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Abstract. Witt’s theorem on the extension of H-isometries to H-unitary matrices with respect
to the scalar product generated by a self-adjoint nonsingular matrix H is studied in detail. All
possible extensions are given, and their structure as a real analytic manifold is described. Analogous
problems with respect to skew-symmetric scalar products are studied as well.

The main motivation to study these problems, as well as the main applications of the results
obtained, concerns polar decompositions in indefinite scalar product spaces. As another application,
for given B all solutions of the matrix equation XA = B with H-unitary X and upper triangular A
are described. Equations of this type are of vital importance in hyperbolic QR decompositions.

Key words. indefinite scalar products, isometries, polar decompositions, hyperbolic QR de-
compositions

AMS subject classifications. 15A63, 15A23

PII. S0895479895290644

1. Introduction. Let F be either the field of real numbers R or the field of
complex numbers C. Fix a real symmetric (if F = R) or complex Hermitian (if
F = C) invertible n × n matrix H. Consider the scalar product induced by H
according to the formula [x, y] = 〈Hx, y〉, x, y ∈ Fn. Here 〈 · , · 〉 stands for the
standard scalar product in Fn defined by 〈x, y〉 =

∑n
j=1 xj ȳj , where (x1, . . . , xn)T

and (y1, . . . , yn)T are column vectors in Fn. (Of course, ȳj = yj if F = R.) The
scalar product [ · , · ] is nondegenerate ([x, y] = 0 for all y ∈ Fn implies x = 0) but is
indefinite in general. In other words, the real number [x, x] can be positive, negative,
or zero for various x ∈ Fn (unless H is definite). The vector x ∈ Fn is called positive
if [x, x] > 0, neutral if [x, x] = 0, and negative if [x, x] < 0.

Well-known concepts related to the scalar product [ · , · ] are defined in obvious
ways. Thus, given an n× n matrix A over F , the adjoint A[∗] is defined by [Ax, y] =
[x,A[∗]y] for all x, y ∈ Fn. The formula A[∗] = H−1A∗H is verified immediately.
(Here and elsewhere we denote by A∗ the conjugate transpose of A, so that A∗ = AT

if F = R.) A matrix A is called H-self-adjoint if A[∗] = A or, equivalently, if HA is
Hermitian. An n×n matrix U is called H-unitary if [Ux,Uy] = [x, y] for all x, y ∈ Fn
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or, equivalently, U∗HU = H. Observe that for every H-unitary matrix U we have
| detU | = 1; in particular, detU = ±1 if F = R.

This article is the third of a series of four articles on decompositions of an n× n
matrix X over F of the form

X = UA,(1.1)

where U is H-unitary and A is H-self-adjoint (with or without additional restric-
tions). We call the decomposition (1.1) an H-polar decomposition of X. Our first
article, henceforth called [BMRRR1], is devoted to the existence, uniqueness (up to
equivalence), and basic properties of decompositions (1.1) and to the existence of
H-polar decompositions of H-normal matrices. In our second article, subsequently
referred to as [BMRRR2], we studied decompositions of the type (1.1), where vari-
ous constraints are imposed on the matrices X, U , A, and H, and discussed their
applications in linear optics.

In studying H-polar decompositions, we often face the problem of extending H-
isometries between linear subspaces to H-isometries defined on the whole space. The
theorem stating the existence of such extensions is a classical result in geometry called
Witt’s theorem (see, e.g., [A, Theorem III.3.9.], or [D]). However, the classical results
are concerned with the existence of a Witt extension and do not address the problems
of listing all possible Witt extensions and describing their topological and algebraic
structure. In the present paper, we give a detailed proof of Witt’s theorem in both the
real and the complex cases, detailed enough to yield all Witt extensions that exist.
This is the content of section 2. As a by-product, the connected components of the set
of all Witt extensions are described in section 3. Section 4 is devoted to the analogous
problem of finding real Witt extensions with respect to a real skew-symmetric scalar
product.

Another aspect of the present paper concerns a particular class of H-polar decom-
positions (1.1) in which the matrix A is H-nonnegative (i.e., HA is positive definite
Hermitian). Such decompositions will be called semidefinite H-polar decompositions.
In section 5 the semidefinite H-polar decompositions are described and characterized
in full detail using the general results of [BMRRR1] as a starting point and applying
the results on Witt extensions of section 2.

In section 6 the description of all Witt extensions is applied to a class of matrix
decompositions, namely, hyperbolic QR decompositions, which are crucial in certain
algorithms based on the generalized Schur method (see, e.g., [B, OSB, V]).

We remark in passing that the results of this paper concerning the description
of Witt’s extensions carry over to certain fields other than R or C. Indeed, our
description involves H-unitary matrices; normalization of vectors needed to construct
such matrices is only possible in number fields closed with respect to the square root
operation on positive numbers, such as the field of real algebraic numbers.

The following notation will be used. The number of positive (negative, zero)
eigenvalues of a Hermitian matrix A is denoted by π(A) (ν(A), δ(A)). The symbol
Fn (where F = R or F = C) stands for the vector space of n-dimensional columns
over F . We denote by Fm×n the vector space of m × n matrices over F . Im is the
m ×m identity matrix. The block diagonal matrix with matrices Z1, . . . , Zk on the
main diagonal is denoted by Z1⊕ · · ·⊕Zk or diag(Z1, . . . , Zk). The set of eigenvalues
(including nonreal eigenvalues for real matrices) of a matrix X is denoted by σ(X).
AT stands for the transpose of a matrix A. KerA and ImA stand for the null space
and range of a matrix A. The symbolM⊕N denotes the direct sum of the subspaces
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M and N . For a subspaceM⊂ Fn and an indefinite scalar product [x, y] = 〈Hx, y〉,
we call the subspace

M[⊥] = {x ∈ Fn|[x, y] = 0 for all y ∈M}

the H-orthogonal companion of M.

2. Witt’s theorem and its refinements. In this section we will derive a
version of Witt’s theorem which is suitable to our framework and describe all H-
isometries to which a given partial H-isometry can be extended.

We start with Witt’s theorem, which is a classical result (see, e.g., [A, D]). The
proofs given in [A, D] are algebraic and do not easily yield the parametrization that
we need. Although the proofs from [A, D] could be adapted, doing so would create
a portion of the paper at odds in style with the linear algebra methods of the rest of
the paper. On the other hand, results on extensions of isometries are well known in
the theory of operators in infinite-dimensional spaces with indefinite scalar products;
see, e.g., section 5.2 in [AI1] or section II.9 in [IKL].

Theorem 2.1. Let [ · , · ]1 and [ · , · ]2 be the two scalar products in Fn defined
by the invertible Hermitian n× n matrices H1 and H2, respectively:

[x, y]1 = 〈H1x, y〉, [x, y]2 = 〈H2x, y〉, x, y ∈ Fn.

Assume π(H1) = π(H2). Let U0 : V1 → V2, where V1 and V2 are subspaces in Fn, be
a nonsingular linear transformation that preserves the scalar products

[U0x, U0y]2 = [x, y]1 for every x, y ∈ V1.(2.1)

Then there exists a linear transformation U : Fn → Fn such that

[Ux,Uy]2 = [x, y]1 for every x, y ∈ Fn(2.2)

and

Ux = U0x for every x ∈ V1.(2.3)

It is easy to see that the condition π(H1) = π(H2), the nonsingularity of U0, and
the equality (2.1) are necessary for the existence of U with the asserted properties.
Note that any such U is necessarily invertible; however, a linear transformation U0

that satisfies (2.1) need not be invertible. A linear transformation (or its matrix
representation with respect to specified bases) U with the property (2.2) is called
H1-H2-unitary.

Given U0 as in Theorem 2.1, any linear transformation U satisfying (2.2) and
(2.3) will be called a Witt extension of U0.

The following well-known fact will be useful in the proof of Theorem 2.1.
Proposition 2.2. Let [x, y] = 〈Hx, y〉 be an indefinite scalar product on Fn.

The following statements are equivalent for the subspace M⊂ Fn:
(i) M is H-nondegenerate; i.e., x0 ∈ M, [x0, y] = 0 for all y ∈ M implies

x0 = 0.
(ii) The H-orthogonal companion M[⊥] is H-nondegenerate.

