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Abstract: The one-dimensional Schr�odinger equation and two of its generalizations are considered, as they

arise in quantum mechanics, wave propagation in a nonhomogeneous medium, and wave propagation in a

nonconservative medium where energy may be absorbed or generated. Generically, the zero-energy trans-

mission coe�cient vanishes when the potential is nontrivial, but in the exceptional case this coe�cient is

nonzero, resulting in tunneling through the potential. It is shown that any nontrivial exceptional potential

can always be fragmented into two generic pieces. Furthermore, any nontrivial potential, generic or excep-

tional, can be fragmented into generic pieces in in�nitely many ways. The results remain valid when Dirac

delta functions are included in the potential and other coe�cients are added to the Schr�odinger equation.

For such Schr�odinger equations, factorization formulas are obtained that relate the scattering matrices of

the fragments to the scattering matrix of the full problem.
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I. INTRODUCTION

In this paper we consider the one-dimensional Schr�odinger equation and two of its generalizations.

The Schr�odinger equation (2.1) describes the quantum mechanical behavior of a particle interacting with

the potential V (x): From the corresponding transmission coe�cient T (k) we obtain the probability jT (k)j2

that a particle of energy k2 can tunnel through this potential. Generically, the zero-energy transmission

coe�cient is zero and hence a zero-energy particle cannot tunnel through a nontrivial potential. However,

in the exceptional case, the transmission coe�cient does not vanish at zero energy. In this paper, we

analyze certain aspects of this exceptional case. With the help of a factorization formula, we show that

a nontrivial exceptional potential can always be fragmented into generic pieces; i.e., a nontrivial potential

allowing tunneling at zero energy can always be decomposed into pieces none of which allow such tunneling.

The factorization formula (2.17) used to obtain this result allows us to express the scattering coe�cients

corresponding to a potential in terms of the scattering coe�cients corresponding to its fragments. We

show that similar factorization formulas hold for certain generalized Schr�odinger equations describing the

wave propagation in a one-dimensional nonhomogeneous or nonconservative medium. For such generalized

Schr�odinger equations, the generic and exceptional cases are again determined by the zero-energy behavior

of the transmission coe�cients.

The generalized Schr�odinger equation (3.3) can be analyzed by locally transforming it into a �nite

number of Schr�odinger equations; the results obtained in Sec. II show that each of these Schr�odinger

equations can be chosen to have generic potentials. In Sec. III we obtain the corresponding factorization

formula for Eq. (3.3). This formula, Eq. (3.15), brings insight to the analysis of wave scattering in a

one-dimensional nonhomogeneous medium and allows us to see how the scattering process can be viewed as

resulting both from \soft scatterers"1 (responsible for continuous changes in the medium parameters) and

from \hard scatterers"1 (responsible for discontinuous changes in the medium parameters). This formula

also explains how the total scattering matrix can be obtained in terms of the scattering matrices of the

individual fragments localized in space.

In Sec. IV, we generalize the factorization formula (2.17) in a di�erent way to analyze how the scattering

process takes place in a one-dimensional nonconservative medium governed by the generalized Schr�odinger

equation (4.1), where energy absorption or generation may occur. Although the scattering matrix is no

longer unitary when energy absorption or generation is present, we still have a factorization formula, namely

Eq. (4.5), showing how the scattering resulting from the fragments is superposed to give the total scattering.

The small-energy analysis of the exceptional case for these three equations usually requires elaborate

calculations. In addition to giving insight into the scattering process, the factorization formulas associated

with these equations are expected to simplify the small-energy analysis of the wavefunctions and scattering

coe�cients.
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II. SCHR�ODINGER EQUATION

Consider the one-dimensional Schr�odinger equation

(2.1)
d2 (k; x)

dx2
+ k2 (k; x) = V (x) (k; x);

where k2 is energy, x is the space coordinate, and V (x) is a real-valued potential belonging to L1
1(R); i.e.R1

�1 dx (1 + jxj) jV (x)j is �nite. The scattering solutions of Eq. (2.1) are those that behave like e�ikx as

x! +1 and x!�1: There are two linearly independent scattering solutions fl(k; x) and fr(k; x) of Eq.

(2.1), known as the Jost solutions from the left and from the right, respectively, satisfying the boundary

conditions

(2.2) fl(k; x) =

8<
:
eikx + o(1); x! +1;

1

T (k)
eikx +

L(k)

T (k)
e�ikx + o(1); x!�1;

(2.3) fr(k; x) =

8<
:

1

T (k)
e�ikx +

R(k)

T (k)
eikx + o(1); x! +1;

e�ikx + o(1); x!�1;

where T (k) is the transmission coe�cient and R(k) and L(k) are the re
ection coe�cients from the right

and from the left, respectively. The scattering matrix associated with Eq. (2.1) is de�ned as

(2.4) S(k) =

�
T (k) R(k)

L(k) T (k)

�
;

and it satis�es

(2.5) S(�k) = S(k); k 2 R;

where the overline denotes complex conjugation. The scattering matrix is unitary; thus,

(2.6) jT (k)j2 + jR(k)j2 = jT (k)j2 + jL(k)j2 = 1; k 2 R;

and from Eq. (2.5) we see that

(2.7) R(k)T (�k) + L(�k)T (k) = 0; k 2 R:

It is also known that the determinant of S(k) is given by

(2.8) T (k)2 � R(k)L(k) =
T (k)

T (�k) ; k 2 R:

For a potential in L1
1(R); the corresponding scattering matrix is well understood. Generically, the

transmission coe�cient vanishes linearly as k ! 0 and R(0) = L(0) = �1: In the exceptional case, we have
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T (0) 6= 0 and hence jR(0)j = jL(0)j < 1: There are other characterizations of these two cases. For example,

the potential V (x) is exceptional if and only if fl(0; x) and fr(0; x) are linearly dependent. Equivalently,

V (x) is exceptional if and only if at least one of fl(0; x) and fr(0; x) is bounded; in that case both of these

functions are bounded for x 2 R: Furthermore, the potential V (x) is exceptional if and only if

(2.9)

Z 1

�1
dxV (x) fl(0; x) = 0;

which is equivalent to
R1
�1 dxV (x) fr(0; x) = 0 because fl(0; x) and fr(0; x) are linearly dependent in the

exceptional case. Moreover, the exceptional case occurs if and only if f 0l (0;�1) = 0 or f 0r(0;+1) = 0:

Here and throughout the paper the prime denotes the spatial derivative and we interpret f 0l (0;�1) as

limx!�1 f 0l (0; x) and interpret f 0r(0;+1) as limx!+1 f 0r(0; x):

If the potential has support on a half-line, i.e. if V (x) = 0 for x > b or x < a for some constants a

and b; we have the exceptional case if and only if f 0r(0; x) = 0 for all x � b or f 0l (0; x) = 0 for all x � a;

respectively. For example, when V (x) = 0 for x > b; the linear dependence of fl(0; x) and fr(0; x) in the

exceptional case requires that fr(0; x) is a constant for x � b and hence f 0r(0; b) = 0; in the generic case,

since fr(0; x) is linear for x � b and linearly independent of fl(0; x); it follows that f
0
r(0; b) 6= 0: Note that

fl(0; x) and f
0
l (0; x) cannot simultaneously vanish at the same x value; otherwise, we would have fl(0; x) = 0

for x 2 R contradicting fl(0;+1) = 1: Similarly, fr(0; x) and f
0
r(0; x) cannot simultaneously vanish at the

same x value. Thus, if V (x) = 0 for x < a and if fl(0; a) = 0; then V (x) must be generic. Similarly, if

V (x) = 0 for x > b and fr(0; b) = 0; then V (x) must be generic.

