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1. INTRODUCTION

Wave propagation in a one-dimensional nonconservative medium is described, in the frequency domain,

by the generalized Schrodinger equation
(1.1) Uk, x) + k9t (k, ) = [ikP(2) + Q(x)] vt (k,z), z€R,

where R is the real line, the prime denotes the derivative with respect to the spatial coordinate z, k is the
wavenumber (also known as the momentum), k? is the energy, P(z) describes the combined effect of energy
absorption and energy generation, and (x) denotes the restoring force density. In the time domain (1.1)

corresponds to the wave equation with forcing term

?u  0%u OJu

—— — — P(z)— = Q(z) u, t,x € R,

dz?  Ot? (2) ot @)

where the wavespeed is equal to 1. When P(z) < 0, there is net absorption; however, unless otherwise stated

we will not put any restriction on the sign of P(z). In the sequel a significant role will be played by the

associated equation
(1.2) Uk, x) + k2T (k, x) = [—ikP(z) + Q(x)] ¢~ (k, x), z € R,

where the sign of P(z) in (1.1) has been changed.

Let Lb(I) denote the space of measurable functions f(z) such that f; dz (1 + [z])?|f(z)[P < +o0, and
let LP(I) = LE(I). Throughout the paper we will use ||f||1 and ||f]|1,1 to denote the L'(R) and LI(R)
norms, [* da|f(x)| and [ da[l+ [z|]|f(x)|, respectively. All the results given in this paper are valid if
we assume that P and @ are real valued and belong to L}(R). The conditions P, € L'(R) are sufficient
except when we consider the asymptotics of the scattering coefficients and the wavefunctions as & — 0
or their values at k = 0; then, in the generic case we assume P € L}(R) and @ € Li(R), and in the
exceptional case we assume P, € Li(R). We will see in Section 2 that the exceptional case occurs when
the Wronskian in (2.26) vanishes; otherwise, the generic case occurs. We also prove Theorem 9.4 under the

sufficient conditions P, @ € Li(R).

—ikx

The scattering solutions of (1.1) and (1.2) are those behaving like e?** or e as * — +oo, and such
solutions occur when k? > 0. Among the scattering solutions are the Jost solution from the left f,i (k,z) and

the Jost solution from the right fri (k, z) satisfying the boundary conditions

e + o(1), z — 400,
1.3 (o) = 1 ' IR
( ) fl ( 1;) T:t(k) ezk:c 4 Tiiki e—zkx 4 0(1)’ F — —00,
1 —ikx Ri(k) ikx
(1.4) fE(k,x) = Ti(/c)'5 + Ti(k)e +o(l), & — oo,

[\]



where T% (k) are the transmission coefficients, and R* (k) and L* (k) are the reflection coefficients from the
right and from the left, respectively. The scattering matrix S*(k) associated with (1.1) is given by
T* (k) R*(k)
+ —
= |1+ 1+ip)
When P(z) < 0, it will be seen that S*(k) exists for all k € R; however, when P(z) > 0 or when P(z) has
mixed sign, we will see that ST(k) may not exist at k = 0 or at some other real values of k. In a similar

manner, we define S7(k), the scattering matrix associated with (1.2), as
_n T (k) R (k)
ORI FRAREA]}

This paper is the first of a series aimed at solving the direct and various inverse scattering problems for
(1.1). One of these inverse problems consists of the recovery of P(z) and Q(x) from an appropriate set of
scattering data. In the radial case, when there are no bound states, Jaulent and Jean® presented an inversion
method when Q(z) is real and P(z) is imaginary. They?3 also extended their method to solve the full-line
one-dimensional inverse problem for real @Q(z) and imaginary P(z). In this method, using the scattering
data {R*(k), R™(k)}, a pair of two coupled Marchenko integral equations is solved and these solutions are
used in a first-order ordinary differential equation whose solution leads to P(z). Jaulent* also extended this
method to the case when P(z) is real although complete details and proofs were not given. When P(z) is
purely imaginary and ffooo dz P(z) = 0, Sattinger and Szmigielski® showed that one can simplify the method
of Jaulent and Jean and recover P(z) by solving an algebraic equation rather than a differential equation.
Assuming that P(xz) and @Q(z) are in the Schwartz space, when P(x) is real and f_oooo dz P(z) = 0, Sattinger
and Szmigielski® also studied the inverse scattering problem for (1.1) by analyzing an associated Riemann-
Hilbert problem; however, their primary purpose is to solve the initial value problem for a pair of evolution
equations, and some of the assumptions made on the reflection coefficients in Ref. 6, e.g. Ri(k') = 0 for
|k] > 1 in our notation, may severely restrict the class of potentials that can be recovered. We should also
mention the study by Kaup” on the direct and inverse scattering problem for
o+ 1+ | 6 = P + Qo

where /3 is a constant and P,@ € Li(R). In Refs. 6 and 7 the inverse scattering problem is analyzed by

studying a Riemann-Hilbert problem on a particular Riemann surface.

There are other inverse problems for (1.1) such as the recovery of P(z) in terms of appropriate scattering
data when Q(z) is known and the recovery of @Q(z) in terms of appropriate scattering data when P(z) is

known. In future papers we will study various inverse scattering problems for (1.1).

When P(z) is purely imaginary, the methods available for selfadjoint differential operators can be

employed to analyze the inverse scattering problem for (1.1); furthermore, in this case? the scattering matrices
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Si(k) are unitary, and hence the reflection coefficients cannot exceed 1 in absolute value. However, when
P(z) is real valued, the differential operator pertaining to (1.1) is no longer selfadjoint and the scattering
matrices Si(k) are no longer unitary. Consequently, the analysis of the direct and inverse scattering problems
with real P(z) are different and more difficult than in the case with imaginary P(z). For example, the
nonselfadjointness of the differential operator may lead to eigenvalues k outside the real and imaginary axes,
and this operator may not be diagonalizable on the corresponding generalized eigenvector space. Further,
the standard proof”® of the absence of singularities of the transmission coefficient for k& € R, which relies
heavily on the selfadjointness of the differential operator, breaks down. Moreover, the reflection coefficients
may not be contractive and hence the standard proof of the unique solvability of the Marchenko integral
equations is no longer valid. Fortunately, when P(z) < 0, some of the usual properties of the one-dimensional
Schrodinger equation given in (2.17), such as the simplicity of the poles of the transmission coefficient, the
confinement of these poles to the imaginary axis in the upper-half complex plane C*, and the absence of
singularities of the transmission coefficient for real k values are still valid for (1.1), and the proofs of such
properties are obtained by a variation of the arguments used for (2.17).

In the present initial paper we focus on the direct scattering problem for (1.1). Relying on techniques

1 we obtain the usual analyticity properties of the Jost solutions, their

established in a variety of papers,®~
small-k and large-k asymptotics, and various properties of the scattering coefficients. The bound state
solutions of (1.1) and (1.2) are those nontrivial solutions belonging to L*(R). We will see that the bound
states of (1.1) correspond to singularities of 7% (k) in C*. When P(z) > 0 or when P(z) has mixed sign,
we will see that there may be bound states corresponding to some complex-k values located off the positive
imaginary axis in C* and that the poles of TF (k) are not necessarily simple. In the radial case when
P(z) <0, under certain additional conditions on P’(z), using the theory of abstract operator polynomials,
Pivovarchik has shown that!? the number of bound states is independent of P(z) and that'3=1® the bound
states can only occur when k is located on the positive imaginary axis and each bound state is simple. In

Section 9, we will derive Pivovarchik’s results in an elementary way without using the theory of abstract

operator polynomials and without assuming the differentiability of P(x).

This paper is organized as follows. In Section 2 we study the analyticity properties of the Jost solutions
of (1.1) and analyze their asymptotics as £ — 0. In Section 3 we study the large-k asymptotics of the Jost
solutions. In Section 4 we obtain various properties of the scattering matrices Si(k’) and present some
examples showing that S*(k) may not exist at certain k values unless P(z) < 0. In Section 5 we study
the small-k asymptotics of the scattering coefficients and show that in the exceptional case S*(0) is jointly
determined by @Q(z) and P(z). In Section 6 we study the large-k asymptotics of the scattering coefficients. In
Section 7 we study the corresponding change in the scattering coefficients when P () and Q(z) are perturbed.

In Section 8 we analyze the relation between the poles of T+ (k) in C* and the bound states; we also study

multiple poles of T (k) in terms of Jordan chains of the differential operator given in (8.16). In Section 9



we study the bound states for (1.1) further and show that the poles of 7% (k) in C* can only occur in a
certain region in Ct determined by P(z) and Q(z); when P(z) < 0, we show that the number of bound
states for (1.1) is independent of P(x) and the bound states can only occur at certain negative energies, and
we also obtain some lower and upper bounds for these energies. In this section we also obtain a Levinson
theorem relating the number of bound states to the change in the argument of 7% (k), and we show that the
number of bound states is unchanged under small perturbations of P(x) and () in the generic case and is
unchanged under small perturbations of P(x) in the exceptional case. In Section 10, we show by examples
that there may be bound states with complex energies and that the multiplicity of a bound state may be
larger than one unless P(z) < 0. In Section 11 we analyze the zeros of the Jost solutions and obtain various
results concerning the number and location of these zeros and their relationship to the bound states; we also
show that the number of bound states of (1.1) with real energies is greater than or equal to the number of
bound states with P(z) = 0. Finally, in the Appendix we obtain various small-k estimates that are needed

in the proof of Theorem 5.2.

2. ANALYTICITY AND SMALL-k ASYMPTOTICS OF JOST SOLUTIONS

In this section, under the sufficient conditions P € L*(R) and @ € L}(R), we show that for each z € R

the Jost solutions and their z-derivatives are analytic in C* and continuous in C*+, and we establish their

3

asymptotics as k — 0. By C+ we denote Ct UR.

The Jost solutions of (1.1) and (1.2) satisfy

(21) ) = e 1 [ dysink(y — ) [£EPG) + QUL (80),

T

ke, 1 . .
(2.2) FEk) = [ dysink(o - ) [£ikPW) + QW) FE(E0)
Let us define the Faddeev functions from the left mli (k,z) and from the right m* (k, z) :
(2.3) mE(k,2) = e * o fE(k,x),  mE(k,z) = FTfE(k,2).

From (2.1) and (2.3) we obtain

(2.4) mi(k,z) =1+ ﬁ dy [e** V=) 1] [£ik P(y) + Q(y)] mE (k. y),

(2.5) mE (k, z) = _/ dy e?* =) [1ik P(y) + Q(y)] mi (k, y),
and hence we see that

(2.6) mE(k, +oo) =1,  mi'(k,+o0) = 0.



Similarly, from (2.2) and (2.3) we obtain

27) m(ka) =14+ 2 [ dy 0 1] [k P() + Q) m (k)
(2.8) mE (k,z) = / "yt kP (y) + Q)] mE(E, y),

and hence

(2.9) m;t(]f, —0) =1, m;t’(k', —o0) = 0.

The existence of the Jost solutions and the Faddeev functions is clear from (the proof of) the following
proposition, where we also establish their continuity and analyticity properties.
Proposition 2.1 Assume P, @ € L*(R). Then, for each z € R, the functions m,lL (k,z), mE(k, z), m,i’(k, z),
and m¥' (k, z) are analytic in Ct and continuous in C+\ {0}. Consequently, for each # € R, the Jost solutions
f,i (k,x), fX(k,z) and their derivatives fli'(k', ), f*'(k,z) are analytic in C* and continuous in C+\ {0}.

Moreover, we have

(2.10) mif (k, 2)| < Cre®/lm (k,2)] < Cre®/IF ke CF\ {0},

(2.11) it (k, 2)] < Ca(1+ (kDL mi' (k, 2)] < Ca(1+ [k)e/, ke CF\ {0},

where C1, Cs, and C3 are constants independent of z and k.

PROOF: Tterating (2.4), we obtain |m,i(k', z)| < efm [|P|+|Q|/|k|], from which we get (2.10) for m,i (k,z) with
Cy = ellPlh and Cy = ||Q]];. Similarly, iterating (2.7) we get |mE(k, z)| < ef—w[lleQl/lkl], from which we
have (2.10) for m (k, z). Using these estimates in (2.5) and (2.8), respectively, we obtain

“npi+lel/ikn [ “UPlHeUIk [f
(k. )] < e/ [T QD b)) < e | e+
from which we get (2.11) with Cs = (|| P||1+]|Q||1)e!*!1*. The analyticity and continuity results are obtained
using (2.10) and (2.11). 1

Theorem 2.2 Assume P € L'(R) and Q € L}(R). Then, for each z € R, the functions m,i (k,z), mE(k, z),
m;t’(k', ), and m¥'(k,z) are analytic in C* and continuous in C*. Consequently, for each # € R the Jost
solutions f,i(k, z), fE(k,z) and their derivatives fli’(k, z), ft'(k,z) are analytic in Ct and continuous in

C+. Moreover, we have

(2.12) |mli(]<:, z)| < Cy4[l + max{0, —z}], |mE(k, z)| < C4[1 + max{0, z}], ke Ct,

(2.13) [m¥(k, )] < Cs [L+ [k [L+ max{0, —z}], |mZ'(k,2)| < Cs [L+ k] [1 + max{0,2}], k€ CF,
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where C4 and C5 are constants independent of z and k.

PROOF: From (2.4), for k € C+ and y > z, using the estimates

(2.14) 1= R0 < (1= 20| < k| (y - 2),
we obtain
(2.15) it (k,2)] < 1+ / dy[|PW)] + (v — 2) [Q)]) Imf (k, ).

From (2.15) we get (2.12) with C4 = ellPli+1Qllu by using Gronwall’s inequality as in the proof of Theorem
2.1 of Ref. 11. Using (2.12) in (2.5) we obtain

(o)

i (k, )| < 04/ dy [[k] [P(y)| + [Q(y)[] [1 + max{0, —y}],

and hence we have (2.13) with Cs = (||P||1+]|Q]|1)el Pl +1@la for m¥! (k, z). Thus, m] (k, z) and mj’ (k, z)
are analytic in Ct and continuous in C+. The proofs of (2.12) and (2.13) for my (k,z), mt(k,z), and their
z-derivatives are obtained in a similar way, allowing us to conclude that also these functions are analytic in
C* and continuous in C*. Then, using (2.3) we can conclude that f,i (k,z), f£(k,z), and their z-derivatives

are analytic in Ct and continuous in C* for each z € R. I

From (2.4)-(2.8), for each z € R, as k — 0 in C* we have
(2.16) mE (k,2) = miE(0,2) 4 o(l), ' (k,2) = mF(0,2) + ofL),
(b, 2) = mE(0,0) +o(1),  mE'(k, ) = mE(0,) + o(1).
Let us consider the Schrodinger equation obtained from (1.1) and (1.2) by setting P(z) = 0, namely
(2.17) PV ke, 2) + 2Nk, 2) = Q) ¥k, 2),  zER.

Let fl[o](k, z) and fr[o] (k, z) denote the Jost solutions of (2.17) from the left and from the right, respectively.
We have®?

(2.18) A0 =1+ [ dutu- 200 £70.0)
(2.19) 00 =1+ [ die-naw 0.,
(2.20) 100 =- [~ arow A0,
(2.21) FO0,2) = /_; dy Q(y) F1(0, y).

7



From (2.18)-(2.21) it is seen that f,i (0,2), f£(0, ), and their derivatives are determined by Q(z) alone.

In fact, we have

(2.22) m?:(oix):fl:t(o’r):fl[O](()’x): mit(0=$):f;t(O’x):fr[O](O’r)’

(2.23) m?:l(oa z) = l:tl(o’ z) = I[O]I(Oa z), m;t/(o’ z) = fr:k/(():r) = fr[O]/(O’ z).

As seen from (2.17) and (2.22) we have

e +11 [0]n [0]
9294 2y — 21 (0755) _ I (O,r) _ f] (OaI) _ fr (0,1‘)
(224 @) fE02)  FF02) %02 0, 2)

Let SI(k) denote the scattering matrix associated with (2.17):
(2.25) SOl(k) =

where T[O](k) is the transmission coefficient and R[O](k) and L[O](k) are the reflection coefficients from the

right and from the left, respectively. Generically f,i(O, z) and f(0,z) are linearly independent, but in the

so-called exceptional case these two functions are linearly dependent. We have®?

) U000 = [ dew 0= [ avew) 570, = lim s

where [f;g] = fg' — f'g denotes the Wronskian. Thus, we are in the generic case if T711(0) = 0 and in the

exceptional case if T[O](O) # 0. In the exceptional case, let us define
(2.27) Y=
Then v is a nonzero constant determined by Q(z) alone, and we have y = f,[o](O, —0) = 1/fr[0](0, +00).

3. LARGE-£ ASYMPTOTICS OF JOST SOLUTIONS

In this section we analyze the large-k asymptotics of the Jost solutions. We assume that P € L'(R)
and @ € L1(R). The results given here will be used in Section 6 to obtain the large-k asymptotics of the

scattering matrix S*(k).