(iii) M[⊥] is a direct complement to M in Fn.
The proof is based on the simple observation that dimM + dim M[⊥] = n; see

[GLR] or [Bo] for complete details.
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Proof of Theorem 2.1. We give a proof of Theorem 2.1 which will also serve as
a basis for subsequent results concerning detailed descriptions of all Witt extensions.
Put m = m+ + m− + m0. Let {ei}i=1,2,...,m be a basis of V1 such that [ej , ej ]1 = 1
for j = m0 + 1,m0 + 2, . . . ,m0 + m+, [ek, ek]1 = −1 for k = m0 + m+ + 1, m0 +
m+ + 2, . . . ,m, and all the remaining indefinite scalar products of the basis vectors
are zero (thus the Hermitian matrix defining the H1-scalar product on V1 has m+

positive eigenvalues and m− negative eigenvalues and the multiplicity of zero is m0).
Introduce the m linear functionals αi on Fn as follows:

αi(x) = [x, ei]1, i = 1, 2, . . . ,m.

Since α1, . . . , αm are linearly independent, there exist vectors ẽi ∈ Fn such that
αi(ẽj) = δij , where δij = 1 if i = j and δij = 0 if i 6= j, i.e., such that [ei, ẽj ]1 = δij
for all i, j = 1, 2, . . . ,m. Let

Wk = span {ek, ẽk}, k = 1, 2, . . . ,m0.

Since [ek, ek]1 = 0 and [ek, ẽk]1 = 1, each Wk is H1-nondegenerate. Without loss of
generality we can assume that, for k = 1, 2, . . . ,m0, we have [ẽk, ẽk]1 = 0. (Indeed, we
can always replace the vector ẽk by the vector ẽk − 1

2 [ẽk, ẽk]1ek, which has the above
property.) Let

e′k =
1√
2

(ek − ẽk), e′′k =
1√
2

(ek + ẽk).

It is easy to see that

[e′k, e
′
k]1 = −1, [e′′k , e

′′
k ]1 = 1, [e′k, e

′′
k ]1 = 0.

The subspace W = W1 + · · ·+Wm0
+ span {ej}i=m0+1,...,m is H1-nondegenerate;

hence, W [⊥] is H1-nondegenerate by Proposition 2.2. Therefore, we can append the
vectors

es, s = 2m0 +m+ +m− + 1, 2m0 +m+ +m− + 2, . . . , n

to the set

{e′k, e′′k , em0+1, em0+2, . . . , em}k=1,2,...,m0

of 2m0 +m+ +m− vectors such that the resulting ordered set {g1, . . . , gn} will be a
basis in Fn with the property that [gi, gj ]1 = εiδij for i, j = 1, . . . , n, where εi = ±1.

Now let fi = U0ei, i = 1, 2, . . . ,m. We introduce vectors f ′k and f ′′k (k =
1, 2, . . . ,m) and vectors fs (s = 2m0 +m+ +m−+1, 2m0 +m+ +m−+2, . . . , n) in the
same way we introduced the vectors e′k, e′′k , and es but using [ · , · ]2 instead of [ · , · ]1,
resulting in a basis h1, . . . , hn in Fn. The hypotheses on H1 and H2 (π(H1) = π(H2))
and on U0 (U0 being an isometry) guarantee that [hi, hj ]2 = [gi, gj ]1 (i, j = 1, . . . , n).

Define the n× n matrix U by the equalities

Ue′k = f ′k, Ue
′′
k = f ′′k , k = 1, 2, . . . ,m0,

Ues = fs, s = 2m0 + 1, 2m0 + 2, . . . , n.

It is easy to see that the matrix U has all the properties required by the statement of
the theorem.
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We will use the bases

E = {e1, e2, . . . , em0
, em0+1, . . . , em, ẽ1, . . . , ẽm0

, e2m0+m++m−+1, . . . , en}(2.4)

and F (consisting of the vectors Ue, where e ∈ E) of Fn constructed in the proof
of Theorem 2.1. These bases will be more convenient than the ones we considered
above because the subspaces V1 and V2 are spanned by the first m vectors of the
corresponding bases. Recall that U0V1 = V2, as U0 is nonsingular. Thus, in particular,
dim V1 = dim V2. With respect to [ · , · ]1, the basis (2.4) has the Gramian matrix

0 0 I 0
0 J1 0 0
I 0 0 0
0 0 0 J2

 ,(2.5)

where I is the m0 ×m0 identity matrix and J1 is the diagonal (m+ +m−)× (m+ +
m−) matrix such that its first m+ diagonal elements are +1 and its remaining
m− diagonal elements are −1. Similarly, J2 is the Gramian matrix of the basis
{em0+m+1, em0+m+2, . . . , en} of the subspace spanned by these vectors; without loss
of generality we can (and do) assume that J2 is a diagonal matrix for which several
diagonal entries are +1 and the remaining diagonal entries are −1.

The matrix (2.5) is also the Gramian matrix of the basis F with respect to [ · , · ]2.
The matrix U (constructed in the proof of Theorem 2.2), when understood as a linear
transformation Fn → Fn, is the n× n identity matrix with respect to the basis E (in
Fn as the domain space of U) and the basis F (in Fn as the image space of U).

The Witt extensions of a given U0 are described by the following theorem. (We
represent the Witt extensions as linear transformations Fn → Fn with respect to the
bases E and F constructed above.)

Theorem 2.3 (extended Witt’s theorem). If a matrix Ũ is a Witt extension
of the matrix U0, then there exist a J2-unitary matrix P1 (of order n − m − m0),
an (n −m −m0) ×m0 matrix P2, and a skew-self-adjoint m0 ×m0 matrix P3 (i.e.,
P ∗3 = −P3) such that the matrix of Ũ has the form

Ũ =


Im0

0 − 1
2P
∗
2 J2P2 + P3 −P ∗2 J2P1

0 Im−m0
0 0

0 0 Im0
0

0 0 P2 P1

 .(2.6)

Here m = dim V1 and m0 is the number of zero eigenvalues of the Gramian matrix of
any basis in V1 with respect to [ · , · ]1.

Conversely, if P1 is an arbitrary J2-unitary matrix, P2 is an arbitrary (n −m −
m0)×m0 matrix, and P3 is an arbitrary skew-self-adjoint m0 ×m0 matrix, then the
matrix Ũ defined by (2.6) is a Witt extension of U0.

Proof. The proof is straightforward. Any extension Ũ of U0 in the above bases
has the matrix

Ũ =


I 0 A1 A2

0 I A3 A4

0 0 A5 A6

0 0 A7 A8

 .(2.7)

The necessary and sufficient condition for the matrix (2.7) to be H1-H2-unitary is the
identity H−1

1 Ũ∗H2Ũ = I. Taking into account (2.5) and (2.7) we can rewrite the last
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relation in block form as
A∗5 A∗3J1 u13 u14

0 I A3 A4

0 0 A5 A6

J2A
∗
6 J2A

∗
4J1 u43 u44

 =


I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I

 ,(2.8)

where

u13 = A∗5A1 +A∗3J1A3 +A∗1A5 +A∗7J2A7,

u14 = A∗5A2 +A∗3J1A4 +A∗1A6 +A∗7J2A8,

u43 = J2A
∗
6A1 + J2A

∗
4J1A3 + J2A

∗
2A5 + J2A

∗
8J2A7,

u44 = J2A
∗
6A2 + J2A

∗
4J1A4 + J2A

∗
2A6 + J2A

∗
8J2A8.

Equating the corresponding blocks in (2.8), we derive the theorem statement.
If V1 is H1-nondegenerate (i.e., m0 = 0), then necessarily V2 is H2-nondegenerate

and the result of Theorem 2.3 is obvious.
Observe also that the inverse of the matrix (2.6) is given by

Ũ−1 =


I 0 − 1

2 P̂
∗
2 J2P̂2 + P̂3 −P̂ ∗2 J2P̂1

0 I 0 0
0 0 I 0

0 0 P̂2 P̂1

 ,(2.9)

where

P̂1 = P−1
1 = J2P

∗
1 J2, P̂2 = −P−1

1 P2 = −J2P
∗
1 J2P2, P̂3 = −P3.

Note that a Witt extension Ũ has the form (2.6) with respect to different bases
in domain and image space, namely, with respect to the basis E given by (2.4) in
the domain space and the basis F consisting of the vectors Ue in the image space.
Keeping this in mind, we can easily reformulate Theorem 2.3 in the following way
with respect to one basis E (the same for both the domain and the range of Ũ). It is
this form of the theorem that we shall apply later in Theorems 5.6 and 6.1.

