PARTITION OF THE POTENTIAL OF THE
ONE-DIMENSIONAL SCHRODINGER EQUATION

By

Tuncay Aktosun
and

Cornelis van der Mee

IMA Preprint Series # 1331
August 1995

INSTITUTE FOR MATHEMATICS AND ITS APPLICATIONS
UNIVERSITY OF MINNESOTA

514 Vincent Hall
206 Church Street S.E.
Minneapolis, Minnesota 55455



PARTITION OF THE POTENTIAL OF
THE ONE-DIMENSIONAL SCHRODINGER EQUATION

Tuncay Aktosun
Department of Mathematics
North Dakota State University
Fargo, ND 58105

Cornelis van der Mee
Department of Physics and Astronomy
Free University

Amsterdam, The Netherlands

Abstract: The one-dimensional Schrédinger equation is considered when the potential and
its first moment are absolutely integrable. The transmission coefficient vanishes at zero
energy in the generic case, and it never vanishes in the exceptional case. It is shown that
any nontrivial exceptional potential can always be fragmented into two generic potentials.
Furthermore, any nontrivial potential, generic or exceptional, can be fragmented into all
generic pieces in infinitely many ways. The results remain valid when Dirac delta functions
are included in the potential, in which case even the trivial potential can be fragmented

into generic pieces.
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Consider the one-dimensional Schrodinger equation

(1) dn—tg(:z’—w) + k*Y(k,z) = V(z)o(k,z),

where k? is energy, = is the space coordinate, and V(z) is the potential; appropriate units
are used in which 2 = 1 and m = 1/2. When the potential is absolutely integrable, there are
two linearly independent solutions fi(k,z) and f.(k,z) of (1) known as the Jost solutions

from the left and from the right, respectively, satisfying the boundary conditions

e*” 4+ 0(1), z— 4o,
fulk,z) = 1 ke, L(R) _ike
T—(k—)-e + Fk)e + 0(1), r — —00,
1 ke, B(k) e
——e + ——=<e"" +o(1), r — +00,
fhoy = { T TTR© P
e 4 o(1), T — —00,

where T'(k) is the transmission coefficient and R(k) and L(k) are the reflection coefficients
from the right and from the left, respectively. The scattering matrix associated with (1)

is defined as

| T(k) R(k
@) 4= | 1) 7(4)
We have
(3) R(k)T(—k)+ L(—k)T (k) = 0.

We will assume that [*_dz (1 + |z|)|V(z)] is finite. For such potentials, the corre-
sponding scattering matrix is well understood. Generically, the transmission coeflicient
vanishes linearly as & — 0 and R(0) = L(0) = —1. In the exceptional case, we have
T(0) # 0 and hence |R(0)| = |L(0)| < 1. In fact, the potential V(z) is exceptional if and
only if
(4) | @vE pes o,
where fi(k,z) is the corresponding Jost solution from the left. Note that (4) is equivalent
to [*_dzV(z)fr(0,2) = 0 because fi(0,z) and f-(0,z) are linearly dependent in the

exceptional case.



The exceptional case is unstable in the sense that a small change in the potential
usually makes the case generic. As an example, consider the square-well potential: the
exceptional case occurs at the exact depths when a bound state is added to the potential;
at any other depth the square-well potential is generic. A zero-energy particle tunnels
through an exceptional potential whereas such tunneling is impossible through a generic

potential.

The distinction between the generic and exceptional cases becomes obvious when the

small energy behavior of the scattering coeflicients or the wavefunctions is considered [1-5].

In many instances one has to deal with quantities involving the factor 2Ek ; in the generic
case this factor remains bounded and continuous as & — 0. However, in the exceptional
case, this factor behaves as O(1/k) and one often has to obtain detailed estimates and prove
that the remaining multiplicative terms have o(k”) behavior for some v € (0,1) or O(k)
behavior in order to insure integrability or continuity at k = 0, respectively. In general,
the proofs corresponding to exceptional potentials are much more difficult and elaborate
than those corresponding to generic potentials. In this Letter we show that an exceptional
potential can always be fragmented into two generic pieces; since the quantities related to
a potential can be written in terms of those related to the fragments of this potential, the
result presented here offers drastic simplifications in dealing with exceptional potentials.

The reader is referred to the existing literature for additional information on the difference

between the generic and exceptional cases [1-5].

