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d2 =dx2 + k2H(x)2 = Q(x) ; where H(x) is a positive, piecewise continuous function with positive limits

H� as x ! �1; is studied. The large-k asymptotics of the wavefunctions and the scattering coe�cients

are analyzed. A factorization formula is given expressing the total scattering matrix as a product of simpler

scattering matrices. Using this factorization an algorithm is presented to obtain the discontinuities in H(x)

and H(x)�1dH(x)=dx in terms of the large-k asymptotics of the re
ection coe�cient. When there are no

bound states, it is shown that H(x) is recovered from an appropriate set of scattering data by using the

solution of a singular integral equation, and the unique solvability of this integral equation is established.

An equivalent Marchenko integral equation is derived and is shown to be uniquely solvable; the unique

recovery of H(x) from the solution of this Marchenko equation is presented. Some explicit examples are

given illustrating the recovery of H(x) from the solution of the singular integral equation and from that of

the Marchenko equation.
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1. INTRODUCTION

Consider the one-dimensional generalized Schr�odinger equation

(1.1)  00(k; x) + k2H(x)2 (k; x) = Q(x) (k; x); x 2 R;

which describes the propagation of waves in a one-dimensional nonhomogeneous, nonabsorptive medium

where k2 is energy, 1=H(x) is the wave speed, and Q(x) is the restoring force density. The discontinuities

of H(x) correspond to abrupt changes in the properties of the medium in which the wave propagates. The

prime denotes the derivative with respect to the spatial coordinate, and the coe�cients H(x) and Q(x) are

assumed to satisfy the following conditions:

(H1) H(x) is strictly positive and piecewise continuous with jump discontinuities at xn for n = 1; � � � ; N
such that x1 < � � � < xN :

(H2) H(x)! H� as x!�1; where H� are positive constants.

(H3) H �H� 2 L1(R�); where R� = (�1; 0) and R+ = (0;+1):

(H4) H0 is absolutely continuous on (xn; xn+1) and 2H00H � 3 (H0)2 2 L1
1(xn; xn+1) for n = 0; � � � ; N;

where x0 = �1 and xN+1 = +1; and L1
�
(I) denotes the space of measurable functions f(x) on I such

that
R
I
dx (1 + jxj)� jf(x)j < +1:

(H5) Q(x) is real valued and belongs to L1
1(R):

The scattering solutions of (1.1) are those behaving like eikH�x or e�ikH�x as x ! �1; and such

solutions occur when k2 > 0: Among the scattering solutions are the Jost solution from the left fl(k; x) and

the Jost solution from the right fr(k; x) satisfying the boundary conditions

fl(k; x) =

8<
:
eikH+x + o(1); x! +1;

1

Tl(k)
eikH�x +

L(k)

Tl(k)
e�ikH�x + o(1); x!�1;

fr(k; x) =

8<
:

1

Tr(k)
e�ikH+x +

R(k)

Tr(k)
eikH+x + o(1); x! +1;

e�ikH�x + o(1); x!�1;

where Tl(k) and Tr(k) are the transmission coe�cients from the left and from the right, respectively, and

L(k) and R(k) are the re
ection coe�cients from the left and from the right, respectively. For each �xed

x 2 R; the Jost solutions have continuous extensions to the upper half complex plane C+ and they are
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analytic there.1 The reduced transmission coe�cient � (k); the reduced re
ection coe�cients �(k) from the

right and `(k) from the left, respectively, are de�ned as

(1.2) � (k) =

s
H+

H�
Tl(k)e

ikA =

s
H�

H+

Tr(k)e
ikA;

(1.3) �(k) = R(k)e2ikA+ ; `(k) = L(k)e2ikA� ;

where

(1.4) A� = �
Z �1

0

ds [H� �H(s)]; A = A+ + A�:

If � (0) 6= 0; which is called the exceptional case, the Jost solutions fl(0; x) and fr(0; x) are linearly

dependent. If � (0) = 0; which is called the generic case, fl(0; x) and fr(0; x) are linearly independent, and

in this case � (k) vanishes linearly as k ! 0: Usually these two cases need to be analyzed separately, and the

small-k analysis of the scattering problem in the exceptional case requires tedious estimates. However, the

fact2 that an exceptional case can always be decomposed into two generic cases is expected to simplify the

analysis of the scattering problem in the exceptional case.

In general (1.1) may have bound states, i.e. nontrivial solutions belonging to L2(R;H(x)2dx): Since

the treatment of bound states requires many separate arguments we do not consider them in this paper.

Bound states were already studied in Ref. 1 and further results may appear in the future. Thus, we assume

that (1.1) does not have any bound states. The number of bound states for (1.1) is equal3 to the number of

bound states for the Schr�odinger equation

(1.5) �00(k; x) + k2�(k; x) = Q(x) �(k; x); x 2 R;

and hence our assumption can be restated by saying that Q(x) does not have any bound states.

The inverse scattering problem in which we are interested consists of the recovery of H(x) in (1.1) from

an appropriate set of scattering data. The analysis of the scattering problem in a discontinuous medium is

the �rst step to analyze the inverse scattering problem, and we mention the relevant work4�7 of Sabatier

and his collaborators on the scattering in a discontinuous medium in one and three dimensions governed

by f�(x)�2r � [�(x)2r] + k2 � V (x)g�(k; x) = 0: In Ref. 4 Sabatier estimated the large-k asymptotics of

the scattering data and also brie
y discussed the inverse scattering problem in such a medium. Various

authors have studied inverse scattering problems for di�erential equations with discontinuous coe�cients, as
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exempli�ed by Krueger's work8�10 and the bibliography of Ref. 1. Of more direct concern to us is the work

by Sabatier4 and Grinberg.11;12 Grinberg, in the special (but still important) case Q(x) = 0, developed a

method to recover H(x) using the solution of a singular integral equation; in this special case there are no

bound states, the exceptional case occurs, and the norm of the associated singular integral operator is strictly

less than one so that the integral equation has a unique solution that can be obtained through iteration. The

general case with nontrivial Q(x) and with bound states was analyzed by a similar method in Ref. 1, and

H(x) was recovered from the solution of a singular integral equation under the assumption Q 2 L1
1+�(R)

for some � 2 (0; 1]: In Ref. 13 the scattering data leading to a unique solution of the inverse problem were

speci�ed.

In this paper, when there are no bound states, we develop a method to obtain H(x) from the scattering

data consisting of Q(x); �(k); and H+: As already known,
13 H+ must be omitted from the scattering data in

the generic case but in the exceptional case it needs to be speci�ed in the scattering data in order to obtain

H(x) uniquely; this is also true in the method presented here. Note also that, in the scattering data, one

can use `(k) instead of �(k) and one can also use H� instead of H+: The method given here and the method

of Ref. 1 have some similarities and di�erences. The method used here holds whenever Q 2 L1
1(R) whereas

in Ref. 1, for technical reasons, we needed Q 2 L1
1+�(R) for some � 2 (0; 1]. In both methods a singular

integral equation is formulated and from its solution H(x) is recovered; however, in the present paper we

exploit the large-k behavior of the reduced scattering coe�cients, thus avoiding complications encountered

in Ref. 1 as k ! 0: A crucial result here is Proposition 2.1, which strengthens the result of Theorem 2.4 in

Ref. 1. From the solution at k = 0 of the singular integral equation one �nds H(x) as the x-derivative of

the solution y(x) of a separable di�erential equation under the initial condition y(0) = 0: Furthermore, when

the reduced re
ection coe�cient �(k) is an almost periodic function, the singular integral equation of the

present paper becomes trivial, and so does the computation of H(x); in Ref. 1 even this relatively simple

case required extensive calculations.

When H(x) and H0(x) have no discontinuities, the large-k asymptotics of the reduced scattering coe�-

cients de�ned in (1.2)-(1.3) are known to be of the form � (k)�1 = O(1=k); �(k) = O(1=k); and `(k) = O(1=k):

It is also known that each discontinuity of H(x) contributes to the almost periodic part of the O(1) terms

in these asymptotics. We refer the reader to Refs. 1, 4, 11-13 for details. In this paper we show that the

discontinuities in H0(x)=H(x) are responsible for some of the O(1=k) terms in these asymptotics; in fact, in

this paper we develop an algorithm to recover the jumps in H0(x)=H(x) from the large-k asymptotics of a

reduced re
ection coe�cient.
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This paper is organized as follows. In Section 2 we study the large-k asymptotics of the reduced

scattering coe�cients. In Section 3 we study the large-k asymptotics of certain wavefunctions de�ned in

(3.1)-(3.2). In Section 4 we present a factorization formula expressing the reduced scattering matrix as a

matrix product of scattering matrices corresponding to potentials supported on a �nite interval or on a half

line and those corresponding to discontinuities inH(x) andH 0(x)=H(x): In Section 5 we present an algorithm

to recover the discontinuities in H(x) and H0(x)=H(x) from the large-k asymptotics of the scattering data,

thus generalizing the work of Ref. 13 regarding the discontinuities in H(x): The results in Sections 2 and 3

are used in Section 6 in order to convert a key Riemann-Hilbert problem into a pair of uncoupled singular

integral equations; in this section we also establish the unique solvability of these integral equations and

show how to recover H(x) from the solution of either singular integral equation. In Section 7 we show that

each singular equation can be converted into a Marchenko integral equation that is uniquely solvable, and

we describe the recovery of H(x) from the solution of a Marchenko equation. Hence, the inverse problem is

solved by recovering H(x) either by the method of Section 6 or by that of Section 7. In Section 8 we present

some examples illustrating the recovery of H(x) using the solution of a singular integral equation and using

the solution of a Marchenko equation; we also illustrate the algorithm of recovery of the discontinuities in