Theorem 2.4 (extended Witt’s theorem, second version). Let U be a fixed Witt
extension of U0 as constructed in Theorem 2.1. Then any Witt extension Ũ of U0 is
given by Ũ = UM , where M has the form of the right-hand side of (2.6) with respect
to the basis E in (2.4).

Proof. Observe that U maps the elements of the basis E into the corresponding
elements of the basis F and that (2.6) is the matrix representation of U with respect
to the basis E in the domain space and the basis F in the image space.

It is of interest to compute the number of independent real parameters that de-
scribe all Witt extensions. Assume first F = C. Then the formula (2.6), combined
with the real analytic description of the group of J2-unitary matrices (see, e.g., The-
orem IV.3.1 in [GLR]), produces the following result.

Theorem 2.5 (F = C). The set W (U0) of all Witt extensions of a given isometry
U0 : V1 → V2 is parametrized by (n − m)2 independent real variables, where m =
dim V1. More precisely, let

p = π(H1)−m+ −m0, q = ν(H1)−m− −m0,(2.10)



758 BOLSHAKOV, VAN DER MEE, RAN, REICHSTEIN, AND RODMAN

where m+, m−, and m0 are the numbers of positive, negative, and zero eigenvalues,
respectively, of the Gramian matrix of any basis in V1 with respect to [ · , · ]1. Then
W (U0) is diffeomorphic (as a real analytic manifold) to

SU(p)× SU(q)× T × T ×Rw, w = 2pq + 2(n−m−m0)m0 +m2
0

if both p and q are positive, and W (U0) is diffeomorphic to

SU(p+ q)× T ×Rw

if exactly one of p and q is zero. Finally, W (U0) is diffeomorphic to Rw if p = q = 0.
Here T is the unit circle and

SU(k) = {X ∈ Ck×k| X unitary, det X = 1}

is the k × k special unitary group.
Proof. We use the notation of Theorem 2.3. The matrix Ũ is parametrized

by (P1, P2, P3), where P2 and P3 are in turn parametrized by 2(n − m − m0)m0

and m2
0 independent real variables, respectively. Observe that p = π(J2) and q =

ν(J2). Thus, the group of all J2-unitary matrices is diffeomorphic (as a real analytic
manifold) either to SU(p)×SU(q)×T ×T ×R2pq (if both p and q are positive) or to
SU(p+q)×T (if exactly one of p and q is zero); see, e.g., Theorem IV.3.1 in [GLR]. In
fact, explicit charts for the group of all J2-unitary matrices can be constructed using
the diffeomorphism mentioned above and the following two charts for SU(p), namely,
the sets {

expK : K = −K∗, trace K = 0, σ(K) ⊂ ±
(
− π

2
i,

3π

2
i

]}
.

The number of real parameters describing the group of J2-unitary matrices is (p2 −
1)+(q2−1)+1+1+2pq = (p+q)2 if p, q > 0. (Here we use the fact that SU(k) has real
dimension k2 − 1, equal to the real dimension of the set of all skew-self-adjoint k × k
matrices with trace 0, which is the Lie algebra of SU(k).) The group of J2-unitary
matrices has real dimension (p+ q)2 also in the case where exactly one of p and q is
zero. Thus, the total number of real parameters describing Ũ is

(p+ q)2 + 2(n−m−m0)m0 +m2
0 = (p+ q +m0)2

= (π(H1) + ν(H1)−m+ −m− −m0)2

= (n−m)2.

An analogous proof also works in the case p = q = 0.
The real analogue of Theorem 2.5 runs as follows.
Theorem 2.6 (F = R). Let m = dim V1, and let p and q be defined by (2.10).

Then the set W (U0) of all Witt extensions of an isometry U0 : V1 → V2 is connected if
p = q = 0, has two connected components if exactly one of p and q is positive, and has
four connected components if both p and q are positive. Every connected component
of W (U0) is diffeomorphic (as a real analytic manifold) to

SO(p)× SO(q)×Rv, v = pq + (n−m−m0)m0 +
1

2
m0(m0 − 1),

where SO(k) is the group of real unitary (i.e., real orthogonal) k × k matrices with
determinant 1 if both p and q are positive; every connected component of W (U0) is
diffeomorphic to

SO(p+ q)×Rv
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if exactly one of p and q is zero. Finally, W (U0) is diffeomorphic to Rv if p =
q = 0. In all cases, every connected component of W (U0) can be parametrized by
1
2 (n−m)(n−m− 1) independent real variables.

The part of Theorem 2.6 concerning the number of connected components follows
immediately from Theorems 2.3 and 3.1. (The latter is stated and proved in the next
section.) The remainder of the proof of Theorem 2.6 is analogous to that of Theorem
2.5: one should use the real analogue of Theorem IV.3.1 in [GLR] and the fact that
SO(k) has (real) dimension 1

2k(k − 1); this is the dimension of the Lie algebra of
SO(k) which consists of all real skew-symmetric k × k matrices.

It is a curious observation that the number of real parameters describing W (U0)
depends only on n (the order of H1) and on m (the dimension of V1) and does not
depend on m0 (the degree of degeneracy of V1 in the indefinite scalar product induced
by H1).

In particular, Theorems 2.5 and 2.6 allow one to identify the fundamental group
of the set W (U0) using the well-known fact that SU(k) and Rn are simply connected;
the fundamental group of SO(k) is of order 2 if k ≥ 3, the infinite cyclic group Z
if k = 2, and the trivial group if k = 1; and the fundamental group of the product
of two arcwise connected topological spaces X and Y is the direct product of the
fundamental groups of X and Y (see, e.g., sections II.VIII, II.X, and II.XI in [C]).
Thus the fundamental group of W (U0) is Gp ×Gq if both p and q are positive, Gp+q
if one of p, q is positive and the other vanishes, and trivial if p = q = 0; here Gp = Z
if F = C, whereas Gp = Z2 if p ≥ 3, G2 = Z, and G1 is trivial if F = R.

We conclude this section with two illustrative examples.

Example 2.1. Let H =
[

0 1
1 0

]
; V = span

{[
1
0

]}
. Any linear transformation

U0 : V → V is an isometry. The linear transformation U0 : V → V is defined

by U0

[
1
0

]
=
[
α
0

]
, where α 6= 0 is a given complex number. We shall find the

Witt extensions U of U0. An elementary calculation shows that all such U have

the form
[
α x
0 ᾱ−1

]
, where x ∈ C is any number such that ᾱx + x̄α = 0. If we

consider F = R, then α is real and the unique Witt extension of U0 is given by
diag (α, α−1).

Example 2.2. Let H =
[

1 0
0 −1

]
; V = span

{[
1
0

]}
. A linear transformation

U0 : V → V defined by U0

[
1
0

]
=
[
α
0

]
, α 6= 0, is an H-isometry if and only

if |α| = 1. The Witt extensions U of U0 are described by U = diag (α, y), where
|y| = 1. In the real case we have exactly two Witt extensions (corresponding to y =
±1).

3. Connectivity of the H-unitary groups. Let H be an invertible Hermitian
n × n matrix over F (F = R or F = C). The set of H-unitary matrices (over F ) is
easily seen to be a group, denoted U(H;F ). Its connected components are described
as follows.

Theorem 3.1.

(a) The group U(H; C) is connected.

(b) If F = R and H is definite (positive or negative), then the group U(H; R) has
two connected components. One of them contains all X ∈ U(H; R) with det X = 1;
the other contains all X ∈ U(H; R) with det X = −1.

(c) If F = R and H is indefinite, then U(H,R) has four connected components
which can be described as follows. We can assume H = Ip ⊕ −Iq, where p, q > 0.
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Then, for every choice of signs δ1 = ±1, δ2 = ±1, a connected component of U(H,R)
is given by

U(H; δ1, δ2) =

{
V =

[
V1 V2

V3 V4

]
∈ U(H; R)| δ1 det V1 > 0, δ2 det V4 > 0

}
,

where V1 is a p× p matrix and V4 is a q × q matrix. In particular,

{X ∈ U(H; R)| det X = 1} = U(H; 1, 1) ∪ U(H;−1,−1),(3.1)

and this set consists of two connected components.
In all cases, each connected component of U(H;F ) is arcwise connected.
Proof. This result is known; for the proof of (a) and (b) see Lemma I.3.8 and

Theorem I.5.8, respectively, in [GLR].

