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The one-dimensional Schro¨dinger equation and two of its generalizations are con-
sidered, as they arise in quantum mechanics, wave propagation in a nonhomoge-
neous medium, and wave propagation in a nonconservative medium where energy
may be absorbed or generated. Generically, the zero-energy transmission coeffi-
cient vanishes when the potential is nontrivial, but in the exceptional case this
coefficient is nonzero, resulting in tunneling through the potential. It is shown that
any nontrivial exceptional potential can always be fragmented into two generic
pieces. Furthermore, any nontrivial potential, generic or exceptional, can be frag-
mented into generic pieces in infinitely many ways. The results remain valid when
Dirac delta functions are included in the potential and other coefficients are added
to the Schro¨dinger equation. For such Schro¨dinger equations, factorization formu-
las are obtained that relate the scattering matrices of the fragments to the scattering
matrix of the full problem. ©1996 American Institute of Physics.
@S0022-2488~96!02111-1#

I. INTRODUCTION

In this paper we consider the one-dimensional Schro¨dinger equation and two of its generali-
zations. The Schro¨dinger equation~2.1! describes the quantum mechanical behavior of a particle
interacting with the potentialV(x). From the corresponding transmission coefficientT(k) we
obtain the probabilityuT(k)u2 that a particle of energyk2 can tunnel through this potential.
Generically, the zero-energy transmission coefficient is zero and hence a zero-energy particle
cannot tunnel through a nontrivial potential. However, in the exceptional case, the transmission
coefficient does not vanish at zero energy. In this paper, we analyze certain aspects of this
exceptional case. With the help of a factorization formula, we show that a nontrivial exceptional
potential can always be fragmented into generic pieces; i.e., a nontrivial potential allowing tun-
neling at zero energy can always be decomposed into pieces none of which allow such tunneling.
The factorization formula~2.17! used to obtain this result allows us to express the scattering
coefficients corresponding to a potential in terms of the scattering coefficients corresponding to its
fragments. We show that similar factorization formulas hold for certain generalized Schro¨dinger
equations describing the wave propagation in one-dimensional nonhomogeneous or nonconserva-
tive media. For such generalized Schro¨dinger equations, the generic and exceptional cases are
again determined by the zero-energy behavior of the transmission coefficients.

The generalized Schro¨dinger equation~3.3! can be analyzed by locally transforming it into a
finite number of Schro¨dinger equations; the results obtained in Sec. II show that each of these
Schrödinger equations can be chosen to have generic potentials. In Sec. III we obtain the corre-
sponding factorization formula for Eq.~3.3!. This formula, Eq.~3.15!, brings insight to the analy-
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sis of wave scattering in a one-dimensional nonhomogeneous medium and allows us to see how
the scattering process can be viewed as resulting both from ‘‘soft scatterers’’1 ~responsible for
continuous changes in the medium parameters! and from ‘‘hard scatterers’’1 ~responsible for
discontinuous changes in the medium parameters!. This formula also explains how the total
scattering matrix can be obtained in terms of the scattering matrices of the individual fragments
localized in space.

In Sec. IV, we generalize the factorization formula~2.17! in a different way to analyze how
the scattering process takes place in a one-dimensional nonconservative medium governed by the
generalized Schro¨dinger equation~4.1!, where energy absorption or generation may occur. Al-
though the scattering matrix is no longer unitary when energy absorption or generation is present,
we still have a factorization formula, namely Eq.~4.5!, showing how the scattering resulting from
the fragments is superposed to give the total scattering.

The small-energy analysis of the exceptional case for these three equations usually requires
elaborate calculations. In addition to giving insight into the scattering process, the factorization
formulas associated with these equations are expected to simplify the small-energy analysis of the
wavefunctions and scattering coefficients.

II. SCHRÖDINGER EQUATION

Consider the one-dimensional Schro¨dinger equation

d2c~k,x!

dx2
1k2c~k,x!5V~x!c~k,x!, ~2.1!

wherek2 is energy,x is the space coordinate, andV(x) is a real-valued potential belonging to
L1
1~R!, i.e., *2`

` dx (11uxu)uV(x)u is finite. The scattering solutions of Eq.~2.1! are those that
behave likee6 ikx asx→1` andx→2`. There are two linearly independent scattering solutions
f l(k,x) and f r(k,x) of Eq. ~2.1!, known as the Jost solutions from the left and from the right,
respectively, satisfying the boundary conditions

f l~k,x!5H eikx1o~1!, x→1`,
1

T~k!
eikx1

L~k!

T~k!
e2 ikx1o~1!, x→2`,

~2.2!

f r~k,x!5H 1

T~k!
e2 ikx1

R~k!

T~k!
eikx1o~1!, x→1`,

e2 ikx1o~1!, x→2`,
~2.3!

whereT(k) is the transmission coefficient andR(k) andL(k) are the reflection coefficients from
the right and from the left, respectively. The scattering matrix associated with Eq.~2.1! is defined
as

S~k!5FT~k! R~k!

L~k! T~k!
G , ~2.4!

and it satisfies

S~2k!5S~k!, kPR, ~2.5!

where the overline denotes complex conjugation. The scattering matrix is unitary; thus,

uT~k!u21uR~k!u25uT~k!u21uL~k!u251, kPR, ~2.6!
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and from Eq.~2.5! we see that

R~k!T~2k!1L~2k!T~k!50, kPR. ~2.7!

It is also known that the determinant ofS(k) is given by

T~k!22R~k!L~k!5
T~k!

T~2k!
, kPR. ~2.8!

For a potential inL1
1~R!, the corresponding scattering matrix is well understood. Generically,

the transmission coefficient vanishes linearly ask→0 andR(0)5L(0)521. In the exceptional
case, we haveT~0!Þ0 and henceuR(0)u5uL(0)u,1. There are other characterizations of these
two cases. For example, the potentialV(x) is exceptional if and only iff l(0, x) and f r(0, x) are
linearly dependent. Equivalently,V(x) is exceptional if and only if at least one off l(0, x) and
f r(0, x) is bounded; in that case both of these functions are bounded forxPR. Furthermore, the
potentialV(x) is exceptional if and only if

E
2`

`

dx V~x! f l~0, x!50, ~2.9!

which is equivalent to*2`
` dx V(x) f r(0, x)50 becausef l(0, x) and f r(0, x) are linearly depen-

dent in the exceptional case. Moreover, the exceptional case occurs if and only iff l8(0,2 `) 5 0 or
f r8(0, 1 `) 5 0. Here and throughout the paper the prime denotes the spatial derivative and we
interpretf l8(0,2 `) as limx→2` f l8(0, x) and interpretf r8(0,1 `) as limx→1` f r8(0, x).

