problem.

There is an important difference between the two optimization problems. Seeking the closest
matrix that can be a scattering matrix of an assembly of independently scattering particles,
always leads to a unique matrix E™9, However, seeking the closest matrix that can be a pure
scattering matrix, may lead to an infinite number of possible matrices E®. This occurs if and
only if the coherency matrix corresponding to the given matrix E has as its largest eigenvalue
a multiple positive eigenvalue. As an example, consider the diagonal matrix E = diag(3, 1,1, —1)
whose coherency matrix T = diag(2, 2,2, 0) has only non-negative eigenvalues. Then either of
diag(1, 1,1, 1), diag(1, 1, — 1, —1) or diag(1, —1, 1, —1) has the minimal Frébenius distance 2\/5
to E and can be a pure scattering matrix.

In a more general context, the above optimization problems can be stated as follows. Given
a real 4 x 4 matrix E, find the closest matrix E™ that can be a pure Mueller matrix or a sum of
pure Mueller matrices. In radar polarimetry the above modification procedure to find the closest
sum of pure Mueller matrices has been introduced in Ref. 15. An alternative procedure to find
the closest pure Mueller matrix based on the matrix N of Ref. 9 has been given in Ref. 16. From
Eqgs. (38) and (54) we find

4 112
IElle = ”NHF=</Z Cf) ) (59)

where (|, {,, {; and {, are the eigenvalues of N which are all real. Since T and N are unitarily
equivalent [cf. Eq. (38)], their eigenvalues coincide. Replacing T and 4 by N and {;, respectively,
Eqs. (56)—(58) can be rewritten to yield the solutions of the two optimization problems based on
the matrix N. The matrix E™ found as a modification of a given real 4 x 4 matrix E does not
depend on the use of either Cloude’s coherency matrix T [with either the factor 3 or the factor }
in Egs. (33)-(36)] or Simon’s matrix N in the modification algorithm.

To test if a real 4 x 4 matrix E can be a pure scattering matrix within certain margins, two criteria
have been proposed.'® The first criterion consists of checking if

IE—E™¢ JA3+ A5+ 42
— 6
JE™9, P (€0)

where 7 >0 is a threshold and A, > 0. The second criterion consists of checking if

max |E; — ET*Y| < 1E), (61)
L}

for some threshold 7 > 0. To test if a real 4 x 4 matrix can be a scattering matrix of an assembly
of independently scattering particles, the second criterion can be left unchanged. The first criterion
should be replaced by

. Emod ‘_t‘ 3 ) 2
[E—E™); _ /3 [minG, OF _ ©2

IE™r /%P, [max(4,, )}

where 7 >0 is a threshold and A, > 0. In the numerator of Eq. (62) we compute the sum of
the squares of the negative eigenvalues of T and in the denominator the sum of the squares of the
positive eigenvalues of T.

We note that the relative error criteria embodied by Eqgs. (60) and (62) can be replaced by the
absolute error criteria

IE—E™p= /A3 +A3+4i<7 (63)
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for testing if E can be a pure scattering matrix and

|E—E™¢|.= | 3 [min(4;, O <t (64)
i=1

for testing if E can be a scattering matrix of an assembly of independently scattering particles,
where 7 is a threshold and, in the case of Eq. (63), 4, > 0. In many polarization studies, however,
one finds matrices where the absolute values of some of the elements are much larger than those
of other elements. In that case the criteria based on Eqgs. (60)—(64) may induce one to accept a given
matrix as a scattering matrix while there are small errors in the elements which are large in absolute
value and very large errors in the elements which are small in absolute value. Yet, accurate values
of elements which are small in absolute value may be quite important in practice. For instance,
in the most sensitive astronomical polarimetry the degree of linear polarization of a beam of light
is measured with an accuracy of 0.001%? or better. Consequently, in some cases a more suitable
criterion seems to be to reject a given matrix E with uncertainty +AE as a scattering matrix if

|Eij _ Eg—md < AE (65)

"
is not satisfied for the elements which are relevant for the problem under study. We remark that
the criteria embodied by Eq. (60) and Eqs. (62)—(64) have the advantage of not requiring the
computation of E™9; knowing the eigenvalues of the coherency matrix suffices.

6. EXAMPLE

Let us illustrate the above tests for measured scattering matrices of particles suspended in
ocean water at a wavelength of 488 nm.” These authors listed 31 normalized scattering matrices
(i.e., E;, =1) of the same sample of ocean water, namely for scattering angles ranging from 10 to
160° with 5° intervals. Each element of each matrix represents the average of three measurements.
The authors have listed these averages as well as the standard deviations in two decimal places.
We have computed the eigenvalues 4, (j = 1,2, 3,4) of the coherency matrix T corresponding to
each scattering matrix and found them all to be positive, except for the scattering angles of 10,
15, 20 and 25°. Some of them have been listed in Table 1. We have also computed the left-hand
sides of the six inequalities (46)—(48) for all 31 matrices, and with only two exceptions [namely,
the first Eq. (47) and the second Eq. (48) for the scattering angle of 10°] we have found them to
be positive. We have also evaluated the closest matrix E™ that can be a scattering matrix of an
assembly of independently scattering particles, for the four scattering angles where negative
eigenvalues of T have been found. As an illustration, we give the experimental matrix E (with
the standard deviations in units of 0.01 between brackets) and the modified matrix E™ for the
scattering angle of 10°,