For completeness, we provide a proof of (c). Let V =
[
V1 V2

V3 V4

]
belong to

U(H; R). Then the equation V THV = H = Ip ⊕−Iq gives

V T1 V1 = I + V T3 V3, V T4 V4 = I + V T2 V2, V T2 V1 = V T4 V3.(3.2)

It follows that | det V1| ≥ 1, | det V4| ≥ 1, and therefore the H-unitary matrices

(over R) V =
[
V1 V2

V3 V4

]
and W =

[
W1 W2

W3 W4

]
(here W1 is p × p and W4 is q × q)

belong to different connected components in U(H; R), provided at least one of the
inequalities det V1 · det W1 < 0, det V4 · det W4 < 0 is valid. It remains to show that
if det V1 · det W1 > 0 and det V4 · det W4 > 0, then V and W belong to the same
connected component in U(H,R). It suffices to show that if det V1 > 0, det V4 > 0,
then V can be continuously connected to I in U(H; R). As V is H-unitary, V T is
H-unitary as well (indeed, V THV = H implies V −1 = H−1V TH = HV TH, and
therefore V HV TH = I, or V HV T = H). Thus, we also have

I + V3V
T
3 = V4V

T
4 .(3.3)

Observe from (3.2) and (3.3) that V1(I+V T3 V3)−
1
2 and V T4 (I+V3V

T
3 )−

1
2 are real and

unitary (with respect to I). Moreover, they both have determinant 1, as det V1 > 0
and det V4 > 0. So, by part (b), there is a continuous family of unitary matrices
U1(t), U4(t) for t ∈ [0, 1] such that

U1(0) = I, U4(0) = I,

U1(1) = V1(I + V T3 V3)−
1
2 , U4(1) = V T4 (I + V3V

T
3 )−

1
2 .

Let

V1(t) = U1(t)(I + t2V T3 V3)
1
2 , V4(t) = (I + t2V3V

T
3 )

1
2U4(t)T ,

V3(t) = tV3, V2(t) = tV1(t)−TV T3 V4(t),

and

V (t) =

[
V1(t) V2(t)

V3(t) V4(t)

]
.
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Then V (0) = I and V (1) = V , and one easily verifies that V (t) is H-unitary for all
t ∈ [0, 1].

A basis independent description of the connected components of U(H; R), where
H is indefinite, runs as follows. Let M+ and M− be subspaces in Rn which are
H-orthogonal complements of each other and such that M+ is H-positive and M−
is H-negative. Denote by P+ (resp., P−) the projector onto M+ (resp., M−) along
M− (resp., M+). Then X ∈ U(H; δ1, δ2) if and only if

δ1 det(P+X|M+) > 0, δ2 det(P−X|M−) > 0.(3.4)

The proof of this statement is analogous to the proof of Theorem 3.1 (part (c)) and
therefore is omitted.

Observe that the inequalities (3.4) are independent of the choice of the pair of
subspaces M+, M− with the above properties.

Theorem 3.2. For any real invertible matrix S and any X ∈ U(H; δ1, δ2) the
matrix S−1XS belongs to the connected component U(S∗HS; δ1, δ2) determined by
the same δ1, δ2.

Proof. The proof follows easily from the description of U(H; δ1, δ2) given by
formula (3.4). Indeed, assume that X ∈ U(H; δ1, δ2). Choose a pair of subspaces
M+ and M− that are H-orthogonal complements to each other and such that M+

(resp.,M−) is H-positive (resp., H-negative). Then S−1M+ and S−1M− are S∗HS-
orthogonal complements to each other and S−1M+ (resp., S−1M−) is S∗HS-positive
(resp., S∗HS-negative). We conclude the proof by applying the formula (3.4) with
X, P+, P− replaced by S−1XS, S−1P+S, S

−1P−S, respectively, and with M±
replaced by S−1M±.

4. Witt’s theorem for real skew-symmetric scalar products. Let F = R
and let K be a real invertible skew-Hermitian n× n matrix (in particular, n is even).
Define the skew-symmetric scalar product {·, ·} on Rn by

{x, y} = 〈Kx, y〉.

If A is an n × n matrix, its K-adjoint A{∗} is defined by the identity {Ax, y} =
{x,A{∗}y}, where x, y ∈ Rn. It is easy to see that A{∗} = K−1A∗K. A matrix A is
called K-self-adjoint if A{∗} = A, and it is called K-skew-self-adjoint if A{∗} = −A. A
K-unitary matrix A is defined by the property that it preserves the skew-symmetric
scalar product, i.e., if, for any two vectors x, y ∈ Rn, {Ax,Ay} = {x, y}. It is easy
to verify that A is K-self-adjoint if and only if KA = A∗K, is K-skew-self-adjoint
if and only if KA = −A∗K, and is K-unitary if and only if it is nonsingular and
K−1A∗KA = I.

Example 4.1. Consider the skew-Hermitian matrix

H =

[
0 1
−1 0

]
.

We have H∗ = H−1 = −H. Moreover, X{∗} = H−1X∗H is the cofactor matrix of
X, so that X{∗}X = (detX) I. Hence A is H-self-adjoint if and only if A = cI for
some c ∈ R, and A is H-skew-self-adjoint (i.e., HA = −A∗H) if and only if TrA = 0.
Furthermore, U is H-unitary (i.e., U∗HU = H) if and only if detU = +1.

Lemma 4.1. Let {., .} be a skew-symmetric scalar product on Rn defined by the
real invertible skew-symmetric n×n matrix K and let V be an m-dimensional subspace
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of Rn. Let the defect of the restriction of {., .} to V be m0 (so that the rank of the
above restriction is m−m0 ). Then

(a) There exists a basis

{e1, . . . , em0 , em0+1, . . . , em+m0
2

, fm0+1, . . . , fm+m0
2
}(4.1)

of V such that

{ek, fk} = −{fk, ek} = 1, k = m0 + 1,m0 + 2, . . . ,
m+m0

2
,(4.2)

while the scalar product of any other two vectors in (4.1) is zero.
(b) There exist vectors

{f1, f2, . . . , fm0
, em+m0

2 +1
, em+m0

2 +2
, . . . , en

2
, fm+m0

2 +1
, fm+m0

2 +2
, . . . , fn

2
}(4.3)

such that the union of the sets (4.1) and (4.3) is a canonical basis for Rn; i.e.;

{ek, fk} = −{fk, ek} = 1, k = 1, 2, . . . ,
n

2
,(4.4)

while the scalar product of any other two vectors from the union of (4.1) and (4.2) is
zero.

Proof. This is an elementary exercise in linear algebra. Namely, if m = m0 then V
is isotropic and any basis of V does the job. If m > m0 there exist vectors em0+1 and
fm0+1 such that {em0+1, fm0+1} = 1. If m−m0 = 2 then the orthogonal companion V1

of the subspace span{em0+1, fm0+1} in V is isotropic and any basis of V1 appended to
vectors em0+1, fm0+1 produces a desired basis. If m−m0 > 2 then V1 is not isotropic
and we can find vectors em0+2, fm0+2 ∈ V1 such that {em0+2, fm0+2} = 1. Continuing
this process we will find a desired basis of V . This proves (a). To prove (b) we first
introduce the (n −m + m0)-dimensional subspace W of Rn, which is K-orthogonal
to the subspace

span{em0+1, fm0+1, em0+2, fm0+2, . . . , em+m0
2

, fm+m0
2
}.

Obviously, W is nondegenerate and e1, e2, . . . , em0
∈ W . Since W is nondegener-

ate, there exists a vector f1 ∈ W such that {e1, f1} = 1 and {ek, f1} = 0 for
k = 2, 3, . . . ,m0. Let W1 be the K-orthogonal complement of span{e1, f1} in W .
If m0 = 1 then any basis of W1 appended to vectors e1 and f1 already found will
produce a desired basis. If m0 > 1 then e2 ∈ W1 and we can find a vector f2 ∈ W1

such that {e2, f2} = 1 and {ek, f2} = 0 for k = 1, 3, 4, . . . ,m0. Continuing this process
we will finally find a basis of Rn that satisfies all the requirements of (b).