In the exceptional case, let 
 denote the constant

(2.10) 
 =
fl(0; x)

fr(0; x)
:

We have4

(2.11)

�
fl(�k; x)
fr(�k; x)

�
=

�
T (k) �R(k)
�L(k) T (k)

� �
fr(k; x)

fl(k; x)

�
; k 2 R;

and hence from Eqs. (2.10) and (2.11) at k = 0 we get

(2.12) 
 =
T (0)

1 +R(0)
=

1 + L(0)

T (0)
:

Using Eqs. (2.7), (2.8), and (2.12), we obtain

(2.13) T (0) =
2



2 + 1
; L(0) = �R(0) = 
2 � 1


2 + 1
:

Further information on the generic and exceptional cases can be found in Refs. 2-6. For later reference,

we summarize some of the necessary and su�cient conditions for the exceptional case.
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Proposition 2.1 A potential V 2 L1
1(R) is exceptional if and only if f 0l (0;�1) = 0 or equivalently if and

only if f 0r(0;+1) = 0: If V (x) vanishes for x > b; it is exceptional if and only if f 0r(0; b) = 0: Similarly, if

V (x) vanishes for x < a; it is exceptional if and only if f 0l (0; a) = 0:

The trivial potential V (x) = 0 is exceptional. If V (x) is nontrivial and V (x) � 0; then V (x) is generic.

The exceptional case is unstable in the sense that a small change in the potential usually makes the case

generic. As an example, consider the square-well potential: the exceptional case occurs at the exact depths

when a bound state is added to the potential; at any other depth the square-well potential is generic.

The distinction between the generic and exceptional cases becomes relevant when the small-energy

behavior of the scattering coe�cients and of the wavefunctions is considered. In many instances one has

to deal with quantities involving the factor T (k)=k: In the generic case this factor remains bounded and

continuous as k ! 0; but in the exceptional case it behaves as T (0)=k with T (0) 6= 0: In some applications the

factor T (k)=k is multiplied by a continuous function g(k) and one has to prove, for example, the integrability

of the product g(k)T (k)=k as k ! 0: In the generic case this integrability holds automatically, but in the

exceptional case one has to prove, for instance, that g(k) is of order jkj
 for some 
 2 (0; 1] as k ! 0: This

is one of the reasons why proofs tend to be more elaborate in the exceptional case than in the generic case.

In this Section we show among other things that an exceptional potential can always be \fragmented" into

two generic pieces and that a matrix closely related to the scattering matrix can be written as a product of

factors, where each factor carries the information pertaining to one fragment. The term \fragment" will be

made precise below. We expect our results to o�er simpli�cations in dealing with exceptional potentials.

We now consider Eq. (2.1) and �rst explain the term fragment used in this paper. Choose a partition

�1 < x1 < x2 < � � �< xn <1 of the real line R and de�ne

Vj;j+1(x) =

(
V (x); x 2 (xj ; xj+1);

0; x =2 (xj; xj+1);

so that

(2.14) V (x) =

NX
j=0

Vj;j+1(x);

where in Eq. (2.14) and below we use the convention that x0 = �1 and xN+1 = +1: We call Vj;j+1(x) a

fragment of V (x): In analogy to Eq. (2.4) we let

Sj;j+1(k) =

�
Tj;j+1(k) Rj;j+1(k)

Lj;j+1(k) Tj;j+1(k)

�
denote the scattering matrix associated with the potential Vj;j+1(x); where each matrix Sj;j+1(k) only

carries the information pertaining to the fragment Vj;j+1(x): Using the scattering coe�cients, we introduce

the matrices

(2.15) �(k) =

2
64

1

T (k)
�R(k)
T (k)

L(k)

T (k)

1

T (�k)

3
75 ; �j;j+1(k) =

2
664

1

Tj;j+1(k)
�Rj;j+1(k)

Tj;j+1(k)
Lj;j+1(k)

Tj;j+1(k)

1

Tj;j+1(�k)

3
775 :
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Note that each matrix in Eq. (2.15) can be written as the product of two matrices in the following way:

(2.16) �(k) =

2
64

1

T (k)
�R(k)
T (k)

L(k)

T (k)

1

T (�k)

3
75 =

�
1 0

L(k) T (k)

� " 1

T (k)
�R(k)
T (k)

0 1

#
:

Note also that using Eq. (2.7) it is possible to express the entries of each matrix in Eq. (2.15) in terms of

the transmission coe�cient and only one of the re
ection coe�cients; for example, we have

�(k) =

2
64

1

T (k)
�R(k)
T (k)

�R(�k)
T (�k)

1

T (�k)

3
75 =

2
64

1

T (k)

L(�k)
T (�k)

L(k)

T (k)

1

T (�k)

3
75 :

It is known7 that �(k) can be written as the product

(2.17) �(k) = �0;1(k) �1;2(k) � � ��N;N+1(k):

It can be proved that Eq. (2.17) remains valid if we allow the potential V (x) to contain a �nite number of

Dirac delta functions. When delta functions are included, the proof of Eq. (2.17) can be obtained from Eqs.

(3.15) and (3.16) in the special case H(x) � 1: If all the fragments in (2.14) are delta-function potentials,

Eq. (2.17) reduces to Eq. (3.17). In Sect. III we will elaborate on the inclusion of delta functions.

The matrices �(k) and �j;j+1(k) are usually called transition matrices. The reason for this terminology

is as follows, which at the same time proves Eq. (2.17). Any scattering solution  (k; x) of (2.1) obeys

 (k; x) = c1e
ikx + c2e

�ikx + o(1) as x! +1 and  (k; x) = d1e
ikx + d2e

�ikx + o(1) as x! �1: By using

Eqs. (2.2), (2.3), and (2.8), we can relate the vectors [c1 c2] and [d1 d2] corresponding to each of the Jost

solutions fl(k; x) and fr(k; x); and hence we obtain [d1 d2]
t = �(k) [c1 c2]

t: We use the superscript t to

denote the transpose. Hence �(k) provides the link between the asymptotics of the solutions of (2.1) at

+1 and those at �1 when the functions e�ikx are chosen as an (asymptotic) basis. Now let N = 1; i.e.

the partition is simply �1 < x1 < 1: Let  1;2(k; x) be the solution of (2.1) with the potential V1;2(x)

that satis�es  1;2(k; x) =  (k; x) for x � x1; and let  0;1(k; x) be the solution of (2.1) with the potential

V0;1(x) such that  0;1(k; x) =  (k; x) for x � x1: Then  1;2(k; x) = ~d1 e
ikx + ~d2 e

�ikx for x � x1; where

[ ~d1 ~d2]
t = �1;2(k) [c1 c2]

t: Since  (k; x1) =  0;1(k; x1) =  1;2(k; x1) and  
0(k; x1) =  00;1(k; x1) =  01;2(k; x1);

it follows that  0;1(k; x) = ~d1 e
ikx + ~d2 e

�ikx for x � x1: So �0;1(k) [ ~d1 ~d2]
t = [d1 d2]

t; and hence [d1 d2]
t =

�0;1(k) �1;2(k) [c1 c2]
t: Therefore, �(k) = �0;1(k) �1;2(k); proving Eq. (2.17) when N = 1: For N � 2 the

result follows by induction.