In terms of the Jost solutions of (1.1), let
(3.1) U;t(k¢m):eicm;t(k7$):6_ikx:t€fl:t(k’r)¢ 77;&(]{7=$):6ip:FCm;t(k=$):eikxipngfr:t(k¢m)=
where we have defined

(3.2 ¢=¢w) =3 [ P, p=j [ a:PE)



so that ffoo dz P(z)/2 = p — ¢. Thus we have

(3.3) It (k@) = T CE (k, ), ik w) = T (ik £ P/2) 0 (k@) + o (k@)

(34)  fif(kyz) = e FOFEOE(k,x),  fF (k) = e EFPEC[(—ik F P/2) 0 (k, 2) + 7 (K, 2)]

Theorem 3.1 Assume P,Q € L'(R). For each z € R, the functions nli(k,x) and nt(k,z) are analytic in

C*, continuous in C* \ {0}, and we have

(3.5) I (k,2)| < CeCFLInE(k, )| < CeCFL ke CF\ {0},

(3.6) nE(k,2) =1+ 0(1), nf(k,2)=1+0(1), k—ocoin CT,

where C' is a constant independent of z and k.

PROOF: The analyticity in C*, the continuity in C+\ {0}, and (3.5) follow from (3.1) and Proposition 2.1.
Thus, we only need to prove (3.6). Using (3.1) in (2.4), we obtain

(37) () = €0 oo [y () - 1) SOk P() + QU (k. ),

where ((z) is the quantity in (3.2). Letting z(k,z) = n;f(k,z) — 1, after some simplification, we can write

(3.7) in the form

(3.8) Ahm:m@wﬂgﬁfw@k“Wﬂ—ué@*@wmw+mwdhw

where we have defined

1

00 . ) 1 00 o1
(3.9) 2ok, 2) = ﬂ/ dy 62zk(y—x)6C(a:)—C(y)[lkp(y) +Q(y)] — ﬂ/ dy e¢(®) C(y)Q(y).

Using (2.14) in (3.9) we get
(3.10) |z0(k, )| < C/ dy[|P(y)] +1QW)I/IK]l, ke CF\{0}.
Iterating (3.8) with the help of (3.10), we obtain

(3.11) |2(k,2)| < C [/Oo dt [|P(1)] + |Q()|/k]]| €€ o IP@I+RWI/EN,

Applying the Riemann-Lebesgue lemma to (3.9), we obtain zo(k,z) = o(1) as k — +oo. Using (3.10) and
(3.11) we can conclude that 77,+(k, x) is uniformly bounded in C+ for |k| > a > 0 for each # € R and a > 0.
Hence, by a Phragmen-Lindelof theorem!® we obtain (3.6) for 77,’"(/{7, z). The proof of (3.6) for n; (k,z) and

nt(k,z) is obtained in a similar manner. |



Theorem 3.2 Assume P € L*(R) and @ € Li(R). Then, for each z € R, the functions n,i(k,x) and

nt(k,z) are continuous in C*, and we have

I (k, )| < C[l + max{0,—z}],  |p¥(k,z)| < C[l+max{0,2}], ke CH,

where C' is a constant independent of z and k.
PROOF: The results are obtained from (3.1) and Theorem 2.2. I

Next, without making any additional assumptions on P(z), we obtain the large-k asymptotics of the

Faddeev functions. Let us define

(312) G (k) = o EPE rE ) + 2 (ko) €5k 2) = o [P w (ko) + 2k, 2)]

Theorem 3.3 Assume P, € L}(R). For each z € R, the functions .f,i(k, z) and £ (k, z) are analytic in
Ct and continuous in C*\ {0}, and they satisfy

(3.13) ¢E(k,z) = o(1), €X(k,z)=0(1), k—ooin C*¥.

PROOF: From (3.1) and (3.12) we have

1 1 . —ikx
(3.14) ek, z) = %m,i’(k,aj) et = = [ (k, z) — ik £t (k, z)] e~ TRotC,
(3.15) & (kyz) = %mf’(km) e*PFE = %[f?’(k,w) + ik [ (k, )] e TEPFE
1 1

Using (3.1), (3.14), (3.15), and Proposition 2.1, we have the continuity of fli(k',x) and &X(k,z) in k for
C+\ {0} and their analyticity in k for C*. Thus, we only need to prove (3.13). From (2.5), (3.1), and (3.12)

we get

(3.16) &k, z) = —/ dy [P(y) — iQ(y)/ k] e =2l =CW) b (& ).

Thus, using Theorem 3.1, we see that the right-hand side of (3.16) is uniformly bounded in C+ when
k| > a > 0 for each # € R and a > 0. Using a variant of the Riemann-Lebesgue lemma, we conclude
that the right-hand side of (3.16) is of o(1) as k — +oco. Hence, by a Phragmen-Lindelof theorem,'® we can
conclude that the left-hand side of (3.16) is of o(1) as k — oo in C+, which implies (3.13). We obtain (3.13)

for & (k,z) and &X(k, z) in a similar manner. i
Using (3.13)-(3.15) we have the following:

Corollary 3.4 Assume P,@ € L'(R). For each z € R, we have [cf. (2.11)]

m,i'(k', z) = o(k), m;t'(k, z) = o(k), k — oo in C+.

10



Let us also mention that it is possible to study the large k-behavior of the solutions of (1.1) by converting
it into a system of two coupled, first-order differential equations. We will not give the details here but refer

the interested reader to Ref. 17.

4. SCATTERING COEFFICIENTS

In this section, under the assumptions P € L}(R) and @ € L}(R), we analyze various properties of the
scattering coefficients. We show by examples that S*(k) may not exist for some real k and 7+ (k) may have
poles off the positive imaginary axis. In general, since P(z) is assumed to be real, S*(k) is not unitary; we

obtain some relations when P(z) < 0 and P(x) > 0, which reduce to the unitarity relations when P(z) = 0.

When k € R, the quantities f;F (—k, z) and fF(—k, ) are also solutions of (1.1) and (1.2), respectively,
and hence, they can be expressed as linear combinations of f,i (k,z) and fE (k,z), unless the latter functions
are linearly dependent. Using (1.3) and (1.4) we obtain

F(_ + _pt +

w it B et |

In general, fF(—k,z) and fF(—k,z) cannot be continued to C* in k because f,i(lc, z) and fE(k,z) usually
cannot be extended to the lower-half complex plane C~ in k. It is already known® that S[O](k) defined in
(2.25) exists for k € R\ {0} if @ € L'(R), and under the additional assumption @ € Li(R) it is guaranteed
that S[O](k) exists also at k = 0. We will show through examples that S*(k) may not exist at k = 0 or at
some other real values of k when P(z) > 0 or when P(z) has mixed sign. We will see that when P, @ € L*(R)
and P(z) < 0, the scattering matrix S*(k) exists for all k € R\ {0}, and we will study S*(k) at k = 0 in
Section 5. Thus, (4.1) may not hold at certain real k£ unless P(z) < 0.

The transformation k — —Fk is a reflection with respect to the imaginary axis, where the overline denotes

complex conjugation. Under this transformation we have ik — ik and

(4.2) fE(—k,2) = fE(k, 2), fE(—k z) = fE(k,2), ke Ct.

Hence, for real k, we get

(4.3) fE(—k,x) = fE(k, 2), =k, ) = f£(k, ), ke R.

Using (1.3) and (1.4) we obtain the Wronskian relation

(4.4) b 2)i o) = s, ke

From (4.2) and (4.4) we see that

(4.5) L _ 1 , ke Ct\{0}.
TH(—k) T*(k)



It follows from (4.5) that the zeros of 1/T%(k) either lie on or are symmetrically located with respect to the
imaginary axis in C*; in particular, if 1/7% (ko) = 0 for some ko € R\ {0}, we must also have 1/7%(—ko) = 0.

Proposition 4.1 Assume P,Q € L'(R). Then, 1/T%(k)] are analytic in C* and continuous in C+ \ {0}.

Consequently, T# (k) cannot have any zeros in C+ \ {0}.
PROOF: This follows from (4.4) and Theorem 2.2. |
From Proposition 4.1, we obtain the following:

Corollary 4.2 If P,Q € L'(R), then the zeros of k/[(k + i) T%(k)] in Ct are all isolated, and their only

accumulation points, if there are any, must lie on the real axis or at infinity.
We will see in Proposition 6.2 that the zeros of k/[(k + i) 7% (k)] in C* cannot accumulate at infinity.

Using (1.3), (1.4), (2.3), (2.4), and (2.7), we obtain

49) gagg =1 - g | ik P+ Q) ko) = 1= g [ dy ik P + QUL m¥ (k)
+ 00

(47) Pl =g [ v ik P + Qi k),
+ 00 .

(48) e = g e ik PO) + Q) ik k).

Proposition 4.3 If P,Q € L*(R), then 1/T%(k) are bounded in the sector {k € C+ : |k| > a > 0} for
every a > 0. If, in addition, @ € L}(R), then k/[(k + i) T%(k)] are continuous and bounded in C+, and
kLE(k)/T*(k) and kR*(k)/T*(k) are continuous and bounded in R.

PROOF: The proof is obtained by using (2.10) and (2.12) in (4.6)-(4.8). 1
Using (1.3) and (1.4), for k¥ € R we obtain the Wronskian relations

2ik LE(k)  2ik R¥(—k)

(4.9) Ui (k)i FF (k)] = ~ == =
(4.10) 2k = - 2 () 2ETCD)
(4.11) £k, 2); fF (—k,2)] = —2ik = —2ik - ;f;g’?ff_(;)"’) :
(4.12) (b, 2); FF(—k,2)] = 20k = 2k ;ﬁ?ﬁl}“

The next example shows that if we relax our conditions on P(z) and @Q(z), the scattering matrix S*(k)

may not exist at all.
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Example 4.4 Let P(z) and Q(z) have support in (0,4+00) and be given by

e SR ORL Ol

(4.13) Qx) = 0()

where 0(z) is the Heaviside function. Note that P ¢ L'(R). Two linearly independent solutions of (1.1) are

given by

—ikx

1+

N — o |- LA S T T VRN I (6 S S D oL ke
¥y (k) = 0(x) J:—}—l—i—k 2/{72(1—}—1‘)]6 +6( r)[<k+2k3 sinkz + 1+k 572 e .

Note that ¥ (k,z) — 0 and ¢ (k,z) = O(z) as * — +o0; hence, we cannot form a solution asymptotic to

i (k,z) = 0(x)

+0(-2) [e—ikx B sin km]

k

¢'®% as ¥ — +o00. Although we can form a linear combination of ¢§ (k,z) and ¥ (k,z) that is asymptotic

to e*% as & — —o0, the resulting function is not bounded as @ — 4oc0. Since ¥ (—k,z) and ¢F (—k, z)
constitute two linearly independent solutions of (1.2), neither (1.1) nor (1.2) have any scattering solutions.

Thus, S*(k) do not exist for the potentials given in (4.13).

Note that contrary to the case where P(xz) is either zero or purely imaginary, we cannot rule out any
singularities of the scattering coefficients 7% (k), R (k), and L*(k) on the real axis a priori. The next example
shows that 1/7% (k) may have zeros on the real axis and that 1/7% (k) may have zeros off the imaginary

axis in Ct. The numerical results were obtained by using the mathematical software Mathematica.

Example 4.5 For real parameters a4 and b4, let

b_, z € (—1,0), a_, z € (-1,0),
P(z)=1< by, z € (0,1), Q(z) =1 ay, z e (0,1),
0, elsewhere, 0, elsewhere.

The resulting transmission coefficient can be obtained by using (4.5) of Ref. 18 and the fact that when we
shift the potentials in (1.1) as P(z) — P(x —¢) and Q(z) — Q(z — ¢) for some ¢, the resulting transmission
coefficient is unchanged and the resulting reflection coefficient from the right becomes ¢2*°R* (k) and the

resulting reflection coefficient from the left becomes e~2*¥¢ L+ (k). We have

e2ik ik k2 4+ s2 . /{72—1—51 . k2 — 2 . k2—si .
T — € coss_ + — sin s_ cos sy + sinsy | — sin s_ smmsy |,

T+ (k) 2iks_ 2iksy 2iks_ 2iks

where we have defined sy = \/k? — ib k — ay. Let us use an overline on the last digit to indicate a roundoff.
When a_ = —2.8500, ay = 0, b_ = 2.0002, and by = 1.7979, we find that 7F (k) has a simple pole on the
real axis at k = £1.7194. For example, when a; = 0 and by = —/3/2, in order to get a zero of 1/T*(k)
at k = :I:l/\/i we need to let a— = —8.9962 and b_ = 3.2229. By using a_ = 8.6305, ay = 0, b_ = 1,

by = 14/5, we obtain a zero of 1/7 (k) at k = 46.9405+ ¢; for the same ay and by values we obtain another
zero at k = £27.6135 + 2.0981s.

In Example 4.5 we have seen that 1/7% (k) may be zero on R\ {0}. Next we give a simple example
where 1/7%(0) may be equal to zero.
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Example 4.6 Let Q(z) = 0 and
b e(-1,1
P(‘I )— { ’ v ( ’ )’

0, elsewhere,

so that f_oooo dz P(x) = 2b. Then we have

1
T+(k)

= g2tk [cos 2s — (b + 2ik) sin 25] L*(k) _ R*(k) sin 2s

T+(k)  T+(k) 2s '
where we have defined s = \/k? — ikb. Thus, as k — 0, we get

L L+(0) _ RrR*(0)
THO) ~ 7 TH0)  T+(0)

Hence, 1/7%(0) = 0 if and only if b = 1.

Except at their singularities on R, the scattering coefficients satisfy certain properties, which we present

next. Using (4.3), (4.4), (4.9), and (4.10) we obtain
(4.14) St(—k)=S%(k), keR.
Whenever T%(k) is well defined on R, from (4.9)-(4.12) we get

(4.15) LE (k) TF(—k) + TE(k) R¥(=k) = RE(k) T (k) + T (k) LF(—k) =0, kER,

(4.16) TE(k) TF(—k) 4+ LY (k) LT (k) = TH(k) TF(—k) + R* (k) RF(—k) =1, keR.
We can then write (4.15) and (4.16) in matrix form as
(4.17) St(k)ST(—k)'=1,  keER,

where T is the 2 x 2 unit matrix and the superscript ¢ denotes the matrix transpose. From (4.17) we see that

for £ € R we have

_ T (=k)
(4.18) TH0) = T e~ T ) RE (R
(4.19) L7 (k) —R*(—k) R¥ (k) —L* (k)

T TER) — LE(R) RE(R) T TER)T — LE(R) RE(R)

Thus, although none of the scattering coefficients can in general be extended to C~, we see from (4.4) and

(4.18) that [T%(k) — L* (k) R*(k)/T*(k)] is analytic in C~. From (4.19) we conclude that the determinant
of S%(k) is given by

T* (k)

S S ke R.
(k) " ©

det St (k) = T%(k)? — LE (k) RE(k) =

The behavior of S*(k) at k = 0 will be analyzed in Section 5.
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Contrary to the case P(z) = 0, the scattering matrix S*(k) is in general not determined if one of the

reflection coefficients and the bound state energies are known, as illustrated by the following example.

Example 4.7 Assume @ € L{(R), and let 77,+(/<:, z) =n; (k,z) = 1in (3.1), or equivalently
(4.20) Frk ey = b= LT e gy 2 e
Comparing (4.20) with (1.3), (1.4), and (3.2), we see that

(4.21) THk)=¢€", LY(k)=0, T (k)=e?, R (k)=0,

provided the quantity p defined in (3.2) is finite. If P € L'(R), we must have p finite; if p is not finite, then
P ¢ LY(R). Thus, if p = 400, the scattering theory developed under the assumption P € L'(R) may break

down. In fact, if we let p — 400 in (4.21), we obtain

/TH(k)=0, L*(k)=0, T (k)=0, R (k)=0,
and if we let p — —oc0 we get

TH(k)=0, LT(k)=0, 1/T7(k)=0, R (k)=0.