If the potential has support on a half-line, i.e., ifV(x)50 for x.b or x,a for some constants
a andb, we have the exceptional case if and only iff r8(0, x) 5 0 for all x>b or f l8(0, x) 5 0 for
all x<a, respectively. For example, whenV(x)50 for x.b, the linear dependence off l(0, x) and
f r(0, x) in the exceptional case requires thatf r(0, x) is a constant forx>b and hencef r8(0, b)
5 0; in the generic case, sincef r(0, x) is linear forx>b and linearly independent off l(0, x), it
follows thatf r8(0, b) Þ 0. Note thatf l(0, x) andf l8(0, x) cannot simultaneously vanish at the same
x value; otherwise, we would havef l(0, x)50 for xPR contradicting f l~0,1`!51. Similarly,
f r(0, x) and f r8(0, x) cannot simultaneously vanish at the samex value. Thus, ifV(x)50 for x,a
and if f l(0, a)50, thenV(x) must be generic. Similarly, ifV(x)50 for x.b and f r(0, b)50,
thenV(x) must be generic.

In the exceptional case, letg denote the constant

g5
f l~0, x!

fr~0, x!
. ~2.10!

We have2

F f l~2k,x!

f r~2k,x!G5F T~k! 2R~k!

2L~k! T~k!
GF f r~k,x!

f l~k,x! G , kPR, ~2.11!

and hence from Eqs.~2.10! and ~2.11! at k50 we get

g5
T~0!

11R~0!
5
11L~0!

T~0!
. ~2.12!

Using Eqs.~2.7!, ~2.8!, and~2.12!, we obtain
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T~0!5
2g

g211
, L~0!52R~0!5

g221

g211
. ~2.13!

Further information on the generic and exceptional cases can be found in Refs. 2–6. For later
reference, we summarize some of the necessary and sufficient conditions for the exceptional case.

Proposition 2.1:A potentialVPL1
1~R! is exceptional if and only iff l8(0,2 `) 5 0 or equiva-

lently if and only if f r8(0, 1 `) 5 0. If V(x) vanishes forx.b, it is exceptional if and only if
f r8(0, b) 5 0. Similarly, if V(x) vanishes forx,a, it is exceptional if and only iff l8(0,a) 5 0.

The trivial potentialV(x)50 is exceptional. IfV(x) is nontrivial andV(x)>0, thenV(x) is
generic. The exceptional case is unstable in the sense that a small change in the potential usually
makes the case generic. As an example, consider the square-well potential: the exceptional case
occurs at the exact depths when a bound state is added to the potential; at any other depth the
square-well potential is generic.

The distinction between the generic and exceptional cases becomes relevant when the small-
energy behavior of the scattering coefficients and of the wavefunctions is considered. In many
instances one has to deal with quantities involving the factorT(k)/k. In the generic case this factor
remains bounded and continuous ask→0, but in the exceptional case it behaves asT(0)/k with
T~0!Þ0. In some applications the factorT(k)/k is multiplied by a continuous functiong(k) and
one has to prove, for example, the integrability of the productg(k)T(k)/k ask→0. In the generic
case this integrability holds automatically, but in the exceptional case one has to prove, for
instance, thatg(k) is of order ukug for somegP~0,1# as k→0. This is one of the reasons why
proofs tend to be more elaborate in the exceptional case than in the generic case. In this Section
we show among other things that an exceptional potential can always be ‘‘fragmented’’ into two
generic pieces and that a matrix closely related to the scattering matrix can be written as a product
of factors, where each factor carries the information pertaining to one fragment. The term ‘‘frag-
ment’’ will be made precise below. We expect our results to offer simplifications in dealing with
exceptional potentials.

We now consider Eq.~2.1! and first explain the term fragment used in this paper. Choose a
partition2`,x1,x2,•••,xn,1` of the real lineR and define

Vj , j11~x!5 HV~x!, xP~xj ,xj11!,
0, x¹~xj ,xj11!,

so that

V~x!5(
j50

N

Vj , j11~x!, ~2.14!

where in Eq.~2.14! and below we use the convention thatx052` and xN1151`. We call
Vj , j11(x) a fragment ofV(x). In analogy to Eq.~2.4! we let

Sj , j11~k!5FTj , j11~k! Rj , j11~k!

L j , j11~k! Tj , j11~k!
G

denote the scattering matrix associated with the potentialVj , j11(x), where each matrixSj , j11(k)
only carries the information pertaining to the fragmentVj , j11(x). Using the scattering coefficients,
we introduce the matrices
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L~k!5F 1

T~k!
2
R~k!

T~k!

L~k!

T~k!

1

T~2k!

G , L j , j11~k!5F 1

Tj , j11~k!
2
Rj , j11~k!

Tj , j11~k!

L j , j11~k!

Tj , j11~k!

1

Tj , j11~2k!

G . ~2.15!

Note that each matrix in Eq.~2.15! can be written as the product of two matrices in the following
way:

L~k!5F 1

T~k!
2
R~k!

T~k!

L~k!

T~k!

1

T~2k!

G5F 1 0

L~k! T~k!
GF 1

T~k!
2
R~k!

T~k!

0 1
G . ~2.16!

Note also that using Eq.~2.7! it is possible to express the entries of each matrix in Eq.~2.15! in
terms of the transmission coefficient and only one of the reflection coefficients; for example, we
have

L~k!5F 1

T~k!
2
R~k!

T~k!

2
R~2k!

T~2k!

1

T~2k!

G5F 1

T~k!

L~2k!

T~2k!

L~k!

T~k!

1

T~2k!

G .
It is known7 thatL(k) can be written as the product

L~k!5L0,1~k!L1,2~k!•••LN,N11~k!. ~2.17!

It can be proved that Eq.~2.17! remains valid if we allow the potentialV(x) to contain a finite
number of Dirac delta functions. When delta functions are included, the proof of Eq.~2.17! can be
obtained from Eqs.~3.15! and~3.16! in the special caseH(x)[1. If all the fragments in Eq.~2.14!
are delta-function potentials, Eq.~2.17! reduces to Eq.~3.17!. In Sec. III we will elaborate on the
inclusion of delta functions.

The matricesL(k) andL j , j11(k) are usually called transition matrices. The reason for this
terminology is as follows, which at the same time proves Eq.~2.17!. Any scattering solution
c(k,x) of ~2.1! obeys c(k,x)5c1e

ikx1c2e
2 ikx1o(1) as x→1` and c(k,x)5d1e

ikx

1d2e
2 ikx1o(1) asx→2`, wherec1,c2,d1,d2 are function ofk alone. By using Eqs.~2.2!, ~2.3!,

and ~2.8!, we can relate the vectors [c1 c2] and [d1 d2] corresponding to each of the Jost solu-
tions f l(k,x) and f r(k,x), and hence we obtain [d1 d2]

t5L(k)[c1 c2]
t. We use the superscriptt

to denote the transpose. HenceL(k) provides the link between the asymptotics of the solutions of
Eq. ~2.1! at 1` and those at2` when the functionse6 ikx are chosen as an~asymptotic! basis.
Now letN51, i.e., the partition is simply2`,x1,1`. Let c1,2(k,x) be the solution of Eq.~2.1!
with the potentialV1,2(x) that satisfiesc1,2(k,x)5c(k,x) for x>x1 , and letc0,1(k,x) be the
solution of Eq.~2.1! with the potentialV0,1(x) such thatc0,1(k,x)5c(k,x) for x<x1 . Then
c1,2(k,x)5d̃1e

ikx1d̃2e
2 ikx for x<x1 , where [d̃1 d̃2]

t5L1,2(k)[c1 c2]
t. Since c(k,x1)

5c0,1(k,x1)5c1,2(k,x1) and c8(k,x1)5c0,18 (k,x1)5c1,28 (k,x1), it follows that c0,1(k,x)

5d̃1e
ikx1d̃2e

2 ikx for x>x1 . So L0,1(k)[ d̃1 d̃2]
t5[d1 d2]

t, and hence [d1 d2]
t

5L0,1(k)L1,2(k)[c1 c2]
t. Thus,L(k)5L0,1(k)L1,2(k), proving Eq.~2.17! whenN51. ForN>2

the result follows by induction.
For later use we note that whenN51, from Eqs.~2.15! and ~2.17! we obtain

1

T~k!
5
12R0,1~k!L1,2~k!