For later use we note that when N = 1; from Eqs. (2.15) and (2.17) we obtain

(2.18)
1

T (k)
=

1� R0;1(k)L1;2(k)

T0;1(k)T1;2(k)
:

Now we return to (2.1) and discuss some consequences of Eqs. (2.17) and (2.18). The �rst result

concerns resonant energies. These are energies where the potential is perfectly transparent; in other words,
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energies k2i � 0 where jT (ki)j = 1: Because of Eq. (2.5), T (�k) = T (k) for real k; and hence it is su�cient to

consider the resonant frequencies only for ki � 0: Typically, if V (x) is a square-well potential, the existence

of such resonant energies is well known [p.94 of Ref. 8]. There are also some general existence results9

concerning resonances for potentials that are symmetric with respect to the midpoint of the potential barrier.

The resonant energies play an important role in tunneling spectroscopy.10 Here we consider a related, but

somewhat di�erent problem. We consider the one-parameter family of potentials

(2.19) V�(x) = V0;1(x+ �) + V1;2(x� �);

where � > 0 is a real parameter. In other words, we take a potential V (x) consisting of two fragments V0;1(x)

and V1;2(x) and vary the distance between them by changing �: The goal is to adjust the distance between the

fragments so that the transmission coe�cient has magnitude 1. Let T�(k) denote the transmission coe�cient

for V�(x); and �x any k = k0 � 0: Then we ask: are there any values of � for which jT�(k0)j = 1? The

answer when k0 > 0 is contained in the next theorem. The analysis for k0 = 0 will be given at the end of

this section.

Theorem 2.2 Consider the potential V�(x) de�ned in Eq. (2.19) with the corresponding transmission

coe�cient T�(k): For any �xed k0 > 0; there are three possibilities: (i) jT�(k0)j = 1 for all � > 0; (ii) there

is no � > 0 for which jT�(k0)j = 1; (iii) the values � > 0 for which jT�(k0)j = 1 form an in�nite sequence

tending to +1:

PROOF: Before starting the proof we remark that case (i) occurs when both fragments have a common

resonant energy, i.e. when jT0;1(k0)j = jT1;2(k0)j = 1; case (ii) occurs when jT0;1(k0)j 6= jT1;2(k0)j; case
(iii) occurs when jT0;1(k0)j = jT1;2(k0)j 6= 1: For example, if V (x) is symmetric about x = x1 and hence

V0;1(x1�x) = V1;2(x1+x); then we are either in case (i) or case (iii); the same is true if V1;2(x) is a translate

of V0;1(x):

The re
ection coe�cients from the right and left associated with the potentials V0;1(x+�) and V1;2(x��)
are given by R0;1(k) e

2ik� and L1;2(k) e
2ik�; respectively. The transmission coe�cients of the individual

fragments are not a�ected by the shifts ��: Thus, by Eq. (2.18), jT�(k0)j = 1 if and only if

(2.20) jT0;1(k0)jjT1;2(k0)j = j1� R0;1(k0)L1;2(k0) e
4ik0 � j:

Clearly, if R0;1(k0) = L1;2(k0) = 0; then, by Eq. (2.6), jT0;1(k0)j = jT1;2(k0)j = 1; and Eq. (2.20) holds

independently of �; which is case (i). If R0;1(k0) = 0 but L1;2(k0) 6= 0 (or vice versa), then jT0;1(k0)j = 1

and jT1;2(k0)j < 1 (or vice versa). Then Eq. (2.20) does not hold for any �: This is a special case of case

(ii). Now suppose that R0;1(k0) and L1;2(k0) are both nonzero. Note the inequality

1� ab � (1� a2)1=2 (1� b2)1=2; a; b 2 [0; 1];
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with the equality holding if and only if a = b: Using this inequality with a = jR0;1(k0)j and b = jL1;2(k0)j;
we see that Eq. (2.20) holds if and only if jR0;1(k0)j = jL1;2(k0)j and

R0;1(k0)L1;2(k0) e
4ik0 � = jR0;1(k0)j jL1;2(k0)j:

Hence, if jR0;1(k0)j 6= jL1;2(k0)j; then we are in case (ii). If jR0;1(k0)j = jL1;2(k0)j; then we set

R0;1(k0)L1;2(k0) = jR0;1(k0)j jL1;2(k0)j ei'(k0);

and we see that the values � are given by 4k0�+'(k0) = 2�n; where n is any integer large enough to ensure

that � > 0: Hence �n =
�n

2k0
� '(k0)

4k0
is the desired sequence in case (iii).

Next we give some results concerning the nature of the point k = 0: Let fl;j;j+1(k; x) and fr;j;j+1(k; x)

denote the Jost solutions from the left and from the right, respectively, for the potentials Vj;j+1(x): Since

the potentials Vj;j+1(x) have compact support for j = 1; � � � ; N � 1; using Proposition 2.1 we can conclude

that Vj;j+1(x) is generic if and only if f 0l;j;j+1(k; xj) 6= 0 or if and only if f 0r;j;j+1(k; xj+1) 6= 0: Equivalently,

Vj;j+1(x) is exceptional if and only if f 0l;j;j+1(k; xj) = 0 or if and only if f 0r;j;j+1(k; xj+1) = 0: This charac-

terization also applies to the fragments V0;1(x) and VN;N+1(x) if we use f
0
l;0;1(k; x0) and f

0
r;N;N+1(k; xN+1);

respectively.

Theorem 2.3 Consider a potential V (x) given in Eq. (2.14) with N � 1: Then:

(i) If all N + 1 of the fragments are exceptional, then V (x) is exceptional.

(ii) If exactly one fragment is generic, then V (x) is generic.

PROOF: (i) We give two proofs of (i) illustrating di�erent aspects of the problem. First let N = 1: Then,

from Eq. (2.18) we see that if both T0;1(0) and T1;2(0) are nonzero, then the transmission coe�cient T (k)

corresponding to V (x) cannot vanish at k = 0: Using induction, it then follows from Eq. (2.18) that if none

of the transmission coe�cients Tj;j+1(k) vanishes at k = 0; then T (k) cannot vanish at k = 0: Hence (i) is

proved. Alternatively, one can argue by using the zero-energy Jost solutions. Let Mj;j+1 denote the transfer

matrix such that �
 (0; xj)

 0(0; xj)

�
=Mj;j+1

�
 (0; xj+1)

 0(0; xj+1)

�
; j = 1; � � � ; N � 1;

for any zero-energy solution of Eq. (2.1). Notice that

fl;j;j+1(0; xj+1) = 1; f 0l;j;j+1(0; xj+1) = 0:

Hence, if Vj;j+1(x) is exceptional, then [1 0]t is an eigenvector of Mj;j+1 corresponding to the eigen-

value fl;j;j+1(0; xj); if Vj;j+1(x) is generic, then [1 0]t is not an eigenvector of Mj;j+1; since in that case

f 0l;j;j+1(0; xj) 6= 0 and f 0l;j;j+1(0; xj+1) = 0: Furthermore, we have fl(0; xN ) = fl;N;N+1 (0; xN) for x 2
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[xN ;+1) and hence f 0l (0; xN ) = 0 whenever VN;N+1(x) is exceptional. Since all fragments are assumed

exceptional, and hence [1 0]t is a common eigenvector of all matrices Mj;j+1; it follows that�
fl(0; x1)

f 0l (0; x1)

�
=M1;2 � � �MN�1;N

�
fl(0; xN )

0

�
= c

�
1

0

�

where c =
QN

n=1 fl;n;n+1(0; xn):Now notice that fl(0; x) satis�es f
00
l (0; x) = V0;1(x) fl(0; x) with the boundary

conditions fl(0; x1) = c and f 0l (0; x1) = 0; since V0;1(x) is exceptional, fl(0; x) must be a constant multiple

of fr(0; x) in the interval (�1; x1]: Hence V (x) is exceptional.

(ii) When N = 1 and exactly one of the two fragments is generic, then the assertion immediately follows

from Eq. (2.18). Indeed, from Eqs. (2.15) and (2.17) we have

1

T1;2(k)
=

1� L0;1(�k)L(k)
T0;1(�k)T (k) ;

and hence if T (0) 6= 0 and T0;1(0) 6= 0; we must have T1;2(0) 6= 0: Consequently, if both V (x) and V0;1(x) are

exceptional, V1;2(x) has to be exceptional. A similar argument shows that if T (0) 6= 0 and T1;2(0) 6= 0; we

must have T0;1(0) 6= 0: When N � 2; assume that the generic fragment is Vj0;j0+1(x): Multiply Eq. (2.17)

by Tj0;j0+1(k) so that

(2.21) Tj0;j0+1(k) �(k) = �0;1(k) � � � [Tj0;j0+1(k) �j0;j0+1(k)] � � ��N;N+1(k):

Now let k! 0 in Eq. (2.21). Since in the generic case, limk!0 T (k)=k = ic0 for some real, nonzero constant

c0 [p.303 of Ref. 5], we have Tj0;j0+1(0)=Tj0;j0+1(0) = �1: Also, R(0) = L(0) = �1 in the generic case. Thus

on the right-hand side of Eq. (2.21) we get

lim
k!0

[Tj0;j0+1(k) �(k)] = �0;1(0) �1;2(0) � � �
�
1 1

�1 �1
�
� � ��N;N+1(0):

Since det�j;j+1(k) = 1; the matrices �j;j+1(0) are invertible and hence the matrix product in Eq. (2.21) is

nonzero as k ! 0: This implies that limk!0[k�(k)] 6= 0 and hence V (x) must be generic. We remark that as

in (i), one could also use the transfer matrices to give an alternate proof of part (ii), but we will omit that

proof.

Theorem 2.4 Any nontrivial potential, generic or exceptional, can be fragmented into at least two generic

pieces. There are in�nitely many di�erent ways of fragmenting a nontrivial potential into generic pieces.

PROOF: Suppose that V (x) is exceptional. Since V (x) is not identically zero, there is a point x1 such that

f 0l (0; x1) 6= 0: Then the potentials resulting from partitioning R at x1 are both generic. Now suppose that

V (x) is generic. Since fl(0; x) and fr(0; x) are linearly independent, there is a point x1 where both f
0
l (0; x1)

and f 0r(0; x1) are nonzero. Again, using x1 for the partition we obtain two generic fragments.

An alternate proof can be given as follows. Consider any fragmentation given by Eq. (2.14). Since

trivial fragments can be omitted from Eq. (2.14), we can assume that none of the fragments of V (x) vanish
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identically. If any one of the fragments is exceptional, we can fragment that piece further into two generic

subpieces as follows. Assume the piece Vj;j+1(x) is exceptional. Let fl;j;j+1(k; x) be the corresponding Jost

solution from the left. From Eq. (2.9) we have

(2.22)

Z xj+1

xj

dxVj;j+1(x) fl;j;j+1(0; x) = 0:

Then for any z 2 (xj ; xj+1); consider the fragmentation of Vj;j+1(x) given by

(2.23) Vj;j+1(x) = �(z � xj)Vj;j+1(x) + �(xj+1 � z)Vj;j+1(x);

where �(x) is the Heaviside function, i.e. �(x) = 1 if x > 0 and �(x) = 0 if x < 0: There are in�nitely many

such z: The fragments given in Eq. (2.23) have to be generic for almost every z 2 (xj ; xj+1); otherwise, as seen

by replacing the upper integration limit in Eq. (2.22) by z; we could conclude that Vj;j+1(z) fl;j;j+1(0; z) = 0;

which cannot happen unless Vj;j+1(x) is zero almost everywhere.

One can also consider fragmentations that contain exceptional pieces. From Theorem 2.3 we already

know that a generic potential cannot be divided into two exceptional fragments. A generic potential can be

divided into one generic and one exceptional piece if and only if there is a point x1 where either f
0
l (0; x1) = 0

or f 0r(0; x1) = 0: In the �rst case, the piece to the right of x1 is exceptional while the piece to the left of x1 is

generic. In the second case, the types of the pieces are reversed. We may or may not be able to fragment a

nontrivial exceptional potential into two nontrivial exceptional pieces. For example, the square-well potential

supported on 0 < x < a becomes exceptional at the depths �j2�2=a2 with j = 1; 2; 3; � � � ; and hence the

square-well potential given by

V (x) =

( � �2; x 2 (0; 1);

0; elsewhere;

cannot be fragmented into two nontrivial exceptional pieces. A nontrivial exceptional potential can be cut

into two nontrivial exceptional pieces if and only if there is a point x1 where f 0l (0; x1) = 0: If we have an

exceptional potential we can choose each zero of f 0l (0; x) as a separation point. This will give the partition

into the largest possible number of exceptional pieces, and that number may be �nite or in�nite. Example

3.1 demonstrates an exceptional potential which can be fragmented into an in�nite number of exceptional

pieces. If V (x) is generic, then choosing the zeros of f 0l (0; x) (respectively, f
0
r(0; x)) as separation points, we

obtain a partition where all pieces are exceptional except one, namely V0;1(x) (respectively, VN;N+1(x)).

We note that if more than one fragment of V (x) is generic, then V (x) may be generic or exceptional.

The following example illustrates this point.

Example 2.5 Assume

V0;1(x) =
�4e

p
2x

(1 + e
p
2x)2

�(�x); V1;2(x) =
�4e�

p
2x

(1 + e�
p
2x)2

�(x):
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Both V0;1(x) and V1;2(x) are generic, and in fact we have

T0;1(k) = T1;2(k) =
k(k + i=

p
2)

k2 + 1=4
; R0;1(k) = L1;2(k) =

�1
4k2 + 1

:

Note that corresponding to V (x) = V0;1(x) + V1;2(x) we have

T (k) =
k + i=

p
2

k � i=
p
2
; R(k) = 0;

which is the exceptional case.