Note that fl[o](O, ) is uniquely determined by Q(z) alone, as seen from (2.18). From (2.22) and (4.20), we

obtain

(4.22) P(x) = 27](’[;]]/(0’ ?).
f7(0,z)

If P € LY(R), from (4.20) we see that fl+(0,m) > 0 for € R, and thus Q(z) must be an exceptional
potential and the corresponding Schrodinger equation (2.17) cannot have any bound states. Conversely, if
Q(z) is an exceptional potential belonging to L}(R), from (2.18) and (2.20) it follows that P(z) defined in
(4.22) must be in L'(R). Now let us carry the analysis further when p is finite. Using (3.2) and (4.22) we
have f_oooo P = —2logy and e™? = «, where ~ is the constant defined in (2.27). From (4.19) and (4.21) we
obtain L=(k) = —y2R*(—k) for k € R. Now let us evaluate L= (k) and R*(k). It can be verified that the

Jost solution of (1.2) from the left is given by

(4.23) f(k2) = Jket [T P12 ke[ P/2/ dy P(y) eszy+fy P
Using (4.22) we can rewrite (4.23) as
0 [o]
_ 1 : —ike 0] F00,9) s
(4.24) Ik x) = €% —2eh7 f (O,x)/ dy ———Le*"Y,
' 10,2) l e 0,92
Finally, from (1.3) and (4.24) we get
) [0]r ) oo [0]/ ]
(4.25) R*(k) = 2/ dy we—“y, L (k) = _26—217/ dy #gw
—oo  f17(0,y) —co  f37(0,y)?
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In general, S*(k) is not determined by only one or two of its entries. For example, as seen from (4.21),
T*(k) and L* (k) cannot determine R*(k), and there are infinitely many R* (k) corresponding to these two
scattering coefficients in (4.21). Therefore, the coefficients P(z) and Q(«) cannot in general be determined
from the scattering data consisting of the transmission coefficient and only one of the reflection coefficients.
The following example further illustrates this fact in the special case when P(x) and Q(z) have support in
a half-line; thus, we can conclude that the scattering data consisting of the Jost solutions and their spatial

derivatives at the boundary of the support of P(z) and @Q(z) cannot uniquely determine P(z) and Q(z).

Example 4.8 Consider the same situation as in Example 4.7 but with P(z) = Q(z) = 0 when z < 0.
Assume that @(z) is an exceptional potential without bound states and belongs to L1(0,+0o0). Then the

Jost solutions of (1.1) for < 0 are given by

1 , : ,
+ ) — ikx —ikx + N _ —ikx )
fi (k’l)_—T‘F(k’)e +T+(]<:)e , I (kx) = e, z <0,
+7 ") — ik ikx ZkL+(k) —ikx +17 Y <7 —ikx ,
] (k,x)_T+(k)e _7T+(k) e , o L (k,x) = —ike , z <0.

Hence, the two sets of scattering data {T*(k), L*(k)} and {f;'(k,0), fF(k,0), f;*'(k,0), f¥'(k,0)} contain
the same information. Using (4.21) and (4.22) we see that L*(k) = 0 and TF (k) = 1/f1[0](0,0) correspond
to P(x) = Qfl[o]'(O,x)/f,[O](O,x) and Q(z) = f][o]/'(O,x)/f,[o](O,x)z. We can certainly find infinitely many
f,[o](O, z) such that fl[o] (0,0) is a specified number and f,[O]I(O, z) = 0 when # < 0. The corresponding reflection
coefficient from the right is obtained by using (4.25), namely R* (k) = 2 [° dye=2%v I (0, 4)/ (0, y)?,
from which we see that R*(k) must be analytic in C~ because its Fourier transform has support on a

half-line.

Proposition 4.9 Assume P, € L'(R). Then, for any ko € R\ {0}, the quantities 1/7% (ko) and
R*(ko)/T* (ko) cannot be zero simultaneously; similarly, 1/7% (ko) and L*(ko)/T* (ko) cannot be zero
simultaneously. If 1/7% (ko) = 0 for some ko € R\ {0}, then none of the quantities R*(ko)/T* (ko),
LE(ko)/T* (ko), RE(—ko)/T*(—ko), L¥(—ko)/T*(—ko) are zero. The order of the zero of 1/T+ (k) at kg is
the same as the order of the pole of R¥ (k) and of LT (k) at k.
PROOF: By Proposition 4.3 we know that 1/7%(k), R*(k)/T*(k), L*(k)/T* (k) are continuous when
k € R\ {0}. Morover, the right-hand sides in (4.11) and (4.12) cannot be zero when k # 0. Thus, the proof
is complete. I

If 1/T*(ko) = 0 for some kg € R\ {0}, from (4.4) we see that f["(k’o,x) and f}(ko,z) are linearly

dependent, and from (1.3) and (1.4) we obtain
[ (ko,2) _ L¥(ko) _ T (ko)

= = Co,

fF(ko,z)  TH(ko)  R*(ko)

for some nonzero constant cg, which is not necessarily real.
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Proposition 4.10 Assume P,Q € L'(R). Then, R* (k) is continuous for k € R\ {0} if and only if 1/7* (k)
does not vanish for k € R\ {0}. Similarly, L* (k) is continuous for k € R\ {0} if and only if 1/7% (k) does
not vanish for k£ € R\ {0}.

PROOF: Assume R* (k) is continuous for k¥ € R\ {0}; as seen from Proposition 4.9, if 1/T (ko) = 0 for
some ko € R\ {0}, then Ri(k’o)/Ti(ko) # 0; hence, writing 1/T% (ko) = [RY(ko)/T™ (ko)][1/R*(ko)], we
see that 1/T%(ko) = 0 only if |R*(k)] — +o0o0 as k — ko, which cannot happen if RT(k) is continuous
for k € R\ {0}. Conversely, assume 1/7%+ (ko) # 0 for k € R \ {0}; then we see that R*(k) is given by
[RY(k)/T*(k)]/[1/T*(k)], which is the ratio of two continuous functions with a nonzero denominator on

R\ {0}; hence R*(k) is continuous on R\ {0}. The proof involving L* (k) is obtained in a similar manner. |

Proposition 4.11 Assume P, @ € L}*(R). For k € R\ {0}, the quantity 7% (k) is continuous if and only if
R*(k) is continuous; equivalently, T+ (k) is continuous if and only if L* (k) is continuous.

PROOF: By Proposition 4.3 we know that 1/7% (k) is continuous on R\ {0}. Using T (k) = 1/[1/T*(k)],
we see that 7 (k) is continuous on R\ {0} if and only if 1/7" (k) is nonzero on R\ {0}. From Proposition

4.10, we see that this happens if and only if the reflection coefficients R* (k) and L* (k) are continuous on
R\ {0} 1
In general, the matrices Si(k') are not unitarity. However, we can obtain some identities leading to

certain useful inequalities for nonnegative or nonpositive P(z). These are given in the next proposition.

Proposition 4.12 Assume P, € L*(R). The scattering coefficients satisfy

+ 2 0

ﬁ: H ‘5122 ]F/_ de|fif(k, ) P(z),  keR\{0},
+ 2 o

m: H ‘gi—gg $/_ dz |fE(k, )] P(z),  keR\{0}.

Hence, if P(z) < 0, then 1/T* (k) cannot have any zeros for k € R, and we have

(4.26) ITH(R)* + [LF (k)P <1, |THR)P +RY(K))P <1, keR\{0}.
If 1/T*(k) does not have any zeros for k € R and P(z) > 0, then we have

(4.27) TH(R)* + [LF (k)P > 1, |THE)P + RY(K))P > 1, ke R\{0}.
PROOF: From (1.1) and (1.2) we obtain

(4.28) %[f,i(—k, 2); fE(k, x)] = £2ik fE(—k, x) fX(k, z) P(2),

(4.29) %[f?(—k, 2); 77 (k,@)] = £2ik fF (< k, 2) [ (k, ) P(),
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Hence, using (1.3), (1.4), (4.3), (4.14) in (4.28) and (4.29), for k € R\ {0}, we obtain

L |EwPE :
(430) 1— |Ti(k’)|2 + ‘Ti(k’) - i/_oo dz |fli(k’x)| P(x):

1 REB)® [ .
(4.31) 1-— |Ti(]{7)|2 + ‘Ti(k’) = :E/_OO de |f-(k,z)|” P(x).

Hence, if P(z) < 0, from (4.30) and (4.31) we see that 1/|TF(k)|? > 1 for k € R\ {0}, and hence 1/7* (k)

cannot vanish on R\ {0}; (4.30) and (4.31) also imply (4.26) and (4.27). I

1

1
Proposition 4.13 Assume P, Q € L*(R). If P(z) < 0, then we have >
() 11() T = (6

for k € R\ {0}.

PROOF: From (4.9), (4.10), (4.30), and (4.31) we obtain

! - ! _OO;L‘+CL‘2 “(k,2)|? P(x
43) e e = )t M E P I P P@), keR\{0),

— 00

and hence the left hand side in (4.32) must be nonpositive if P(z) < 0. I

5. SMALL-k ANALYSIS OF SCATTERING COEFFICIENTS

In this section, under the assumptions P € L}(R) and @ € Li(R) in the generic case and P,Q € L}(R)
in the exceptional case, we analyze the small-k asymptotics of Si(k'). In the exceptional case, we show that

S*(0) is not determined by @(z) alone and we obtain S*(0) explicitly in terms of P(z) and Q(z).

From (2.22), (2.23), (2.26), and (4.4), it is seen that we have the generic case for (1.1) if and only we
have the generic case for (2.17). In other words, the generic case for (1.1) is determined by Q(z) alone, and
the generic case occurs when the Wronskian in (2.26) is nonzero. Thus (1.1) and (1.2) are either both generic

or both exceptional. From (2.3), (2.6), (2.9), and (4.4) we can conclude that

—2ik
4/ _ g _ _ i -
17100, 400) = —[7(0, —00) = limy 7o

Now let us analyze the asymptotics of Si(k') as k — 0 in the generic case.
Proposition 5.1 Assume P € L}(R) and @ € Li(R) and suppose that we are in the generic case. Then
R*(0) = L*(0) = —1, T*(k) vanish linearly as k — 0 in C*, and

21k . 2tk . 21k
— = lim = lim

ST T A TR e TOR)

(5.1)

Furthermore, det S*(0) = —1, and
—2ik

5.2 TE (k) =
2 “ 12, dy Q(y) 10, y)

+o(k),  k—0in C*,

PROOF': Recall that the generic case occurs if fli (0,2) and f*(0,z) are linearly independent on R. From
(4.4) we see that T+ (k) must vanish linearly in order for k/T% (k) to have a nonzero limit at k = 0. Using
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(2.22), (2.23), (2.26), and (4.4), we obtain (5.1). Since generically R[O](O) = L[O](O) = —1, from (4.9) and
(4.10) in the limit & — 0 we get R*(0) = L*(0) = —1. Then, using (4.19) we obtain det S*(0) = —1. From
(2.26) and (5.1) we obtain (5.2). 1

Letting £ — 0 in (4.1) and using (2.22), we see that the Jost solutions would have a singularity at k£ = 0

in the generic case if a zero-energy reflection coefficient were equal to +1.

Now let us study the asymptotics of Si(k) as k — 0 in the exceptional case. To prove the following

theorem, we will impose a slightly stronger condition on P(z) than needed in the generic case.

Theorem 5.2 In the exceptional case, under the assumptions P, @ € Li(R), we have

2y
5.3 TE(0) =
(53) © Y24+ 1F ffooo dx P(x) f,[o](O,:L‘)Z’

v?2 -1+ ffooo dz P(x) f,[o](O, z)?

5.4 LE(0) =
G4 ( Y+ 1F [7 de P(x) f,[o](O, x

~—
3V

(5.5) RE(0) =

where v is the constant defined in (2.27).

PROOF: We obtain 7 (0) in (5.3) by using (A.18) and (A.19) in (A.17) and also using (4.4). The value of
T-(0) in (5.3) is obtained by changing the sign of P(z). In order to obtain L*(0) in (5.4), as in the displayed
equation following (A32) of Ref. 11, we first derive
(5.6) .

R0 (k) £ ()] =1 (4, 0)[<ikA10,0) + £10.0) + [ ds [P () + QNGE,)

0
0

i (k0) [—z’kﬁ(o, 0+ £0.0)- [

= H kP () + QNI )|

— 00

where 1/3(/{7, z) is the function in (A.2). Estimating various terms in (5.6) in a similar manner we estimate
various terms in (A.17) as in the proof of Proposition A.4, and also by using (4.9), we obtain L*(0) in (5.4).
Proceeding in a similar manner we obtain R*(0) in (5.5). The values of L~(0) and R~ (0) are obtained from
L*(0) and R*(0) by changing the sign of P(z). I

Proposition 5.3 Assume that P € L'(R) and Q € Li(R) in the generic case and that P,Q € L}(R)
in the exceptional case. If any one of 1/T%(k), R*(k)/T%(k), L*(k)/T* (k) is continuous at k = 0, then
all three are continuous at k = 0. Moreover, 1/T*(k) and 1/7~ (k) are both continuous at k¥ = 0 or both

discontinuous at £ = 0.

PROOF: Using (2.3) and (2.12) we see that the right-hand sides of (4.30) and (4.31) are continuous for k& € R;;
the analysis of the left-hand sides as k — 0 allows us to conclude that if any one of 1/7%(k), R (k)/T*(k),
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LE(k)/T*(k) is continuous at k = 0, then all three are continuous at k = 0. Using (2.3) and (2.12) we see
that the right-hand side of (4.32) remains bounded and continuous as k — 0; thus, the left-hand side must
also behave this way, which allows us to conclude that 1/7% (k) and 1/7"~ (k) are both continuous at k = 0

or both discontinuous at £ = 0. i

Theorem 5.4 Assume that P € L}(R) and @ € Li(R) in the generic case and that P,@Q € L}(R) in the
exceptional case. Then, in the generic case the six quantities 1/7%(k), RT(k)/T*(k), and LE(k)/T* (k) are
all discontinuous at & = 0; in the exceptional case, these quantities are all continuous at & = 0.

PROOF: Generically, Tt (0) = 0, and thus 1/7*(k) is not continuous at k = 0. Hence, using Proposition
5.3, we see that the remaining five quantities are also discontinuous at & = 0. In the exceptional case, from

Theorem 5.2, we see that 1/7%(k) remains bounded and hence continuous at k¥ = 0. Hence, by Proposition

5.3, the remaining five quantities are also continuous at £ = 0. |

In the exceptional case, since 1/7%(k) is continuous at k = 0 whenever P,@ € L}(R), with the help of
Theorem 5.4, it is also possible to prove (5.3)-(5.5) as follows. First, note that (4.30) implies that in this case
Ti(O) #0, Si(O) is real valued, and the zero-energy Jost solutions are also real valued. In the exceptional

case, from (2.22) and (2.27) we have
150, 2) = 10, 2) = 4 (0, 2) = 7 ££(0, 2).

Now let us consider the asymptotics of S (k) as & — 0 in the exceptional case. Letting k — 0 in (4.1) and

using (2.22), we obtain

(5 7) y = fl[O](O,JJ) _ fl:t(o,l‘) _ T:t(()) _ T[O](O) _ 14+ L[O](O) _ 1+Li(0)
| A90,2)  FF0,2) 1+ RE0) 1+ RIOK0) T0(0) TE(0)

From (5.7) we have

_ 1 LE(0) 1 REQ0) 1
58 THO) TTE0) " TE0) TTE0) 5
From (4.30) we see that

+ 2 co
(5.9) 1— TiiO)? + ;igg; = :t/_oo da P(2) f1(0, 2)2.

Eliminating L*(0)/7%(0) in (5.8) and (5.9) we obtain

27y * 0

which gives us (5.3). Then, using (5.3) in (5.8) we obtain (5.4) and (5.5).
Using (5.1) and (5.3) we obtain the following result concerning the status of 1/7%(k) at k = 0.

Proposition 5.5 Assume that P € L}(R) and @ € L}(R) in the generic case and that P,@ € L}(R) in the
exceptional case. In the exceptional case 1/T% (k) vanishes at k = 0 if and only if ffooo dz P(z) fl[o](O, z)? =

72 4+ 1, where 7 is the constant defined in (2.27). In the generic case, k/7F (k) has a nonzero limit as k — 0.
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PROOF: The proof in the exceptional case follows from (5.3). The proof in the generic case follows from
(5.1) and the fact that k/7T7l(k) has a nonzero limit as k — 0. I

In the exceptional case, since S*(0) is real valued, from (5.7) it is seen that S*(0) is a unitary matrix if
and only of R*(0) = —L*(0). From (5.3) and (5.4), it is seen that this occurs when ffooo dz P(x) 1[0](0’ z)? =
0, in which case we have S*(0) = SI’J(0) and det S*(0) = 1. Note also that the denominators in (5.3)-(5.5)
are the same. Hence, when P,@Q € L}(R), in the exceptional the scattering matrices S*(k) are continuous
at k = 0 if and only if 1/7+(0) # 0.

When Q(z) = 0, we have fl[o](O, x) = fr[o](O, x) = 1, and hence v = 1. This corresponds to the exceptional

case. Using these values in (5.3)-(5.5) we see that

(5.10) T%(O) =17 %/_0; dz P(z).

Hence, if ffooo dx P(x) = £2, no matter how smooth P(xz) is, we have

1 L%(0) _ RE(0)

In this case S%(0) is clearly undefined.

Theorem 5.6 Assume that P € L}(R) and @ € Li(R) in the generic case and that P,Q € L}(R) in the
exceptional case. Then either the three quantities 7% (k), R*(k), L* (k) are all continuous on R, or they are

all discontinuous on R.