T0,1~k!T1,2~k!
. ~2.18!
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Now we return to Eq.~2.1! and discuss some consequences of Eqs.~2.17! and~2.18!. The first
result concerns resonant energies. These are energies at which the potential is perfectly transpar-
ent; in other words, energieski

2>0 whereuT(ki)u51. Because of Eq.~2.5!, T(2k) 5 T(k) for real
k, and hence it is sufficient to consider the resonant frequencies only forki>0. Typically, if V(x)
is a square-well potential, the existence of such resonant energies is well known~p. 94 of Ref. 8!.
There are also some general existence results9 concerning resonances for potentials that are sym-
metric with respect to the midpoint of the potential barrier. The resonant energies play an impor-
tant role in tunneling spectroscopy.10 Here we consider a related but somewhat different problem.
We consider the one-parameter family of potentials

Vj~x!5V0,1~x1j!1V1,2~x2j!, ~2.19!

where j .0 is a real parameter. In other words, we take a potentialV(x) consisting of two
fragmentsV0,1(x) andV1,2(x) and vary the distance between them by changingj. The goal is to
adjust the distance between the fragments so that the transmission coefficient has magnitude 1. Let
Tj(k) denote the transmission coefficient forVj(x), and fix anyk5k0>0. Then we ask: are there
any values ofj for which uTj(k0)u51? The answer whenk0.0 is contained in the next theorem.
The analysis fork050 will be given at the end of this section.

Theorem 2.2: Consider the potentialVj(x) defined in Eq.~2.19! with the corresponding
transmission coefficientTj(k). For any fixedk0.0, there are three possibilities:~i! uTj(k0)u51 for
all j .0, ~ii ! there is noj .0 for which uTj(k0)u51, ~iii ! the valuesj .0 for which uTj(k0)u51
form an infinite sequence tending to1`.

Proof: Before starting the proof we remark that case~i! occurs when both of the fragments
have a common resonant energy, that is whenuT0,1(k0)u5uT1,2(k0)u51; case~ii ! occurs when
uT0,1(k0)uÞuT1,2(k0)u; case~iii ! occurs whenuT0,1(k0)u5uT1,2(k0)uÞ1. For example, ifV(x) is
symmetric aboutx5x1 and henceV0,1(x12x)5V1,2(x11x), then we are either in case~i! or case
~iii !; the same is true ifV1,2(x) is a translate ofV0,1(x).

The reflection coefficients from the right and left associated with the potentialsV0,1(x1j) and
V1,2(x2j) are given byR0,1(k)e

2ikj andL1,2(k)e
2ikj, respectively. The transmission coefficients

of the individual fragments are not affected by the shifts6j. Thus, by Eq.~2.18!, uTj(k0)u51 if
and only if

uT0,1~k0!uuT1,2~k0!u5u12R0,1~k0!L1,2~k0!e
4ik0ju. ~2.20!

Clearly, if R0,1(k0)5L1,2(k0)50, then, by Eq.~2.6!, uT0,1(k0)u5uT1,2(k0)u51, and Eq.~2.20!
holds independently ofj, which is case~i!. If R0,1(k0)50 but L1,2(k0)Þ0 ~or vice versa!, then
uT0,1(k0)u51 anduT1,2(k0)u,1 ~or vice versa!. Then Eq.~2.20! does not hold for anyj. This is a
special case of case~ii !. Now suppose thatR0,1(k0) and L1,2(k0) are both nonzero. Note the
inequality

12ab>~12a2!1/2~12b2!1/2, a,bP@0, 1#,

with the equality holding if and only ifa5b. Using this inequality witha5uR0,1(k0)u and
b5uL1,2(k0)u, we see that Eq.~2.20! holds if and only ifuR0,1(k0)u5uL1,2(k0)u and

R0,1~k0!L1,2~k0!e
4ik0j5uR0,1~k0!uuL1,2~k0!u.

Hence, ifuR0,1(k0)uÞuL1,2(k0)u, then we are in case~ii !. If uR0,1(k0)u5uL1,2(k0)u, then we set

R0,1~k0!L1,2~k0!5uR0,1~k0!uuL1,2~k0!ueiw~k0!,

and we see that the valuesj are given by 4k0j1w(k0)52pn, wheren is any integer large
enough to ensurej .0. Hencejn5pn/(2k0)2w(k0)/(4k0) is the desired sequence in case~iii !. j
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Next we give some results concerning the nature of the pointk50. Let f l ; j , j11(k,x) and
f r ; j , j11(k,x) denote the Jost solutions from the left and from the right, respectively, for the
potentialsVj , j11(x). Since the potentialsVj , j11(x) have compact support forj51,...,N21, using
Proposition 2.1 we can conclude thatVj , j11(x) is generic if and only iff l ; j , j118 (k,xj ) Þ 0 or if and
only if f r ; j , j118 (k,xj11) Þ 0. Equivalently,Vj , j11(x) is exceptional if and only iff l ; j , j118 (k,xj )
5 0 or if and only if f r ; j , j118 (k,xj11) 5 0. This characterization also applies to the fragments
V0,1(x) andVN,N11(x) if we use f l ;0,18 (k,x0) and f r ;N,N118 (k,xN11), respectively.

Theorem 2.3:Consider a potentialV(x) given in Eq.~2.14! with N>1. Then:
~i! ⇒ If all N11 of the fragments are exceptional, thenV(x) is exceptional.
~ii ! ⇒ If exactly one fragment is generic, thenV(x) is generic.
Proof: ~i! We give two proofs of~i! illustrating different aspects of the problem. First let

N51. Then, from Eq.~2.18! we see that if bothT0,1~0! andT1,2~0! are nonzero, then the trans-
mission coefficientT(k) corresponding toV(x) cannot vanish atk50. Using induction, it then
follows from Eq.~2.18! that if none of the transmission coefficientsTj , j11(k) vanish atk50, then
T(k) cannot vanish atk50. Hence~i! is proved. Alternatively, one can argue by using the
zero-energy Jost solutions. LetM j , j11 denote the transfer matrix such that

F c~0, xj !
c8~0, xj !