H0(x)=H(x):

2. SCATTERING COEFFICIENTS

In this section we analyze the large-k asymptotics of the reduced scattering coe�cients de�ned in (1.2)-

(1.3). Under the Liouville transformation

(2.1) y = y(x) =

Z x

0

dsH(s);  (k; x) =
1p
H(x)

�(k; y);

the generalized Schr�odinger equation (1.1) is transformed into

(2.2)
d2�(k; y)

dy2
+ k2�(k; y) = V (y)�(k; y);

where

(2.3) V (y(x)) =
H00(x)

2H(x)3
� 3

4

H0(x)2

H(x)4
+

Q(x)

H(x)2
:

Since H(x) is assumed to have jump discontinuities at xj for j = 1; � � � ; N; the quantity V (y) is unde�ned
at yj = y(xj): However, V (y) is well de�ned in each of the intervals (yj ; yj+1) for j = 0; � � � ; N ; thus,

the Liouville transformation can be used on each interval (xj; xj+1) although it cannot be used on R:
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Since H(x) is strictly positive with positive limits as x ! �1; it follows that y0 = y(x0) = �1 and

yN+1 = y(xN+1) = +1: The constants qj de�ned by

(2.4) qj =
H(xj � 0)

H(xj + 0)

correspond to the relative jumps in the wavespeed at the interfaces xj, and yj correspond to the times

required for the wave to propagate from the �xed location x = 0 to the interfaces xj for j = 1; � � � ; N:

Let Vj;j+1(y) be the potential de�ned by

(2.5) Vj;j+1(y) =

8<
:
V (y); y 2 (yj ; yj+1);

0; elsewhere;

where V (y) is the quantity in (2.3). From (H4) it follows that Vj;j+1 2 L1
1(R) for j = 0; � � � ; N: Let

Yl;j;j+1(k; y) and Yr;j;j+1(k; y) denote the Faddeev functions1 from the left and from the right, respectively,

associated with the potential Vj;j+1(y): We have1

(2.6) Yl;j;j+1(k; y) =

8>><
>>:

1

tj;j+1(k)

�
1 + lj;j+1(k)e

�2iky
�
; y � yj ; j = 1; � � � ; N; k 2 C+;

1

t0;1(k)

�
1 + l0;1(k)e

�2iky
�
+ o(1); y !�1; j = 0; k 2 R;

(2.7) Yr;j;j+1(k; y) =

8>><
>>:

1

tj;j+1(k)

�
1 + rj;j+1(k)e

2iky
�
; y � yj+1; j = 0; � � � ; N � 1; k 2 C+;

1

tN;N+1(k)

�
1 + rN;N+1(k)e

2iky
�
+ o(1); y ! +1; j = N; k 2 R;

where tj;j+1(k); rj;j+1(k); and lj;j+1(k) denote the transmission coe�cient and the re
ection coe�cients

from the right and from the left, respectively, for the potential Vj;j+1(y): Since Vj;j+1 2 L1
1(R); it follows

that for each �xed y 2 R we have

(2.8) Yl;j;j+1(k; y) = 1 + O(1=k); Y 0l;j;j+1(k; y) = o(1); k!1 in C+;

(2.9) Yr;j;j+1(k; y) = 1 + O(1=k); Y 0r;j;j+1(k; y) = o(1); k !1 in C+:

Using (2.1) it can be shown that the functions de�ned by

(2.10) �j;j+1(k; x) =
1p
H(x)

eikyYl;j;j+1(k; y); �j;j+1(k; x) =
1p
H(x)

e�ikyYr;j;j+1(k; y)

are solutions of (1.1). Let us introduce the matrices

(2.11) �j;j+1(k; x) =

"
�j;j+1(k; x) �j;j+1(k; x)

�0j;j+1(k; x) �0j;j+1(k; x)

#
; j = 0; � � � ; N;
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(2.12) G(k) =
NY
n=1

�n�1;n(k; xn � 0)�1�n;n+1(k; xn + 0):

It was shown in Ref. 1 that

(2.13)
1

� (k)
=

1

t0;1(k)
[ 1 0 ]G(k)

�
1

0

�
=

1

tN;N+1(k)
[ 0 1 ]G(k)�1

�
0

1

�
;

(2.14)
`(k)

� (k)
=

�
l0;1(k)

t0;1(k)
1

�
G(k)

�
1

0

�
;

(2.15)
�(k)

� (k)
=

�
1

rN;N+1(k)

tN;N+1(k)

�
G(k)�1

�
0

1

�
:

Moreover,

det �n;n+1(k; x) = � 2ik

tn;n+1(k)
; det G(k) = t0;1(k)

tN;N+1(k)
:

Let

(2.16) �n =
1

2

�p
qn +

1p
qn

�
; �n =

1

2

�p
qn � 1p

qn

�
;

(2.17) E(k; xn) =

"
�n �ne

�2ikyn

�ne
2ikyn �n

#
;

with qn as in (2.4); let us also de�ne a(k) and b(k) by

(2.18)

"
a(k) b(k)

b(�k) a(�k)

#
=

NY
n=1

E(k; xn):

Let APW (almost periodic functions with Wiener norm) stand for the algebra of all complex-valued

functions f(k) on R which are of the form f(k) =
P1

j=�1 fje
ik�j ; where fj 2 C and �j 2 R for all j andP

j
jfjj < +1: It is already known1 that the functions a(k); b(k);

1

a(k)
; and

b(k)

a(k)
belong to APW : In the

next proposition we obtain the large-k asymptotics of the reduced scattering coe�cients � (k); �(k); and `(k):

Proposition 2.1 Under assumptions (H1)-(H5) we have

(2.19) � (k) =
1

a(k)
+O(1=k); k!1 in C+;

(2.20) �(k) = � b(k)
a(k)

+O(1=k); k !�1;
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(2.21) `(k) =
b(�k)
a(k)

+O(1=k); k! �1;

where a(k) and b(k) are the quantities de�ned in (2.18).

PROOF: Using (2.8)-(2.10) we obtain

(2.22)

�n;n+1(k; xn+1 � 0)�1�n+1;n+2(k; xn+1 + 0)

=

"
�n+1(1 +O(1=k)) �n+1 e

�2ikyn+1(1 + O(1=k))

�n+1 e
2ikyn+1 (1 +O(1=k)) �n+1(1 +O(1=k))

#
; k!1 in C+;

where �n and �n are the constants de�ned in (2.16). Furthermore, using (2.13)-(2.15) and the fact14 that

tj;j+1(k) = 1 +O(1=k); k !1 in C+;

rj;j+1(k) = O(1=k); lj;j+1(k) = O(1=k); k!�1;

we obtain (2.19)-(2.21).

Proposition 2.1 is an improvement over Theorem 2.4 in Ref. 13, where the error terms in (2.19)-(2.21)

were only shown to be o(1):We refer the reader to Refs. 1 and 13 for various other properties of the reduced

scattering coe�cients.

3. ESTIMATES ON WAVEFUNCTIONS

In this section we analyze the large-k behavior of the scattering solutions of (2.2). As in (5.1)-(5.2) of

Ref. 1, let us de�ne the Faddeev functions Zl(k; y) and Zr(k; y); from the left and from the right, respectively,

associated with (2.2):

(3.1) Zl(k; y) =

s
H(x)

H+

e�iky�ikA+fl(k; x);

(3.2) Zr(k; y) =

s
H(x)

H�
eiky�ikA�fr(k; x);

where y is the quantity de�ned in (2.1) and A� are the constants in (1.4). Note that eikyZl(k; y) and

e�ikyZr(k; y) are the Jost solutions from the left and from the right, respectively, of (2.2). In this section

we analyze the large-k asymptotics of Zl(k; y) and Zr(k; y):

The next proposition shows that, for each �xed y 2 R n fy1; � � � ; yNg; the Faddeev functions can be

written as the sum of an almost periodic function and a continuous function, the latter vanishing as k!1
in C+:
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Proposition 3.1 For each �xed y 2 R n fy1; � � � ; yNg; we have

(3.3) Zl(k; y) = Jl(k; y) +O(1=k); Zr(k; y) = Jr(k; y) +O(1=k); k !1 in C+;

where

(3.4) Jl(k; y) = [ 1 e�2iky ]

0
@ NY
n=j+1

E(k; xn)

1
A� 1

0

�
; y 2 (yj ; yj+1); j = 0; � � � ; N � 1;

(3.5) Jl(k; y) = 1; y 2 (yN ;+1);

(3.6) Jr(k; y) = 1; y 2 (�1; y1);

(3.7) Jr(k; y) = [ e2iky �1 ]
0
@ 1Y

n=j

E(k; xn)

1
A� 0

�1
�
; y 2 (yj ; yj+1); j = 1; � � � ; N;

with E(k; xn) de�ned in (2.17). The product notation in (3.7) means that n decreases from j to 1:

PROOF: When y 2 (yN ;+1); from (3.13), (3.15), (3.21) of Ref. 1 and (2.10) and (3.1), we have

(3.8) Zl(k; y) = Yl;N;N+1(k; y); y 2 (yN ;+1);

and hence Zl(k; y) = 1 + O(1=k) as k !1 in C+: Thus, we have (3.3) with Jl(k; y) as in (3.5). Similarly,

from (3.13), (3.15), (3.22) of Ref. 1 and (2.10) and (3.2), we get

(3.9) Zr(k; y) = Yr;0;1(k; y); y 2 (�1; y1);

and hence Zr(k; y) = 1 +O(1=k) as k !1 in C+: Thus, we have (3.3) with Jr(k; y) as in (3.6).