Theorem 4.2. Let {·, ·}1 and {·, ·}2 be two skew-symmetric scalar products on
Rn defined by the skew-symmetric n× n matrices K1 and K2, respectively:

{x, y}1 = 〈K1x, y〉, {x, y}2 = 〈K2x, y〉, x, y ∈ Rn.

Let U0 : V1 → V2, where V1 and V2 are subspaces in Rn, be a nonsingular linear
transformation that preserves the scalar products; namely,

{U0x, U0y}2 = {x, y}1

for every x, y ∈ V1. Then there exists a linear transformation U : Rn → Rn such that

{Ux,Uy}2 = {x, y}1



EXTENSION OF ISOMETRIES 763

for every x, y ∈ V1 and

Ux = U0x

for every x ∈ V1.
Proof. Let the vectors

{e1, . . . , em0
, em0+1, . . . , em+m0

2
, fm0+1, . . . , fm+m0

2
}(4.5)

be as in (a) of Lemma 4.1 and let

gt = U0et, hs = U0fs, t = 1, 2, . . . ,
m+m0

2
, s = m0 + 1,m0 + 2, . . . ,

m+m0

2
.

(4.6)
Next, let the vectors

f1, f2, . . . , fm0 , em+m0
2 +1

, em+m0
2 +2

, . . . , en
2
, fm+m0

2 +1
, fm+m0

2 +2
, . . . , fn

2
(4.7)

be as in (b) of Lemma 4.1; i.e., combined with the vectors (4.1) they produce a
canonical basis

{e1, e2, . . . , em0
, em0+1, em0+2, . . . , em+m0

2
, fm0+1, fm0+2, . . . , fm+m0

2
,

f1, f2, . . . , fm0 , em+m0
2 +1

, em+m0
2 +2

, . . . , en
2
, fm+m0

2 +1
, fm+m0

2 +2
, . . . , fn

2
}(4.8)

of Rn,

{es, fs}1 = −{fs, es}1 = 1, s = 1, 2, . . . ,
n

2
.(4.9)

The remaining scalar products of the basis are zero. Similarly, let the vectors

h1, h2, . . . , hm0 , gm+1, gm+2, . . . , gn2 , hm+1,, hm+2, . . . , hn2(4.10)

be as in (b) of Lemma 4.1; i.e., combined with the vectors (4.6) they produce a
canonical basis

{g1, g2, . . . , gm0 , gm0+1, gm0+2, . . . , gm+m0
2

, hm0+1, hm0+2, . . . , hm+m0
2

,

h1, h2, . . . , hm0 , gm+m0
2 +1

, gm+m0
2 +2

, . . . , gn
2
, hm+m0

2 +1
, hm+m0

2 +2
, . . . , hn

2
}(4.11)

of Rn,

{gs, hs}2 = −{hs, gs}2 = 1, s = 1, 2, . . . ,
n

2
.(4.12)

The remaining scalar products of the basis are zero. Define the linear transformation
U as follows:

Ues = gs, Ufs = hs, s = 1, 2, . . . ,
n

2
.(4.13)

It is easy to see that the matrix defined by (4.13) satisfies all the conditions of the
theorem.
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We will use the bases (4.8) and (4.11) constructed in the proof of Theorem 4.2.
With respect to {., .}1, the basis (4.8) has the skew-symmetric Gramian matrix

K =


0 0 −I 0
0 J1 0 0
I 0 0 0
0 0 0 J2

 .(4.14)

Here I is the m0 ×m0 identity matrix, J1 is an (m−m0)× (m−m0) matrix of the

form J1 =
[

0 −I
I 0

]
, and J2 is an (n−m−m0)× (n−m−m0) matrix of the same

form as J1.
As in previous sections, any linear transformation (or its matrix representation

with respect to fixed bases) U from Theorem 4.2 will be called a Witt extension of
U0. All the Witt extensions of a given U0 are described by the following theorem (we
represent the Witt extensions as linear transformations Rn → Rn with respect to the
bases (4.8) and (4.11) above).

Theorem 4.3 (extended Witt’s theorem for a skew-symmetric scalar product). If
a matrix Ũ is a Witt extension of the matrix U0, then there exist a J2-unitary matrix
P1 (of order n−m−m0), a real (n−m−m0)×m0 matrix P2, and a real symmetric
m0 ×m0 matrix P3 (i.e., P ∗3 = P3) such that the matrix of Ũ has the form

Ũ =


I 0 − 1

2P
∗
2 J2P2 + P3 −P ∗2 J2P1

0 I 0 0
0 0 I 0
0 0 P2 P1

 .(4.15)

Conversely, if P1 is an arbitrary J2-unitary matrix, P2 is an arbitrary real (n−m−
m0) × m0 matrix, and P3 is an arbitrary real symmetric m0 × m0 matrix, then the
matrix Ũ defined by (4.15) is a Witt extension of U0.

Proof. The proof is similar to that of Theorem 2.3. Namely, any extension Ũ of
U0 in the bases (4.8), (4.11) has the matrix

Ũ =


I 0 A1 A2

0 I A3 A4

0 0 A5 A6

0 0 A7 A8

 .(4.16)

The necessary and sufficient condition for the matrix Ũ to be K1-K2-unitary is the
identity K−1

1 Ũ∗K2Ũ = I. Taking into account (4.14), (4.16), and the facts that
K1 = K2 = K and that K−1 = −K, we can rewrite the last relation in block form as

A∗5 A∗3J1 u13 u14

0 I A3 A4

0 0 A5 A6

−J2A
∗
6 −J2A

∗
4J1 u43 u44

 =


I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I

 ,(4.17)

where

u13 = −A∗1A5 +A∗3J1A3 +A∗5A1 +A∗7J2A7,

u14 = −A∗1A6 +A∗3J1A4 +A∗5A2 +A∗7J2A8,

u43 = J2A
∗
2A5 − J2A

∗
4J1A3 − J2A

∗
6A1 − J2A

∗
8J2A7,

u44 = J2A
∗
2A6 − J2A

∗
4J1A4 − J2A

∗
6A2 − J2A

∗
8J2A8.
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Equating the corresponding blocks in (4.17), we easily derive the statement of the
theorem. The only appropriate clarification to make is the following. After we estab-
lish that A3 = A4 = A6 = 0 and that A5 = I we can rewrite the equation u13 = 0
as

A1 −A∗1 +A∗7J2A7 = 0.(4.18)

Having represented the matrix A1 as a sum of symmetric and skew-symmetric matri-
ces, we get A1 = A+ +A−, where A∗+ = A+ and A∗− = −A−. Substituting A+ +A−
for A1 and A+ −A− for A∗1 into (4.18) we conclude that

A− = −1

2
A∗7J2A7

and that, for an arbitrary self-adjoint matrix P3, the matrix A1 = P3 − 1
2A
∗
7J2A7

satisfies the equation (4.18).
The formula (2.9) for the inverse of Ũ is valid here as well.
Note that a Witt extension Ũ has the form (4.17) with respect to different bases

in domain and image space, namely, with respect to the basis (4.8) in the domain
space and the basis (4.11) consisting of the vectors Ue, in the image space. Keeping
this in mind, we can easily reformulate Theorem 4.2 in the following way with respect
to one basis (4.8) (the same for both the domain and the range of Ũ) and obtain a
statement similar to Theorem 2.4.

Theorem 4.4 (extended Witt’s theorem, second version). Let U be a fixed Witt
extension of U0 as constructed in Theorem 4.1. Then any Witt extension Ũ of U0 is
given by Ũ = UM , where M has the form of the right-hand side of (4.16) with respect
to the basis (4.8).

Proof. Observe that U maps the elements of the basis (4.8) into the correspond-
ing elements of the basis (4.11) and that (4.15) is the matrix representation of U
with respect to the basis (4.8) in the domain space and the basis (4.11) in the image
space.

The set of all Witt extensions of an isometry between two real skew-symmetric
scalar product spaces is described as follows.