G5M j , j11F c~0, xj11!

c8~0, xj11!
G , j51,...,N21,

for any zero-energy solution of Eq.~2.1!. Notice that

f l ; j , j11~0, xj11!51, f l ; j , j118 ~0, xj11!50.

Hence, ifVj , j11(x) is exceptional, then@1 0# t is an eigenvector ofM j , j11 corresponding to the
eigenvaluef l ; j , j11(0, xj ); if Vj , j11(x) is generic, then@1 0# t is not an eigenvector ofM j , j11,
since in that casef l ; j , j118 (0, xj )Þ0 and f l ; j , j118 (0, xj11)50. Furthermore, we havef l(0, xN)
5 f l ;N,N11(0, xN) for xP[xN ,1`) and hencef l8(0, xN) 5 0 wheneverVN,N11(x) is exceptional.
Since all fragments are assumed exceptional, and hence@1 0# t is a common eigenvector of all
matricesM j , j11, it follows that

F f l~0, x1!f l8~0, x1!
G5M1,2•••MN21,NF f l~0, xN!

0 G5cF10G ,
wherec5Pn51

N f l ;n,n11(0, xn). Now notice thatf l(0, x) satisfiesf l9(0, x) 5 V0,1(x) f l(0, x) with
the boundary conditionsf l(0, x1)5c andf l8(0, x1) 5 0; sinceV0,1(x) is exceptional,f l(0, x) must
be a constant multiple off r(0, x) in the interval~2`, x1#. HenceV(x) is exceptional.

~ii ! WhenN51 and exactly one of the two fragments is generic, then the assertion immedi-
ately follows from Eq.~2.18!. Indeed, from Eqs.~2.15! and ~2.17! we have

1

T1,2~k!
5
12L0,1~2k!L~k!

T0,1~2k!T~k!
,

and hence ifT~0!Þ0 andT0,1~0!Þ0, we must haveT1,2~0!Þ0. Consequently, if bothV(x) and
V0,1(x) are exceptional,V1,2(x) has to be exceptional. A similar argument shows that ifT~0!Þ0
and T1,2~0!Þ0, we must haveT0,1~0!Þ0. When N>2, assume that the generic fragment is
Vj 0 , j 011(x). Multiply Eq. ~2.17! by Tj 0 , j 011(k) so that

Tj 0 , j 011~k!L~k!5L0,1~k!•••@Tj 0 , j 011~k!L j 0 , j 011~k!#•••LN,N11~k!. ~2.21!
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Now let k→0 in Eq.~2.21!. Since in the generic case, limk→0 T(k)/k5 ic0 for some real, nonzero
constantc0 ~p. 303 of Ref. 5!, we haveTj 0 , j 011(0)/Tj 0 , j 011(0) 5 21. Also,R(0)5L(0)521 in
the generic case. Thus on the right-hand side of Eq.~2.21! we get

lim
k→0

@Tj 0 , j 011~k!L~k!#5L0,1~0!L1,2~0!•••F 1 1

21 21G •••LN,N11~0!.

Since detLj , j11(k)51, the matricesLj , j11~0! are invertible and hence it follows that the matrix
product in Eq.~2.21! is nonzero ask→0. This implies that limk→0[kL(k)]Þ0 and henceV(x)
must be generic. As in~i!, one could also use the transfer matrices to give an alternate proof of
part ~ii !. j

Theorem 2.4:Any nontrivial potential, generic or exceptional, can be fragmented into at least
two generic pieces. There are infinitely many different ways of fragmenting a nontrivial potential
into generic pieces.

Proof: If suffices to show that if a given portion contains an exceptional piece that is not
identically zero, then that piece can further be partitioned into infinitely many generic pieces.
Suppose thatVj , j11(x) is exceptional and not identically zero. Then there is a subinterval of
(xj , xj11) on which f l8(0, x) Þ 0. Choosing any point in this subinterval to partitionVj ,J11(x)
yields two fragments that are both generic.

An alternate proof can be given as follows. Letf l ; j , j11(k,x) be the corresponding Jost solu-
tion from the left for the potentialVj , j11(x). From Eq.~2.9! we have

E
xj

xj11
dx Vj , j11~x! f l ; j , j11~0, x!50. ~2.22!

Then for anyzPR, consider the fragmentation ofVj , j11(x) given by

Vj , j11~x!5u~z2x!Vj , j11~x!1u~x2z!Vj , j11~x!, ~2.23!

whereu(x) is the Heaviside function, i.e.,u(x)51 if x.0 andu(x)50 if x,0. The fragments
given in Eq.~2.23! have to be generic for an infinite number of valueszP(xj ,xj11), because
Vj , j11(x) is nontrivial and so the integral obtained by replacing the lower limit in~2.22! by z has
to be nonzero for somez, and hence, by continuity, for infinitely manyz. j

One can also consider fragmentations that contain exceptional pieces. From Theorem 2.3 we
already know that a generic potential cannot be divided into two exceptional fragments. A generic
potential can be divided into one generic and one exceptional piece if and only if there is a point
x1 where eitherf l8(0, x1) 5 0 or f r8(0, x1) 5 0. In the first case, the piece to the right ofx1 is
exceptional while the piece to the left ofx1 is generic. In the second case, the types of the pieces
are reversed. We may or may not be able to fragment a nontrivial exceptional potential into two
nontrivial exceptional pieces. For example, the square-well potential supported on 0,x,a be-
comes exceptional at the depths2j 2p2/a2 with j51, 2, 3,..., and hence the square-well potential
given by

V~x!5 H 2p2, xP~0,1!,
0, elsewhere,

cannot be fragmented into two nontrivial exceptional pieces. A nontrivial exceptional potential can
be cut into two nontrivial exceptional pieces if and only if there is a pointx1 where f l8(0, x1)
5 0. If we have an exceptional potential we can choose each zero off l8(0, x) as a separation point.
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This will give the partition into the largest possible number of exceptional pieces, and that number
may be finite or infinite. Example 3.1 demonstrates that an exceptional potential can be frag-
mented into an infinite number of exceptional pieces. IfV(x) is generic, then choosing the zeros
of f l8(0, x) @respectively,f r8(0, x)# as separation points, we obtain a partition where all pieces are
exceptional except one, namelyV0,1(x) @respectively,VN,N11(x)#.

We note that if more than one fragment ofV(x) is generic, thenV(x) may be generic or
exceptional. The following example illustrates this point.

Example 2.5:Assume

V0,1~x!5
24e&x

~11e&x!2
u~2x!, V1,2~x!5

24e2&x

~11e2&x!2
u~x!.

Both V0,1(x) andV1,2(x) are generic, and in fact we have

T0,1~k!5T1,2~k!5
k~k1 i /& !

k211/4
, R0,1~k!5L1,2~k!5

21

4k211
.