100 —0.03(1)  0.00(1)  0.00(1)
0.00(3)  0.98(6)  0.02(3) —0.04(3)
0.00(1)  0.04(3) 0978)  0.01(5)
0.02(2)  0.00(2) —0.025)  0.97(8)

(66)

Table 1. The eigenvalues of the coherency matrix T
for scattering matrices of ocean water for various
scattering angles 6.

6 () 2 i A A
10 19 006 000  —002
15 195 006 001  —002
20 195 006 001  —002
25 194 006 002  —0.02
90 1.51 0.21 0.15 0.13

160 1.61 0.20 0.12 0.07
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1.01 —0.03 0.00 0.00

mod _ 000 098 001 —0.04 67
“ 1000 003 097 001

0.02 0.00 -0.02 0.96

It is clear that |E; — E}*| is smaller than the standard deviations for all elements, so that E; need
not be rejected. Similar results can be obtained for the other three experimental scattering matrices
where the corresponding matrix T was found to have at least one negative eigenvalue. Thus within
experimental error the 31 matrices can be scattering matrices of an assembly of independently
scattering particles.

7. DISCUSSION AND CONCLUSIONS

A Mueller matrix, M, is a real 4 x 4 matrix that transforms the column vector of Stokes
parameters of a beam into a similar column vector. We can thus write

I f
s 0,

=M . 68
U, U, (68)
Vs Vi

Constraints on M are imposed by the so-called Stokes criterion, i.c.

L=2\/0i+ Ui+ Vi (69)

for k = 1, 2. The nature of these constraints has been studied by several authors,'®!1821:2324

Mueller matrices are used for a variety of changes of a beam of polarized light, such as changes
due to passage through an optical instrument and scattering. A pure Mueller matrix is a Mueller
matrix that can be derived from a complex 2 x 2 matrix as given by Eq. (4).* Thus all results
for a pure scattering matrix given in the preceding sections are equally valid for a pure Mueller
matrix. Similarly, all properties and tests for a matrix describing single scattering by an assembly
of independently scattering particles hold for a matrix which is the sum of pure Mueller matrices.
These remarks are especially important for readers who are not dealing with scattering problems
but with other problems involving Mueller matrices.

It should be emphasized that a Mueller matrix is not necessarily a sum of pure Mueller matrices.
Examples are provided by

(i) the matrix G = diag(l, — 1, — 1, — 1) which only changes the signs of the Stokes parameters @,
U, and V, but whose trace is negative,
(i1) matrices M for which

M, >0, detM<0, and MGM =[—det M]'*G. (70)

Indeed, if a real 4 x 4 matrix M satisfies Eq. (70), then E = MG satisfies Eq. (26) and hence is
a pure Mueller matrix. Since inverses of invertible pure Mueller matrices are pure Mueller matrices
and products of sums of pure Mueller matrices are sums of pure Mueller matrices,* G = E-'M
would be a sum of pure Mueller matrices if M were to be a sum of pure Mueller matrices.
This is impossible, as shown in our first example. Thus matrices M satisfying Eq. (70) are Mueller
matrices that are not sums of pure Mueller matrices and therefore not pure Mueller matrices.
Furthermore, not every real 4 x 4 matrix can be a Mueller matrix as is exemplified by the matrix
diag(—1, 1, 1, 1). The situation is schematically shown in Fig. 3. Clearly, tests based on the Stokes
criterion only are insufficient for pure and sums of pure Mueller matrices.®

In Secs. 3—6 we have given several complete and incomplete tests for a real 4 x 4 matrix E to
be either a pure Mueller matrix or a sum of pure Mueller matrices. Complete tests give sufficient
conditions and incomplete tests only necessary conditions. It should be realized, however, that even
if all tests are passed by a particular matrix E, this does not necessarily mean that everything is
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Fig. 3. In a plane representing all real 4 x 4 matrices we have the subclasses consisting of pure Mueller
matrices (PM), sums of pure Mueller matrices (SPM), and Mueller matrices (M), respectively.

in order. Stated differently, if it has been verified that E can be a pure Mueller matrix or a sum
of pure Mueller matrices, E may not be the correct matrix for the problem at hand, since there
may be additional constraints that must hold as a result of, for instance, symmetries, conservation
of energy, or other physical laws.

In Secs. 3-6 a variety of tests has been presented, each of which has its own merits. With modern
computational means to calculate eigenvalues of a Hermitian matrix it should not be too much
of a problem to compute the eigenvalues of the coherency matrix T. The advantage of this approach
is that it yields a complete test for a pure Mueller matrix as well as for a sum of pure Mueller
matrices and that there is a general procedure to take uncertainties into account.
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