Theorem 4.5. Let H1, H2, V1, and U0 be as in Theorem 4.2. Then the set
W (U0) of all Witt extensions of U0 is connected and can be parametrized by 1

2 (n −
m)(n−m+ 1) real variables. More precisely, let

m0 = δ
[
zTj (iH1)zk

]m
j,k=1

for some (every) basis {z1, . . . , zm} in V1; in other words, m0 is the defect of the
restriction of H1 to V1. Then W (U0) is diffeomorphic (as a real analytic manifold) to

SU

(
n−m−m0

2

)
× T ×Ru,

where

u =
n−m−m0

2

(
n−m+ 3m0

2
+ 1

)
+
m0(m0 + 1)

2
.

The proof is obtained by combining Theorem 4.3 and the parametrization of the
group of all real matrices that are orthogonal with respect to a skew-symmetric scalar
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product (see Theorem II.1.7 in [GLR]). Observe that this group is connected (see
the same theorem in [GLR]). Also observe that the set of (real) J2-unitary matrices
is diffeomorphic (as a real analytic manifold) to Rk(k+1) × SU(k) × T , where k =
n−m−m0

2 , and hence can be described by 2k2 + k real parameters; a detailed proof is
found in section II.1.5 of [GLR].

As in Theorems 2.5 and 2.6, the number of independent parameters that describe
the set of Witt extensions in Theorem 4.5 depends only on n and m and does not
depend on m0.

5. Polar decompositions. Let F = C or F = R, and let H be an invertible
Hermitian n×n matrix over F . A factorization X = UA will be called a semidefinite
H-polar decomposition if U is H-unitary, A is H-nonnegative, and both U and A are
over F . Recall that an n× n matrix A is said to be H-nonnegative if HA is positive
semidefinite Hermitian.

More general classes and concepts of polar decompositions in indefinite scalar
product spaces are studied in [BMRRR1]. If H is positive definite, then the concept
of semidefinite H-polar decomposition reduces to the well-known and widely used
notion of polar decompositions for real and complex matrices. For an indefinite H,
polar decompositions have been studied in [P1, P2, AI1, AI2, BMRRR2] in connection
with Potapov’s theory of H-nonexpansive operators, in [KS1, KS2] in connection with
plus operators, and in [BR] in connection with H-unitary equivalence. Such polar
decompositions play an important role in certain applications in linear optics [M,
MH, BMRRR2]. A general approach to polar decompositions is developed in [K].
Other variants of factorizations of matrices of the polar decomposition type have also
been studied extensively in the literature; see, e.g., [HM1, HM2, CH].

In this section we characterize the matrices X which admit semidefinite H-polar
decompositions (note that in contrast to the standard polar decompositions not ev-
ery real or complex matrix admits H-polar decompositions if H is indefinite; see
[BMRRR1] for examples). Furthermore, in the case when semidefinite H-polar de-
compositions exist, we provide a full description of the H-nonnegative and H-unitary
factors.

We start by recalling the canonical forms of H-self-adjoint matrices (more pre-
cisely, of the pairs {A,H}, where A is H-self-adjoint). We denote by Jk(λ) the k × k
upper triangular Jordan block with λ ∈ C on the main diagonal and by Jk(λ± iµ) the
k×k almost upper triangular real Jordan block with eigenvalues λ± iµ (here λ, µ are
real and µ > 0; k is necessarily even). We also use the notation Qm = [δi+j,m+1]mi,j=1

for the m×m matrix with ones on the southwest–northeast diagonal and zeros else-
where.

Theorem 5.1. Let H be an n × n invertible Hermitian matrix (over F ), and
let A ∈ Fn×n be H-self-adjoint. Then there exists an invertible S over F such that
S−1AS and S∗HS have the form

S−1AS = Jk1(λ1)⊕ · · · ⊕ Jkα(λα)⊕
[
Jkα+1(λα+1)⊕ Jkα+1

(λ̄α+1)
]

(5.1)

⊕ · · · ⊕
[
Jkβ (λβ)⊕ Jkβ (λ̄β)

]
if F = C, where λ1, . . . , λα are real and λα+1, . . . , λβ are nonreal with positive imag-
inary parts;

S−1AS = Jk1(λ1)⊕ · · · ⊕ Jkα(λα)⊕ J2kα+1(λα+1 ± iµα+1)(5.2)

⊕ · · · ⊕ J2kβ (λβ ± iµβ)



EXTENSION OF ISOMETRIES 767

if F = R, where λ1, . . . , λβ are real and µα+1, . . . , µβ are positive;

S∗HS = ε1Qk1 ⊕ · · · ⊕ εαQkα ⊕Q2kα+1
⊕ · · · ⊕Q2kβ(5.3)

for both cases (F = R or F = C), where ε1, . . . , εα are ±1. For a given pair {A,H},
where A is H-self-adjoint, the canonical form (5.1), (5.2), (5.3) is unique up to per-
mutation of orthogonal components in (5.3), and the same simultaneous permutation
of the corresponding blocks in (5.1) or (5.2), as the case may be.

Theorem 5.1 is well known and goes back to Weierstrass and Kronecker. A com-
plete proof of this theorem can be found in many sources; see, e.g., [GLR, T].

The signs εj in (5.3) form the sign characteristic of the pair {A,H}. Thus, the
sign characteristic consists of signs +1 or −1 attached to every partial multiplicity (=
size of a Jordan block in the Jordan form) of A corresponding to a real eigenvalue.

An existence result concerning general classes of polar decompositions with re-
spect to indefinite scalar products was proved in [BMRRR1, Theorem 4.1]. In partic-
ular, this theorem contains the following statement.

Proposition 5.2. An n × n matrix X (over F ) admits a semidefinite H-polar
decomposition if and only if X [∗]X = A2 for some H-nonnegative matrix A such
that Ker A = Ker X; moreover, for any such A there is an H-unitary U such that
X = UA.

This existence result can be given a much more tractable formulation.

Theorem 5.3 (F = C or F = R). An n× n matrix X admits a semidefinite H-
polar decomposition if and only if X [∗]X has eigenvalues only in {λ ∈ R| λ ≥ 0} and
is diagonalizable and moreover, if KerX contains a k-dimensional H-nonpositive sub-
space, where k is the number of negative signs in the sign characteristic of
{X [∗]X,H} corresponding to the zero eigenvalue, and KerX contains a p-dimensional
H-nonnegative subspace, where p is the number of positive signs of H corresponding
to the zero eigenvalue of X [∗]X. Moreover, A can be chosen as to satisfy Ker (A2) =
KerA if and only if the subspace KerX [∗]X = KerX is H-nondegenerate.

Proof. Suppose X admits a semidefinite H-polar decomposition X = UA. Then

X [∗]X = A2.(5.4)

Since A is H-nonnegative, the canonical form (Theorem 5.1) for {A,H} implies that
there is an invertible matrix S (over F ) such that

S−1AS = diag(λi)
ν1
i=1 ⊕ 0ν2 ⊕ diag

([
0 1
0 0

])ν3
i=1

⊕ diag(µi)
ν4
i=1,(5.5)

where λi are negative, µi are positive, and

S∗HS = −Iν1 ⊕ diag(εi)
ν2
i=1 ⊕ diag

([
0 1
1 0

])ν3
i=1

⊕ Iν4 ,(5.6)

where εi = ±1. Then

S−1A2S = diag(λ2
i )
ν1
i=1 ⊕ 0(ν2+2ν3) ⊕ diag(µ2

i )
ν4
i=1,

and thus A2 is diagonalizable with nonnegative eigenvalues. In view of (5.4) the same
thing is true of X [∗]X. Now we show that KerX = KerA contains a k-dimensional



768 BOLSHAKOV, VAN DER MEE, RAN, REICHSTEIN, AND RODMAN

H-nonpositive subspace and a p-dimensional H-nonnegative subspace. This follows
easily from (5.5), (5.6), as in the notation introduced there:

p = ν3 + #{εi| εi = +1, i = 1, . . . , ν2},
k = ν3 + #{εi| εi = −1, i = 1, . . . , ν2}.

To prove the converse part we will need the following lemma (its proof can be found
in [BMRRR1]).