When y 2 (yj ; yj+1) with 0 � j � N � 1; from (3.25) of Ref. 1 and (3.1) we see that

(3.10)

Zl(k; y) = [ 1 0 ]
p
H(x) e�iky�j;j+1(k; x)

0
@N�1Y

n=j

�n;n+1(k; xn+1 � 0)�1�n+1;n+2(k; xn+1 + 0)

1
A� 1

0

�
;

where �j;j+1(k; x) is the matrix de�ned in (2.11). From (2.8)-(2.10) we have

(3.11) [ 1 0 ]
p
H(x) e�iky�j;j+1(k; x) = [ 1 +O(1=k) e�2iky(1 +O(1=k)) ] :

Hence, using (2.22) and (3.11) in (3.10) we obtain

(3.12) Zl(k; y) = Jl(k; y) [1 +O(1=k)]; k!1 in C+;
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with Jl(k; y) as in (3.4). Similarly, when y 2 (yj ; yj+1) with 1 � j � N; from (3.26) of Ref. 1 and (3.2) we

see that

(3.13) Zr(k; y) = [ 1 0 ]
p
H(x) eiky�j;j+1(k; x)

0
@ 1Y
n=j

�n;n+1(k; xn + 0)�1�n+1;n+2(k; xn � 0)

1
A� 0

1

�
:

From (2.8)-(2.10) we have

(3.14) [ 1 0 ]
p
H(x) eiky�j;j+1(k; x) = [ e2iky(1 + O(1=k)) 1 +O(1=k) ] :

Using (2.22) and (3.14) in (3.13), we obtain

(3.15) Zr(k; y) = Jr(k; y) [1 + O(1=k)]; k !1 in C+;

with Jr(k; y) as in (3.7). Note that for each �xed y 2 R n fy1; � � � ; yNg the functions Jl(k; y) and Jr(k; y)
are uniformly bounded in C+; and hence we see that (3.12) and (3.15) imply (3.3).

Recall that the Hardy spaces H
p

�(R) are de�ned as the spaces of all functions f(k) that are analytic in

k 2 C� and satisfy sup�>0

R1
�1 dk jf(k � i�)jp < +1:

Theorem 3.2 For each �xed y 2 R n fy1; � � � ; yNg; the functions Zl(k; y) � Jl(k; y) and Zr(k; y) � Jr(k; y)

belong to the Hardy space H2
+(R):

PROOF: It is proved in Theorem 2.1 of Ref. 1 that, for each �xed x 2 R n fx1; � � � ; xNg; fl(k; x) and
fr(k; x) are continuous functions of k in C+ and analytic in C+; hence, for each �xed y 2 R n fy1; � � � ; yNg;
the Faddeev functions Zl(k; y) and Zr(k; y) are continuous in C+ and analytic in C+: From (3.4)-(3.7) we

see that Jl(k; y) and Jr(k; y) are continuous in C+ and analytic in C+: Hence, by Proposition 3.1 we can

conclude that Zl(k; y)� Jl(k; y) and Zr(k; y) � Jr(k; y) belong to the Hardy space H2
+(R):

Note that we also can conclude the analyticity in C+ and continuity in C+ of Zl(k; y) and Zr(k; y)

from (3.10) and (3.13), respectively, because the matrices there have these properties. At �rst the inverse

matrices in (3.10) and (3.13) seem to have a (1=k) singularity at k = 0 in the exceptional case; however, if any

Vn;n+1(y) are exceptional potentials, we can divide each of those intervals (yn; yn+1) into two subintervals

such that the fragments on the two subintervals are generic;2 hence even in the exceptional case, from (3.10)

and (3.13) we can conclude that Zl(k; y) and Zr(k; y) analytic in C
+ and continuous in C+:

Note that the matrix product E(k; xj+1) � � �E(k; xN) in (3.4) can be explicitly evaluated in analogy to

(2.28) of Ref. 13. Let us write

NY
n=j+1

E(k; xn) =

"
Aj(k) Bj(k)

Bj(�k) Aj(�k)

#
;

10



where Aj(k) and Bj(k) will be explicitly evaluated. Thus, we can write (3.4)-(3.5) as

(3.16) Jl(k; y) = [Aj(k) + e�2ikyBj(�k)]; y 2 (yj ; yj+1)

with AN (k) = 1 and BN (k) = 0: Using induction, we can show that Aj(k) and e�2ikyBj(�k) both are

exponential polynomials having at most 2N�j terms. All the coe�cients in the exponential polynomials are

real constants and all the exponentials are bounded by 1 in absolute value in C+: For future reference, we

list Aj(k) and Bj(k) for j = N � 1; N � 2; N � 3:

If j = N � 1 :

AN�1(k) = �N ; e2ikyNBN�1(k) = �N :

If j = N � 2 :

AN�2(k) = �N�1�N + �N�1�N e
2ik(yN�yN�1);

e2ikyNBN�2(k) = �N�1�N + �N�1�Ne
2ik(yN�yN�1):

If j = N � 3 :

AN�3(k) =�N�2�N�1�N + �N�2�N�1�Ne
2ik(yN�1�yN�2)

+ �N�2�N�1�N e
2ik(yN�yN�1) + �N�2�N�1�N e

2ik(yN�yN�2);

e2ikyNBN�3(k) =�N�2�N�1�N + �N�2�N�1�N e
2ik(yN�1�yN�2)

+ �N�2�N�1�Ne
2ik(yN�yN�1) + �N�2�N�1�Ne

2ik(yN�yN�2):

We see that, for j � N � 1; the term e2ikyNBj(k) is obtained from Aj(k) by interchanging �N with �N :

In a similar manner, using

E(k; xj)
�1 � � �E(k; x1)�1 = [E(k; x1) � � �E(k; xj)]�1

;

we can explicitly evaluate the matrix product E(k; x1) � � �E(k; xj) appearing in (3.7) in analogy to (2.28) of

Ref. 13. Let us write
jY

n=1

E(k; xn) =

"
Cj(k) Dj(k)

Dj(�k) Cj(�k)

#
;

where Cj(k) and Dj(k) will be explicitly evaluated. Thus, we can write (3.6)-(3.7) as

(3.17) Jr(k; y) = [Cj(k) � e2ikyDj(�k)]; y 2 (yj ; yj+1);

with C0(k) = 1 and D0(k) = 0: Using induction, we can show that Cj(k) and e2ikyDj(�k) both are

exponential polynomials having at most 2j terms. All the coe�cients in the exponential polynomials are

11



real constants and all the exponentials are bounded by 1 in absolute value in C+: For future reference, we

list Cj(k) and Dj(k) for j = 1; 2; 3:

If j = 1 :

C1(k) = �1; e2iky1D1(k) = �1:

If j = 2 :

C2(k) = �1�2 + �1�2e
2ik(y2�y1); e2iky2D2(k) = �1�2 + �1�2e

2ik(y2�y1):

If j = 3 :

C3(k) = �1�2�3 + �1�2�3e
2ik(y2�y1) + �1�2�3e

2ik(y3�y2) + �1�2�3e
2ik(y3�y1);

e2iky3D3(k) = �1�2�3 + �1�2�3e
2ik(y2�y1) + �1�2�3e

2ik(y3�y2) + �1�2�3e
2ik(y3�y1):

We see that, for j � 1; the term e2ikyjDj(k) is obtained from Cj(k) by interchanging �j with �j:

4. FACTORIZATION

In this section we generalize the factorization formula of Ref. 15 and show that the reduced scattering

matrix corresponding to (1.1) can be expressed in terms of the scattering matrices corresponding to the

potentials Vj;j+1(y) de�ned in (2.5) and certain matrices associated with the discontinuities of H(x) and

H0(x)=H(x): Using the scattering coe�cients introduced in (2.6)-(2.7), let us de�ne

(4.1) �j;j+1(k) =

2
664

1

tj;j+1(k)
�rj;j+1(k)

tj;j+1(k)

lj;j+1(k)

tj;j+1(k)

1

tj;j+1(�k)

3
775 ; j = 0; 1; � � � ; N;

(4.2) �(k) =

2
664

1

� (k)
��(k)
� (k)

`(k)

� (k)

1

� (�k)

3
775 ;

(4.3) Fj(k) =

2
64 �j +

�j

2ik

�
�j +

�j

2ik

�
e�2ikyj

�
�j �

�j

2ik

�
e2ikyj �j �

�j

2ik

3
75 ; j = 1; � � � ; N;

where �j and �j are the constants de�ned in (2.16) and

(4.4) �j =
1

2
p
H(xj � 0)H(xj + 0)

�
H0(xj � 0)

H(xj � 0)
� H0(xj + 0)

H(xj + 0)

�
:

12



Note that �j = 0 if and only if H0(x)=H(x) is continuous at xj: Following Sabatier's terminology4�7 we can

refer to Fj(k) as a \hard scatterer" and �j;j+1(k) as a \soft scatterer." The following theorem shows how

the matrices de�ned in (4.1)-(4.3) are related to one other.

Theorem 4.1 We have

(4.5) � = �0;1F1�1;2F2�2;3 � � �FN �N;N+1;

where �; �j;j+1; and Fj are the matrices de�ned in (4.2), (4.1), and (4.3), respectively.