On the other hand, in terms of u(x) and v(x) given by

u(x) = 8
h
4(3 + 2

p
2)e

p
2x � 64e2x + 8e(2+

p
2)x � e(2+2

p
2)x + 4(3� 2

p
2)e(4+

p
2)x
i
;

v(x) = 8 + 8e2x � (3 + 2
p
2)e

p
2x � (3� 2

p
2)e(2+2

p
2)x;

let us de�ne

V0;1(x) =
u(x)

v(x)2
�(�x); V1;2(x) =

�e�
p
2x

(1 + e�
p
2x=4)2

�(x);

both of which are generic with the transmission coe�cients

T0;1(k) =
50k(k + i)(

p
2k + i)

50
p
2k3 + 70ik2 + 13

p
2k + 31i

; T1;2(k) =
25k(

p
2k + i)

25
p
2k2 + 15ik + 4

p
2
:

The sum V (x) = V0;1(x) + V1;2(x) is a generic potential with the scattering coe�cients given by

T (k) =
2k(k + i)

2k2 + 1
; R(k) =

�1
2k2 + 1

:

Finally, we analyze T�(0) corresponding to the potential V�(x) given in Eq. (2.19), as the analysis of

T�(k) for k = 0 was omitted from Theorem 2.2. In order to have jT�(0)j = 1; it is necessary that V�(x)

is exceptional, and hence we �rst analyze the conditions for which V�(x) is exceptional. Let Fl(k; x) and

Fr(k; x) denote the Jost solutions from the left and from the right, respectively, for the potential V�(x): Let

us also use fl(k; x) and fr(k; x) to denote the Jost solutions from the left and from the right, respectively,

for the potential V (x): Note that V�(x) = 0 for x 2 (x1 � �; x1 + �); and hence we have

(2.24) Fl(0; x) =

8>>>><
>>>>:
fl(0; x+ �)

�
1� 2�

f 0l (0; x1)

fl(0; x1)
� 2� f 0l (0; x1)

2

Z x1

x+�

dt

fl(0; t)2

�
; x � x1 � �;

(x� x1 � �) f 0l (0; x1) + fl(0; x1); x 2 [x1 � �; x1 + �];

fl(0; x� �); x � x1 + �;

(2.25) Fr(0; x) =

8>>>>><
>>>>>:

fr(0; x+ �); x � x1 � �;

(x� x1 + �) f 0r(0; x1) + fr(0; x1); x 2 [x1 � �; x1 + �];

fr(0; x� �)
"
1 + 2�

f 0r(0; x1)

fr(0; x1)
� 2� f 0r(0; x1)

2

Z x��

x1

dt

fr(0; t)2

#
; x � x1 + �:
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From Eqs. (2.24) and (2.25) we see that V�(x) is exceptional if and only if the ratio Fr(0; x)=Fl(0; x) is

independent of x; since Fl(0; x) and Fr(0; x) are linear functions in the interval x 2 [x1 � �; x1 + �]; we can

conclude that V�(x) is exceptional if and only if

Fr(0; x1 + �)

Fl(0; x1 + �)
=
Fr(0; x1 � �)
Fl(0; x1 � �)

;

from which we obtain

(2.26) � =
[fl(0; x1); fr(0; x1)]

2f 0l (0; x1) f
0
r(0; x1)

=
dr � dl
2drdl

;

where we have de�ned

dl =
f 0l (0; x1)

fl(0; x1)
; dr =

f 0r(0; x1)

fr(0; x1)
:

The cases in which fl(0; x1) = 0 and fr(0; x1) = 0 are included by setting dl =1 and dr =1; respectively.

(a) If dl 6= 0 and dr 6= 0; then there is exactly one value of � given by (2.26) for which V�(x) is

exceptional provided the right-hand side of Eq. (2.26) is positive. Otherwise, V�(x) is generic.

(b) If dl = dr = 0; i.e. if f 0l (0; x1) = f 0r(0; x1) = 0; then both fragments and hence also V (x) are

exceptional. Thus, V�(x) is exceptional for all � � 0:

(c) If dl 6= 0 and dr = 0; then V0;1(x) is exceptional and V1;2(x) is generic. Thus, T0;1(0) 6= 0;

T1;2(0) = 0; R1;2(0) = �1; and jL0;1(0)j < 1; and Eq. (2.18) shows that T�(0) = 0 and hence we

are in the generic case for all � � 0: This is also in agreement with Theorem 2.3 (ii).

(d) If dl = 0 and dr 6= 0; then the analysis is similar to case (c); thus V�(x) is generic for all � � 0:

(e) If dl 6= 0 and dr =1; then f 0l (0; x1) 6= 0 and fr(0; x1) = 0; both fragments are generic. From (2.26)

we see that V�(x) is exceptional only when � = 1=(2dl) provided that dl > 0: Otherwise V�(x) is

generic, and in particular V (x) is generic.

(f) If dl = 1 and dr 6= 0; the analysis is similar to case (e). Then, from (2.26) we see that V�(x)

is exceptional only when � = �1=(2dr) provided that dr < 0: Otherwise V�(x) is generic, and in

particular V (x) is generic.

(g) If dl = 0 and dr =1; from (2.26) in the limiting case it is seen that no � exists for which V�(x) is

exceptional. Similarly, if dl =1 and dr = 0; V�(x) is always generic.

(h) If dl = dr = 1; we have fl(0; x1) = fr(0; x1) = 0 and hence fl(0; x) and fr(0; x) are linearly

dependent. Thus, V (x) is exceptional. However, as seen from (2.26), V�(x) is generic for every

� > 0: In other words, T�(0) 6= 0 for � = 0 but T�(0) = 0 for all � > 0:

Once all the � values are obtained in cases (a), (b), (e), and (f) for which V� is exceptional, one needs

to determine which of these � values correspond to jT�(0)j = 1: For example, in case of (b), we can proceed
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as follows. From Eq. (2.18) we have

(2.27)
1

T�(0)
=

1� R0;1(0)L1;2(0)

T0;1(0)T1;2(0)
;

and hence T�(0) is independent of �: Let 
0;1 be the constant de�ned as in Eq. (2.10) giving the ratio of the

zero-energy Jost solutions for the potential V0;1(x); and let 
1;2 be de�ned similarly for the potential V1;2(x):

As in Eq. (2.13), we have

(2.28) R0;1(0) =
1� 
20;1

1 + 
20;1
; L1;2(0) =


21;2 � 1

1 + 
21;2
:

Using Eq. (2.28) in Eq. (2.27) we obtain

T�(0) =
2
0;1 
1;2

1 + 
20;1 

2
1;2

;

from which we see that jT�(0)j = 1 if and only if 
0;1 
1;2 = �1:

III. WAVE PROPAGATION IN A NONHOMOGENEOUS MEDIUM

The fragmentation of an exceptional potential into two generic pieces has important consequences in

direct and inverse scattering problems associated with wave propagation, where the governing equations are

related to the Schr�odinger equation or its variants. One such di�erential equation is given by

(3.1)
d2 (k; x)

dx2
+

k2

c(x)2
 (k; x) = Q(x) (k; x);

or by its time domain equivalent

(3.2)
@2�(t; x)

@x2
� 1

c(x)2
@2�(t; x)