PROQOF: From Proposition 4.11 it is seen that we only need to prove the result at £ = 0. In the excep-
tional case, from (5.3)-(5.5) it is seen that these three quantities are continuous at k£ = 0 if and only if
ffooo dz P(x) I[O](O, z)2 # 4?2 + 1. In the generic case, these three quantities are always continuous at k = 0
and this can be seen as follows. From Propositions 4.3 and 5.1 it follows that T+ (k) is continuous at k£ = 0.

Let

(5.11) R* (k) = (kzi:il;)) (k/TlJf(k)) '

The first factor on the right-hand side in (5.11) is continuous at k& = 0 because of Proposition 4.3, and the

second factor is continuous at k = 0 because of Proposition 4.3 and (5.2). Thus, R*(k) is continuous at

k = 0. The continuity of L*(k) at k = 0 in the generic case is obtained in a similar manner. i

In summary, if one entry in S*(k) is continuous in R, then the whole matrix S*(k) is continuous at
k = 0. A discontinuity in S*(k) at some nonzero kj is possible if and only if 1/7% (ko) = 0; the discontinuity
of S*(k) at k = 0 happens only in the exceptional case when f_oooo dz P(z) fl[o](O, z)? = +(y2 4+ 1).

6. LARGE-k ANALYSIS OF SCATTERING COEFFICIENTS
In this section, under the assumptions P, @ € L'(R) we analyze the large-k asymptotics of S*(k).
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Using (3.3), (3.4), and (4.4), we obtain

2ik
T*(k)

(6.1) e*? = [2ik = P(a)]iif (k,x) 0y (k, ) + 5 (k,2) 0 (k, @) — 0 (k, @) 7 (k, @),

where p is the constant defined in (3.2). Using (3.3), (3.4), (4.9), and (4.10), we get

2ik RE(k ke

(6.2) —7Ti(,f) Vo uem st 2 g (<k0), kER,
2ik LE(k .

(6.3) _Tk()) = 2ReEPFU [k (b 2)inF(—k,2)], kER.

Note that the right hand sides in (6.1)-(6.3) must be independent of #, and hence we can evaluate them at

any z.

Theorem 6.1 Assume P, € L*(R). Then

(6.4) Til(k et =14 0(1), k — ooin CT,
+ +
(6.5) gigg =o(1), TL&EZ; = o(1), k — +oo.

PROOF: Using (3.12), we can write (6.1) as

1

1 1

Using (3.6) and (3.13) in (6.6), we obtain (6.4). In a similar manner, using (3.12), we can write (6.2) and
(6.3) as

:l: .
(6.7) ?i—glﬁki = %e_Zka:Fpizc[U;t(ka I)‘E;F(_k’ z) + U;F(_k: r)f;t(k’, )],
LEk) 1

(68) = §6Zikx:tp2|:2([n?:(k’ x)é’f(_k’ ‘l) + 777:":(_]{7’ ‘l)‘fli(ka I)]

Thus, using (3.6) and (3.13) in (6.7) and (6.8), we obtain (6.5). I

Note that from (6.4) it follows that e? is known when either of 7% (k) is known, because

P _— 1i + — 1
(6.9) el = klirr(aloT (k) = klirrgo T8 Gk

Proposition 6.2 Assume P, Q € L'(R). If 1/7% (k) does not vanish for k € R, then its number of zeros in
Ct is finite.

PROOF: From (6.4) it follows that 1/7% (k) approaches the nonzero constant e*? as k — oo in C+. In the

exceptional case, since I/Ti(k') is analytic in Ct and is assumed nonzero on R, it follows that its zeros
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are confined to a bounded subset of CT, and hence the number of its zeros in Ct must be finite. In the
generic case, we can apply the above argument to k/[(k 4+ i)T% (k)] and conclude that the number of zeros

of 1/T*(k) in C* is finite. I

7. PERTURBATION OF SCATTERING COEFFICIENTS

In this section we establish the stability of 1/7%(k), R*(k)/T*(k), and L*(k)/T*(k) under small
perturbations of P(z) and Q(z) in the norm of either L!(R) or L}(R). We will not state the results for
L*(k)/T*(k), since they are identical to those for R*(k)/T* (k). In Section 9 we will apply the stability
result for 1/7%(k) to prove that the number of zeros of 1/7%(k) in C* does not change under certain
perturbations of P(z) and Q().

Given two sets of potentials Pj(z) and Q;(z) with j = 1,2, we consider the generalized Schrodinger

equations
(7.1) Ui (k) + RPYS (b, 2) = [ikPi(z) + Qi ()] ¥ (k,2),  z€R,

and denote their corresponding Faddeev solutions by m,TLj (k,z) and m;f;j (k, z), their transmission coefficients

by T]»"'(k), and their reflection coeflicients from the right and from the left by Rj'(k) and L;'(k), respectively.

Proposition 7.1 Assume P;,Q; € L'(R) for j = 1,2. Then for k € Ct with |k| > 1, we have

(7.3) Imfy (k, 2) — mif, (k, 2)| < a([[Pr = Palli +11Q1 — Q2lI1)
(7.4) Imfy (k, 2) = mbsy (ko) < a(||Pr— Palli+11Q1 = Qzll1),

where a; = elPslhHIlh and ¢ = a4y as.
PROOF: We obtain (7.2) directly from (2.10). Tterating (2.4) and by using (7.2), we get (7.3); (7.4) is

obtained in a similar manner by iterating (2.7) and by using (7.2). I

Proposition 7.2 Assume P; € L'(R) and @; € L1(R) for j = 1,2. Then for k € C+ we have

(7.5) |mi; (k,2)] < b1+ max{0,—z}],  |m;(k, )| < b;[1 + max{0, 2}],
(7.6) kmf(k,2)| <cj,  Jkmf;(k2) <¢;, [k < T
(7.7) mity (ky ) — mify (k, )] < B[1 + max{0, —2}] (|[P1 = Pall1 + [|Q1 — Q2l]1,1),
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(7.8) Imf (k, @) = mEy (k, 2)| < B[1+ max{0,2}] ([[Py = Palls + [|Q1 — Q2]l1,1),
(7.9) |kmify (k, @) = kmify (b, 2) < e ([P = Pall +1Q1 = @oll), [k <L,

(7.10) [kmt(k,x) —kmt, (k@) < c(|[Pr— Palli 4+ 1Q1 — Qall11) k| <1,

where b; = ellPillitll@illia 5 = b6y ¢; = (1485 1|Q;]]1.1)e!!T7!11 ) and ¢ = [b]|Qa|]1 1 + max{by, c; }]e!l P2l

PROOF: Note that (7.5) is the same as (2.12). By iterating (2.4) with the help of the first inequality in
(7.5), we get the first inequality in (7.6); the second inequality in (7.6) is obtained in a similar manner by
iterating (2.7). We get (7.7) through iteration by using (2.4), (7.5), and the inequality

14+ max{0, —y}

(7.11) 1+ max{0, —z}

(y—2)<1+y, y=>z

We obtain (7.8) in a similar way. Using (7.5)-(7.7) and (2.4), through iteration we get (7.9); (7.10) is obtained

in a similar way. i

Proposition 7.3 Assume P;,Q; € Li(R) for j = 1,2 and Q1(z) = Q2(z). Then, for k € C+ we have

(7.12) mify (k, @) = mif, (k, 2)| < bJk[[1+max{0, —z}] [ Pr = Pal1,1,

(7.13) mify (k, 2) = my(k, )] < blk[[1+ max{0,2}]||P1 — Pal[1,1,

where b is the constant defined in Proposition 7.2.
PROOF: Using (7.5), (7.11), and (2.4) we get (7.12) through iteration; (7.13) is obtained in a similar way. I
Proposition 7.4 Assume P;,Q; € L'(R) for j = 1,2. Then for k € C+ with |k| > 1, we have

1 1
(7.14) %ﬁa—imﬂsama—&mﬂwrnmm

and for k£ € R with |k| > 1, we have

Rf(k)  RY(k)
T (k) T (k)

(7.15) ‘ ‘ S CL(|1P1 = Pl + 1@ — Q2]1)

where C1 = (12—1[1 + as logas] with a; and as being the constants defined in Proposition 7.1.

PROOF: We obtain (7.14) by using (7.2) and (7.3) in (4.6), and we get (7.15) by using (7.2) and (7.4) in
(4.8). 1

Proposition 7.5 Assume P; € L'(R) and Q; € L}(R) for j = 1,2. Then, for k € C* with |k| < 1, we have

k k

(7.16) ‘Qﬁa—ﬁ@ﬁkamm—&mﬂwﬁan,
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and for k£ € R with |k| < 1, we have

ERf (k)  kRI(k)
T (k) T (k)

(7.17) ‘( )‘ < (1P~ Polly +11@1 — @allin)

1
where C'y = §[c||P2||1—|—b||Q2||171—|—maX{b1, c1}] with b1, b, ¢1, and ¢ being the constants defined in Proposition
7.2.

PROOF: We obtain (7.16) by using (7.5)-(7.7) and (7.9) in (4.6). Similarly, we obtain (7.17) by using (7.5),
(7.6), (7.8), and (7.10) in (4.8). 1

Proposition 7.6 Assume Pj,Q; € Li(R) for j = 1,2 and Q1(z) = Q2(z). Then, we have

1 N
7.18 _ <C|Pi— Py,  keCF
e 7o~ | <O

k) R
(7.19) ‘Rl—()—Rz( )‘§C||P1—P2||1,1, keR,

T (k) T (k)

where C' is a constant independent of k.

b b
PROOF: Using (7.5), (7.7), and (7.12) in (4.6) we obtain (7.18) with C' = ?2 + §(||P1||171 +1|Q11]1,1), where

b and b, are the constants defined in Proposition 7.2. The proof of (7.19) is obtained in a similar manner

with the same C' by using (7.5), (7.8), and (7.13) in (4.8). 1

8. BOUND STATES AND JORDAN CHAINS

Recall that the bound states of (1.1) are its nontrivial solutions belonging to L?(R). In this section,
when P, @ € L*(R) we show that the zeros of 1/T*(k) in Ct correspond to the bound states of (1.1). We
also analyze the order of each zero of 1/7T% (k) in C* in terms of Jordan chains of the differential operator
W (k) defined in (8.16).

It is known® that the transmission coefficient T1°(k) corresponding to (2.17) cannot have any singular-
ities on the real axis. We will see that we cannot rule out real zeros of 1/T% (k) unless P(z) < 0, and in fact

some examples of such zeros are already given in Examples 4.5 and 4.6.

Proposition 8.1 Assume P € L'(R) and Q € L}(R). Then the zeros of 1/TF(k) on the real axis do not

correspond to the bound states of (1.1); hence (1.1) does not have any bound states at positive energies.

PROOF: Assume that kg € R\ {0} is a zero of 1/T+ (k). From (1.3) and Proposition 4.9, it follows that
f,+(/{70, z) does not vanish as z — %oo. All solutions of (1.1) with k£ = kg have the form cy %0 4 ¢_e~tko 4
o(1) as  — +oo, where ¢y and c_ are constants; thus they do not belong to L?(R) unless they are trivial.
Since (2.17) does not have®° a bound state at k = 0, from (2.22) and (2.23) it follows that (1.1) does not
have a bound state at £k = 0. I
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Proposition 8.2 Assume P,@ € L'(R). For each kg € C*, the quantities m]i(ko,x) and m,i'(ko,m) are

bounded and continuous in x, and we have

L 14 o(1), r — +00,
8.1 m; (ko,z) = 1
(8.1) ( ) Ti(ko_) +o(l), z— —cc.

Similarly, m¥* (ko, #) and m'(ko, ) are bounded and continuous for each ko € C+, and

1
—— 4 o(l), x*— 400,
(8.2) it (ko 2) = 4 TE(Ry) T oW #
14 o(1), r — —00.

PROOF: We proceed as in Ref. 9. First, note that from Proposition 2.1 it follows that mli (ko, ) is bounded.
Using (2.10) in (2.4), we obtain |mi (ko, 2)—1| < C [Z1|P|+|Q]], and hence m¥E(ko,z) = 140(1) as z — +oo.
Using (2.4) and (4.6) we obtain

1
miE (ko,z) = TE (ko) + A1+ Az + As,
where
€ 1 1
(8.3) A= [y [55P0) - 50| mE (ko)
—co 2 22]{70
o 1 1 +
(8.4) A, :/ dy 2= 4~ P(y) + —Q(y)| mF(ko, y),
T 2 22]{70
o0 . 1 1
(8.5) As = / dy e2iko(y—z) |::|:§P(y) + 2,—Q(y)] m,i(lco, Y).
z/2 iko

Using (2.10) in (8.3), we obtain |4 < C [*_[|P|+ |Q[], and hence A; = o(1) as # — —oo. Similarly, using
(2.10) in (8.4), we have |A3] < C’f;/z[|P| +|Q]] for z < 0, and hence Ay = o(1) as z — —co. In a similar

way, using (2.10) in (8.5), for « < 0 we obtain
|A3] < Cle=ibo| / AP + Q) < Ol / 1P+ 10,

and hence Az = o(1) as @ — —oo. Thus, we have (8.1). The continuity of mli (ko, ) and mli’(ko, z) follows
from (2.5). From (2.6) we have m;t’(ko, z) = o(l) as ¢ — +4o00. Using the boundedness of mft(k'o, z), from
(2.5) we obtain [mi'(ko, z)| < C [° dy[|koP(y)| +|Q(y)|]. Hence, mi'(ko, 2) = O(1) as  — —oo. The proof

for m;t(ko, z) and m;t’(k'o, z) is obtained in a similar manner. i

Proposition 8.3 Assume P,Q € L'(R). If kg € C* is a zero of 1/T%(k), then we have

(8.6) ff(ko, x) = 0(6—|x|1mko)’ I ko, z) = 0(6—|x|1mku)’ x — o0,
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(8.7) [ (ko, ) = O(e~ It mboy g4 (k) = O(emIolImbey - dc,

PROOF: For each kg € C*, using Proposition 8.2, (2.3), (2.6), (2.9), we obtain

etko? 4 o(e—eImko) g — too,
O(e=®Imko) r — —00,

(8.8) fE ko, z) = {

ik062k0x+0(6_£1mk0), I—>—|—OO,

(8.9) ko, z) = {

O(e—xlmkg)’ r — —0o0,
O(ecclmku) r — 400
8.10 (ko) =1 ’ ’
(8.10) fo (ko, 2) { e=ikor | o(emImbo) o oo,
O(ecclmkg) r — 400
8.11 ' (ko, v) = { ’ ’
( ) fr ( 0 $) _Z'koezclmku +0(61‘1mk0)’ r— —00.

When 1/T% (ko) = 0, f,:t (ko,z) and f*(ko,z) are linearly dependent, and hence (8.8) and (8.11) imply (8.6)
and (8.7). I

Proposition 8.4 Assume P, € L}(R). Then, each zero of 1/T*(k) in C* corresponds to a bound state
of (1.1). Conversely, if (1.1) has a bound state for some kg € C™, it is necessary that 1/7% (ko) = 0.

PROOF: If kg € C* is a zero of 1/T*(k), we see from (4.4) that f;"(ko,z) and f}(ko,z) are linearly
dependent, and from (8.6) and the continuity of the Jost solutions in z, we can conclude that f1+ (ko,") €
L*(R). Hence, ko corresponds to a bound state for (1.1). Now assume that kg € C*t corresponds to a
bound state for (1.1). If 1/7" (ko) were nonzero, the Jost solutions f,+(]<70,;r) and f¥(ko,z) would be
linearly independent, and in that case from (8.1) and (8.2) we would conclude that the behavior of f;f (ko, z)
as ¢ — —oo and of f*(ko,z) as ¢ — +oo would make it impossible to form a square-integrable linear

combination from these two Jost solutions. i

Proposition 8.5 Assume P,Q € L}Y(R). If kg € C* is a zero of 1/T*(k), then we have

o0

(8.12) /_Oo da [P(x) + iko] fF (ko,z) f1°4(0,2) = 0 :/ da [P(2) + ik £+ (ko, x) f1(0, z).

(e} — 00

PROOF: Evaluating (1.1) at k = kg and k£ = 0, respectively, and using (2.22) and (2.23) we obtain
d .
(8.13) TLfF (o, 2): /170, 2)) = (k7 — iko P(2)] S (o, ) S0, 2).

If kg € Ct is a zero of 1/T*(k), then from Proposition 8.3 it follows that f;f (ko,z) and ft'(ko, z) decay
exponentially as ¢ — +oo; from (2.12) and (2.13) we see that f,[o](O, z) and fl[o]/(O, z) are at most of O(x)
as # — Fo0o. Thus, integrating (8.13) on the real axis, we get

0 = iko / de [—iko — P(2)] £ (ko, 2) (0, 2),
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from which we have the first equality in (8.12). The proof of the second equality in (8.12) is obtained in a

similar manner. |

Next we analyze multiple poles of T+ (k). Let us differentiate (1.1) with ¢ = f,+ (k,z) or ¥ = fF(k,2)

with respect to k repeatedly. Defining

n!