Note that corresponding toV(x)5V0,1(x)1V1,2(x) we have

T~k!5
k1 i /&

k2 i /&
, R~k!50,

which is the exceptional case.
On the other hand, in terms ofu(x) andv(x) given by

u~x!58@4~312& !e&x264e2x18e~21& !x2e~212& !x14~322& !e~41& !x#,

v~x!5818e2x2~312& !e&x2~322& !e~212& !x,

let us define

V0,1~x!5
u~x!

v~x!2
u~2x!, V1,2~x!5

2e2&x

~11e2&x/4!2
u~x!,

both of which are generic with the corresponding transmission coefficients

T0,1~k!5
50k~k1 i !~&k1 i !

50&k3170ik2113&k131i
, T1,2~k!5

25k~&k1 i !

25&k2115ik14&
.

The sumV(x)5V0,1(x)1V1,2(x) is a generic potential with the scattering coefficients given by

T~k!5
2k~k1 i !

2k211
, R~k!5

21

2k211
.

Finally, we analyzeTj ~0! corresponding to the potentialVj(x) given in Eq.~2.19!, as the
analysis ofTj(k) for k50 was omitted from Theorem 2.2. In order to haveuTj ~0!u51, it is
necessary thatVj(x) is exceptional, and hence we first analyze the conditions for whichVj(x) is
exceptional. LetFl(k,x) andFr(k,x) denote the Jost solutions from the left and from the right,
respectively, for the potentialVj(x). Let us also usef l(k,x) and f r(k,x) to denote the Jost
solutions from the left and from the right, respectively, for the potentialV(x). Note thatVj(x)50
for xP(x12j,x11j), and hence we have
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Fl~0, x!5H f l~0, x1j!F122j
f l8~0, x1!

f l~0, x1!
22j f l8~0, x1!

2E
x1j

x1 dt

f l~0, t !
2G , x<x12j,

~x2x12j! f l8~0, x1!1 f l~0, x1!, xP@x12j, x11j#,
f l~0, x2j!, x>x11j,

~2.24!

Fr~0, x!5H f r~0, x1j!, x<x12j,
~x2x11j! f r8~0, x1!1 f r~0, x1!, xP@x12j, x11j#,

f r~0, x2j!F112j
f r8~0, x1!

f r~0, x1!
22j f r8~0, x1!

2E
x1

x2j dt

f r~0, t !
2G , x>x11j.

~2.25!

From Eqs. ~2.24! and ~2.25! we see thatVj(x) is exceptional if and only if the ratio
Fr(0, x)/Fl(0, x) is independent ofx; sinceFl(0, x) and Fr(0, x) are linear functions in the
interval xP[x12j,x11j], we can conclude thatVj(x) is exceptional if and only if

Fr~0, x11j!

Fl~0, x11j!
5
Fr~0, x12j!

Fl~0, x12j!
,

from which we obtain

j5
@ f l~0, x1!; f r~0, x1!#

2 f l8~0, x1! f r8~0, x1!
5
dr2dl
2drdl

, ~2.26!

where@ f ;g# 5 f g8 2 f 8g denotes the Wronskian and we have defined

dl5
f l8~0, x1!

f l~0, x1!
, dr5

f r8~0, x1!

f r~0, x1!
.

The cases in whichf l(0, x1)50 and f r(0, x1)50 are included by settingdl5` and dr5`, re-
spectively.

~a! If dlÞ0 anddrÞ0, then there is exactly one value ofj given by Eq.~2.26! for whichVj(x)
is exceptional provided the right-hand side of Eq.~2.26! is positive. Otherwise,Vj(x) is
generic.

~b! If dl5dr50, i.e., if f l8(0, x1) 5 f r8(0, x1) 5 0, then both fragments and hence alsoV(x) are
exceptional. Thus,Vj(x) is exceptional for allj > 0.

~c! If dlÞ0 and dr50, thenV0,1(x) is exceptional andV1,2(x) is generic. Thus,T0,1~0!Þ0,
T1,2~0!50, R1,2~0!521, anduL0,1~0!u,1, and Eq.~2.18! shows thatTj ~0!50 and hence we
are in the generic case for allj > 0. This is also in agreement with Theorem 2.3~ii !.

~d! If dl50 anddrÞ0, then the analysis is similar to case~c!; thusVj(x) is generic for allj>0.
~e! If dlÞ0 anddr5`, then f l8(0, x1) Þ 0 and f r(0, x1)50; both fragments are generic. From

Eq. ~2.26! we see thatVj(x) is exceptional only whenj51/~2dl! provided thatdl.0.
OtherwiseVj(x) is generic, and in particularV(x) is generic.

~f! If dl5` anddrÞ0, the analysis is similar to case~e!. Then, from Eq.~2.26! we see that
Vj(x) is exceptional only whenj521/(2dr) provided thatdr,0. OtherwiseVj(x) is ge-
neric, and in particularV(x) is generic.

~g! If dl50 anddr5`, from ~2.26! in the limiting case it is seen that noj exists for whichVj(x)
is exceptional. Similarly, ifdl5` anddr50, Vj(x) is always generic.

~h! If dl5dr5`, we havef l(0, x1)5 f r(0, x1)50 and hencef l(0, x) and f r(0, x) are linearly
dependent. Thus,V(x) is exceptional. However, as seen from Eq.~2.26!, Vj(x) is generic
for everyj . 0. In other words,Tj ~0!Þ0 for j50 butTj~0!50 for all j . 0.
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Once all thej values are obtained in cases~a!, ~b!, ~e!, and~f! for which Vj is exceptional,
one needs to determine which of thesej values correspond touTj ~0!u51. For example, in case~b!,
we can proceed as follows. From Eq.~2.18! we have

1

Tj~0!
5
12R0,1~0!L1,2~0!

T0,1~0!T1,2~0!
, ~2.27!

and henceTj ~0! is independent ofj. Let g0,1 be the constant defined as in Eq.~2.10! giving the
ratio of the zero-energy Jost solutions for the potentialV0,1(x), and letg1,2 be defined similarly for
the potentialV1,2(x). As in Eq. ~2.13!, we have

R0,1~0!5
12g0,1

2

11g0,1
2 , L1,2~0!5

g1,2
2 21

11g1,2
2 . ~2.28!

Using Eq.~2.28! in Eq. ~2.27! we obtain

Tj~0!5
2g0,1g1,2

11g0,1
2 g1,2

2 ,

from which we see thatuTj ~0!u51 if and only if g0,1g1,2561.

III. WAVE PROPAGATION IN A NONHOMOGENEOUS MEDIUM

The fragmentation of an exceptional potential into two generic pieces has important conse-
quences in direct and inverse scattering problems associated with wave propagation, where the
governing equations are related to the Schro¨dinger equation or its variants. One such differential
equation is given by

d2c~k,x!

dx2
1

k2

c~x!2
c~k,x!5Q~x!c~k,x!, ~3.1!

or by its time domain equivalent

]2f~ t,x!

]x2
2

1

c~x!2
]2f~ t,x!

]t2
5Q~x!f~ t,x!. ~3.2!