@t2
= Q(x)�(t; x):

Eq. (3.1) describes the quantum mechanical behavior of a particle when the potential also depends on

its energy. Eqs. (3.1) and (3.2) describe the propagation of waves in a one-dimensional nonhomogeneous,

nonabsorptive medium where the wavespeed is c(x) and the restoring force density is Q(x): These equations

can be analyzed by transforming them into Schr�odinger equations by using local Liouville transformations.11

In the special (but still signi�cant) case Q(x) = 0; the potential in the transformed Schr�odinger equation is

always exceptional. One important outcome of Theorem 2.4 is that it is possible to choose the local Liouville

transformations in such a way that all the resulting fragments of the transformed Schr�odinger equations are

either generic or pertain to a potential vanishing identically. This leads to considerable simpli�cations in

the small-k analysis of Eqs. (3.1) and (3.2). For example, consider Eq. (3.25) of Ref. 11 where the Jost

solutions and their space derivatives are expressed as a product of matrices, each of which is expressed in

terms of the quantities related to one fragment only. The matrices in Eq. (3.25) of Ref. 11 contain the factor

tj�1;j(k)=k; where tj�1;j(k) is the transmission coe�cient corresponding to the j-th fragment; that factor
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remains continuous as k ! 0 if the j-th piece is generic and it is singular if the j-th piece is exceptional.

Hence, by fragmenting the exceptional pieces into generic ones, it becomes obvious that the Jost solutions

and their space derivatives are continuous at k = 0:

Let us write Eq. (3.1) as

(3.3)  00(k; x) + k2H(x)2 (k; x) = Q(x) (k; x); x 2 R:

Our assumptions on Q(x) and H(x) are as follows:

(H1) H(x) is strictly positive, piecewise continuous with possible discontinuities in H(x) or H 0(x) occur-

ring at the N points x1 < � � � < xN :

(H2) H(x)! H� as x!�1; where H� are positive constants.

(H3) H �H� 2 L1(R�); where R� = (�1; 0) and R+ = (0;+1):

(H4) H0 is absolutely continuous on (xn; xn+1) and 2H00H � 3 (H0)2 2 L1
1(xn; xn+1) for n = 0; � � � ; N;

where x0 = �1 and xN+1 = +1:

(H5) Q(x) is real valued and of the form Q(x) =W (x) +
PN

j=1 cj �(x� xj); where W 2 L1
1(R) and �(x)

is the Dirac delta function.

Conditions (H1)-(H5), without the delta-function terms in (H5), were introduced in Ref. 11, where the

inverse scattering problem for Eq. (3.3), namely the recovery of the coe�cient H(x) from an appropriate

set of scattering data, was studied. Hypothesis (H1) allows for abrupt changes in the material properties of

the medium in which the wave propagates. In (H5) we have now included delta functions because they are

often useful in working out explicitly solvable examples. Moreover, it is of interest to see how some of the

results are a�ected by delta functions superimposed on discontinuities in H(x) andH 0(x): The delta-function

potential V (x) = ��(x� a) corresponds to

(3.4) T (k) =
k

k + i�=2
; R(k) =

�i�=2
k + i�=2

e2ika; L(k) =
�i�=2
k + i�=2

e�2ika;

from which we see that it is a generic potential.

As for Eq. (2.1), Eq. (3.3) also has two linearly independent scattering solutions, namely the Jost

solutions fl(k; x) and fr(k; x) satisfying the boundary conditions

fl(k; x) =

8<
:
eikH+x + o(1); x! +1;

1

Tl(k)
eikH�x +

L(k)

Tl(k)
e�ikH�x + o(1); x!�1;

fr(k; x) =

8<
:

1

Tr(k)
e�ikH+x +

R(k)

Tr(k)
eikH+x + o(1); x! +1;

e�ikH�x + o(1); x!�1:
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Here, Tl(k) and Tr(k) are the transmission coe�cients from the left and from the right, respectively, and

L(k) and R(k) are the re
ection coe�cients from the left and from the right, respectively. Associated with

Eq. (3.3) is the scattering matrix

(3.5) S(k) =

�
Tl(k) R(k)

L(k) Tr(k)

�
:

The matrix S(k) is not unitary unless H+ = H�; we have S(�k) = S(k) for real k; and

H+ Tl(k) = H� Tr(k); Imk � 0;

Tr(�k)Tl(k) + jR(k)j2 = Tr(k)Tl(�k) + jL(k)j2 = 1; k 2 R;

R(k)Tr(�k) + L(�k)Tr(k) = 0; k 2 R:

In the study of the scattering matrix S(k) given in Eq. (3.5), one again has to distinguish between the

generic case and the exceptional case. As in Sec. II, in the generic case the transmission coe�cients vanish

linearly as k ! 0; whereas in the exceptional case we have Tl(0) 6= 0 and Tr(0) 6= 0: Furthermore, in the

generic case R(0) = L(0) = �1; while in the exceptional case jR(0)j = jL(0)j < 1: The coe�cient H(x) in

Eq. (3.3) has no in
uence on the leading behavior of the transmission coe�cients as k ! 0; and hence the

generic and exceptional cases are determined by the potential Q(x) only. All the characterizations of the

two cases for the Schr�odinger equation hold verbatim also for Eq. (3.3). If Q(x) = 0 in Eq. (3.3), we have

the exceptional case. If Q(x) is nontrivial and Q(x) � 0 in Eq. (3.3), then we have the generic case. All

the di�erences between the two cases as k ! 0 outlined in Sec. II also exist11�13 in the wave propagation

problem associated with Eq. (3.3).

Let us generalize the factorization formula (2.17) to the scattering problem for Eq. (3.3). Under the

Liouville transformation

(3.6) y = y(x) =

Z x

0

dsH(s);  (k; x) =
1p
H(x)

�(k; y);

Eq. (3.3) is transformed into

(3.7)
d2�(k; y)

dy2
+ k2�(k; y) = V (y)�(k; y);

where

(3.8) V (y) = V (y(x)) =
H00(x)

2H(x)3
� 3

4

H0(x)2

H(x)4
+

Q(x)

H(x)2
:

Since, by (H1), H(x) and H0(x) are allowed to have jump discontinuities at xj for j = 1; � � � ; N; the function
V (y) is unde�ned at yj = y(xj) for j = 1; � � � ; N: In agreement with Eq. (3.6), we set y0 = y(x0) = �1 and
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yN+1 = y(xN+1) = +1: Then V (y) is well de�ned in each of the intervals (yj ; yj+1) for j = 0; � � � ; N; and
(H4) ensures that V 2 L1

1 on these intervals. In view of (H5), the solutions of Eq. (3.3) satisfy the conditions

(3.9)  (k; xn � 0) =  (k; xn + 0);  0(k; xn + 0)�  0(k; xn � 0) = cn  (k; xn):

As a result, by using Eqs. (3.6) and (3.9), we deduce that the solutions of Eq. (3.7) satisfy the selfadjoint

boundary conditions

(3.10) �(k; yn � 0) =
p
qn �(k; yn + 0);

(3.11)
d�(k; yn � 0)

dy
= �n �(k; yn + 0) +

1p
qn

d�(k; yn + 0)

dy
;

where

qn =
H(xn � 0)