1 /0\" 1 /o\"
(8.14) g,’t’n(k,x): — (3_]<7) f,+(k*,a:), g:n(k,x): — (3_/€> Ik, x), n=0,1,2..-,
and g (k,z) = g5, (k) =0 for n=—1,-2,---, we obtain the coupled system of differential equations

gl-t_n//(ki I) + kzgl-t-n(k? $) + ngl-t-n—l(k’ I) + gl-f—n—2(k’ -Z')

(8.15)
= [ikP(x) + Q(2)]g, (k, @) + iP(z)g;f,_y(k, z),

g;ljnﬂ(k’ J:) + kzgin(h ﬁ) + ng::n—l(k’ '73) + g::n_2(/{7, J:)
= [kP(@) + Q(@)lg} (k, ) + iP(2)gF, (b, 2).
Defining the differential operator

2

(8.16) W(k) = =k = ——

+ikP+Q,
so that W(/{:) = —2k + 1P and W(k) = —21, we obtain the system of linear equations

(8.17) T(k)g'(k,z) =0,

where 0 is the zero column vector of m entries, g (k, z) is the column vector [gif . (k,z), -, g;f,(k, 2)],

and T(k) is the m x m Toeplitz matrix given by

TW(k) W(k) tW(k) 0 0 0 -~ 0 0 0
0 W(k) W(k) IW(k) 0 0 -~ 0 0 0
0 0  W(k) Wk Wk 0 - 0 0 0
T(k)=| . . . . .
0 0 0 0 0 0 -~ 0 W(k) W(k)
L 0 0 0 0 0 0 -~ 0 0 W(k) .

Using the Leibnitz formula for repeated derivatives of products, we find from (4.4)
(8.18) i inﬂ_zn:[+(k,)+ (k, )]
' n! \dk/) T+(k) _j_o I1,j\K> T)5 Grin—j R, L))

We call kg € CT an eigenvalue of W (k) if there exists a nontrivial ¢ € L%(R) such that W (kg)¢ = 0. Be-
cause of Proposition 8.4, this is equivalent to 1/7% (kq) = 0. Further, ¢ is called an eigenfunction of W (k) cor-
responding to the eigenvalue ko. More generally,'? if kg is an eigenvalue of W (k), then the string of functions
b0, , dm—1 in LZ(R) is called a Jordan chain of length m corresponding to the eigenvalue kg if ¢g # 0 and
(8.17) holds with [g;" | (ko, ), -, g]"y(ko,2)]" replaced by the column vector [¢m_1(ko,z), -, do(ko,z)]".
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Proposition 8.6 Assume P,Q € L'(R) and let kg € CT be an eigenvalue of W (k). If {gfj(ko, ~)};»n:_01 is a

Jordan chain of W (k) of length m at the eigenvalue kg, then for n = 0,1,--- ,m — 1 we have

bl

(8.19) g,fn(k‘o, 2) = O[(1 + |w|)n€—|l‘|1mku], Q'::n(ko; ) =0[(1+ |m|)ne—|x|1mku], T — 400,

(820) g (ko,2) = O[(L+ [el)remlelmbo] g (kg 2) = O[(1 + Jalyrelelmbe], 4 — too.

PROOF: If kg € C* is an eigenvalue of W(k), by Proposition 8.4 we have 1/T%(kg) = 0. Hence f,+(]<70,;1:)
and f(ko,z) are linearly dependent, and thus we need to prove (8.19) and (8.20) only for gfn(ko, z) and
g}%(kzo, z). For n = 0 these follow from (8.6) and (8.7). The following argument used to prove (8.19) and
(8.20) for n = m — 1 can be used recursively for n = 1,---  m — 2. Note that, for each k € C*, (1.1) has?®
an unbounded solution X (k, z) such that

(8.21) X(k,z) = O(I™E), X/ (k,z) = O(I™h), o

Let us choose X (ko,z) such that [f;¥(ko,z); X(ko,z)] = 1. Let us consider (8.15) as a second-order linear,
nonhomogeneous differential equation for gfm_l(ko, z) and solve it by variation of parameters using the
linearly independent solutions f;*(ko,2) and X (ko,z) of (1.1). We obtain

(8.22)
gl-t-m—l(kO’ l‘) = am-1 f]+(k07 l‘) + bm—l X(kOJ I)

—/Ox dy ([iP(y) — 2ko]gf,_ 5 (ko, y) —gﬁm_s(ko,y)) [ (ko, )X (ko, y) — £ (Ko, y) X (ko,z)] ,

where a,,—1 and b,,_1 are arbitrary constants. Since g; ,(ko,-) € L*(R) forn =10,1,---,m—2 and X(ko, )

is unbounded as # — +00, the term proportional to X (kg, ) in (8.22) must vanish. Thus, we must have

b1 +/ dy ([iP(y) — 2ko) g7t_o(ko, y) — gi,_s(ko, y)) fif (ko,y) =0,
0

0
b1 — / dy ([iP(y) — 2ko] 6o ko, y) — g1, _5(ko, y)) [ (ko,y) =0,

— 00

and hence

(8.23) /_OO dy ([iP(y) — 2ko) g7, _o(ko, y) — ¢, _s(ko, y)) [ (ko,y) = 0.

o0

Using (8.23), we can write (8.22) as

g?;m_l(ko, .’L‘) :A(ko, .ZL’) X(]{?(), .ZL’)

(8.24) + [am_1 - /Ow dy ([iP(y) — 2ko] 9t _o(ko, y) — 97, _3(ko, y)) X(ko, y)] I (ko, @),

where we have

Jfdy ([iP(y) — 2ko) g7t,_o(ko, y) — gf,, _s(ko, y)) fif(ko,y), =<0,
(8.25) Alko,2)={

[ dy ([iP(y) — 2ko] 9 _ o (ko, y) — 9 _s(ko, y)) fF(koy), x>0
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Using (8.19) for n = 0,1,---,m — 2, (8.21), and (8.25), we obtain (8.19) for gfm_l(k'o,x). Differentiating
(8.24) and using (8.23), we obtain

gl—t_r/n—l(ko’ z) = [am—l - /0 dy ([Zp(y) - Qko]gl_t_m—2(k0= y) — gl-l,hm—S(kOa y)) X(ko, y)] fl+/(k0: x)

+ X' (ko, z) /

— 00

dy ([iP(y) — 2kolg;t_o(ko, y) — gif_s(ko, y)) fiF (ko, y).

Finally, using (8.19) for n = 0,1, - ,m — 2, (8.25), and (8.21), we obtain (8.20) for g,’t’r’n_l(ko,x). ]

Proposition 8.7 Assume P, € L'(R) and let kg € C* be an eigenvalue of W(k). Then for n =
0,1,---,m—1 we have

(8.26) /oo dy ([iP(y) = 2kolgit_1(ko, y) — g _a(ko,v)) S (ko,y) = 0

— 00

if and only if {g,%(ko, ) };—4 1s a Jordan chain o of length m corresponding to the eigenvalue kg.
if and only if f']k’ ;"_01' Jord hain of W (k) of 1 h di he ei lue &

PROOF: If (8.26) holds for n = 1, then we must have f;"(ko, ) € L?(R); from Proposition 8.3 and its
proof it is seen that f,+(k0, ) € L*(R) only if g,’!’o(k’o, z)= f,+ (ko, z) is an eigenvector of W (k). Recursively,
we can show that gfn given in (8.14) satisfies (8.17), (8.19), and (8.20), and hence gfn(ko, ) € L*(R) for
n=1,---,m—1. Thus {g,"y} (ko,-) ;»”:_01 is a Jordan chain of W (k) of length m corresponding to the eigenvalue

ko. The converse is proved by proceeding recursively as in the proof of Proposition 8.6 leading to (8.23). 1
Theorem 8.8 Assume P, € L'(R) and let kg € CT. Then the following four statements are equivalent:

(a) W(k) has a Jordan chain of length m corresponding to the eigenvalue kq.

(b) {glfj (ko, ~)};”:_01 is a Jordan chain of W (k) of length m corresponding to the eigenvalue kg.
(c) {gij (ko, ~)};n:_01 is a Jordan chain of W (k) of length m corresponding to the eigenvalue kg.
(d) 1/T*(k) has a zero at kg of order at least m.

PROOF: Clearly (b) implies (a). Now assume (a) holds and let {(/)j}]m:_ol be a Jordan chain of W(k) of
length m at the eigenvalue kg. Then ¢q must be proportional to fl+(k'0, z) and f(ko,z) because the latter
two are linearly dependent and ¢q(ko, ) is a solution of (1.1) for k = k. Thus we have W(ko)gfo(ko, z)=0
and consequently (8.15) is satisfied for n = 0,1, --,m — 1. Hence (b) holds.

Note that (b) and (¢) are equivalent because, if W(/{:o)gfo(ko, z) = 0 for some kg € C* and gfo(k0¢ ) E
L?(R), by Proposition 8.4 we must have 1/7% (ko) = 0 and hence g:O(ko, z) must be a constant multiple of
gfo(k’o, z).

If (b) holds, then (8.19) and (8.20) must hold for n = 0,1, --,m — 1 because of Proposition 8.6. Then,
forn=10,1,---,m — 1, by evaluating the right-hand side of (8.18) at # = —c0 or at = 40, we find that
its left-hand side must be zero and thus (d) holds. Now assume that (d) holds and let us show that (b) is
true. By Proposition 8.7 it is sufficient to show that (8.26) is satisfied for n = 0,1, .-, m — 1. We will do
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this recursively. First notice that (8.26) holds for n = 0 trivially because gﬁ_l(ko, z) = gl+7_2(k'0, z) =0 and
that (8.19) and (8.20) hold for g?,Lo and gfé, respectively, as seen from 1/7%(kg) = 0 and Proposition 8.3.
For n =1, -, m— 2 the proof of (8.26) and of (8.19) and (8.20) with g,";n and gl":rll, respectively, are similar
to the case for n = m — 1. Thus, it is sufficient to give the proofs for n = m — 1 by assuming that these
equations hold for n = 1,--- ;m — 2. Using (1.1) for g;ljo(ko,.r) and (8.15) for g{t’m_l(ko,m), we obtain the

Wronskian relation

d .
(8.21) = lots(ko, @) go(ko, )] = ([P(2) = 2K0) g7_alko, 2) — g _g(ko, 2)) g (ko, 2).

In a similar way, we obtain

d .
(8.28) Tolto ko, 2); 67 1 (o, 2)] = ([iP(2) = 2ko] g7 5 (ko, 2) = 67 5 (ko, 2)) 975 (Ko, @).

Integrating (8.27) and (8.28) we get

|y (P — 20alatolko,) = (K0, 9)) (o, )

(8.29) v
= xlﬂ_noo [g?,-ﬂ’L—l(kO; l): g:()(ko, I)] — xEI}-loo [g.#,-m—l(koa I), gio(ko, .Z‘)],
(8.30) / dy ([iP(y) = 2kolg 1 _s(ko, y) = 97 _3(ko, ) 616 (ko, v)

= lim_[gf(ko, 2); 971 (ko, 2)] = Nim [g(ko, 2); 7,1 (Ko, 2)].

Because (8.19) and (8.20) hold for n = 0,1,---,m — 2, we have
m—2
(5.31) lim 3 (o7, (kov 2); 7 (ko )] = 0.

r—to0
i=1

Since 1/T* (ko) is assumed to have a zero of order at least m, using (8.18) for n = m — 1 and (8.31), we

obtain

(8.32) im (o7 (ko, 2); 6701 (ko). )] + [67 (Ko, 2)s 7o (o, 2)]) = 0.

Using the linear dependence of gfo(k’o, z) and g;fo(k'o, z), Proposition 8.3, and (8.19) and (8.20) with n = 0,

we obtain

(8.33) Jdim (g Ok, 2): 0o (ko, 2)] = 0,

(8.34) Jim (g (ko, 2); 95,1 (Ko, 2)] = 0.

From (8.32)-(8.34) we see that

(8.35) Jim lgf ko, 2); g o(ko, )] =0, lim [gf(ko, 2); g1 (ko, 2)] = 0,
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and thus using (8.33)-(8.35) in (8.29) and (8.30), we get

/ dy ([iP(y) — 2ko)g; 1 (ko, y) — g7ty (Ko, y)) gto(ko, y) = 0.

—0o0

Thus (8.26) is proved for n = m — 1, and hence (b) holds. 1

9. BOUND STATES AND POLES OF T*(k)

In this section we further analyze the poles of Tt (k) in C*. We show that such poles cannot occur in
certain regions in C* determined in terms of the constants defined in (9.1). When P(z) < 0, we show that
such poles are confined to a certain interval on the positive imaginary axis. We analyze the change in the
number of bound states when P(z) and Q(z) are perturbed. In the generic case we find that the number
of bound states is unchanged under small perturbations of P(2) and Q(z); in the exceptional case we find
that the number of bound states is unchanged under small perturbations of P(z). When P(z) < 0 we show
that the number of bound states is independent of P(z). We also present a Levinson theorem relating the

number of bound states to the change in the argument of TF (k).

Next we obtain some simple conditions on P(z) and () guaranteeing that there are no bound states

outside certain k-regions in Ct determined by the following parameters:

(9.1) Prin = ess inf P(z), Prax = ess sup P(x), Qmin = ess inf Q(x).
zeR z€R zeR

Let us also define

F" = Pmax/2+ V/ Piax/4 — Qmin-
Note that if P,@ € L*(R), then it follows that Ppax > 0 with the equality holding if and only if P(z) < 0,
that Qmin < 0 with the equality holding if and only if Q(z) > 0, and that Puyin < 0 with the equality holding
if and only if P(z) > 0. Furthermore, 5* > Ppax with the equality holding if and only if @Q(z) > 0. Note also
that 5% > 0 with the equality holding if and only if P(x) = Q(z) = 0; hence, the case % = 0 is trivial.

Theorem 9.1 Assume P,Q € L}(R), P(z) # 0, and Pyay is finite. Then the zeros of 1/7F (k) for Ppax/2 <
Im#k < * can only occur on the imaginary axis, and all such zeros are simple. If, in addition, Qmujin is finite,
then there are no zeros of 1/T*(k) in the region {k € Ct* : (Imk)? — (Rek)? — (Imk)Prax > —Qmin}-
Consequently, 1/7F (k) has no zeros in Ct satisfying Imk > 3*.

PROOF: From (1.1), after using (4.2), we obtain
d _
(9.2) E{f,*(—ko, z) i (ko, 2)} = |77 (ko, &) ” + [ k5 + iko P(z) + Q(2)] | fiF (Ko, 2)|*.

If ko € Ct is a zero of 1/7F(k), as seen from (8.8) and (8.9), the quantity f;"(—ko,z) f;t'(ko,z) vanishes

exponentially as # — +oo. Thus, integrating (9.2) we obtain

(9.3) |l nP = [ el - itoP(e) - Q157 (ko o)

[o0] — 00
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Letting ko = o + (3, and separating the real and imaginary parts in (9.3), we obtain

(9.4) i /_Oo da [28 — P(2)] | £ (ko, 2)|* = 0,
(0.5 | el ool = [ defe? = 5+ 520) - QU157 ko, )

From (9.4) we see that we must have @ = 0 when Ppax < 203, and hence any zero of 1/7% (k) with
Im#k > Prax/2 can only occur on the positive imaginary axis. All such zeros are simple; otherwise, a zero
of order two or higher would imply (8.26) with n = 1, i.e. ffooo dz [P(z) — 21mkq] | f;F (ko, z)|* = 0, which
cannot happen if Imkq > Ppax/2. From (9.5) we see that we cannot have a* — 8% + BP(z) — Q(z) < 0.
Hence, there are no zeros of 1/T+(k) in {a +i8 € CT : 2 — a? — BPnax < —Qmin }. The analysis of the
corresponding region on the a3-plane indicates that there cannot be any zeros of 1/7*(k) on the imaginary
axis when Imk > #*, and hence there cannot be any zeros of 1/7T% (k) either on or off the imaginary axis

when Im#k > 5*. 11
When P(z) < 0, from Theorem 9.1 we obtain the following corollary.

Corollary 9.2 Assume P(z) < 0 and P,@ € L'(R). Then, the poles of T* (k) in C* are all purely imaginary

and simple. In addition, assume that @i, defined in (9.1) is finite; then there are no zeros of 1/T*(k) in
C* for Imk > /—Qumin-
Theorem 9.3 Assume Q(z) = 0 and P € L}(R). If f_oooo dz P(xz) > 2, then (1.1) has at least one bound

state at k = i@ for some positive 3. If ffooo dz |P(z)| < 2, then 1/T*(k) has no zeros in C*.