Lemma 5.4. Let H = H∗ be an invertible n × n matrix, and let X be an n × n
matrix. Let S be an invertible n× n matrix such that

S−1X [∗]XS = diag (Zi)
ν
i=1, S∗HS = diag (Hi)

ν
i=1,

with σ(Zi) ∩ σ(Zj) = ∅ for i 6= j. Then there exists an H-self-adjoint, respectively,
H-nonnegative, matrix A such that X [∗]X = A2 if and only if for each i there exists
an Hi-self-adjoint, respectively, Hi-nonnegative, matrix Ai such that Zi = A2

i .
To prove the “if” part of Theorem 5.3, we now only have to consider the case

where X [∗]X has a single eigenvalue, σ(X [∗]X) = {λ}. The cases λ > 0 and λ = 0
will be considered separately.

Suppose X [∗]X is diagonalizable and σ(X [∗]X) = {λ}, λ > 0. Let S be an
invertible matrix such that

S−1X [∗]XS =

[
λIn1 0

0 λIn2

]
, S∗HS =

[
In1 0
0 −In2

]
.

The existence of S is guaranteed; in fact, one brings the pair {X [∗]X,H} to the
canonical form in this way (Theorem 5.1). Let

A = S

[ √
λ In1 0

0 −
√
λ In2

]
S−1.

Then A is H-nonnegative and A2 = X [∗]X.
Finally, assume X [∗]X is diagonalizable, σ(X [∗]X) = {0} (then X [∗]X = 0),

and KerX contains a k-dimensional H-nonpositive subspace and a p-dimensional H-
nonnegative subspace. It is easy to see that k+ p = n in this case, so KerX contains
a maximal H-nonpositive subspace and a maximal H-nonnegative subspace. For the
sake of convenience write M = KerX. Put N = M ∩ (HM)⊥, and let M1 be such
that M = N ⊕M1, where this direct sum is orthogonal. This direct sum is also H-
orthogonal. Select a basis f1, . . . , fν0 in N and a basis e1, . . . , eν+ , eν++1, . . . , eν++ν−

in M1 such that

〈Hei, ej〉 = 0 for i 6= j,

〈Hei, ei〉 = 1 if i ≤ ν+, 〈Hei, ei〉 = −1 if i > ν+.

We shall construct a subspace K such that M ⊕K = Fn and (HK)⊥ = K ⊕M1.
We shall construct an H-nonnegative matrix A such that A2 = 0 and KerA =

KerX. The matrix A will be constructed so that N coincides with the linear span of
eigenvectors of A corresponding to Jordan blocks of length 2, while N ⊕K is spanned
by the eigenvectors, as well as by the generalized eigenvectors of A.
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As M contains a maximal H-nonnegative and a maximal H-nonpositive subspace
we have

ν+ + ν0 = k, ν− + ν0 = p,

and therefore dim M = ν0 + ν+ + ν− = k + p − ν0 = n − ν0. Consider (HM1)⊥.
The dimension of this subspace is n− ν+ − ν− = k + p− ν+ − ν− = 2ν0; moreover,
(HM1)⊥ contains N . Take any subspace K ′ such that (HM1)⊥ = N ⊕ K ′. Then
K ′ is a direct complement of M . Indeed, as ν0 = dim N = codimM we have
(HM)⊥ = N, (HN)⊥ = M . Therefore,

N = (HM)⊥ = (H(N ⊕M1))⊥ = (HN)⊥ ∩ (HM1)⊥ = M ∩ (HM1)⊥.

So K ′ ∩ M = (0). Also, dim K ′ = ν0. Take vectors g′1, . . . , g
′
ν0 in K ′ such that

〈Hfi, g′j〉 = δij for i, j = 1, . . . , ν0. Construct

gi = g′i −
1

2

ν0∑
ν=1

〈Hg′i, g′ν〉fν , i = 1, . . . , ν0,

and let K = span {g1, . . . , gν0}. Then

〈Hgi, gj〉 = 0 for all i, j,

〈Hfi, gj〉 = δij for all i, j,

and K ⊂ N⊕K ′ = (HM1)⊥. By construction, K is H-neutral, so (HK)⊥ = K⊕M1.
Consider the vectors

e1, . . . , eν+ , eν++1, . . . , eν++ν− , f1, g1, f2, g2, . . . , fν0 , gν0

as a basis for Fn, and let S be the matrix with these basis vectors as its columns in
the order in which they appear here. Then

S∗HS = Iν+ ⊕−Iν− ⊕ diag

([
0 1
1 0

])ν0

i=1

.

Construct A as follows:

S−1AS = 0(ν++ν−) ⊕ diag

([
0 1
0 0

])ν0

i=1

.

Then, A is H-nonnegative, A2 = 0, and

KerA = span {e1, . . . , eν+ , eν++1, . . . , eν++ν− , f1, . . . , fν0} = KerX.

By Proposition 5.2 X admits a semidefinite H-polar decomposition.
The statement on choosing A to satisfy Ker (A2) = KerA is clear because it is

equivalent to the nondegeneracy of KerA. Further, when constructing such A as
above, one has ν0 = 0, which implies Ker (A2) = KerA.

We now give a description of all semidefinite H-polar decompositions (when they
exist). The description of all possible H-nonnegative factors A is as follows.
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Theorem 5.5. Let X be an n × n matrix that admits a semidefinite H-polar
decomposition. Let S be an invertible matrix (over F ) such that

S−1(X [∗]X)S = diag (λi)
τ1
i=1 ⊕ 0p ⊕ diag (µi)

τ2
i=1,(5.7)

S∗HS = −Iτ1 ⊕H0 ⊕ Iτ2 ,(5.8)

where λi > 0, µi > 0, and

H0 =

 0 0 I
0 H2 0
I 0 0

 ,(5.9)

with respect to the decomposition

F p = (KerX ∩ (H KerX)⊥)⊕M1 ⊕K,(5.10)

where KerX = (KerX ∩ (HKerX)⊥)⊕M1. (Such S exists by the proof of Theorem
5.3.) Then X = UA for some H-unitary U and H-nonnegative A if and only if A has
the form

A = S
(

diag
(
−
√
λi

)τ1
i=1
⊕A0 ⊕ diag (

√
µi)

τ2
i=1

)
S−1,

where

A0 =

 0 0 Y
0 0 0
0 0 0

 ∈ F p×p,(5.11)

with respect to the decomposition (5.10), and where Y is positive definite.
Observe that by Theorem 5.3 the existence of S such that S−1(X [∗]X)S and

S∗HS have the forms (5.7) and (5.8), respectively, is necessary for X to have a
semidefinite H-polar decomposition.

Proof. By Proposition 5.2, X = UA for some H-unitary U if and only if the H-
nonnegative matrix A is such that X [∗]X = A2 and KerX = KerA. These conditions
are easily translated (using the invertibility of H0 and H2) into the statement of
Theorem 5.5.

For a fixed A, all possible H-unitary matrices U in the semidefinite H-polar
decompositions X = UA are given by an application of Theorem 2.4. This works as
follows. Consider the decomposition of Fn,

Fn = N1 ⊕N2 ⊕N3 ⊕N4 ⊕N5,(5.12)

into five components as indicated in Theorem 5.5. With respect to this decomposition,
let us write S−1US = [Uij ]

5
i,j=1, S−1XS = [Xij ]

5
i,j=1, S−1AS = A1⊕A0⊕A5. Assume

that X = UA and X = ŨA are semidefinite H-polar decompositions of X. Also write
S−1ŨS = [Ũij ]

5
i,j=1. Observing that A1, A5, and Y are invertible, we obtain from

X = UA = ŨA that

Uj1 = Ũj1 = Xj1A
−1
1 , Uj2 = Ũj2 = Xj2Y

−1, Uj5 = Ũj5 = Xj5A
−1
5 .
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Let Û = col [Uj1 Uj2 Uj5]
5
j=1. Take V1 = N1 ⊕N2 ⊕N5 and V2 = UV = ŨV = ÛV .

Then for all x, y ∈ V1 we have

〈HÛx, Ûy〉 = 〈Hx, y〉.

We see that both U and Ũ are Witt extensions of Û : V1 → V2. Conversely, for any
Witt extension V of Û we have X = V A. Applying Theorem 2.4 to this situation
gives the following.

Theorem 5.6. Suppose X = UA is a semidefinite H-polar decomposition of X,
and let A have the form as described in Theorem 5.5, with respect to the decomposition
(5.12) of Fn. Then any H-unitary Ũ such that X = ŨA is given by Ũ = UM , where

M =


I 0 0 0 0
0 I −P ∗2H2P1 P3 − 1

2P
∗
2H2P2 0

0 0 P1 P2 0
0 0 0 I 0
0 0 0 0 I

 ,
with respect to the decomposition (5.12). Here P2 is arbitrary, P3 = −P ∗3 , and P1 is
an arbitrary H2-unitary matrix.