Equation~3.1! describes the quantum mechanical behavior of a particle when the potential also
depends on its energy. Equations~3.1! and ~3.2! describe the propagation of waves in a one-
dimensional nonhomogeneous, nonabsorptive medium where the wavespeed isc(x) and the re-
storing force density isQ(x). These equations can be analyzed by transforming them into Schro¨-
dinger equations by using local Liouville transformations.11 In the special~but still significant!
caseQ(x)50, the potential in the transformed Schro¨dinger equation is always exceptional. One
important outcome of Theorem 2.4 is that it is possible to choose the local Liouville transforma-
tions in such a way that all the resulting fragments of the transformed Schro¨dinger equations are
either generic or pertain to a potential vanishing identically. This leads to considerable simplifi-
cations in the small-k analysis of Eqs.~3.1! and~3.2!. For example, consider Eq.~3.25! of Ref. 11
where the Jost solutions and their space derivatives are expressed as a product of matrices, each of
which is expressed in terms of the quantities related to one fragment only. The matrices in Eq.
~3.25! of Ref. 11 contain the factort j21,j (k)/k, where t j21,j (k) is the transmission coefficient
corresponding to thej th fragment; that factor remains continuous ask→0 if the j th piece is
generic and it is singular if thej th piece is exceptional. Hence, by fragmenting the exceptional
pieces into generic ones, it becomes obvious that the Jost solutions and their space derivatives are
continuous atk50.
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Let us write Eq.~3.1! as

c9~k,x!1k2H~x!2c~k,x!5Q~x!c~k,x!, xPR. ~3.3!

Our assumptions onQ(x) andH(x) are as follows:
~H1! H(x) is strictly positive, piecewise continuous with possible discontinuities inH(x) or

H8(x) occurring at theN pointsx1,•••,xN .
~H2! H(x)→H6 asx→6`, whereH6 are positive constants.
~H3! H2H6PL1~R6!, whereR25~2`,0! andR15~0,1`!.
~H4! H8 is absolutely continuous on (xn ,xn11) and 2H9H23(H8)2PL1

1(xn ,xn11) for
n50,...,N, wherex052` andxN1151`.

~H5! Q(x) is real valued and of the formQ(x)5W(x)1( j51
N cjd(x2xj ), whereWPL1

1~R!
andd (x) is the Dirac delta function.

Conditions~H1!–~H5!, without the delta-function terms in~H5!, were introduced in Ref. 11,
where the inverse scattering problem for Eq.~3.3!, namely the recovery of the coefficientH(x)
from an appropriate set of scattering data, was studied. Hypothesis~H1! allows for abrupt changes
in the material properties of the medium in which the wave propagates. In~H5! we have now
included delta functions because they are often useful in working out explicitly solvable examples.
Moreover, it is of interest to see how some of the results are affected by delta functions superim-
posed on discontinuities inH(x) andH8(x). The delta-function potentialV(x)5ad(x2a) cor-
responds to

T~k!5
k

k1 ia/2
, R~k!5

2 ia/2

k1 ia/2
e2ika, L~k!5

2 ia/2

k1 ia/2
e22ika, ~3.4!

from which we see that it is a generic potential.
As for Eq. ~2.1!, Eq. ~3.3! also has two linearly independent scattering solutions, namely the

Jost solutionsf l(k,x) and f r(k,x) satisfying the boundary conditions

f l~k,x!5H eikH1x1o~1!, x→1`,
1

Tl~k!
eikH2x1

L~k!

Tl~k!
e2 ikH2x1o~1!, x→2`,

f r~k,x!5H 1

Tr~k!
e2 ikH1x1

R~k!

Tr~k!
eikH1x1o~1!, x→1`,

e2 ikH2x1o~1!, x→2`.

Here,Tl(k) andTr(k) are the transmission coefficients from the left and from the right, respec-
tively, andL(k) andR(k) are the reflection coefficients from the left and from the right, respec-
tively. Associated with Eq.~3.3! is the scattering matrix

S~k!5FTl~k! R~k!

L~k! Tr~k!
G . ~3.5!

The matrixS(k) is not unitary unlessH15H2 ; we haveS(2k) 5 S(k) for realk, and

H1Tl~k!5H2Tr~k!, Im k>0,

Tr~2k!Tl~k!1uR~k!u25Tr~k!Tl~2k!1uL~k!u251, kPR,

R~k!Tr~2k!1L~2k!Tr~k!50, kPR.
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In the study of the scattering matrixS(k) given in Eq. ~3.5!, one again has to distinguish
between the generic case and the exceptional case. As in Sec. II, in the generic case the transmis-
sion coefficients vanish linearly ask→0, whereas in the exceptional case we haveTl~0!Þ0 and
Tr~0!Þ0. Furthermore, in the generic caseR(0)5L(0)521, while in the exceptional caseuR(0)u
5uL(0)u,1. The coefficientH(x) in Eq. ~3.3! has no influence on the leading behavior of the
transmission coefficients ask→0, and hence the generic and exceptional cases are determined by
the potentialQ(x) only. All the characterizations of the two cases for the Schro¨dinger equation
hold verbatim also for Eq.~3.3!. If Q(x)50 in Eq.~3.3!, we have the exceptional case. IfQ(x) is
nontrivial andQ(x)>0 in Eq.~3.3!, then we have the generic case. All the differences between the
two cases ask→0 outlined in Sec. II also exist11–13 in the wave propagation problem associated
with Eq. ~3.3!.

Let us generalize the factorization formula~2.17! to the scattering problem for Eq.~3.3!.
Under the Liouville transformation

y5y~x!5E
0

x

ds H~s!, c~k,x!5
1

AH~x!
f~k,y!, ~3.6!

Eq. ~3.3! is transformed into

d2f~k,y!

dy2
1k2f~k,y!5V~y!f~k,y!, ~3.7!

where

V~y!5V~y~x!!5
H9~x!

2H~x!3
2
3

4

H8~x!2

H~x!4
1

Q~x!

H~x!2
. ~3.8!

Since, by~H1!, H(x) andH8(x) are allowed to have jump discontinuities atxj for j51,...,N, the
function V(y) is undefined atyj5y(xj ) for j51,...,N. In agreement with Eq.~3.6!, we set
y05y(x0)52` and yN115y(xN11)51`. ThenV(y) is well defined in each of the intervals
(yj ,yj11) for j50,...,N, and ~H4! ensures thatVPL1

1 on these intervals. In view of~H5!, the
solutions of Eq.~3.3! satisfy the conditions

c~k,xn20!5c~k,xn10!, c8~k,xn10!2c8~k,xn20!5cnc~k,xn!. ~3.9!

As a result, by using Eqs.~3.6! and ~3.9!, we deduce that the solutions of Eq.~3.7! satisfy the
self-adjoint boundary conditions

f~k,yn20!5Aqn f~k,yn10!, ~3.10!

df~k,yn20!

dy
5nnf~k,yn10!1

1

Aqn

df~k,yn10!

dy
, ~3.11!

where

qn5
H~xn20!