PROOF: When f_oooo dz P(z) > 2, from (5.10) we see that 1/TF (i) is negative at 8 = 0 and from (6.4) we
see that it is positive as 3 — +00. Being a real-valued, continuous function of 3, 1/7% (i) must have a zero
for some positive 3. Now let us prove the second statement. Assume that & € CT corresponds to a bound

state; we can transform (1.1) into

(9.6) ok, ) = /oo dyB(k;z,y) ¢k, y),

— 00

where we have defined
1 ik|x—
plk, ) = [P@)70* (k2), Blkia,y) = 5179 P@) Y2 P(y)/|P() .

When P € L*(R) and k € C*, the integral operator in (9.6) is Hilbert-Schmidt with the Hilbert-Schmidt

norm
1 (o] o0 _ _
1Blls = 5 [ do [ aylp@@etierimt b))
-0 -0

and hence, if k € C* and 7 da |P(x)| < 2, we have ||B||us < 1. Thus, the operator norm of that integral
operator is also strictly less than 1 and hence ¢ = 0, implying that there cannot be any bound states of (1.1)
for ke CtT. 1
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It is already known® that if @ € L1(R), then the number of bound states for (2.17) is finite; let us
denote that number by A, and let ik, --- ,iky with 0 < k1 < -+ < kpr denote the zeros of 1/T10(k) in

Ct. In the following, we generalize the second result of Theorem 9.3 to the case Q(z) # 0.

Theorem 9.4 Assume P,Q € L1(R). The k-values in CT satisfying [~ du [ikP(x)+Q(2)| < 2|k| cannot be
zeros of 1/T* (k). Moreover, there are no zeros of 1/T% (k) in Ct\{iky, - - -, irn} satisfying |TI(k)| || P||1 1 <
92— 1@l

PROOF: Let k € C* correspond to a bound state of (1.1). We can transform (1.1) into (9.6) with

ek, z) = |ikP(2) + Q)2 ¢ ¥ (k, ),

172 [1kP(y) + Q)]
|ikP(y) + Q(y)['/?
A sufficient condition for the absence of the bound state is ||B||lgs < 1. Proceeding as in the proof of Theorem

1 (e}
9.3, for k € C* we obtain ||B||lus < m/ dz |ikP(z) + Q(z)|, and hence there are no zeros of 1/T7*(k)

1, ,
B(k;z,y) = ﬁelklx_y”zkf’(:v) +Q(z))

at the k-values in C7T satisfying ffooo dz |ikP(z) + Q(z)| < 2|k|. In the special case P(z) = 0, this implies
1 o0
that there are no bound states when |k| > 5/ dz |Q(z)|. To prove the second part of the theorem, we

note that the kernel of the resolvent [—d?/dz? —}—_Q(m) — k?]71 is given by?°

1
Lk, 5 7k, -]

(07 Rikia,y) = 00y = 2) 122k, 2) 1k, ) + 0w = ) £ (. 2) £EU R, )

where fl[o](k’, z) and f,EO](k, z) are the Jost solutions of (2.17) and we recall that 6(z) is the Heaviside function.
As seen from (2.26), the Wronskian in (9.7) is equal to —2ik/T°(k), and hence we get

(9-8) [[ik| P ()| PR (k; 2, y) P(9)/|1P() s = iIT[O](k’)IzC(k),

where we have defined

C(k) = / " e |P@)] |7k, ) / "yl k)P 1P)]

(99) 00 00
+ / da | P(2)]| FO)(k, 2) / ay | F7(k, ) 2| P(y).

As in (2.12) we have

(9.10) 179k, 2)] < (14 max{0, —z}) e=@1mk Jo wOHDIQEI o &F

(911) |f£0](k,$)| < (1 +H1aX{0,;13}) pratuly 6f_w dy (1+|y|)|Q(y)|’ ke CTt.

Using (9.10) and (9.11) in (9.9), as well as the estimates e~ 2(Z=9)Imk < | for g > y, e=2W=2)Imk < | for

z <y, and 1+ max{0,+z} <1+ |z|, we obtain

(9.12) |C(k)] < |IPIIF 1?19l
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From (9.8) and (9.12) we see that the Hilbert-Schmidt norm on the left-hand side of (9.8) is strictly less than
1, provided |T1(k)| < 26_”Q”1>1/||P||171. Under this condition on k, there is no bound state corresponding
to that k € C*. I

Let us denote the number of bound states of (1.1), i.e. the number of zeros of 1/T+ (k) in C* (including
multiplicities) by N(P, Q). In the next two propositions we obtain some stability results for N(P, Q) under
certain perturbations of P(z) and Q(z). As in Section 7, we let TJ+(/<7) denote the transmission coefficient
corresponding to (7.1) for j = 1, 2.
Proposition 9.5 Assume P, P, € LY(R), Q1,Q2 € LI(R), 1/T;f (k) does not have any real zeros, and
@1(z) is a generic potential. If ||Py — Pall1 + [|@1 — Q2]]1,1 is small, i.e. if (9.14) is satisfied, then
(a) 1/T5 (k) does not have any real zeros.
(b) N(P2,Q2) = N(P1,Qn).
(¢) If all zeros of 1/T;" (k) are simple and purely imaginary, so are those of 175" (k).

PROOF: For a > 0 let T', be the positively-oriented contour consisting of the interval [—a, a] and the semi-
circle {k € C* : |k| = a}, and let us choose a large enough so that all zeros of 1/7;" (k) in C* have absolute
value less than a. Putting Fj (k) = k/[(k + Z)TJ+(/<:)] for j = 1,2, from Propositions 7.4 and 7.5 we get

C
[F1(k)]

(k) — Fa(k)

A0 ([|1P1 — Palr + [|@1 —Q2||1,1);

(9.13) ‘ ‘ <

where C' = max{Cy,Cy} with C; and C3 being the constants in Propositions 7.4 and 7.5, respectively. If
1/T5F (k) does not have any real zeros, then in the generic case Fi(k) cannot have any real zeros; thus,
Fy(k) does not vanish on T',. Moreover, by Proposition 4.3, F; (k) is continuous and bounded in C+. Hence

minger, |F1(k)| > 0. Now choosing

1 k
9.14 Py — P, - < —min|— |
(9,19 12 £l +1Q: = @alhs < & pin| |
from (9.13) we obtain
Fy(k) — Fy(k
(9.15) ‘M‘a, k€,

(k)

Hence, from (9.15) we see Fy(k) cannot vanish on Ty, which implies (a). Part (b) follows from (9.15)
with the use of Rouché’s theorem. Part (c) follows by replacing I'; with the union of N(Pi, Q1) small,

positively-oriented circles centered at the zeros of 1/7; (k) and applying Rouché’s theorem. I

Proposition 9.6 Assume Q1 = Q2 = Qin (7.1), 1/T; (k) does not have any real zeros, Q(z) is an exceptional
potential, and Py, P»,Q € LI(R). If ||[P1 — Psl|1,1 is small, i.e. if (9.16) is satisfied, then we have

(a) 1/Tyf (k) does not have any real zeros.
(b) N(P2,Q)= N(P1,Q).
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(¢) If all zeros of 1/T;" (k) are simple and purely imaginary, so are those of 175" (k).

PROQOF: We will proceed as in the proof of Proposition 9.5. Let us choose 'y, as in that proof but define
Fi(k) = 1/T]+(k') for j = 1,2, instead. Note that Fy(k) is bounded, continuous, and nonzero on I'y. From

(7.18) we have
‘Fl(k) — Fy(k)

< P - P
) ‘_cnl Al

where C' is the constant defined in Proposition 7.6. From (9.8) we get

Fi(k) — Fa(k) C
< P —P
‘ Fi(k) - |F1(/<7)|” 1= Pl
and hence by choosing
(9.16) [|P1— Pall1,1 < i !
. — — min
! HLE™ 6 per, (k)|

and proceeding as in the proof of Proposition 9.5, we complete the proof. |

Theorem 9.7 Assume P,Q € L*(R) and P(z) < 0. Then, either N(P, Q) and N(0,Q) are both infinite, or
they are both finite and N(P, Q) = N(0, Q). Thus, the number of bound states of (1.1) coincides with the
number of bound states of (2.17).

PROOF: Since P(z) < 0, by Corollary 9.2 we know that the bound states of (1.1) can only occur when k is

on the positive imaginary axis. Let us write (1.1) with £ = i# as two simultaneous equations:

(9.17) "+ V(B z)y = E(B) v,

(9.18) B(8) = -4,

where 3 is considered to be a parameter in the potential V (3, z) = Q(z)—8 P(z) of the Schrédinger equation
(9.17), and E(B) denotes the corresponding energy for each . Each bound-state energy —K]Z of (2.17) gives

rise to an eigenvalue branch E;(f#). From (9.17) we have

(9.19) p(p) = o

where (-,-) denotes the usual scalar product on L?(R). If P(z) < 0, from (9.19) we see that E’(3) > 0 and
hence each E;(f) is a nondecreasing function of 8. Therefore, for 3 > 0, the graph of E;(f) must intersect
the parabola E = —3% at exactly one point, say (3, —ﬁ?), and each E; () gives rise to exactly one solution
of (9.18). The number N(P, Q) is equal to the number of intersections of the eigenvalue branches E;(f)
with the parabola given in (9.18) for j > 1. Since each of the N(0, @) branches is responsible for exactly one
intersection, we conclude that N(P,Q) = N(0,Q). Note that if @ € L'(R) but @ ¢ Li(R), it is possible
that N(0,Q) = 400, but then we also have N(P, Q) = +co. 1
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If P,@Q € L'(R) and P(z) < 0, then either N(P, Q) = 400, in which case the set of bound-state energies
of (1.1) consists of a strictly decreasing sequence of negative numbers converging to 0, or N(P, Q) is finite
and equal to N, in which case we let k = i3; for j =1,--- , N with 0 < 81 < -+ < By denote the zeros of
1/T*+(k) in C*. Since the condition @ € L}(R) guarantees the finiteness of N(0,Q), from Theorem 9.1 we

obtain the following:
Corollary 9.8 Assume P(z) < 0, Q(z) > 0, P € LY(R), and @ € L}(R). Then, there are no zeros of
1/T+(k) in C*.

In the next theorem, when P(z) < 0, using the constant Py defined in (9.1), we obtain some upper

and lower bounds on each bound-state energy of (1.1).

Theorem 9.9 Assume N (0, Q) is finite and nonzero, Py is finite, P(z) < 0, and P,Q € L'(R); let k = ix;
correspond to the bound states of (2.17) for j = 1,- -, M. Then, the zeros of 1/T* (k) in C* occur at k = if3;

satisfying B, < B < kj for j = 1,--- | N, where B, = Pnin/2 + /P2, /4 + k3. In particular, 81 > B, and
Ba < Kar, with the equalities holding if and only if P(z) = 0.

PROOF: At a bound state with £ = i8; of (1.1), replacing k¢ in (9.5) by 0+ if;, we get
(9.20) [ dngris ey = [ da(-5+ 5 PG) - Q@SB )

On the other hand, since —K‘?V- is the lowest bound-state energy for (2.17), we have

JZo da (£, 2)* + Q=) £ (1B, v)’]
JZo de fiF(iB;, ) ’

(9.21) —K3 <
with the equality holding if and only if fl[o](i.‘f_/\/, z) and f;'(iB;, z) are linearly dependent. From (9.20) and
(9.21) we obtain

f_ dz P(x f,+(iﬁj,:b)2
J20 d (B, 2)?

(9.22) —Ky < =57 +

Since P(z) < 0, from (9.22) we see that §; < ky with the equality holding if and only if P(z) = 0 and
j = N. Thus, §; € (0,kp7] for j = 1,---,N. Now let us improve the bounds on ;. From the proof of
Theorem 9.7, recall that each eigenvalue branch E; () gives rise to exactly one solution of (9.18) starting
with —5]2» at f = 0 and ending with —6]2 at f = f;. Since E;(f) is an increasing function of 3, we get
—fc]z» =E;(0) < E;(5) = —6]2, and hence §; < x;. Now consider E1(3), the eigenvalue branch corresponding
to B1. From (9.19) using Ppin < P(z), we obtain 0 < E(8) < — Pnin; more specifically, 0 < E{(8) < —Pumin
unless P(z) = 0. Since £1(0) = —«? and E1(f) is nondecreasing, we get E1(8) < —B3Pmin — 7. Thus, from
the inequality —(37 < —f31 Ppin — k2, we get 31 > B.. Note that the equality in #; > B. holds if and only if
P(xz) = 0 because . > k1 with the equality holding if and only if P(z) > 0. 1

From the proof of Theorem 9.9 we get the following:
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Corollary 9.10 Assume P, @ € L'(R), P(z) <0, and N(0,Q) = +oo, and let {&;} and {8][0]} for j > 1
denote the bound-state energies of (1.1) and (2.17), respectively, ordered such that & < &;41 and 5][0] < S]L(_)}]_l.
Then, we have 8][0] <& < 0for j > 1, and hence the bound-state energies of (1.1) cannot occur below the
lowest bound-state energy of (2.17).

Recall that the Levinson theorem?! relates the number of bound states for the Schrodinger equation to

the change in the phase of the transmission coefficient. Next we generalize the Levinson theorem to (1.1).

Theorem 9.11 Assume that P € L*(R) in the generic case and P € L}(R) in the exceptional case and
that @ € L1(R), and suppose 1/7F (k) does not have any real zeros. Then, the number of bound states of

(1.1) is related to the principal argument of T*(k) as

d
(9.23) arg TT(04+) =7 [N(P, Q) - 5] ,
where d = 0 in the exceptional case and d = 1 in the generic case.

PROOF: For b > a > 0, let I'y 3 be the positively-oriented contour consisting of the circular arcs {k € Cct:
|k| = a} and {k € C* : |k| = b} and the segments [—b, —a] and [a,b]. Let us choose a and b so that all zeros

of 1/T*(k) in C* are enclosed by 'y 5. By the argument principle we have

(9.24) NPQ) =g [ b = o An e T,

where Ar,_ ,[arg T'(k)] indicates the change in the argument of 7'(k) when I',  is traversed once. This change
is independent of @ and b, and hence we evaluate it by letting ¢ — 0 and 6 — 4o00. By Theorem 6.1 the
contribution to that change from the large semicircle {k € C* : |k| = b} vanishes as b — +oco. In view of
(5.2) and (5.3), we see that the contribution from the small semicircle {k € C+ : |k| = a} in the limit a — 0
is equal to 0 in the exceptional case and — in the generic case. The contribution from the interval (0, +00)

is given by
(9.25) arg T'* (4+00) — arg T (0+) = —arg 77 (0+),

provided we define arg 7t (+o0) = 0, which, according to Theorem 6.1, amounts to taking the principle

value of the argument. By (4.14), the contribution from the interval (—oo, 0) is the same as (9.25). Hence,
1 1 1

the right-hand side in (9.24) is equal to —arg 7" (0+) in the exceptional case and ) + —arg 7T (0+) in the
T T

generic case, which gives us (9.23). I

Finally, let us show that in the special case when P(z) and Q(«) have support on a half-line, we can

relate the poles of the transmission coefficient to the poles of a reflection coefficient. Since there is no loss

of generality in choosing our half-lines as Rt = (0, +o00) or R~ = (—c0,0) instead of (a,+0o0) or (—oo, b),

respectively, for some constants a and b, we will state the following proposition using R*.

Proposition 9.12 Assume P(z) = Q(z) = 0 for z € R~ and P,Q € L'(R*). Then L*(k) is meromorphic

in C* having poles coinciding with the poles of T+ (k). Furthermore, none of the zeros of L* (k) coincide

38



with the poles of 7% (k) in C*. These assertions remain valid if R~ and LT (k) are replaced by R* and
R*(k), respectively.

PROOF: If P(x) = Q(z) = 0 for # € R, from Proposition 2.1, we see that fl+(k,0) and f,+'(/{7,0) are
analytic in C*. Hence, using (1.3) we can conclude that L*(k)/T*(k) is analytic in C*, allowing us to
conclude that the poles of L* (k) and 7 (k) must coincide in C*. Since f;*(k,0) and f;"/(k,0) cannot vanish
simultaneously, it follows that 1/7%(k) and L*(k)/T* (k) cannot vanish simultaneously in C*, and hence
the zeros of Lt (k) and the poles of T% (k) cannot coincide in C*. The proof when P(z) and Q(z) have

support in R~ is obtained in a similar manner. |

10. EXAMPLES

In this section we illustrate the number and location of the poles of TF(k) in Ct with some explicit
examples. In Example 10.3 we present an explicit case where the corresponding 7 (k) has a double pole on

the positive imaginary axis. Thus, the bound states of (1.1) are not necessarily simple unless P(z) < 0.

Example 10.1 Let P(z) = b in (0,1) and zero elsewhere and let @Q(z) = @ in (0,1) and zero elsewhere,

where a, b are some real parameters. We can explicitly solve the direct scattering problem and obtain

1 » k2 4 52 5 LT (k) L RY (k) k2 —s?