H(xn + 0)
;

(3.12) �n =
1

2
p
H(xn � 0)H(xn + 0)

�
H0(xn � 0)

H(xn � 0)
� H0(xn + 0)

H(xn + 0)
� 2cn

�
:

The scattering matrix corresponding to Eq. (3.7) equipped with these boundary conditions is known as the

\reduced scattering matrix"11 and is given by

�(k) =

�
� (k) �(k)

`(k) � (k)

�
;

where � (k) is the reduced transmission coe�cient and �(k) and `(k) are the reduced re
ection coe�cients

from the right and from the left, respectively. The reduced scattering matrix is unitary and its entries are

related to the scattering matrix S(k) given in Eq. (3.5) as follows:11

(3.13) � (k) =

s
H+

H�
Tl(k)e

ikA =

s
H�
H+

Tr(k)e
ikA;

�(k) = R(k)e2ikA+ ; `(k) = L(k)e2ikA� ;

where

A� = �
Z �1

0

ds [H� �H(s)]; A = A+ + A�:

The points yj generate a partition of the real line, and so we de�ne

Vj;j+1(y) =

(
V (y); y 2 (yj ; yj+1);

0; elsewhere:

We let �j;j+1(k); �j;j+1(k); and `j;j+1(k) denote the transmission coe�cient and the re
ection coe�cients

from the right and from the left, respectively, for the potential Vj;j+1(y); and, as in Eq. (2.15), we de�ne

(3.14) �(k) =

2
64

1

� (k)
��(k)
� (k)

`(k)

� (k)

1

� (�k)

3
75 ; �j;j+1(k) =

2
664

1

�j;j+1(k)
��j;j+1(k)
�j;j+1(k)

`j;j+1(k)

�j;j+1(k)

1

�j;j+1(�k)

3
775 :
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By suppressing the k-dependence of the transition matrices in Eq. (3.14), we have the generalization of Eq.

(2.17) in the case of Eq. (3.3) given by13

(3.15) � = �0;1F1�1;2F2�2;3 � � �FN �N;N+1;

where Fj for j = 1; � � � ; N are the matrices de�ned by

Fj(k) =

2
4 �n +

�n

2ik

�
�n +

�n

2ik

�
e�2ikyn�

�n � �n

2ik

�
e2ikyn �n � �n

2ik

3
5 ;

with

�n =
1

2

"s
H(xn � 0)

H(xn + 0)
+

s
H(xn + 0)

H(xn � 0)

#
; �n =

1

2

"s
H(xn � 0)

H(xn + 0)
�
s
H(xn + 0)

H(xn � 0)

#
;

and where the constants �n are given in Eq. (3.12).

The matrices Fj account for the internal boundary conditions (3.10)-(3.11). In order to justify Eq.

(3.15), again consider the case N = 1 �rst. Using notations similar to those used below Eq. (2.17), we let

�(k; y) be a solution of Eq. (3.7) such that �(k; y) = c1 e
iky + c2 e

�iky as y ! +1; and we de�ne �1;2(k; y)

and �0;1(k; y) as solutions of Eq. (3.7) for the fragments V0;1(y) and V1;2(y) such that �1;2(k; y) = �(k; y) for

y > y1 and �0;1(k; y) = �(k; y) for y < y1: Then, �1;2(k; y) = ~d1 e
iky + ~d2 e

�iky for y < y1 and �0;1(k; y) =

~e1 e
iky+ ~e2 e

�iky for y > y1; with suitable constants ~d1; ~d2; ~e1; and ~e2: Now the coe�cients ~d1; ~d2 are related

to the coe�cients ~e1; ~e2 through the boundary conditions (3.10)-(3.11) by setting �(k; y1 � 0) = �0;1(k; y1);

�0(k; y1 � 0) = �00;1(k; y1); and �(k; y1 + 0) = �1;2(k; y1); �
0(k; y1 + 0) = �01;2(k; y1): This yields

�
eiky1 e�iky1

ikeiky1 �ike�iky1
� �

~e1
~e2

�
=

2
4
p
q1 0

�1
1p
q1

3
5 � eiky1 e�iky1

ikeiky1 �ike�iky1
� �

~d1
~d2

�
;

from which, we obtain [~e1 ~e2]
t = F1[ ~d1 ~d2]

t: This proves Eq. (3.15) when N = 1; and the general case follows

by induction. Note that Fn can be written as a product of three matrices, namely

(3.16) Fn = �(xn � 0; xn) �[xn; xn] �(xn; xn + 0);

where

�(xn � 0; xn) =

2
664

��n +
��n
2ik

�
��n +

��n
2ik

�
e�2ikyn�

��n �
��n
2ik

�
e2ikyn ��n �

��n
2ik

3
775 ;

�[xn; xn] =

2
4 1� cn

2ik

cn

2ik
e�2ikyn

� cn

2ik
e2ikyn 1 +

cn

2ik

3
5 ;

�(xn; xn + 0) =

2
664

�+n +
�+n
2ik

�
�+n +

�+n
2ik

�
e�2ikyn�

�+n �
�+n
2ik

�
e2ikyn �+n �

�+n
2ik

3
775 ;
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with

��n =
1

2

"p
H(xn � 0) +

1p
H(xn � 0)

#
; ��n = �1

2

"p
H(xn � 0)� 1p

H(xn � 0)

#
;

��n =
�1

2
p
H(xn � 0)

H0(xn � 0)

H(xn � 0)
:

We remark that the transition matrix �(xn � 0; xn) is due to the hard scatterer caused by a jump in H(x)

from H(xn � 0) to 1 and a jump in H0(x) from H0(xn � 0) to 0: The transition matrix �[xn; xn] is due to

the hard scatterer cn �(x � xn); as seen from Eq. (3.4). The transition matrix �(xn; xn + 0) is due to the

hard scatterer caused by a jump in H(x) from 1 to H(xn + 0) and a jump in H0(x) from 0 to H0(xn + 0):

The transition matrices �n;n+1(k) in Eq. (3.15) are due to the soft scatterers Vn;n+1(y): In the special case

when H(x) = 1 and W (x) = 0 in (H5), Eq. (3.15) takes the form

(3.17) � = �[x1; x1] � � ��[xN ; xN ];

which describes scattering by a superposition of delta functions located at x1; � � � ; xN :

We mention one application of the factorization formula (3.15) in the inverse problem for Eq. (3.3)

concerning the large-k asymptotics of � (k); �(k); and `(k); we refer the reader to Refs. 11-13 for details: it

is known that from the large-k asymptotics of a reduced re
ection coe�cient one can recover the ratios qn

and �n (cf. Ref. 13, where the case cn = 0 was studied). It is seen from Eq. (3.12) that the coe�cients

cn a�ect the large-k asymptotics through the constants �n and thus contribute in the same manner as the

jumps in the derivative of H(x): We also see that cn can be chosen suitably to cancel the contribution from

a jump in H0(x):

In the recovery of H(x) in Eq. (3.3), the distinction between the exceptional and generic cases is

important. For example, in the absence of bound states, given the scattering data consisting of a reduced

re
ection coe�cient and Q(x); one obtains a one-parameter family of H(x) in the exceptional case and a

unique H(x) in the generic case.11�13 Therefore, in the exceptional case one must include either H+ or H�

in the scattering data for the unique recovery of H(x); however, in the generic case, H+ or H� cannot be

speci�ed in the scattering data and instead these constants are themselves recovered during the inversion

procedure.