Let us partition the real axis R as R = Uévzo(wj,mﬂ_l), where 2o = —00, zN4+1 = +00,
and z; < zj41 for j = 0,...,N. We can then write V(z) in terms of its fragments Vjj+1(z)

as
N

(5) V(z) =) Vijn(e),
i=0

where we have defined

V(z), z € (zj,Tj+1),
Vii+1(z) = {

0, ¢ (zj,zj41)



Let S; j+1(k) denote the scattering matrix associated with the potential V; j11(z); in anal-
ogy with (2) we have

- | Tjj41(k) Ry jya(k)
Sigrik) = Ljjy1(k)  Tjjsa(k)

where T} j11(k) is the transmission coefficient and R; j+1(k) and L; j41(k) are the reflection
coefficients from the right and from the left, respectively, corresponding to the potential
Vj j+1(z). It is known [6] that S(k) can be written explicitly in terms of S; j11(k) in the

form of the matrix product

(6) A(k) = Aoa(k) Ara(k) - - An,Na(k),
where
1 R(k) 1 ~Rjja(k)
_ | T(k)  T(k) . _ | Tigea(k)  T4a(k)
M=) 1| A= | PG
T(k) T(-k) Tjjr1(k)  Tjjer(—Fk)
In the special case N = 2, from the factorization formula (6), with the help of (3), we
obtain
T(k) Toa (k )T (k) T Tia(k) Toa(—k)T(k)

The following proposition shows that a potential is necessarily exceptional if both
of its two fragments are exceptional, and that it is necessarily generic if one fragment is

exceptional and the other is generic.

Proposition Consider the potential V(z) given in (5). If all the fragments are exceptional,
then V(z) is exceptional. In the special case N = 2, if one fragment is generic and the
other is exceptional, then V(z) is generic; if both fragments are generic then V(z) can be
either generic or exceptional. For N > 3, if at least one of the fragments is generic, then

V(z) can be either generic or exceptional.

PROOF: We can omit trivial fragments in the summation (5) and assume that none of
Vj j+1(z) are identically zero. For N = 2 from (7) we see that if neither of T 1(k) and
T »(k) vanish at k = 0, then the transmission coefficient T'(k) corresponding to V(z)
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cannot vanish at £ = 0. Using induction, it then follows that if none of the transmission
coefficients corresponding to Vj j4+1(z) vanish at k = 0, then the transmission coefficient
corresponding to V(z) cannot vanish at k£ = 0, i.e. if all V; j41(z) are exceptional, then
V(z) is also exceptional. When N = 2, from (7) it follows that, if T'(0) # 0 and T, 1(0) # 0,
we must have T} »(0) # 0. Consequently, if both Vj 1(z) and V(z) are exceptional, V; »2(z)
has to be exceptional. A similar argument shows that if T'(0) # 0 and T} »(0) # 0, we
must have Ty 1(0) # 0. Hence, if one fragment is generic and the other is exceptional, the
total potential must be generic. The example given below shows that if both fragments
are generic then the total potential can be generic or exceptional. Through induction, we
then obtain the result that, for N > 3, if at least one of Vj ;ii(z) is generic, then V(z)

can be generic or exceptional. I

The next example shows that in the factorization formula, if both of the fragments of

V(z) are generic, then V(z) can be generic or exceptional.

Example Let 6(z) denote the Heaviside function, i.e. 6(z) =1if z > 0 and §(z) = 0 if
z < 0. Assume
—4eV?e 4~ V2e

Yoa®) = ek el =

6(z).

Both V4 1(z) and V; 2(z) are generic, and in fact we have

k(k +1i/V2) ~1

Toa(k) = Th2(k) = TR yija Ro1(k) = L12(k) = 1
Note that corresponding to V(z) = Vj 1(z) + Vi 2(z) we have
bt
Ty = T2 Ry o,
k—1i/v2
which is an exceptional potential. On the other hand, let
o
u(z) —e
= 9 — V f— 9 3
0 Viale) = SRH0), Viale) = G )

both of which are generic with the transmission coefficients

50k(k + 1)(\/2k + 1)
Ty 1 (k) = T, o(k
0.1(k) 501/2k® + T0ik2 + 13v/2k + 31 12(k)

B 25k(v/2k + 1)
©25/2k2 4+ 15ik + 42
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In (8) the quantities u(z) and v(z) are given by
u(2) = 8[43 +2v2)eV? — 6477 4 8elVDr _ (42VDz (3 21/2)elsHVDe]
v(z) =8+ 8e2% _ (3 + 2\/§)ex/§z —(3- 2\/5)6(2+2\/§)$_

The sum V(z) = Vy.1(z) + V1 2(z) is a generic potential with scattering coefficients

By a trivial potential we mean a potential that vanishes almost everywhere. The next
theorem shows that any nontrivial potential, generic or exceptional, can be decomposed,

in an infinite number of ways, as in (5), where all the fragments are generic.

Theorem Any nontrivial potential, generic or exceptional, can be fragmented such that
all the pieces are generic. There are infinitely many ways of fragmenting a given potential

into generic pieces.