10.1 =tk ] —ik e = 1
(10.1) T+k) ¢ [COSS ks " 5] C TR TR 2iks
where we have defined s = Vk2 — ibk — a. The Jost solutions of (1.1) are given by

R (142) cog 5 4 ek Sllns [(k2 +s2)etke 4 (k2 - 52)6—“”] ) z <0,
2iks
+ _ ) ik
[k z) = ir [coss(l—l‘)—l—sins(l—l‘)] , z €[0,1],
s
6ikx’ T Z 1’
e—ikx, x S 0’
ik
o s +cl0.1
ff(k,x): CcOS ST 5 sin sz, 16[ , ],
¢ik(1=2) cog 5 + ;1.1]1{75 (B 4 s%)ett1=2) 4 (k2 — §2)eihle-D)| z> 1.
iks

When b = 0 and a < 0, we have a square-well potential, and in this case it is already known from quantum

mechanics that (1.1) has A" bound states whenever
(10.2) N -7 <vV—-a < Nm.

The following numerical values were obtained by using the mathematical software Maple. When a = —100

and b = 0, from (10.2) we have N' = 4. The four bound states occur at k = ix; where
(10.3) k1 =193, Ky =641, k3=28.55, k4 =9.65.

When a = —100 and b = —10, there are four bound states at k£ = i3;, where



When a = —100 and b = —100, there are still four bound states with
(10.4) B1 =011, B2 =058, [3=0.86, [4 =097

Comparing (10.4) with (10.3), we see that when ¢ = —100 and b = —100, all four §; € (0, k1). As we make
b more negative the bound-state energies are pushed toward zero. Now let us see what happens when b > 0.
By Theorem 9.3, if @ = 0 and b > 2, we must have a bound state at k = ¢3 for some positive 5. Letting
a=0,b=21/10, we obtain a bound state at k = 0.15i. Choosing @ = 0 and b = 10, we obtain three bound
states at k = 3 with

(10.5) B =214, By =596, fB5=09.27.

Choosing a = 0,5 = 100, when £ is on the positive imaginary axis we obtain thirty-one bound states with
B =010, PB2=041, B3=0.93, [s=167, Bs=264, Bs=2385 [r=25.33
Bs =7.09, PBo=09.19, PB1o=11.69, P11 =14.63, B2 =1820, Pz =22.61,
Bra =28.43, P15 =37.63, pis =60.41, P17y =69.69, pig=75.60, F1o=80.11,
Boo = 83.77, o1 = 86.83, oy =89.42, P23 =91.63, [aqg =93.52, o5 =95.12,
Bog = 96.46, Ba7 = 97.57, [ag = 98.46, a9 =99.14, P30 =99.62, F3 = 99.91.

Note that the bound states may occur even when a > 0 and b > 0. For example, when a = 1 and b = 10, we

obtain four bound states on the positive imaginary axis with
B =0.13, B2 =250, B3=563 B4=9.16.

Note that when b > 0 we cannot exclude the possibility of bound states at certain k-values off the positive
imaginary axis. Thus, in addition to the bound states listed in this example, there may be some bound
states with complex energies. For example, when a = —93/10 and b = 4, we find bound states at k =
+0.9764 + 0.0233i. Note also that there may be zeros of 1/T+ (k) for real k; for example, when a = —9.2738
and b = 3.9708, we obtain a zero of 1/T% (k) at k = 1.

Example 10.2 Let

2i(1 £ b)e  ce™2" ‘
k+ie 14 ce2ex’ -

(10.6) nEk,z)=1-

2i(1 £ b)e  ce? <0
z
k+ie 1+ ceer’ -

3

(10.7) (ko) =1
where ¢, € are positive parameters and b is a real parameter. Using (1.1), (1.2), (3.3), (3.4), (10.6), and

(10.7), we obtain

Abece=2¢lel

T 1+ cem2elzl’

(10.8) P(z)
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4ece 2121 —3b — 2 4+ b2ce— 24"l
10.9 = .
(10.9) Q) (1+ ce—240el)2

Note that P(x) is continuous at # = 0 with P(0) = 4bec/(1+¢), and both P(z) and Q(z) are even functions.
Furthermore, the sign of P(x) is the same as the sign of b. Writing (10.8) as

d d
P(z) = —Qbﬂ(z)aln(l+Ce—26w)_{_ng(_x)%ln(l_*_cezm),

we obtain

1 (e}

5/ dz P(z) = In(1 + ce=27)", x>0,
l xr

2

/ dz P(z) = In(1 + ce?*"), z <0.

Hence, we have ¢? = (1 + ¢)?%. Using (6.1), (6.4), and (6.5), we get

. +p . 2 . .
2ike _ (i + 4bec 1 2i(1 :I:'b)e c n 426' 2(1 £ b)ec 1 2i(1 :I:'b)e c ’
T*(k) l+e¢ k+ic l+ec k+ie (1+c¢)? k+ie 1+c

ok LE(k) QikRjF(—k) ~ 8(1£b)edc(—1+ ¢ =£ 2be)
TE(k) ~ U TF(—k) ~ (k+io)(k—i)(1+ )3
Hence, we obtain
k(k s \2 Ep
(10.10) Ty = — e
(k= k7)(k — k5)(k — k3)
where we have defined
+_ . ¢
(10.11) K =i -1+ c£26d],
+ 1€ _ 5
(10.12) = o0 [(—14 e 4be) + V/T+ 2 + Tde £ 16bc]
+ i€ _ _ 5
(10.13) % =30y [(—14 e 4be) — V/T+ €2 + Tde £ 16bc]

Let us now analyze the poles of T (k). From (10.11)-(10.13) it is seen that e appears as a multiplicative
factor in the poles of Tt (k). We can divide the half-plane {(c,b) : ¢ > 0} into four separate regions by using

the three nonintersecting curves b = I'y(¢), b = Ig(c), and b = T'_(¢), where

1—c¢ c—3 (c—3)% 1
= I = — 4+ —.
2¢ ' £(c) 4c 162 + c

Fo(C)

The exceptional case occurs on these three curves; note that k’g =0on Ty, k; =0onI_, and /{71+ =0on
['g. The number of bound states changes by one as we cross each of these three curves; otherwise, we are in

the generic case. Note that:
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(i) I b > Ty (c), then ki, kF, and &k all lie on the positive imaginary axis, and hence we have three bound

states.

(i) If To(c) < b < I'y(c), then kf and kJ lie on the positive imaginary axis, but kF ¢ C*; hence we have

two bound states.

(iii) If T'_(c) < b < To(c), then there is exactly one bound state because kI lies on the positive imaginary

axis but kf and k; are not in CT.

(iv) There are no bound states when b < I'_(c) because none of ki, k3, and k3 lie in C*. In this case, k7 is
always located on the imaginary axis; k¥ and kJ lie on the imaginary axis when b > —(1/c+4c+14)/16

and they lie in C~ symmetrically located with respect to the imaginary axis.
Next we present an example where T (k) has a double pole on the positive imaginary axis.

Example 10.3 Consider the functions P(z) and Q(z) given in (10.8) and (10.9), respectively, with ¢ > 0,
but b = —(c? + 14c + 1)/(16¢) and ¢ € (=1, =5 + +/20). Thus, both ¢ and b are negative, and as seen from
(10.8) we have P(z) > 0. From (10.12) and (10.13) we see that k¥ = k¥ = —i(c? + 10c + 5)/[8(1 + ¢)], and
hence T+ (k) given in (10.10) has a double pole on the positive imaginary axis for any ¢ € (=1, =5 4+ 1/20).
Note also that when b = (1 — ¢)/(4c) and ¢ € (—1,—5 + +/20), although k7 is located on the negative
imaginary axis, /{7;' and k;’ are symmetrically located on the real axis; thus, in this case Tt (k) has poles on
the real axis. When b = (1 — ¢)/4 and ¢ = —5 + /20, both k¥ and kJ become equal to zero, and hence we

get a simple pole for T* (k) at k = 0; this corresponds to the exceptional case.

11. EIGENVALUE CURVES AND ZEROS OF JOST SOLUTIONS

In this section we study the zeros of the Jost solutions of (1.1) for a fixed k € C+ and analyze the
number of such zeros in relation to the bound states of (1.1) and (2.17). As in Section 9, we let N(P, Q@)
denote the number of bound states of (1.1). When P(z) < 0 we show that the number of zeros of the
Jost solutions of (1.1) is related to N(P, @) in a simple manner, and we present some examples showing
that this relation does not hold in general. We establish the connection between the results of Section 8 on
Jordan chains and certain zeros of the Jost solutions of (1.1). This connection uses the eigenvalue branches
introduced in the proof of Theorem 9.7. We also show that the number of bound states of (1.1) with real

energies is greater than or equal to N(0, Q).

In the first proposition we collect some results about the oscillation properties of solutions of generalized

Schrodinger equations related by inequalities involving the coefficients. Although the methods for proving

20,22

such results are familiar, we include a proof for the convenience of the reader.

Consider the pair of generalized Schrodinger equations

(11.1) Xj () — i xi(pyw) = V() xj(pyz),  p>0,  j=1,2
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Note that if we let V;(u, 2) = —pP(z) + Q(z) in (11.1), we get (1.1) for k = ip.

Proposition 11.1 Assume Vj(u,-) € LY(R) if p > 0, V;(0,) € Li(R), and Vi(usz,z) < Va(ui,z) if
0 < p1 < pa. Let x1(p1, @) and x2(u2, 2) denote two nontrivial solutions of (11.1) with the corresponding
coefficients Vi (p1, 2) and Va(pa, ©), respectively. Then:

(i) Suppose x2(u2, z) has two successive zeros a and b with a < b. If 0 < p3 < pa, then x1 (g1, z) has at least
one zero in (a,b). If 0 < 1 = pp and Vi(p1, z) #Z Va(pr, z) on (a,b), then xi1(p1, ) has at least one zero in
(a,0). f 0 < py = pa, Vi(ur, ) = Va(uy, ) on (a,b), and x1(p1,z) and x2(u1, ) are linearly independent
in (a,b), then x1(p1, ) has exactly one zero in (a,b).

(ii) Suppose x2(p2, ) remains bounded as ¥ — +o00. Let a denote the largest zero of xa(pa, ), and set

b = 4+00. Then the assertions of (i) remain true if we replace the interval (a, b) by (a, +00).

(iil) If 0 < p1 < pa2, x2(p2, #) is bounded as & — 400, and x1(p1, ¢) has no zeros in R, then ya(us2,z) has

no zeros in R either.

(iv) If x2(u2, ) is bounded as # — —oo and a is the smallest zero of xa(p2, ), then the assertion of (iii)

holds, and the assertions in (i) remain true if we replace the interval (a,b) by (—oc0, a).

PROOF: We omit the proof of (i) since on a finite interval such results are known (e.g. Theorem 1.1 on p.
208 of Ref. 20). Moreover, our proof of (ii) is easily modified to prove (i). The proof of (iv) is analogous to

the proofs of (ii) and (iii), and hence we will only prove (ii) and (iii).

(ii) The proof can be given using contradiction. Without loss of generality we may assume that yi(u1,)
and x2(pa, ) are strictly positive in (a,+c0). When b > a, where a is the largest zero of xa(ps2,z), from
(11.1) we get

X2(#2, b) Xll(/'tla b)—Xlz(M, b) Xl(m, b) + Xlz(ﬂz, a) X1(M1, a)

11.2 b
(2 :/ de [Vi(p1, ®) = Valpz, €) + pf — p] xa(p1, ) xa(pz, ).

Note that, by the asymptotic properties of the solutions [cf. (8.8)-(8.11)] and their assumed positivity in

(a,400), we have for gz > 0 and some ¢3 > 0

(11.3) Xa(p2, ) = cae™H2T 4 o(e™H27), Xo(pa, ) = —capne™ H2¥ 4 o(e™H27), xr — +oo.
Furthermore, if x1(u1, %) is unbounded as & — +oo, then for some ¢; > 0 we have

(11.4) x1(p1, &) = c1e1% + o(ef1?), Xi(p1, @) = capre”® + o(e1®), xr — +00.

If 11 = 0 and x1(0,z) is unbounded as # — 400, then for some & > 0

(11.5) x1(0,2) = &1z + o(x), X1(0,2) = é + o(1), r — +00.
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If x2(0, 2) is bounded as # — 400, then for some é; > 0 we have

(11.6) x2(0,2) = &2 + o(1), x5(0,z) =0 <l) , r — 400.

z
Using (11.3)-(11.6) we will let & — 400 in (11.2). When 0 < g3 < pg, the limit as b — +oo of the right-
hand side of (11.2) exists and is nonpositive; it is equal to zero precisely when p; = po and Vi(pi,2) =
V(pa,z) on (a,400). If 0 < p1 < pa, the limit of the left-hand side of (11.2) is equal to x%(ua, a) x1(p1, a),
which is nonnegative. Hence we have a contradiction, and thus xi(g1,#) must have a zero in (a,+00).
If 0 < g1 = po and x1(p1,2) is unbounded, then the limit on the left-hand side of (11.2) is equal to
2e1capt1 + X5(p1, a) x1(p1, @), which is strictly positive; the right-hand side is nonpositive and so again we
have a contradiction. If 0 < g3 = pg and x1(u1, ) is bounded, then the limit of the left-hand side is equal to
Xh(p2,a) x1(p1, @), which is nonnegative. If also Vi (p1, 2) # Va(pe, ¢) on (a, +00), then the right-hand side
is strictly negative and we have a contradiction. If Vy(u1,z) = Va(pue, ¢) on (a, +00), then xi1(u1,a) > 0 due
to the linear independence of x1(p1,2) and x2(p2, ), and so the left-hand side of (11.2) is strictly positive
while its right-hand side is zero. In this case, by (i), there can only be one zero of x1(p1, ) in (a, +00).
If 0 = p1 = po and x1(0, ) is unbounded, then because of (11.6) the left-hand side of (11.2) approaches
¢ ¢2 + x5(0,a) x1(0,a), which is again strictly positive. If g = g3 = 0 and x1(0,z) is bounded, then
the limit of the left-hand side of (11.2) is x%(0, @) x1(0, @), which is nonnegative. If V1(0,2) # V2(0,2) on
(a,400), then the right-hand side of (11.2) is strictly negative, while if V1(0, z) = V52(0, z) on (a, +c0), then
its right-hand side is zero and its left-hand side is strictly positive due to the linear independence of x1(0, z)
and x2(0,z). In both cases we arrive at a contradiction. As in (i), if V1(0,2) = V3(0,2) on (@, +0), we

conclude that there is exactly one zero of x1(0, z) in (a, +00).

(iii) Suppose x2(p2, ) does have some zeros, the largest of which is a. Then, under the assumptions made in
(i) and (ii), it follows that x1(u1, ) has a zero to the right of a, contradicting the assumptions of (iii). The
only situation not covered by (i) and (ii) is when p2 = p1, Vi(p1, 2) = Va(pz, ) on (a, +00), and x1(p1, )
and x2(u1, ) are linearly dependent in (a, +00), but then x2(u1,a) = 0 implies x1(u1, @) = 0, which is again

a contradiction. |
From Proposition 11.1 we obtain the following:

Corollary 11.2 Assume P, @ € L'(R) and let 3 be a positive constant. Then f;f (i3, z) and £} (i3, z) have
the same number of zeros. If ;" (i3, z) and f7(iB, z) are linearly independent and if they have two or more
zeros, their zeros are separated, i.e. between two successive zeros of f,+ (i3, z) there is a zero of fF(if,z)
and vice versa. If f;* (i3, z) and f} (i3, z) are linearly independent and if they have at least one zero, to the
right of the largest zero of f;¥ (i3, ) there exists a zero of f(i3,z), and to the left of the smallest zero of
fF(iB, ) there exists a zero of f;t (i, 2). A bound state at k = i3 occurs if and only if the zeros of f; (i3, z)

and fF (i3, z) coincide.
Our next result concerns the zeros of the Jost solutions of (2.17). Since some theorems of this type have
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already been proved elsewhere (see e.g. Theorem 14.10 of Ref. 22 or Theorem XIII.8 on p. 90 of Ref. 23),
we only comment on certain details that may not be obvious from those references. Recall that N (0, @)

denotes the number of bound states of (2.17).

Proposition 11.3 (i) Suppose ) € L}*(R) and 8 > 0. Then the number of zeros of fl[o](iﬁ, z) is equal to

the number of bound states of (2.17) with energies contained in the interval (—oco, —3?).
(ii) Suppose further that @ € L}(R). Then, the number of zeros of fl[o](O, z) is equal to N (0, @).