PROOF: Note that we have �j;j+1 = GjDj ; where we have de�ned

Gj =

2
664

1

tj;j+1(k)
0

lj;j+1(k)

tj;j+1(k)
1

3
775 ; Dj =

"
1 �rj;j+1(k)

0 tj;j+1(k)

#
:

Using the displayed equation in Ref. 1 following (14.4), we can relate �(k) and G(k) de�ned in (2.12) as

� = G0GDN : Inserting the identity matrices GjG
�1
j

and DjD
�1
j

in the appropriate places in (2.12), we then

obtain

(4.6) � = G0D0

NY
n=1

�
D�1
n�1�n�1;n(k; xn � 0)�1�n;n+1(k; xn + 0)G�1

n

�
[GnDn] :

Using (2.11) it can be checked that

(4.7) D�1
n�1�n�1;n(k; xn � 0)�1�n;n+1(k; xn + 0)G�1

n = Fn;

where Fn are the matrices de�ned in (4.3). Thus, using (4.7) in (4.6) we get (4.5).

It is already known13 that the function H(x)

H(x) =
hj;j+1

fl(0; x)2
; x 2 (xj; xj+1); j = 0; � � � ; N;

hN;N+1 = H+; hj�1;j = qj hj;j+1; j = 0; � � � ; N;

corresponds to the scattering data Q(x); �(k) = �b(k)=a(k); and � (k) = 1=a(k); as seen from Proposition

2.1, the scattering coe�cients in this case coincide with their asymptotic expressions as k ! �1: In this

case, the matrix factorization given in (4.5) reduces to the factorization in (2.18). This is because in this

case �j given in (4.4) vanishes and hence the matrix Fj(k) de�ned in (4.3) becomes equal to E(k; xj) de�ned

in (2.17); in fact, Fj(k) = E(k; xj) if and only if �j = 0: Furthermore, in this case Vj;j+1(y) = 0 and hence

13



�j;j+1(k) = I; in fact, �j;j+1(k) = I if and only if Vj;j+1(y) = 0: In this case, we also have Zl(k; y) = Jl(k; y)

and Zr(k; y) = Jr(k; y):

Now let us ask the following question. If we choose Vj;j+1(y) = 0 for j = 0; 1; � � � ; N; but still allow
�j 6= 0; what is the corresponding H(x)? From the factorization formula (4.5), by letting �j;j+1(k) = I; we

can explicitly evaluate the corresponding scattering matrix. In this case, the corresponding H(x) is given by

(4.8)
p
H(x) =

1

aj fl(0; x) + bj fr(0; x)
; x 2 (xj; xj+1); j = 0; � � � ; N;

(4.9) aN =
1p
H+

; bN = 0;

and aj; bj for j = 0; 1; � � �N � 1; will be determined recursively by using the jumps in H(x) and H 0(x)=H(x)

according to (2.4) and (4.4), respectively. Using (4.8) in (2.4) we obtain

(4.10)
aj fl(0; xj) + bj fr(0; xj)

aj�1 fl(0; xj) + bj�1 fr(0; xj)
=
p
qj; j = 1; � � � ; N:

From (4.8) we have

(4.11)
H0(x)

H(x)
= �2aj f

0
l
(0; x) + bj f

0
r(0; x)

aj fl(0; x) + bj fr(0; x)
;

and hence from (4.4) we get

(4.12)

aj�1 f
0
l (0; xj) + bj�1 f

0
r(0; xj)

aj�1 fl(0; xj) + bj�1 fr(0; xj)
� aj f

0
l (0; xj) + bj f

0
r(0; xj)

aj fl(0; xj) + bj fr(0; xj)
= ��j

q
H(xj � 0)H(xj + 0); j = 1; � � � ; N:

Solving the linear system (4.10) and (4.12) with unknowns aj�1 and bj�1 in terms of aj and bj and known

quantities and using (4.9), we obtain

(4.13) aj�1 =
ajp
qj

+
�j fr(0; xj)

p
H(xj + 0)

[fl(0; x); fr(0; x)]
; j = 1; � � � ; N ; aN =

1p
H+

;

(4.14) bj�1 =
bjp
qj
� �j fl(0; xj)

p
H(xj + 0)

[fl(0; x); fr(0; x)]
; j = 1; � � � ; N ; bN = 0;

where [fl(0; x); fr(0; x)] = fl(0; x) f
0
r(0; x)�f 0l (0; x) fr(0; x) is the Wronskian, which is a constant completely

determined by Q(x) alone. We can also obtain the Jost solutions for (1.1) explicitly. In this case, since

Vj;j+1(y) = 0 we have Yl;j;j+1(k; y) = 1 and Yr;j;j+1(k; y) = 1; thus the matrix �j;j+1(k; x) de�ned in (2.11)

is determined by using (2.10). Hence, using (3.8) and (3.10) the Faddeev function Zl(k; y) is determined,

and using (3.9) and (3.13) the Faddeev function Zr(k; y) is determined. Then we obtain fl(k; x) and fr(k; x)

as in (3.1)-(3.2).

14



Note that in the above procedure, in case Q(x) is an exceptional potential, i.e. if fl(0; x) and fr(0; x)

are linearly dependent, in (4.8)-(4.14) we need to replace fr(0; x) by a zero-energy solution of (1.5) lin-

early independent of fl(0; x) such as  (x) = fl(0; x)
R x
0
dy=fl(0; y)

2; with this choice of  (x); we have

[fl(0; x); (x)] = 1: In the exceptional case, it turns out that although di�erent choices for  (x) lead to

di�erent coe�cients aj and bj ; the resulting H(x) is independent of the choice of  (x): Also note that, if

N = 1 it is necessary that the generic case occurs; however, for N � 2 the exceptional case may occur.

5. AN ALGORITHM TO RECOVER JUMPS IN H0(x)=H(x)

In Ref. 13 we described an algorithm to recover N; yj ; and qj associated with the discontinuities of

H(x) in terms of the leading asymptotic behavior of the scattering data as k! �1: In this section we will

analyze the O(1=k) terms in the scattering data and will describe an algorithm to recover the constants �j

associated with the discontinuities of H0(x)=H(x) from the almost periodic part of the O(1=k) terms in the

scattering data. The algorithm of Ref. 13 must be applied �rst to recover N; yj ; and qj before the algorithm

to recover �j is used. In order to use the algorithm, one also needs to know the value of wN;N+1; where we

have de�ned

wj;j+1 =

Z yj+1

yj

dz Vj;j+1(z);

with Vj;j+1(y) being the quantity de�ned in (2.5). The constant wN;N+1 can be obtained from a reduced

re
ection coe�cient in various ways without solving the entire inverse problem. For example, as we will see

in Section 7 we have wN;N+1 = 2hl(0+; yN ); where hl(t; y) is the solution of the Marchenko equation (7.7)

which is uniquely solvable; hence the solution of (7.7) at the �xed point yN gives us wN;N+1:

Since Vj;j+1 2 L1
1(R); the scattering coe�cients associated with Vj;j+1(y) satisfy

14

1

tj;j+1(k)
= 1 +

wj;j+1

2ik
+ o(1=k); k !�1;

rj;j+1(k)

tj;j+1(k)
= o(1=k);

lj;j+1(k)

tj;j+1(k)
= o(1=k); k!�1;

and hence from (4.1) we have

�j;j+1(k) = I+
wj;j+1

2ik
J+ o(1=k);

where we have de�ned J = diag (1;�1): Let us write (4.3) in the form

Fj = Ej +
�j

2ik
Uj ;

where Ej is the matrix E(k; xj) de�ned in (2.17) and

Uj =

�
1 e�2ikyj

�e2ikyj �1
�
:

15



Thus, as k!�1; from (4.5) we obtain � = E1E2 � � �EN + O(1=k) and

(5.1)
2ik [��E1E2 � � �EN ] =w0;1JE1E2 � � �EN +w1;2E1 JE2 � � �EN + � � �+wN;N+1E1E2 � � �ENJ

+ �1U1E2 � � �EN + �2E1U2E3 � � �EN + � � �+ �NE1E2 � � �EN�1UN + o(1):

Thus, from (2.18) and (4.2) we see that (5.1) allows us to express

(5.2) 2ik

�
1

� (k)
� a(k)

�
= �(k) + o(1); k !�1;

(5.3) �2ik
�
�(k)

� (k)
+ b(k)

�
= 
(k) + o(1); k!�1;

where �(k) and 
(k) are linear combinations of w0;1; � � � ; wN;N+1 and �1; � � � ; �N with almost periodic

polynomials as coe�cients.