H~xn10!
,

nn5
1

2AH~xn20!H~xn10!
FH8~xn20!

H~xn20!
2
H8~xn10!

H~xn10!
22cnG . ~3.12!

5909Aktosun, Klaus, and van der Mee: Factorization of scattering matrix

J. Math. Phys., Vol. 37, No. 12, December 1996

Downloaded¬15¬Aug¬2002¬to¬129.74.199.113.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jmp/jmpcr.jsp



The scattering matrix corresponding to Eq.~3.7! equipped with these boundary conditions is
known as the ‘‘reduced scattering matrix’’11 and is given by

s~k!5F t~k! r~k!

l ~k! t~k!
G ,

wheret (k) is the reduced transmission coefficient andr (k) andl (k) are the reduced reflection
coefficients from the right and from the left, respectively. The reduced scattering matrix is unitary
and its entries are related to the scattering matrixS(k) given in Eq.~3.5! as follows:11

t~k!5AH1

H2
Tl~k!eikA5AH2

H1
Tr~k!eikA, ~3.13!

r~k!5R~k!e2ikA1, l ~k!5L~k!e2ikA2,

where

A656E
0

6`

ds @H62H~s!#, A5A11A2 .

The pointsyj generate a partition of the real line, and so we define

Vj , j11~y!5 HV~y!, yP~yj ,yj11!,
0, elsewhere.

We let t j , j11(k), r j , j11(k), and l j , j11(k) denote the transmission coefficient and the reflection
coefficients from the right and from the left, respectively, for the potentialVj , j11(y), and, as in
Eq. ~2.15!, we define

L~k!5F 1

t~k!
2

r~k!

t~k!

l ~k!

t~k!

1

t~2k!

G , L j , j11~k!5F 1

t j , j11~k!
2

r j , j11~k!

t j , j11~k!

l j , j11~k!

t j , j11~k!

1

t j , j11~2k!

G . ~3.14!

By suppressing thek-dependence of the transition matrices in Eq.~3.14!, we have the generali-
zation of Eq.~2.17! in the case of Eq.~3.3! given by13

L5L0,1F1L1,2F2L2,3•••FNLN,N11 , ~3.15!

whereF j for j51,...,N are the matrices defined by

F j~k!5F an1
nn
2ik S bn1

nn
2ik De22iky

S bn2
nn
2ik De2ikyn an2

nn
2ik

G ,
with

an5
1

2 FAH~xn20!

H~xn10!
1AH~x10!

H~xn20!
G , bn5

1

2 FAH~xn20!

H~xn10!
2AH~xn10!

H~xn20!
G ,

and where the constantsnn are given in Eq.~3.12!.
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The matricesF j account for the internal boundary conditions~3.10! and ~3.11!. In order to
justify Eq. ~3.15!, again consider the caseN51 first. Using notations similar to those used below
Eq. ~2.17!, we letf (k,y) be a solution of Eq.~3.7! such thatf(k,y)5c1e

iky1c2e
2 iky as y→

1`, and we definef1,2(k,y) andf0,1(k,y) as solutions of Eq.~3.7! for the fragmentsV0,1(y) and
V1,2(y) such that f1,2(k,y)5f(k,y) for y.y1 and f0,1(k,y)5f(k,y) for y,y1 . Then,

f1,2(k,y)5d̃1e
iky1d̃2e

2 iky for y,y1 andf0,1(k,y)5 c̃1e
iky1 c̃2e

2 iky for y.y1 , with suitable

constantsd̃1, d̃2, c̃1, andc̃2. Now the coefficientsd̃1 andd̃2 are related to the coefficientsc̃1 and
c̃2 through the boundary conditions~3.10! and ~3.11! by setting f(k,y120)5f0,1(k,y1),
f8(k,y1 2 0) 5 f0,18 (k,y1), and f(k,y110)5f1,2(k,y1), f8(k,y1 1 0) 5 f1,28 (k,y1). This-
yields

F eiky1 e2 iky1

ikeiky1 2 ike2 iky1GF c̃1c̃2G5F Aq1 0

n1
1

Aq1
G F eiky1 e2 iky1

ikeiky1 2 ike2 iky1GF d̃1d̃2G ,
from which we obtain [c̃1 c̃2]

t5F1[ d̃1 d̃2]
t. This proves Eq.~3.15! whenN51, and the general

case follows by induction. Note thatFn can be written as a product of three matrices, namely

Fn5L~xn20, xn!L@xn ,xn#L~xn ,xn10!, ~3.16!

where

L~xn20, xn!5F an
21

nn
2

2ik S bn
21

nn
2

2ik De22ikyn

S bn
22

nn
2

2ik De2ikyn an
22

nn
2

2ik

G ,
L@xn ,xn#5F 12

cn
2ik

cn
2ik

e22ikyn

2
cn
2ik

e2ikyn 11
cn
2ik

G ,
L~xn ,xn10!5F an

11
nn

1

2ik S bn
11

nn
1

2ik De22ikyn

S bn
12

nn
1

2ik De2ikyn an
12

nn
1

2ik

G ,
with

an
75

1

2 FAH~xn70!1
1

AH~xn70!
G , bn

756
1

2 FAH~xn70!2
1

AH~xn70!
G ,

nn
75

61

2AH~xn70!

H8~xn70!

H~xn70!
.

We remark that the transition matrixL(xn20, xn) is due to the hard scatterer caused by a jump in
H(x) from H(xn20) to 1 and a jump inH8(x) from H8(xn20) to 0. The transition matrix
L[xn ,xn] is due to the hard scatterercnd(x2xn), as seen from Eq.~3.4!. The transition matrix
L(xn ,xn10) is due to the hard scatterer caused by a jump inH(x) from 1 toH(xn10) and a
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jump in H8(x) from 0 toH8(xn10). The transition matricesLn,n11(k) in Eq. ~3.15! are due to
the soft scatterersVn,n11(y). In the special case whenH(x)51 andW(x)50 in ~H5!, Eq. ~3.15!
takes the form

L5L@x1 ,x1#•••L@xN ,xN#, ~3.17!

which describes scattering by a superposition of delta functions located atx1 ,...,xN .
We mention one application of the factorization formula~3.15! in the inverse scattering

problem for Eq.~3.3! concerning the large-k asymptotics oft(k), r(k), and l (k); we refer the
reader to Refs. 11–13 for details: it is known that from the large-k asymptotics of a reduced
reflection coefficient one can recover the ratiosqn andnn ~cf. Ref. 13, where the casecn50 was
studied!. It is seen from Eq.~3.12! that the coefficientscn affect the large-k asymptotics through
the constantsnn and thus contribute in the same manner as the jumps in the derivative ofH(x).
We also see thatcn can be chosen suitably to cancel the contribution from a jump inH8(x).

In the recovery ofH(x) in Eq. ~3.3!, the distinction between the exceptional and generic cases
is important. For example, in the absence of bound states, given the scattering data consisting of
a reduced reflection coefficient andQ(x), one obtains a one-parameter family ofH(x) in the
exceptional case and a uniqueH(x) in the generic case.11–13Therefore, in the exceptional case one
must include eitherH1 or H2 in the scattering data for the unique recovery ofH(x); however, in
the generic case,H1 or H2 cannot be specified in the scattering data and instead these constants
are themselves recovered during the inversion procedure.