Finally in this section we give an example of an exceptional potential that can be fragmented into an

in�nite number of only exceptional pieces.

Example 3.1 In Eq. (3.3) choose Q(x) = 0 and

(3.18) H(x) =

8><
>:
1 +

�
sinx

x

�3

; x 6= 0;

2; x = 0:

18



Note that H(x) is strictly positive and bounded, H� = 1; and

H0(x) =

8<
:

3 sin2 x

x4
[x cosx� sinx] ; x 6= 0;

0; x = 0;

H00(x) =

8<
:

3 sinx

x5

�
x2(3 cos2 x� 1)� 6x cosx sinx+ 4 sin2 x

�
; x 6= 0;

0; x = 0;

and hence H;H 0;H00 are all continuous on R: Since Q(x) = 0; we are in the exceptional case, and hence the

transmission coe�cients Tl(k) and Tr(k) cannot vanish at k = 0: Note that H(n�) = 1; H0(n�) = 0; and

H00(n�) = 0 for any integer n: Using Eq. (3.6) let us de�ne yn = y(n�): Now consider the potential V (y)

obtained by using Eq. (3.18) and Q(x) = 0 in Eq. (3.8). That potential must be exceptional, and in fact

from Eq. (3.13) it can be seen that the transmission coe�cient � (k) corresponding to V (y) cannot vanish

at k = 0: Now let us fragment V (y) as V (y) =
P1

n=�1 Vn;n+1(y); where we have de�ned

(3.19) Vn;n+1(y) =

(
V (y); y 2 [yn; yn+1];

0; elsewhere:

The following argument shows that each Vn;n+1(y) is exceptional. Since we have Q(x) = 0 in Eq. (3.3), the

corresponding zero-energy Jost solution is given by fl(0; x) = 1 for x 2 R: Using (5.1) of Ref. 11, we see

that the zero-energy Jost solution from the left of Eq. (3.7) is given by

gl(0; y) = gl(0; y(x)) =
p
H(x):

Hence, we obtain

(3.20) g0l(0; y) =
dgl(0; y)

dy
=
dx

dy

d
p
H(x)

dx
=

H0(x)

2H(x)3=2
:

Since H0(n�) = 0; from Eq. (3.20) we see that g0l(0; yn) = 0; and hence we can choose yn as the separation

points to fragment V (y) into only exceptional pieces, which are given by Eq. (3.19).

IV. WAVE PROPAGATION IN A NONCONSERVATIVE MEDIUM

The wave propagation in a one-dimensional nonconservative medium is described, in the frequency

domain, by the generalized Schr�odinger equation

(4.1)  00(k; x) + k2 (k; x) = [ikP (x) +Q(x)] (k; x); x 2 R;

where k is the wave number, P (x) represents the joint e�ect of energy absorption and generation, and Q(x)

stands for the restoring force density. In the time domain Eq. (4.1) corresponds to

@2u

@x2
� @2u

@t2
� P (x)@u

@t
= Q(x)u; t; x 2 R;
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where the wavespeed is equal to one. We will assume that Q(x) is real valued and belongs to L1
1(R); and

that P (x) is real valued and belongs to L1(R): For energy absorption we must have P (x) � 0; and for energy

generation we must have P (x) � 0; however, our results in this section are valid without assuming that P (x)

is positive or negative.

The scattering solutions of Eq. (4.1) are those behaving like eikx or e�ikx as x ! �1; and such solu-

tions occur when k2 > 0: Among the scattering solutions are the Jost solution from the left fl(k; x) and the

Jost solution from the right fr(k; x) satisfying the boundary conditions (2.2) and (2.3), respectively. The

scattering matrix S(k) associated with Eq. (4.1) has the form (2.4). When P (x) is purely imaginary, the

inverse scattering problem for Eq. (4.1) was analyzed by Jaulent and Jean;14�17 in this case the scattering

matrix S(k) is unitary and hence the re
ection coe�cients cannot exceed one in absolute value. An incom-

plete study of the same problem when P (x) is real was outlined in Ref. 18. In that case the di�erential

equation (4.1) is no longer selfadjoint and the scattering matrix S(k) is no longer unitary. Consequently,

the analysis of the direct and inverse scattering problems for real P (x) is much more complicated than for

imaginary P (x):

We are interested in the analog of the factorization formula (2.17). As in Sec. II, let us partition the

real axis R into x0 < x1 < x2 < � � � < xN < xN+1 with x0 = �1 and xN+1 = +1: Consider the analog of

Eq. (4.1) given by

(4.2)  00(k; x) + k2 (k; x) = [ikPj;j+1(x) + Qj;j+1(x)] (k; x);

where we have de�ned the fragments

(4.3) Pj;j+1(x) =

(
P (x); x 2 (xj; xj+1);

0; elsewhere;

(4.4) Qj;j+1(x) =

(
Q(x); x 2 (xj ; xj+1);

0; elsewhere:

Let the scattering matrix associated with Eq. (4.2) be given by

sj;j+1(k) =

�
tj;j+1(k) rj;j+1(k)

lj;j+1(k) tj;j+1(k)

�
:

Proceeding as in the previous sections or as in Refs. 7 or 13 we obtain

(4.5) �(k) = �0;1(k)�1;2(k) � � ��N;N+1(k);

where we have de�ned the transition matrices

(4.6) �(k) =

2
664

1

T (k)
�R(k)
T (k)

L(k)

T (k)

T (k)2 � L(k)R(k)
T (k)

3
775 ;
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(4.7) �j;j+1(k) =

2
664

1

tj;j+1(k)
�rj;j+1(k)
tj;j+1(k)

lj;j+1(k)

tj;j+1(k)

tj;j+1(k)
2 � lj;j+1(k) rj;j+1(k)
tj;j+1(k)

3
775 :

As in the previous sections, the transition matrix given in Eq. (4.6) provides the link between the asymptotics

of the scattering solutions of Eq. (4.1) at +1 and those at �1 when e�ikx are chosen as an asymptotic

basis; the transition matrices in Eq. (4.7) have similar interpretations. Again, each of the matrices in Eqs.

(4.6) and (4.7) can be decomposed as in Eq. (2.16). Note that the (2; 2) entry in Eq. (4.6) is analytic in the

lower-half complex plane C� and in general cannot be replaced by 1=T (�k); however, it is known that14

this entry is equal to 1=T (�k); where T (k) is the transmission coe�cient associated with the di�erential

equation obtained from Eq. (4.1) by changing the sign of P (x):

Again one has to distinguish between the generic and exceptional cases in studying the scattering and

inverse scattering problems for Eq. (4.1). As for Eq. (3.3), the potential Q(x) alone determines whether we

have the generic case or the exceptional case. The di�culties arising in proofs in the exceptional case outlined

in the previous sections remain true also for Eq. (4.1), and by choosing each fragment in the partitioning

(4.3)-(4.4) to be either generic or identically zero we expect simpli�cations in the small k-analysis of the

direct and inverse scattering problems for Eq. (4.1).
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