Let us now explain how to compute �N : When N = 1 we have

(5.4) �(k) = (w0;1 +w1;2)�1 + �1 � �1;

(5.5) e2iky1
(k) = (w0;1 �w1;2)�1 + �1 � 
1:

Multiplying (5.4) by �1 and (5.5) by �1 and subtracting the resulting equations, we obtain

(5.6) �1 =
1

�1 � �1
[2w1;2�1�1 + �1
1 � �1�1] :

When N = 2 we have

(5.7) �(k) = �1 + e2ik(y2�y1)�2;

(5.8) e2iky2
(k) = 
1 + e2ik(y2�y1)
2;

where we have de�ned

(5.9) �1 = (w0;1 + w1;2 +w2;3)�1�2 + �1�2 + �2�1;

(5.10) 
1 = (w0;1 + w1;2 �w2;3)�1�2 + �1�2 + �2�1;

�2 = (w0;1 �w1;2 + w2;3)�1�2 + �1�2 � �2�1;


2 = (w0;1 � w1;2 �w2;3)�1�2 + �1�2 � �2�1:
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Multiplying (5.9) by �2 and (5.10) by �2 and subtracting the resulting equations, we obtain

�1(�2 � �2)�2 = �2w2;3�1�2�2 + �2�1 � �2
1;

and hence

�2 =
1

�2 � �2

�
2w2;3�2�2 +

�2
1 � �2�1

�1

�
:

As can be seen from (5.4), (5.5), (5.7), and (5.8) and in general be proved by induction, the quantity

e2ikyN
(k) is obtained from �(k) by interchanging �N with �N and by changing the sign of wN;N+1: It can

also be shown that �(k) and e2ikyN
(k) both are exponential polynomials having at most 2N�1 nonzero

terms. To compute �N for arbitrary N; we let �1 and 
1 denote the constant terms in the almost periodic

polynomials �(k) and e2ikyN
(k); respectively. From (5.1) we have

�1 =

0
@ NX

j=0

wj;j+1 +

NX
j=1

�j

�j

1
A NY

n=1

�n;


1 =

0
@�2wN;N+1�N + �N

NX
j=0

wj;j+1 + �N

N�1X
j=1

�j

�j
+ �N

1
AN�1Y

n=1

�n:

Using

�N�1 � �N
1 = 2wN;N+1�N

NY
j=1

�j + �N (�N � �N )

N�1Y
j=1

�j;

we get

�N =
1

�N � �N

"
2wN;N+1�N�N +

�N
1 � �N�1QN�1

j=1 �j

#
:

After obtaining �N ; we can recover �N�1 as follows. The solution of the Marchenko equation in the

interval (yN ;+1) yields VN;N+1(y) by (7.9); thus we also have the matrix �N;N+1(k) de�ned in (4.1) because

it is determined by the scattering matrix of the potential VN;N+1(y): Note that from the unitarity of the

scattering matrix corresponding to the potential Vj;j+1(y); we have det �j;j+1(k) = 1: Using (2.16) it can be

shown that detFj(k) = 1: Thus, we can easily form the matrix ���1
N;N+1F

�1
N

and recover �N�1 from this

matrix as we have recovered �N from the matrix �: Note that the reduced re
ection coe�cient from the

right associated with the matrix ���1
N;N+1F

�1
N

is given by

(5.11) �[N�1](k) = �
[ 1 0 ] ���1

N;N+1F
�1
N

�
0

1

�

[ 1 0 ] ���1
N;N+1F

�1
N

�
1

0

� :

Once �N�1 is obtained, we recursively get the remaining �N�2; � � � ; �1:
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6. A SINGULAR INTEGRAL EQUATION

In this section, when there are no bound states, we formulate the singular integral equation (6.7) whose

kernel and nonhomogeneous term are determined by the reduced re
ection coe�cient �(k):We also show that

(6.7) is uniquely solvable and its solution leads to the recovery ofH(x): In a similar manner, we formulate the

singular integral equation (6.10) in terms of `(k) and prove its unique solvability and show that its solution

also leads to the recovery of H(x):

For each �xed y 2 R n fy1; � � � ; yNg; from (5.11) of Ref. 1 we have

(6.1)

"
Zl(�k; y)
Zr(�k; y)

#
=

"
� (k) ��(k)e2iky

�`(k)e�2iky � (k)

#"
Zr(k; y)

Zl(k; y)

#
; k 2 R:

Using (2.19)-(2.21) and (3.3) we obtain

(6.2)

"
Jl(�k; y)
Jr(�k; y)

#
=

2
664

1

a(k)

b(k)

a(k)
e2iky

�b(�k)
a(k)

e�2iky 1

a(k)

3
775
"
Jr(k; y)

Jl(k; y)

#
; k 2 R:

Subtracting (6.2) from (6.1), we obtain

(6.3)

Zl(�k; y) � Jl(�k; y) =
�
� (k) � 1

a(k)

�
Zr(k; y) +

1

a(k)
[Zr(k; y) � Jr(k; y)]

� �(k)e2iky [Zl(k; y)� Jl(k; y)] �
�
�(k) +

b(k)

a(k)

�
e2ikyJl(k; y);

(6.4)

Zr(�k; y) � Jr(�k; y) =
�
� (k) � 1

a(k)

�
Zl(k; y) +

1

a(k)
[Zl(k; y) � Jl(k; y)]

� `(k)e�2iky [Zr(k; y) � Jr(k; y)]�
�
`(k) � b(�k)

a(k)

�
e�2ikyJr(k; y):

Let us analyze (6.3). Using Propositions 2.1 and 3.1 and Theorem 3.2, for each �xed y; in the absence

of bound states, of the four terms on the right hand side, we see that the �rst two belong to the Hardy space

H2
+(R) and the last two belong to L2(R); the term on the left hand side belongs to H2

�(R): Let �� denote

the orthogonal projection operators from L2(R) onto H2
�(R); i.e.

(��f)(k) =
�1
2�i

Z 1

�1

ds

s� k � i0
f(s):

Let us de�ne

(6.5) Xl(k; y) = Zl(�k; y) � Jl(�k; y); Xr(k; y) = Zr(�k; y) � Jr(�k; y):
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Applying the projection �� on both sides of (6.3) we obtain

(6.6) Xl(�; y) + ��

�
�e2i(�)yJXl(�; y)

�
= ���

��
� +

b

a

�
e2i(�)yJl(�; y)

�
;

where (J f)(k) = f(�k): Note that (6.6) is a singular integral equation and can be written as

(6.7) Xl(k; y) + (OlXl)(k; y) = Pl(k; y); k 2 R;

where we have de�ned

(6.8) (OlX)(k) =
1

2�i

Z 1

�1

ds

s + k � i0
�(�s)e�2isy X(s); k 2 R;

(6.9) Pl(k; y) =
1

2�i

Z 1

�1

ds

s � k + i0

�
�(s) +

b(s)

a(s)

�
e2isyJl(s; y):

Notice that the integral operator Ol de�ned in (6.8) is the same as the operator de�ned in (5.23) of Ref.

1. Comparing (5.21) of Ref. 1 and (6.7), we see that the kernels in these two integral equations di�er

by a minus sign. We also recall that the solution of the singular integral equation of Ref. 1 is given by

Xl(k; y) = [Zl(�k; y) � Zl(0; y)]=[k
p
H(x)]; where Zl(k; y) is the quantity de�ned in (3.1), whereas the

solution of the integral equation of this paper is given by (3.6). The factor 1=k in the expression for Xl(k; y)

used in Ref. 1 was introduced to ensure that Xl(k; y) belongs to an appropriate Hardy space, namely to

H
p

�(R) if p < 1=(1� �). However, this factor, while providing the desired behavior as k !1; introduced

some complications at k = 0:With the present de�nition (6.5) is is easy to show that Xl(k; y) is continuous

as k! 0 in C+ and Xl(k; y) = O(1=k) as k!1 in C+; without imposing any stronger condition on Q(x)

than Q 2 L1
1(R):

In a similar manner, in the absence of bound states, from (6.4) we obtain

Xr(�; y) + ��

�
`e�2i(�)yJXr(�; y)

�
= ���

��
` � J b

a

�
e�2i(�)yJr(�; y)

�
;

which is equivalent to

(6.10) Xr(k; y) + (OrXr)(k; y) = Pr(k; y); k 2 R;

where we have de�ned

(OrX)(k) =
1

2�i

Z 1

�1

ds

s + k � i0
`(�s)e2isyX(s); k 2 R;

(6.11) Pr(k; y) =
1

2�i

Z 1

�1

ds

s � k + i0

�
`(s) � b(�s)

a(s)

�
e�2isyJr(s; y):
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The solvability of (6.7) and (6.10) is analyzed in the next theorem.

Theorem 6.1 The singular integral equation (6.7) has a unique solution Xl 2 H2
�(R) for every nonhomo-

geneous term belonging to H2
�(R) and the solution can be obtained through iteration. Similarly, (6.10) has

a unique solution Xr 2 H2
�(R) for every nonhomogeneous term belonging to H2

�(R) and the solution can

be obtained through iteration.

PROOF: The operator Ol de�ned in (6.8) is a strict contraction on H2
�(R); which is proved in Theorem 7.1

of Ref. 1. Hence, (6.7) is uniquely solvable and its solution can be obtained through iteration. The proof

for (6.10) is given in the same manner.

Next we will recover H(x) from an appropriate set of scattering data. We will consider the generic and

exceptional cases separately because the scattering data in these two cases are not the same.

Let us �rst consider the generic case; in this case an appropriate set of scattering data consists of

f�(k); Q(x)g: We proceed as follows. Using the method of Ref. 16, from �(k) we get b(k) and a(k); then

from these we get N; fy1; � � � ; yNg; and fq1; � � � ; qNg by using the method of Ref. 13. Hence, we have �j and

�j for j = 1; � � � ; N: Since Q(x) is known, we also know the zero-energy Jost solutions of (1.5); these Jost

solution are identical to the zero-energy Jost solutions of (1.1). For example, we can get fl(0; x) by using

(5.25) of Ref. 1. Next we obtain Jl(k; y) using (3.4) and (3.5). Note that Jl(k; y) is uniquely constructed

from �(k) because we have already have yj ; �j; and �j for j = 1; � � � ; N: From (3.1) and the fact that

H(x) = dy=dx; we have

(6.12)
dy

Zl(0; y)2
= H+

dx

fl(0; x)2
:

Using Jl(k; y) and �(k) in (6.7) we obtain Xl(k; y) uniquely. Then using (6.5) we write (6.12) in the form

(6.13)
dy

[Xl(0; y) + Jl(0; y)]2
= H+

dx

fl(0; x)2
:

We get H+ from (6.13) as

(6.14) H+ =

R 0

�1
dy=[Xl(0; y) + Jl(0; y)]

2R 0
�1 dx=fl(0; x)2

:

Note that both integrals in (6.14) converge because17 in the generic case, fl(0; x)
2 grows like x2 as x!�1

and Zl(0; y)
2 grows like y2 as y !�1: Next, using a generalization of the method given in Theorem 5.1 of

Ref. 13, we obtain x1; � � � ; xN : This is done as follows. If N = 1 and y1 = 0; then x1 = 0: If N = 1 and

y1 6= 0; then we can proceed as in the case N � 2: If N � 2; then at least N � 1 of the points y1; � � � ; yN
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must be nonzero. If at least one of these is positive, we can pick the smallest of them, say yp: Then xp is

uniquely determined by

(6.15)

Z yp

0

dy

[Xl(0; y) + Jl(0; y)]2
= H+

Z xp

0

dx

fl(0; x)2
;

and we recursively determine xp+1; � � � ; xN using

Z yp+1

yp

dy

[Xl(0; y) + Jl(0; y)]2
= H+

Z xp+1

xp

dx

fl(0; x)2
:

Similarly, we can determine xp�1; xp�2; � � � ; x1: If all yj are nonpositive, then we pick the one with the

smallest absolute value that is nonzero (either yN or yN�1) and �nd the corresponding xj by using the

appropriate integral of the form (6.15). Having found each xj corresponding to yj ; we obtain y(x) by solving

the �rst order separable ordinary di�erential equation (6.13) with the initial condition y(xi) = yi: Having

y(x) in each interval (xj; xj+1); we get H(x) = dy=dx:

Now let us consider the exceptional case. In this case, we cannot use (6.14) to obtain H+: In fact, for

the unique recovery of H(x) we need to include H+ in the scattering data; otherwise, we get a one-parameter

family of H(x) corresponding to the set f�(k); Q(x)g: Thus, in the exceptional case, we recover H(x) from

the scattering data f�(k);H+; Q(x)g by the method outlined in the generic case.

Note that one can also recover H(x) from the solution of the singular integral equation (6.10) using the

scattering data f`(k); Q(x)g in the generic case or f`(k); Q(x);H+g in the exceptional case. One then needs

to solve the analog of (6.12) given by

(6.16)
dy

Zr(0; y)2
= H�

dx

fr(0; x)2
;

with the initial condition y = 0 when x = 0: Note that from (6.5) we have Zr(0; y) = Xr(0; y)+Jr (0; y); and

fr(0; x) is the zero-energy Jost solution from the right of (1.5) corresponding to Q(x): The potential Q(x)

uniquely determines14;18�20 fr(0; x); for example, by

(6.17) fr(0; x) = 1 +

Z x

�1

dz (x� z)Q(z) fr(k; z):

Once we obtain y as a function of x from (6.16), we recover H(x) as

(6.18) H(x) = H�
Zr(0; y)

2

fr(0; x)2
:

Note that in the exceptional case H� can be expressed in terms of H+ by using (5.29) of Ref. 1, namely

(6.19) H� = H+

1� �(0)

1 + �(0)

�
1 +R[0](0)

T [0](0)

�2

;

21



where R[0](k) and T [0](k) are the re
ection coe�cient from the right and the transmission coe�cient, respec-

tively, associated with (1.5). Hence, in the exceptional case, one can use H� in the scattering data instead

of H+ because of (6.19). Note also that in the exceptional case fl(0; x) and fr(0; x) are linearly dependent

and we have17

(6.20) fr(0; x) =
1 +R[0](0)

T [0](0)
fl(0; x):

Let f
[0]

l
(k; x) and f

[0]
r (k; x) denote the Jost solutions of (1.5) from the left and from the right, respectively.

In the generic case we have

(6.21) f [0]r (k; x) = [f
[0]

l
(k; x); f [0]r (k; x)] f

[0]

l
(k; x)

Z x

�1

dz

f
[0]

l
(k; z)2

;

where the Wronskian [f
[0]

l
(k; x); f

[0]
r (k; x)] is equal to

�2ik
T [0](k)

: Hence, in the generic case from (6.21), after

using the fact that f
[0]

l
(0; x) = fl(0; x) and f

[0]
r (0; x) = fr(0; x); we have

fr(0; x) =

�
lim
k!0

�2ik
T [0](k)

�
fl(0; x)

Z x

�1

dz

fl(0; z)2
:

7. MARCHENKO INTEGRAL EQUATION

In this section we show that the singular equation (6.7), with the use of Fourier transform, can be

transformed into the integral equation (7.7) generalizing the Marchenko integral equation14;18�20 for the

one-dimensional Schr�odinger equation. We establish the unique solvability of (7.7) and describe how its

solution leads to the recovery of H(x):

Using (2.20) and the continuity of �(k) and b(k)=a(k); we see that �+(b=a) 2 Lp(R) for any p 2 (1;+1].

We may then write

(7.1) �(k) = � b(k)
a(k)

+

Z 1

�1

dz eikz%(z);

where % 2 Lq(R) for q 2 [2;+1). The symmetry relation F (�k) = F (k) for k 2 R valid for �, a; and b,

implies that % is real valued. Since b=a belongs to APW ; we have b(k)=a(k) = �P
s

se

ikbs; where bs are

di�erent real numbers and 
s are real constants satisfying
P

s
j
sj < +1; thus we can write (7.1) in the

form

(7.2) �(k) =
X
s


se
ikbs +

Z 1

�1

dz eikz%(z):
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Let us write (7.2) in the concise form

(7.3) �(k) =

Z 1

�1

d�(t) eikt

for a suitable real measure � which is the sum of a discrete measure (with weights 
s at the points bs) and

an absolutely continuous measure (with Radon-Nikodym derivative %). Let F denote the Fourier transform

de�ned by

(7.4) (Fg)(t) = 1

2�

Z 1

�1

dk eikt g(k):

Since Xl(�; y) and Pl(�; y) appearing in (6.7) belong to H2
�(R); their Fourier transforms are supported on

the positive half line; hence, we have

(7.5) Xl(k; y) =

Z 1

0

dt e�ikt hl(t; y); Pl(k; y) =

Z 1

0

dt e�ikt hl0(t; y);

where hl; hl0 2 Lq(R+) for any q 2 [2;+1). Furthermore, as seen from (3.16), Jl(k; y) consists of a �nite

sum of exponential terms; thus we have Jl(k; y) =
P

s
!s(y)e

ik&s(y); where, in each interval (yj ; yj+1); !s(y)

is a constant and &s(y) is either a constant or an a�ne function of y: Thus, from (6.9) we obtain

hl0(t; y) = �
X
s

!s(y) %(�t � 2y � &s(y)); t � 0:

Now let us take the Fourier transform of both sides of (6.7). We have

(7.6) hl(�; y) + (FOlF�1hl)(�; y) = hl0(�; y):

Using (7.2) or (7.3) we can write (7.6) as the Marchenko-like integral equation

hl(t; y) +

Z �(t+2y)

�1

d�(z)hl(�z � t� 2y; y) = hl0(t; y); t � 0;

or equivalently

(7.7) hl(t; y) +
X

fs:bs<�t�2yg


s hl(�t � 2y � bs; y) +

Z 1

0

ds %(�s � t� 2y)hl(s; y) = hl0(t; y); t � 0:

We will call (7.7) a Marchenko equation. Note that when N = 0; i.e. when V (y) given in (2.3) is well de�ned

for all y 2 R; the integral equation (7.7) reduces to

(7.8) hl(t; y) +

Z 1

0

ds %(�s � t� 2y)hl(s; y) = �%(�t � 2y); t � 0;
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which is the Marchenko equation14;18�20 for the ordinary Schr�odinger equation. In a similar manner we can

also obtain a Marchenko integral equation associated with the re
ection coe�cient `(k); but we will not list

it here. The next theorem shows that (7.7) is uniquely solvable.

Theorem 7.1 Eq. (7.7) has a unique solution in L2(R+) for every nonhomogeneous term belonging to

L2(R+); and the solution can be obtained through iteration.

PROOF: The operator Ol in (7.6) is a strict contraction on H2
�(R) as indicated in the proof of Theorem

6.1. Considering L2(R+) and H2
�(R) as subspaces of L

2(R); we see that
p
2�F ; where F is the Fourier

transformation de�ned in (7.4), is a unitary operator on L2(R) mapping H2
�(R) onto L

2(R+): Thus, the

operator FOlF�1 acting from L2(R+) into L2(R+) is a strict contraction. Hence, (7.7) is uniquely solvable

and its solution can be obtained through iteration.

Let us now discuss the recovery of H(x) from the solution of the Marchenko equation (7.7). Once hl(t; y)

is obtained from (7.7), we can get Xl(k; y) from (7.5) and recover H(x) by repeating the procedure described

in Section 6.