In the real case, Theorem 2.6, together with Theorem 5.6, describes the number of
connected components of U(H; R) from which the H-unitary factor in the semidefinite
H-polar decompositions of X may be chosen.

Corollary 5.7 (F = R). Let X be an n × n matrix that admits a semidef-
inite H-polar decomposition. If (H KerX)⊥ ⊃ Ker X, then all possible H-unitary
factors in the semidefinite H-polar decompositions of X belong to the same con-
nected component of U(U ; R). Otherwise, let M1 be the H-orthogonal complement of
Ker X ∩ (HKer X)⊥ in Ker X. Then the H-unitary factors belong to two connected
components of U(H; R) having determinants of opposite signs if H|M1 is definite and
to all four connected components of U(H; R) if H|M1 is indefinite.

The descriptions of the H-nonnegative and H-unitary factors in the polar de-
compositions of X obtained in Theorems 5.5 and 5.6, together with the real analytic
structure of all Witt extensions (Theorems 2.5 and 2.6), allow one to describe the set
of all possible H-polar decompositions of a given X in terms of a diffeomorphism (as
a real analytic manifold). Using the results mentioned above, such a description is
routine and is left to the interested readers.

6. Applications: Hyperbolic QR decompositions. The results of sections
2 and 4 have obvious applications to matrix equations of the form

A = UX,(6.1)

where A is a given matrix, and X and U are matrices to be found such that U is
H-unitary (usually additional requirements are imposed on X and/or U as well).
Here A and X are m × n matrices over F (as usual, we assume that either F = C
or F = R), and H is an invertible m ×m matrix over F which is either Hermitian
or skew-symmetric (in the latter case we assume F = R). Indeed, if U and V are
solutions of (6.1) with the same A and X, then obviously Ux = V x for all x in the
range of X. Thus, all H-unitary solutions of (6.1) can be treated as Witt extensions
of U |Range X, where U is one fixed H-unitary solution of (6.1). We will not explicitly
present the straightforward statements that are obtained in this way. We focus instead
on an important special case of equations (6.1) which is fundamental for a certain class
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of algorithms for computing the eigenvalues of a matrix using the generalized Schur
method, namely, hyperbolic QR decompositions (see, e.g., [B, OSB, V] and references
therein).

In a typical version of hyperbolic QR decompositions, one seeks factorizations of
the form (6.1), where m ≥ n and X is an upper triangular matrix

X =

[
X1

0

]
with invertible n × n matrix X1. The factor U is H-unitary, where H is a fixed
invertible Hermitian m×m matrix. Factorizations (6.1) of a given matrix A with the
above properties will be called hyperbolic QR decompositions in this paper.

In what follows, we will use a basis {f1, . . . , fm} in Fm such that {f1, . . . , fn}
forms a basis in

[
Fn

0

]
and with respect to which the indefinite scalar product [x, y] =

〈Hx, y〉, x, y ∈ Fm, induced by H has the Gramian matrix
0 0 I 0
0 J1 0 0
I 0 0 0
0 0 0 J2

 ,(6.2)

where I is the n0 × n0 identity matrix and J1 is the diagonal (n+ + n−)× (n+ + n−)
matrix having the first n+ diagonal elements equal to +1 and the remaining n−
diagonal elements equal to −1; here n0 + n+ + n− = n. Similarly, J2 is a diagonal
matrix with entries +1 and −1 on the main diagonal. (Compare with (2.5).) A basis
{f1, . . . , fm} with the above properties will be called admissible.

Theorem 6.1. Let A = U0X0 be a hyperbolic QR decomposition of a given m×n
matrix A. Then every hyperbolic QR decomposition A = ŨX0 of A with the same
factor X0 is given by the following formula, written as a block 4×4 matrix (compatible
with (6.2) ) with respect to an admissible basis: Ũ = U0M , where

M =


I 0 − 1

2P
∗
2 J2P2 + P3 −P ∗2 J2P1

0 I 0 0
0 0 I 0
0 0 P2 P1

 .
Here P1 is J2-unitary, P3 is a skew-self-adjoint n0×n0 matrix, and P2 is an arbitrary
(m− n− n0)× n0 matrix.

The proof is a straightforward application of Theorem 2.4.
Applying Theorem 2.6, we have the following corollary in the real case.
Corollary 6.2. The set of all hyperbolic QR decompositions A = ŨX0 of a

given m× n matrix A with a given m× n factor X0 is connected if

π(H) = n+ + n0, ν(H) = n− + n0

has two connected components if exactly one of the numbers p = π(H)− n+− n0 and
q = ν(H)−n−−n0 is positive and has four connected components if both p and q are
positive.

We do not discuss here the problem of existence of hyperbolic QR decompositions
for a given m × n matrix A and a given invertible Hermitian m ×m matrix H and
only mention that the obvious necessary condition for A to have full column rank is
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not sufficient. A characterization of all square matrices A that admit a decomposition
A = UX, where U is H1-H2-unitary and X is upper triangular and nonsingular, is
given in Theorem 2.3 of [B]. (The paper [B] considers only diagonal matrices H1 and
H2, which is the most important case for the development of algorithms based on
the generalized Schur method.) An extension to the case of rectangular matrices is
presented in [V].
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[HM1] R. A. Horn and D. I. Merino, Contragredient equivalence: A canonical form and

some applications, Linear Algebra Appl., 214 (1995), pp. 43–92.
[HM2] R. A. Horn and D. I. Merino, A real coninvolutory analog of the polar decompo-

sition, Linear Algebra Appl., 190 (1993), pp. 209–227.
[IKL] I. S. Iohvidov, M. G. Krein, and H. Langer, Introduction to the Spectral Theory

of Operators in Spaces with an Indefinite Metric, Akademie-Verlag, Berlin,
1982.

[K] I. Kaplansky, Algebraic polar decomposition, SIAM J. Matrix Anal. Appl., 11
(1990), pp. 213–217.

[KS1] M. G. Krein and Ju. L. Shmul’jan, J-polar representation of plus operators, Mat.
Issled., 1 (1966), pp. 172–210. (In Russian.) English translation: Amer. Math.
Soc. Transl., Ser. 2, 85 (1969), pp. 115–143.

[KS2] M. G. Krein and Ju. L. Shmul’jan, On plus operators in a space with an indefinite
metric, Mat. Issled., 1 (1966), pp. 131–161. (In Russian.) English translation:
Amer. Math. Soc. Transl., Ser. 2, 85 (1969), pp. 93–113.

[M] C. V. M. van der Mee, An eigenvalue criterion for matrices transforming Stokes
parameters, J. Math. Phys., 34 (1993), pp. 5072–5088.

[MH] C. V. M. van der Mee and J. W. Hovenier, Structure of matrices transforming
Stokes parameters, J. Math. Phys., 33 (1992), pp. 3574–3584.

[OSB] R. Onn, A. O. Steinhardt, and A. W. Bojanczyk, The hyperbolic singular value
decomposition and applications, IEEE Trans. Signal Proc., 39 (1991), pp. 1575–
1588.



774 BOLSHAKOV, VAN DER MEE, RAN, REICHSTEIN, AND RODMAN

[P1] V. P. Potapov, Multiplicative structure of J-nonexpansive matrix functions, Trudy
Moskov Mat. Obshch., 4 (1955), pp. 125–236. (In Russian.) English translation:
Amer. Math. Soc. Transl., Ser. 2, 15 (1960), pp. 131–243.

[P2] V. P. Potapov, A theorem on the modulus, I. Main concepts. The modulus, Theory
of Functions and Functional Analysis, 38 (1982), pp. 91–101, 129. (In Russian.)
English Translation: Amer. Math. Soc. Transl., Ser. 2, Vol. 138, pp. 55–65.

[T] R. C. Thompson, Pencils of complex and real symmetric and skew matrices, Linear
Algebra Appl., 147 (1991), pp. 323–371.

[V] A.-J. van der Veen, A Schur method for low-rank matrix approximation, SIAM J.
Matrix Anal. Appl., 17 (1996), pp. 139–160.