PROOF: Consider any fragmentation (5). Since trivial fragments can be omitted from (5),
we can assume that none of the fragments of V() vanish identically. If any one of the
fragments is exceptional, we can fragment that piece further into two generic subpieces as
follows. Assume the piece V; j+1(z) is exceptional. Let fi.; j41(k,z) be the corresponding

Jost solution from the left. From (4) we have
i1
(9) / dz Vjjt1(@) fisj+1(0,2) = 0.
zj

Then for any z € (z;,zj+1), consider the fragmentation of V; ;y1(z) as

(10) Vi+1(z) = 0(z — ;) Vj jy1(z) + 0(z 41 — 2) Vj jpa ().

There are infinitely many such z. The fragments given in (10) have to be generic for almost
every z € (z;,zj+1); otherwise, as seen by replacing the upper integration limit in (9) by
z, we could conclude that V; j+1(2) fi.j,j+1(0,2) = 0, which cannot happen unless V; ;11(z)

is almost everywhere zero. |



The fragmentation of an exceptional potential into two generic pieces has important
consequences in scattering, inverse scattering, and wave propagation, where the governing
equations are related to the Schrodinger equation or its variants. One such differential

equation is given by

11 _
( ) dlEz + C(:B)') ’l!)(k,il?) Q(w)¢(k7w)7
or its time domain equivalent

(12) ot T e ).

These equations describe the quantum mechanical behavior of a particle when the potential
also depends on the particle’s energy. They also describe the propagation of waves in a
one-dimensional nonhomogeneous, nonabsorptive medium where the wavespeed is ¢(z) and
the restoring force density is @(z). These equations can be analyzed by transforming them
into (1) through local Liouville transformations [7]. In the special (but still significant)
case Q(z) = 0, the potential in the transformed Schrédinger equation is always exceptional.
One important outcome of the theorem given here is that it is possible to choose all the local
Liouville transformations in such a way that all the resulting fragments of the transformed

Schrédinger equation are generic. This should offer drastic simplifications in the analysis

of (11) and (12).

As an illustrative example, consider (3.25) of Ref. [7] where the Jost solutions and
their space derivatives are expressed as a product of matrices, each of which is expressed
in terms of the quantities related to one fragment only; in that reference the problem of
the recovery of the wavespeed from the scattering data is considered when the properties

of the medium change abruptly at a finite number of interfaces. Some of the multiplicative
T(k)
2ik

into generic ones, it becomes obvious that the Jost solutions and their space derivatives are

matrices in (3.25) of Ref. [7] contain the factor

. By fragmenting the exceptional pieces

continuous at k& = 0; this result is difficult to obtain without fragmenting an exceptional
potential into two generic pieces. With the use of the results presented here, we expect a
simplification of many proofs involving exceptional potentials for the Schrédinger equation

and the wave equation with variable speed.



The results presented here are also valid if we allow the potential V(z) to contain
a finite number of Dirac delta functions. In fact, when delta functions are included, our
theorem can be extended even to include trivial potentials. We will now elaborate on the

inclusion of delta function potentials.

The factorization formula (6) remains unchanged if some or all the fragments of po-
tential are delta functions. The potential V(z) = aé(z — a) corresponds to

k —10/2 4 —10/2 ke

(13) T(k) = K Tia2’ R(k) = me , L(k) = h i ia/2e
Note that a delta function potential is always generic. Since the support of a delta function
potential is a point, it is possible to decompose a§(z — a) in an arbitrary manner in the
form V(z) = Z;V::l V;(z), where Vj(z) = a;jé(z — a) in such a way that Zi\]ﬂ a; = a.
Using (6) and (13) we obtain

1 ) ika 1 v ika

” 1 k+ 3% §a62”” 1 N k+ 2% —aj;e?t*
(14) k L 9ika v kN L aika 2 ’

——ae k— 5 =1 [~ € k— 2%

where the matrix product is commutative. We can write (14) in the equivalent form

[1 0} o 1 g2ika 1N k+ %aj %ajezika
0 1 _];|:_—2ika, 1 ]:k—N ; e . ,
2 e =1 | —5e; 2ike g _ Lo

which holds for any positive integer N, a € R, and real numbers a1, - ,an with sum o.

We can write the zero potential, which is an exceptional potential with T'(k) = 1, as the

sum of two delta function potentials, which are always generic. Letting Vi(z) = aé(z — a)

and Va(z) = —aé(z — a), from (14) we obtain

1+ [l 1 gika 1 S g,
(15) L 0y _ T2k 2k S 2% 2%k
0 1 1 _q; @ 1 o, 10x
e 2ika 1 - = e 2ika 14 —
2k 2k 2k 2k
We can generalize (15) to
10 10 o
N 14+ 2L Z7J grika N
104 _ 2k 2k ; o
[0 1] =11 ie, % i i) e =0,
=g “ o =



where N is an arbitrary natural number, a is an arbitrary real number, and «a; are arbitrary
- N .

real numbers satisfying ijl a; = 0. Thus, when delta function potentials are included,

the theorem presented becomes true even for the trivial potential: the zero potential can

be fragmented into delta function potentials in an infinite number of ways.
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