Let us also describe another way to recover H(x): This is done in conjunction with the algorithm

described in Section 5, where N; yj ; qj; are recovered �rst; recall that these are the parameters associated

with the \hard scatterers." Next we recover the quantities associated with the \soft scatterers," namely we

obtain Vj;j+1(y): This is done recursively as follows. First we solve (7.7) only for y > yN and get hl(t; y) in

the interval (yN ;+1): Because of (3.8) we obtain21

(7.9) VN;N+1(y) = �2dhl(0+; y)
dy

; yN < y < +1;

(7.10) Zl(0; y) = 1 +

Z 1

y

dz (z � y)VN;N+1(z)Zl(0; z); yN < y < +1:

Then, as described in Section 5, we form the new reduced re
ection coe�cient �[N�1](k) de�ned in (5.11)

and obtain VN�1;N (y) from the solution of the Marchenko equation corresponding to �[N�1](k) by using the

analog of (7.9). Continuing in this manner, we then recover Vj;j+1(y) for j = 0; 1; � � � ; N: Then we obtain

Zl(0; y) for y 2 R n fy1; � � � ; yNg as follows. From (3.1) we have

Zl(k; yj � 0) =
p
qj Zl(k; yj + 0);

Z0l (k; yj � 0) =
Z0
l
(k; yj + 0)p

qj
� 2ik

�
�j �

�j

2ik

�
Zl(k; yj + 0);
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as well as Zl(k;+1) = 1 and Z0l (k;+1) = 0: Hence, Zl(0; y) and Z0l (0; y) satisfy the following internal

boundary conditions:

(7.11) Zl(0; yj � 0) =
p
qj Zl(0; yj + 0);

(7.12) Z0l (0; yj � 0) =
Z0
l
(0; yj + 0)p

qj
+ �j Zl(0; yj � 0):

Thus in each interval (yj ; yj+1); we can uniquely obtain Zl(0; y) from Vj;j+1(y) by using

(7.13) Zl(0; y) = (y � yj+1)Z
0
l (0; yj+1 � 0) + Zl(0; yj+1 � 0) +

Z yj+1

y

dz (z � y)V (z)Zl(0; z);

Thus, using (7.10), (7.11)-(7.13) we obtain Zl(0; y) for y 2 R n fy1; � � � ; yNg: Once we have Zl(0; y); we can
recover H(x) by using the procedure outlined starting with (6.12).

Note that although we assume that there are no bound states associated with (1.1), some of the Vj;j+1(y)

may have bound states. In terms of the factorization formula (4.5), this happens when the hard scatterers

Fj(k) in (4.5) overcome the bound states from the soft scatterers �j;j+1(k); resulting in no bound states

for (1.1); in other words, the poles of tj;j+1(k) in C+ are canceled by the terms in Fj(k); resulting in

no poles in C+ for � (k) appearing in �(k) in (4.2). The recovery of Vj;j+1(y); even in the presence of

bound states is well understood;22 since each Vj;j+1(y) has support contained in a half line, the re
ection

coe�cient rj;j+1(k) uniquely determines Vj;j+1(y) without needing the bound state energies and the bound

state norming constants; in fact, both the bound state energies and the norming constants are uniquely

determined by rj;j+1(k) alone.

We can also obtain H(x) by modifying the procedures described earlier. For example, using the reduced

re
ection coe�cient from the left `(k); the analog of (7.7) associated with `(k) can be used to obtain Vj;j+1(y)

starting with the interval (y0; y1) and moving to the interval (y1; y2) and continuing in this manner. One

can also solve the Marchenko equations associated with `(k) and �(k); respectively, simultaneously starting

with the intervals (y0; y1) and (yN ; yN+1); respectively, and moving to the intervals (y1; y2) and (yN�1; yN );

respectively, and continuing in this manner until all Vj;j+1(y) are obtained. Then, using (7.11)-(7.13) one

gets Zl(0; y) or Zr(0; y); from which H(x) is obtained using (6.12) or (6.16).

8. EXAMPLES

In this section we illustrate the methods described in Sections 5-7 through explicitly solved examples.

In Examples 8.1-8.3 we illustrate the recovery of H(x) using the solution of the Marchenko integral equation
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(7.7). In Example 8.4 we illustrate the method of Section 5 to recover the discontinuities in H 0(x)=H(x): In

Example 8.5 we illustrate the alternative procedure described in Section 7 using (5.11). Finally, In Example

8.6 we illustrate the recovery of H(x) in terms of the solutions of the singular integral equations (6.7) and

(6.10).

Example 8.1 Let us demonstrate the Marchenko method of Section 7. As our scattering data, for a given

Q(x) with no bound states and a given H+; let us use

(8.1) �(k) = �
k+ i�

k + i

;

where �; �; and 
 are real constants satisfying �1 < � < 1; 
 > 0; and 
2 > �2�2: It is straightforward but

tedious to show that for y � 0 the denominator in (8.11) and (8.12) is nonzero if and only if (� + �)� 6= 0:

Thus, in this example, we will assume that (� + �)� 6= 0 and postpone the case (� + �)� = 0 to Example

8.2. Using the method of Ref. 16 we construct � (k) by solving the Wiener-Hopf factorization problem

� (k)� (�k) = 1� j�(k)j2 for k 2 R; and we obtain

(8.2) � (k) =
p
1� �2

k + i�

k + i

;

where we have de�ned the positive constant

(8.3) � =

r

2 � �2�2

1� �2
:

It can be veri�ed that j� (k)j2 + j�(k)j2 = 1 and that � (k) has no poles or zeros in C+: Since � (0) 6= 0; we

are in the exceptional case. Using the method of Ref. 13, we obtain

(8.4) N = 1; q1 =
1� �

1 + �
; y1 = 0; a(k) =

1p
1� �2

; b(k) = � �p
1� �2

:

From (3.16) we get

(8.5) Jl(k; y) =

8<
:

1� � e�2iky

p
1� �2

; y < 0;

1; y > 0:

Thus, from (6.9) we obtain

(8.6) Pl(k; y) =

8<
:

i�

k + i

(�� 
)

p
1� �2

�
e2
y � e2iky

�
; y < 0;

0; y > 0:

Using (8.6) in (7.5) we have

hl0(t; y) =

8<
: ��(�� 
)p

1� �2
e
(t+2y); t > 0; t + 2y < 0;

0; t > 0; t + 2y > 0:
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From (8.1) we see that we can write (7.2) as

�(k) = �+

Z 1

�1

dt eikt %(t);

with

(8.7) %(t) =

�
0; t < 0;

�(�� 
)e�
t; t > 0;

and hence %(t) is supported only on t � 0: The Marchenko equation (7.7) has the following form:

(8.8) hl(t; y) = 0; t > 0; t + 2y > 0;

(8.9)

hl(t; y) + � hl(�t� 2y; y) + �(�� 
) e
(t+2y)

Z �(t+2y)

0

ds e
s hl(s; y)

= ��(� � 
)p
1� �2

e
(t+2y); t > 0; t+ 2y < 0:

Notice that from (8.8) we obtain Xl(k; y) = 0 for y > 0; and hence using (8.1) and (8.5), from (6.13) we

conclude that

(8.10) H(x) =
H+

fl(0; x)2
; y = H+

Z x

0

dz

fl(0; z)2
; x > 0;

where fl(0; x) is the zero-energy Jost solution from the left associated with Q(x): We can solve (8.9) exactly

and obtain

(8.11) hl(t; y) =
(�2 � 
2)e�t + �(
 � �)(� + �)e��(t+2y)

p
1� �2[(�+ �)�e�2�y + � � 
]

; t > 0; t+ 2y < 0;

where � is the constant in (8.3) and the denominator does not vanish. Using (8.11) in (7.5) we get

(8.12)

Xl(k; y) =
(� + ik)(�2 � 
2)[e2y(ik��) � 1] + (� � ik)�(
 � �)(� + �)e�2�y [1� e2y(�+ik)]

(k2 + �2)
p
1� �2[(�+ �)�e�2�y + � � 
]

; y < 0:

Hence, using (8.5) and (8.12) we �nd

(8.13) Zl(0; y) =

r

 � ��


 + ��

�(�+ �)e�2�y + 
 � �

�(�+ �)e�2�y � 
 + �
; y < 0:

Using (8.13) in (6.12) we obtain

(8.14)

 + ��


 � ��

�
y +

2(
 � �)=�

�(�+ �) + 
 � �
� 2(
 � �)=�

�(�+ �)e�2�y + 
 � �

�
= H+

Z x

0

dz

fl(0; z)2
; y < 0;

(8.15) H(x) =
H+

fl(0; x)2

 � ��


 + ��

�
�(�+ �)e�2�y + 
 � �

�(�+ �)e�2�y � 
 + �

�2
; y < 0;
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where y in (8.15) is obtained in terms of x from (8.14).

Example 8.2 In this example we consider the same scattering data as that in Example 8.1 but with the

additional condition (�+ �)� = 0; where � is the constant in (8.3). If � = 0 then �(k) = 0 and � (k) = 1; and

the Marchenko equation (7.7) gives us hl(t; y) = 0 for t > 0 and y 2 R; thus, there are no discontinuities in
H(x) or H0(x)=H(x); and we have

H(x) =
H+

fl(0; x)2
; x 2 R:

If � = �� but � 6= 0; then 
 = �; in this case we have

�(k) = �
k � i


k + i

; � (k) =

p
1� �2:

In this case, for x > 0; (8.10) is still valid. When x < 0; we proceed as follows. In the Marchenko equation

(8.9), putting � = �
 we obtain

(8.16)

hl(t; y) + � hl(�t� 2y; y) � 2
� e
(t+2y)

Z �(t+2y)

0

ds e
 s hl(s; y)

=
2�
p
1� �2

e
(t+2y); t > 0; t+ 2y < 0:

The solution of (8.16) is given by

(8.17) hl(t; y) =
2�
p
1� �2

e
(t+2y)

1 + �e2
y
; t > 0; t+ 2y < 0:

Using (6.5), (7.5), (8.5), (8.8), and (8.17) we obtain

(8.18) Zl(0; y) =

r
1 + �

1� �

1� �e2
y

1 + �e2
y
; y < 0:

Using (8.18) in (6.12) we obtain

(8.19)
1� �

1 + �

�
y +

2=


1� �e2
y
� 2=


1� �

�
= H+

Z x

0

dz

fl(0; z)2
; x < 0;

(8.20) H(x) =
H+

fl(0; x)2
1 + �

1� �

�
1� �e2
y

1 + �e2
y

�2

; y < 0;

where y in (8.20) is obtained in terms of x from (8.19).