Finally in this section we give an example of an exceptional potential that can be fragmented
into an infinite number of only exceptional pieces.

Example 3.1:In Eq. ~3.3! chooseQ(x)50 and

H~x!5H 11S sin xx D 3, xÞ0,

2, x50.
~3.18!

Note thatH(x) is strictly positive and bounded,H651, and

H8~x!5H 3 sin2xx4
@x cosx2sin x#, xÞ0,

0, x50,

H9~x!5H 3 sin xx5
@x2~3 cos2x21!26x cosx sin x14 sin2x#, xÞ0,

0, x50,

and henceH, H8, andH9 are all continuous onR. SinceQ(x)50, we are in the exceptional case,
and hence the transmission coefficientsTl(k) andTr(k) cannot vanish atk50. Note thatH(np)
51,H8(np)50, andH9(np)50 for any integern. Using Eq.~3.6! let us defineyn5y(np). Now
consider the potentialV(y) obtained by using Eq.~3.18! andQ(x)50 in Eq. ~3.8!. That potential
must be exceptional, and in fact from Eq.~3.13! it can be seen that the transmission coefficient
t (k) corresponding to the potentialV(y) cannot vanish atk50. Now let us fragmentV(y) as
V(y)5(n52`

` Vn,n11(y), where we have defined

Vn,n11~y!5 HV~y!, yP~yn ,yn11!,
0, elsewhere. ~3.19!
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The following argument shows that eachVn,n11(y) is exceptional. SinceQ(x)50 in Eq.~3.3!, the
corresponding zero-energy Jost solution is given byf l(0, x)51 for xPR. Using Eq. ~5.1! of
Ref. 11, we see that the zero-energy Jost solution from the left of Eq.~3.7! is given by

gl~0,y!5gl„0,y~x!…5AH~x!.

Hence, we obtain

gl8~0,y!5
dgl~0,y!

dy
5
dx

dy

dAH~x!

dx
5

H8~x!

2H~x!3/2
. ~3.20!

SinceH8(np)50, from Eq.~3.20! we see thatgl8(0,yn) 5 0, and hence we can chooseyn as the
separation points to fragmentV(y) into only exceptional pieces, which are given by Eq.~3.19!.

IV. WAVE PROPAGATION IN A NONCONSERVATIVE MEDIUM

The wave propagation in a one-dimensional nonconservative medium is described, in the
frequency domain, by the generalized Schro¨dinger equation

c9~k,x!1k2c~k,x!5@ ikP~x!1Q~x!#c~k,x!, xPR, ~4.1!

wherek is the wave number,P(x) represents the joint effect of energy absorption and generation,
andQ(x) stands for the restoring force density. In the time domain Eq.~4.1! corresponds to

]2u

]x2
2

]2u

]t2
2P~x!

]u

]t
5Q~x!u, t,xPR,

where the wavespeed is equal to one. We will assume thatQ(x) is real valued and belongs to
L1
1~R!, and thatP(x) is real valued and belongs toL1~R!. We have energy absorption when

P(x)<0 and energy generation whenP(x)>0; however, our results in this section are valid
without assuming thatP(x) is positive or negative.

The scattering solutions of Eq.~4.1! are those behaving likeeikx or e2 ikx asx→6`, and such
solutions occur whenk2.0. Among the scattering solutions are the Jost solution from the left
f l(k,x) and the Jost solution from the rightf r(k,x) satisfying the boundary conditions~2.2! and
~2.3!, respectively. The scattering matrixS(k) associated with Eq.~4.1! has the form~2.4!. When
P(x) is purely imaginary, the inverse scattering problem for Eq.~4.1! was analyzed by Jaulent and
Jean;14–17 in this case the scattering matrixS(k) is unitary and hence the reflection coefficients
cannot exceed one in absolute value. An incomplete study of the same problem whenP(x) is real
was outlined in Ref. 18. In that case the differential equation~4.1! is no longer self-adjoint and the
scattering matrixS(k) is no longer unitary. Consequently, the analysis of the direct and inverse
scattering problems for realP(x) is much more complicated than for imaginaryP(x).

We are interested in the analog of the factorization formula~2.17!. As in Sec. II, let us
partition the real axisR into x0,x1,x2,•••,xN,xN11 with x052` andxN1151`. Consider
the analog of Eq.~4.1! given by

c9~k,x!1k2c~k,x!5@ ikPj , j11~x!1Qj , j11~x!#c~k,x!, ~4.2!

where we have defined the fragments

Pj , j11~x!5 HP~x!, xP~xj ,xj11!,
0, elsewhere, ~4.3!
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Qj , j11~x!5 HQ~x!, xP~xj ,xj11!,
0, elsewhere. ~4.4!

Let the scattering matrix associated with Eq.~4.2! be given by

sj , j11~k!5F t j , j11~k! r j , j11~k!

l j , j11~k! t j , j11~k!
G .

Proceeding as in the previous sections or as in Ref. 7 or Ref. 13 we obtain

L~k!5L0,1~k!L1,2~k!•••LN,N11~k!, ~4.5!

where we have defined the transition matrices

L~k!5F 1

T~k!
2
R~k!

T~k!

L~k!

T~k!

T~k!22L~k!R~k!

T~k!

G , ~4.6!

L j , j11~k!5F 1

t j , j11~k!
2
r j , j11~k!

t j , j11~k!

l j , j11~k!

t j , j11~k!

t j , j11~k!22 l j , j11~k!r j , j11~k!

t j , j11~k!

G . ~4.7!

As in the previous sections, the transition matrix given in Eq.~4.6! provides the link between the
asymptotics of the scattering solutions of Eq.~4.1! at1` and those at2` whene6 ikx are chosen
as an asymptotic basis; the transition matrices in Eq.~4.7! have similar interpretations. Again, each
of the matrices in Eqs.~4.6! and~4.7! can be decomposed as in Eq.~2.16!. Note that the~2,2! entry
in Eq. ~4.6! is analytic in the lower-half complex planeC2 and in general cannot be replaced by
1/T(2k); however, it is known that14 this entry is equal to 1/T ~2k!, whereT (k) is the trans-
mission coefficient associated with the differential equation obtained from Eq.~4.1! by changing
the sign ofP(x).

Again one has to distinguish between the generic and exceptional cases in studying the
scattering and inverse scattering problems for Eq.~4.1!. As for Eq.~3.3!, the potentialQ(x) alone
determines whether we have the generic case or the exceptional case. The difficulties arising in
proofs in the exceptional case outlined in the previous sections remain true also for Eq.~4.1!, and
by choosing each fragment in the partitioning~4.3! and ~4.4! to be either generic or identically
zero we expect simplifications in the smallk-analysis of the direct and inverse scattering problems
for Eq. ~4.1!.
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