Example 8.3 In this example, we consider the scattering data of Example 8.1 with 
2 = �2�2: When


 = ���; we have � = 0; and hence �(k) =
�k � i


k + i

: Since �(0) = +1 is not allowed (cf. Theorem 4.2 of Ref.
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1), we cannot have 
 = +��: Thus, the inverse scattering problem to be solved corresponds to the scattering

data

�(k) =
�k � i


k + i

; Q(x);

when there are no bound states. We have � (k) =

p
1� �2k

k + i

; and hence this corresponds to the generic case;

thus H+ cannot be speci�ed arbitrarily in the scattering data and it is determined as in (6.14). In this case,

(8.8) still holds. Putting � = �

�
in (8.9), we obtain

(8.21)

hl(t; y) + � hl(�t � 2y; y) � 
(1 + �) e
(t+2y)

Z �(t+2y)

0

ds e
s hl(s; y)

=

(1 + �)p
1� �2

e
(t+2y); t > 0; t + 2y < 0:

The solution of (8.21) is given by

(8.22) hl(t; y) =

p

1� �2
; t > 0; t+ 2y < 0:

Using (7.5), (8.5), (8.8), and (8.22) we obtain

(8.23) Zl(0; y) =
1� �� 2
yp

1� �2
; y < 0:

Using (8.23) in (6.12) we have

(8.24)
(1 + �)y

1� �� 2
y
= H+

Z x

0

dz

fl(0; z)2
; x < 0:

Letting x; y!�1 in (8.24), as in (6.14), we get

(8.25) H+ =
1 + �

2

R 0

�1 dz=fl(0; z)2
;

Thus, from (8.24) and (8.25) we �nd

y =
1� �

2


R x
0
dz=fl(0; z)

2R x
�1 dz=fl(0; z)2

; x < 0;

(8.26) H(x) =
1� �

2
 fl(0; x)2

R 0
�1

dz=fl(0; z)
2

[
R x
�1

dz=fl(0; z)2]2
; x < 0:

Alternatively, by using (6.21) we can write (8.26) as

H(x) =
(1� �)[f

[0]

l
(0; x); f

[0]
r (0; x)]2

2


R 0

�1
dz=fl(0; z)

2

fr(0; x)2
; x < 0:

This expression agrees with that obtained in (6.51) of Example 6.2 in Ref. 1, but the method used here is

simpler.
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Example 8.4 In this example we describe how to obtain �j de�ned in (4.4) related to discontinuities in

H0(x)=H(x) using the method outlined in Section 5. Let us use the scattering data of Example 8.1, and

hence �(k) is given by (8.1) and � (k) is given by (8.2). We proceed as in Example 8.1 till (8.7); we then set

up the Marchenko equation only for y > 0; namely, hl(t; y) = 0; which is given by (8.8). At this point we

can conclude that V1;2(y) = 0 and hence w1;2 = 0: Using (5.2)-(5.5) we obtain

�1 =
2(� � 
)p
1� �2

; 
1 =
2�(�� �)p

1� �2
:

Thus, from (5.6) we get

(8.27) �1 =
2�(�� 
)

(1 + �)
p
1� �2

:

Hence, H0(x)=H(x) is continuous at x = 0 if and only if �(� � 
) = 0; i.e. if and only if �(k) of (8.1) is a

constant.

Example 8.5 In this example we illustrate the iterative method outlined in Section 7 to recover H(x); based

on the matrix factorization in (4.5). Let us again use the scattering data of Example 8.1. We proceed as

in Example 8.4 and get H(x) given in (8.10) for x > 0; V1;2(y) = 0; and �1 given in (8.27). Thus, we have

�1;2 = I and

F1(k) =
1p

1� �2

2
64 1 +

�(�� 
)

ik(1 + �)
��+ �(�� 
)

ik(1 + �)

�� � �(�� 
)

ik(1 + �)
1� �(�� 
)

ik(1 + �)

3
75 ;

where �j;j+1(k) and Fj(k) are the matrices de�ned in (4.1) and (4.3), respectively. From (4.1) and (4.5) we

obtain �0;1(k): Note that, in this case, �
[0](k) de�ned in (5.11) and r0;1(k) corresponding to V0;1(y) coincide.

We have

(8.28) r0;1(k) =
�k+k�

(k � k+)(k � k�)
; t0;1(k) =

k(k + i�)

(k � k+)(k � k�)
;

where k+ and k� are the constants de�ned as

(8.29) k� = � i
2


 + ��

1 + �

h
1�

p
1 +E

i
; E =

4�(
 � �)

(1� �)(
 + ��)
:

Next, we will solve the Marchenko equation (7.7) for y < 0 with the input of (8.28) and (8.29). In fact, since

there are no discontinuities associated with the re
ection coe�cient in (8.28), the Marchenko equation (7.7)

reduces to (7.8). Note that the sign of E in (8.29) is the same as the sign of �(
 � �): There are three cases

to consider, namely E = 0; E < 0; and E > 0: When E = 0; i.e. when � = 0 or � = 
; we have r0;1(k) = 0;
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and hence we obtain hl(t; y) = 0 in the Marchenko equation giving V0;1(y) = 0; because in analogy to (7.9)

we have

(8.30) V0;1(y) = �2dhl(0+; y)
dy

; �1 < y < 0:

Thus Yl;0;1(k; y) = 1; and so H(x) given in (8.10) for all x 2 R: Next, we consider the case E < 0: In this

case both k+ and k� lie in C�; and hence using (8.28) in (7.1) we obtain

(8.31) %(t) =

8<
:

0; t < 0;

ik+k�

k+ � k�

�
e�ik+t � e�ik�t

�
; t > 0:

The solution of the Marchenko equation (7.8) with the integral kernel in (8.31) is given by

hl(t; y) =

8<
:

0; t > �2y;
k+k�

�

(� + 
)[e�t � e�2�y] + �(� � �)[1� e��(t+2y)]

�(� � �) + (� + 
)e�2�y
; t < �2y;

where � is the constant in (8.3). Again using (8.30) we obtain

(8.32) V0;1(y) =

8<
:

0; y > 0;

� 8�2�(� � �)(� + 
)e�2�y

[�(� � �) + (� + 
)e�2�y ]2
; y < 0:

Corresponding to V0;1(y) in (8.32), we have the zero-energy Jost solution from the right given by

(8.33) Yr;0;1(0; y) =
��(� � �) + (� + 
)e�2�y

�(� � �) + (� + 
)e�2�y
; y < 0:

Using (3.9) we see that for y < 0; Zr(0; y) is given by (8.33). Using (6.16)-(6.18) and (8.33) we obtain

(8.34) y � 2�(� � �)=�

�(� � �) + � + 

+

2�(� � �)=�

�(� � �) + (� + 
)e�2�y
= H�

Z x

0

dz

fr(0; z)2
; x < 0;

(8.35) H(x) =
H�

fr(0; x)2

���(� � �) + (� + 
)e�2�y

�(� � �) + (� + 
)e�2�y

�2
; x < 0;

where y in (8.35) is obtained in terms of x from (8.34), and fr(0; x) is the zero-energy Jost solution from

the right associated with Q(x): Using (6.19) and (6.20), one can show that (8.34) and (8.35) are identical

to (8.14) and (8.15), respectively. Finally, let us brie
y consider the case where the constant E de�ned in

(8.29) is positive. In this case, k+ is in C� and k� is in C+: Thus, V0;1(y) has one bound state. However,

since V0;1(y) is supported on a half line, its bound state norming constant cannot be chosen arbitrarily and

is determined by r0;1(k) alone.
22 Routine computations21 lead us again to H(x) given in (8.14).

Example 8.6 In this example, we demonstrate the recovery of H(x) by the method outlined in Section

6, namely by solving the singular integral equations (6.7) or (6.10). As our scattering data, let us use the
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same scattering data given in Example 8.1 with the same restrictions on the parameters �; �; and 
: First,

using the method of Ref. 13 we get the quantities given in (8.4). When y > 0; we will solve (6.7); for this

using (3.16) we get Jl(k; y) = 1 and from (6.9) we have Pl(k; y) = 0: Thus, the solution of (6.7) for y > 0 is

given by Xl(k; y) = 0; hence from (6.13) we obtain H(x) for x > 0 given in (8.10). Now let us consider the

situation when y < 0; in this case, it is easier to obtain `(k) and solve (6.10). Using the method of Ref. 16

we construct � (k) given in (8.2) and using `(k) = ��(�k) � (k)=� (�k); we get

(8.36) `(k) = ��k � i�

k + i


k + i�

k � i�
:

Using (8.36) in (6.11) we obtain

(8.37) Pr(k; y) =
2i��

k � i�

� � �

� + 

e2�y; y < 0:

Since Xr(k; y) is analytic in C
�; a contour integration along the boundary of C� converts (6.10) into the

algebraic equation

Xr(k; y)� 2i��

k � i�

� � �

� + 

e2�yXr(�i�; y) = Pr(k; y); y < 0:

Using (8.37) and the analyticity requirement on Xr(k; y) to evaluate Xr(�i�; y); we get

(8.38) Xr(k; y) =
2i��

k � i�

� � �

� + 


(� + 
) e2�y

� + 
 + �(� � �)e2�y
; y < 0:

From (3.17) we have Jr(k; y) = 1 for y < 0: Thus, using (6.5) and (8.38) we get

Zr(0; y) =
(� + 
)e�2�y � �(� � �)

(� + 
)e�2�y + �(� � �)
; y < 0:

Thus using (6.16)-(6.20), we obtain H(x) given in (8.14).
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