PROOF: (i) Since we only assume @ € L'(R), there may be infinitely many bound states of (2.17) with
energies accumulating at zero. All such energies are negative, and let us denote them by —7]2 with 7; >
vj41 > 0 for j > 1. It is known (Theorem 14.10 of Ref. 22) that fl[o] (4v;, ) has exactly (j — 1) zeros.
Hence, we only need to consider the zeros of fl[o](iﬁ, z) when § is not equal to any ;. If 8 > 7;, then from
Proposition 11.1 (iii) with Vi = Vo = Q, 1 = 41, 2 = 4, xa(p1, ) = f,[o](i'yl, z),and ya(p2, ) = f,[o](iﬁ,z),
it follows that f,[o](iﬁ, z) has no zeros. If 8 € (vj41,7;), then, by Proposition 11.1 (i) and (ii) with 3 =
and ps = 7;, we see that f,[o](iﬁ, x) has at least j zeros. On the other hand, using Proposition 11.1, we
can conclude f,[o](iﬁ, z) cannot have more than j zeros because the number of its zeros is nondecreasing as
3 decreases and f,[o](i’yjH,m) has exactly j zeros. Thus f,[o](iﬁ, z) has exactly j zeros when £ € (yj41,7;)-
This proves (i) when N(0,Q) = +oo because the bound states of (2.17) can only occur when k£ is on the
positive imaginary axis. If N(0, @) is finite and is denoted by N, then we must still consider the case when
B € (0,7a7)- Then using Lemma 1 on p. 91 of Ref. 23 we conclude that fl[o](iﬁ, z) has exactly N zeros
because if it had more than A zeros one could find a subspace of dimension at least (A" + 1) on which the
expectation value of (—d?/dz? + @) — BP) is less than or equal to —3%, and this would imply the existence
of at least (M + 1) eigenvalues less than or equal to —32.

(ii) In this case the condition @ € L}(R) guarantees that N(0,Q) is finite. It only remains to consider
the case 5 = 0. Note that fl[o](O, z) cannot have more than N zeros; this is because f,[o](iﬁ, z) has exactly
N zeros when 2 is sufficiently small and by (2.16) we see that as § — 0 we have f,[o](iﬁ, z) — f,[o](O,J:)
uniformly on compact z-intervals. On the other hand, in (11.1) by setting p1 = 0, p2 = 5, Vi(p1, 2) = Q(=),
Va(pe, ) = Q(z) — AP(x), Vi(p1, ) = Q(z), and xa(u2,z) = fl[o] (8, z), and using Proposition 11.1, we see
that f,[o](O, z) has at least N zeros. Hence f,[o](O, z) must have exactly A zeros. I

If @ € Li(R), then N(0,Q) is finite and as in Section 9 we let k = ix; for j = 1, -, N denote the
bound states of (2.17). From Theorems 9.7 and 9.9, when P € L'(R), Q € L}(R), and P(z) < 0, we already
know that the bound states of (1.1) occur at k = if; satisfying 3; < k; for j = 1,--- ,N. In the next
theorem, we extend Proposition 11.3 to (1.1) and analyze the number of zeros of the Jost solutions of (1.1)

when k is on the positive imaginary axis.

Theorem 11.4 Assume that P € LY(R), @ € L}(R), and P(z) < 0. Then, for each 3 > 0, the functions

f,+(iﬁ, z) and fF (i3, z) have the same number of zeros, and this number is equal to the number of bound
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states of (1.1) with energies contained in the interval (—oco, —3?).

PROOF: From Proposition 11.1 (i) and (ii), we see that f{"(zﬁ, z) and f} (i3, z) have the same number of
zeros. Since P(z) < 0, from the proof of Theorem 9.7 it follows that, for any fixed £ > 0, the number of eigen-
values of the operator (—d?/dz? + Q — 3P) below —f3? is equal to the number of E;(8) values that lie below
—3?. Note that if 8 € [B;, Bj41) for j = 1,--- | N —1, then the (N — j) values Exr(8), Ex—1(8), -+, Ej+1(3)
lie strictly below —3?; if 3 € [Bar, +00) then there are no eigenvalues below —3?, and if 8 € [0, 3;) then
exactly N eigenvalues lie below —/3?. Using Proposition 11.3 when the potential Q(z) in (2.17) is replaced
by Q(z) — BP(z), we can conclude that f; (i3, z) has no zeros for 3 € [Byr, +o0), N zeros for 3 € [0, 1),
and (N — j) zeros for B € [§;,B8j41) for j=1,--- N —=1.1

From Proposition 11.1 and Theorem 11.4 we have the following:

Corollary 11.5 Assume that P, € L'(R) and that P(z) < 0. The zeros of f;"(i3;, z) separate the zeros of
fit(iBj+1, ), i.e. between two consecutive zeros of f;¥ (i3;,z) there is exactly one zero of f;(iB;+1,z), where
k=1p; for j=1,--- , N correspond to the bound states of (1.1). The zeros of f(i3;,z) separate the zeros
of f+(iBj+1, ). Two successive zeros of f,+ (iB;j, ) cannot coincide with two successive zeros of fz+ (1Bj 41, );

equivalently, two successive zeros of f(if;, ) cannot coincide with two successive zeros of f(i3j41,).

When we no longer have P(z) < 0, as Example 4.5 shows there may be bound states of (1.1) with
complex energies, and as Example 10.1 shows N(P, ) may be larger than N(0,Q). In the next theorem,
when P € L}Y(R) and Q € L1(R), we analyze the bound states of (1.1) when k is on the positive imaginary
axis, establish the connection between Theorem 8.8 and the zeros of f,+ (iB, x), and also consider multiple

zeros of 1/T* (k) on the positive imaginary axis.
Theorem 11.6 Suppose P € L*(R) and @ € L}(R). Then:

(1) If (2.17) has N bound states with A" > 1, then (1.1) has at least /' bound states with real (negative)

energies.

(i) 1/T*(iB) has a zero of order m at some positive 3 if and only if the function Eg(3) + 3% has a zero
of order m at B, where Eo(3) denotes the unique eigenvalue branch of the operator (—d?/dz? + @ — BP)
satisfying Eo(8) — —8% as 8 — fBo. If m = 1, then the graph of Eg(8) and the graph of the parabola
E = —p? intersect with different slopes at By. If m > 2 and m is even, then the graphs touch at 8y but
do not cross each other. If m > 3 and m is odd, then the graphs cross smoothly such that at the point of

intersection they have the same slopes.

(iii) For each eigenvalue branch, we have E{(8) < 0 for § > 0 with the equality holding if and only if
P(z) = 0. Hence the graph of each eigenvalue branch is concave down if P(x) # 0; in the trivial case

P(z) =0, the graph of each eigenvalue branch is a horizontal line.

(iv) The number of zeros of f;¥ (i3, z) behaves in the following manner as 3 is increased from By — € to By + ¢
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when ¢ is sufficiently small: If m is even, then the number of zeros is either constant throughout the interval
(Bo—¢€, Bo+e) or it is constant in (B — €, Bo) U(Bo, Bo +€) but one less at fg. If m is odd, then the number of
zeros either increases or decreases by one as 3 crosses (3y. The number of zeros of f,+(iﬁ, z) can only change

at a @ value corresponding to a bound state of (1.1).

PROOF: (i) Since we are only interested in the bound states corresponding to k = i3 for # > 0, we first
derive a lower bound for Ex(3), which will show that Ex(8) = o(8?) as B — +oco. Let us indicate the

Fourier transform by a caret:

== [ aremi, v == [ e,

Then, letting || - ||2 denote the norm on L%(R), for a > 0 we get (cf. Theorem 1X.28 of Ref. 24)

T L 1 o0 ; vz iy
11.7 < — d < — dq(a® +¢° 2:| < — N2 + o2
117 )l < o= [ il < o [/w 0@+ A @E| < = (W1 + )
where we have used the Schwarz inequality, |||]2 = ||¢]l2, ffooo dq/(a®> + ¢*) = 7/a, and Vo= —igqi.

Incidentally, the equality in (11.7) holds if and only if ¢(z) = e~l*l Next we use (11.7) to estimate the
quadratic forms (Qv, ¢) and (P, ¢). From (11.7) we obtain

(1L8) [zl < o (g + i) ([ dlew).

If P(z) =0, then (1.1) and (2.17) become identical, and in this trivial case both equations have exactly N
bound states. Thus, there is no loss of generality in assuming P(z) Z 0. In order to estimate the integral
[ dx |P(x)| |4 (x)|?, we split it into two parts: one over the region {z : |P(z)| > M} and the other over
the region {z : |P(x)| < M}, where the constant M > 0 is arbitrary for the moment but it will be fixed
later. Then, for any b > 0, (11.7) implies

w9 [ e lP@IE < 5 (15 + I (/{

— 00

dz IP(w)I) + M9l

|P(z)|>M}

Combining (11.8) and (11.9) we get

1 [ee] 6
ot _3p m2l1—- — d - — dz |P
(4 + Q5 ¢,w>z||w||2( o [ _ae@i-g [ <x)|)

—wlE (% [ de po dz |P M),
||w||2(2/_ Q@i+l [ alp@lts

We now set

a :/_ dz |Q(x)], b=p /{|P( o) dz |P(x)|,

and assume that ¢ is a normalized eigenfunction corresponding to the eigenvalue Ex(8). Then the left-hand

side of (11.9) is equal to Exr(8) and hence

LN cp)) -
(11.10) Ex(B) 2 =5 (/_oo dle(x)') 2 (/{|P(x)|>M}d P ”) -
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Since by choosing M large enough we can make the second term on the right-hand side of (11.10) as small
as we please, it follows that Ex(3) = o(8?) as 3 — +oo. Thus Ex(8) > —p3? for 3 sufficiently large,
while Exr(0) = —fsz\/ < 0. Hence, by the intermediate value theorem, the equation Ex/(3) = —3? has at
least one solution. A similar argument shows that each of the remaining eigenvalue branches E;(8) for
j=1,---,N — 1 must intersect the parabola E = —3? at least once. Since each intersection increases the
number of negative-energy bound states of (1.1), the proof of (i) is complete. Note that if an eigenvalue
branch Ej;(3) touches or intersects the parabola E = —3? at other points, such additional points are also
responsible for additional negative-energy bound states of (1.1). Moreover, there may be other eigenvalue
branches F(f3) starting at (5, 0) for some 2 > 0 and intersecting or touching the parabola E = —3?2 at one or

more points; again, each of such points also increases the number of negative-energy bound states of (1.1).

(i) If P(z) = 0, each eigenvalue branch Ey(3) becomes the horizontal line Eq(8) = —f33 for 8 > 0, and
hence E{/(#) = 0 for 8 > 0. Thus, in the rest of the analysis we can assume that P(z) # 0. Associated
with the eigenvalue Eq(f8) there exists?® a real-valued, analytic eigenvector (3, z). Near 3 = By we have

the convergent expansions

o0 (e}

(11.11) Eo(B) =Y an(B—Fo)",  w(Bx) =D valx)(B—Bo)",

n=0 n=0
with ¢, € L?*(R) for n > 0. Substituting (11.11) in (1.1) we get the following set of equations (see pp.
333-334 of Ref. 26) for n >0 :

n

(1112) $l(2)= 53 (@) 41 Y a(2) 42 Yma(2) = [~Bo P(2)+ Q)] din(2) —P(2) Y (2)= Y ) s (),

ji=3
where it is assumed that a_, = ¢¥_,(z) = 0if n > 1. From (9.18) and (9.19) we see that

(11.13) ao = Eo(Bo), a; = ! /Oo dx P(x)o(x)>.

ol J-oe
We may choose ¥g(z) = f;t (i80, z). It suffices to prove that 1/7*(i3) has a zero of order at least m at Sy if
and only if Eq(8) + 3% has a zero of order at least m at By. From Proposition 8.4 we know that this is true
when m = 1. If By is a zero of Eg(3) + 3% of order m for some m > 2, then the coefficients a, in (11.3) are
determined for n = 0,1,---,m — 1 by expanding Eo(3) + 82 about 3. Thus, for m = 2 we get ag = —32,
a; = —2fp; for m = 3 we get ag = —f%, a1 = —20, az = —1; for m > 4 we get ag = —f7, a1 = —203,
ay = —1,and ag = -+ - = @1 = 0. Then, comparing (11.12) and (8.15) and using the fact that the functions
g;t'n(iﬁo, z) are uniquely determined as solutions of (8.15) by the requirement that gfn(iﬁo, ) € L*(R), we

obtain
(11.14) Un(z) = g}, (ifo, ®), n=20,--,m-—1.

Thus, by Theorem 8.8, we see that 1/7+(i3) has a zero of order at least m at (By. Conversely, suppose
1/T*(iB) has a zero of order at least m at ;. From (11.12) one can derive (see p. 334 of Ref. 26) the
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following recursion formula for the coefficients a,, :

[I%ol13 /oo

(11.15) an = ! /°° deo(z) | P(x) Yn_1(x) + z_:aj1/;n_j(:b) , n> 2.

Now assume m > 2. Since the functions {glfn (iBo, )} form a Jordan chain of length m, using (8.26) with
n=1and (11.13) we get a; = —23;. Hence Eo(3) + 7 has a zero of order at least 2 at Fy. If m > 3, then
using (8.26) with n = 2, (11.14) and (11.15) we obtain a3 = —1 and this, in turn, implies that Eq(3) + 32
has a zero of order at least 3 at fy. If m > 4, then (8.26) and (11.15) give az = 0 and then a; = 0 for all
j =3, ,m—1. As a result, Eo(3) + 3% has a zero of order at least m at By. If m is even, then Eqo(3)
touches the parabola E' = —f3? at [, but stays either above or below the parabola; if m is odd, then Eq(83)

intersects the parabola ' = —3? by crossing from one side to the other.
(iil) We need to show that ag in (11.11) is negative for any Gy > 0. We have (see p. 334 of Ref. 26)

(11.16) ia(a) = —ioa) [ T [ dswols) [PG) bl + an valo),

where the constant zg is arbitrary; however, since changing zy amounts to adding a constant multiple of
Yo(2) to Y1 (z), with the help of (11.6) one can show that the value of a, given in (11.15) is independent of

zg. Using (11.16) in (11.15) with n = 2, after performing an integration by parts, we get

o= o | we ([ v o+ ]> <0

Thus az < 0 in (11.11) for any By > 0, and hence we have E{(8) < 0 for any 5 > 0.

(iv) Let us consider the number of zeros of f;f (i3, z) in relation to the behavior of the eigenvalue branch
Eo(f) near By. From Proposition 11.3 (i), when Q(z) in (2.17) is replaced by Q(z) — # P(z), we know that
the number of zeros of fl+ (i3, ) is equal to the number of eigenvalue branches lying below —3%. Let Ig,
denote the interval (8y — €, B0 +€) and let J3, denote (8o —¢, 5o) U(Bo, Bo +€) for sufficiently small € > 0, and
let us consider the number of eigenvalue branches below —3% when 3 € Ig,. If m is even, then Ey(3) touches
the parabola £ = —3? at (3 but stays either above or below that parabola; in the former case Eq(8) > —3*
for B € Jg, and hence the number of zeros of f;f(i3,z) remains unchanged for 8 € Ig,; in the latter case
Eq(B) < —B? for B € Jg, and hence the number of zeros of f;¥ (i3, z) for B € Js, is exactly one more than
the number of zeros of f,+ (iBo, z). If m is odd, then Eg(3) intersects the parabola E = —j3? by crossing
from one side to the other of that parabola; if Eq(3) < —3% on (8o — €, o), then the number of zeros of
f,+(iﬁ, z) decreases by one as 8 increases through Bg; if Eo(8) > —3% on (8o — €, Bo), then the number of
zeros increases by one as [ increases through fy. In order to prove that the number of zeros of f,+ (i6, x)
can only change if 3 corresponds to a bound state of (1.1) with real (negative) energy, we can proceed as
follows. If 3, and B2 with 81 < 2 correspond to two consecutive real bound-state energies of (1.1), then

no eigenvalue branch can intersect the parabola £ = —3% for 8 € (31, 32). Hence the number of eigenvalue
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branches that lie below —3? is constant for 3 € (31, 32), or equivalently, the number of zeros of f; (i, z) is
constant for 8 € (61, 52). 1

The next example illustrates Theorem 11.6 and shows how the intersection of the eigenvalue curves
E;(B) and the parabola E = — 3% affects the bound states and the number of zeros of the Jost solutions of
(1.1) when k is on the positive imaginary axis. The numerical values in this example were obtained by using

Mathematica.

Example 11.7 Consider the same P(z) and Q(z) as in Example 10.1 where the parameters ¢ and b will be

chosen below.

(a) Let a = 0 and b = 10, and hence @Q(z) = 0 and P(«) > 0. Note that N(0,Q) = 0. ;From (9.17) we obtain
[cf. (10.1)]

(11.17) 2AV—E cos A = (A® + E)sin A,

where E' = E(f3) is the energy in (9.17) and A = \/#b — a + E. Using the half-angle formula for the tangent

function, we can write (11.17) as a pair of equations determining the eigenvalue curves:

v1e) wn(2)=5E w(8)-- A

The eigenvalue curves in (11.18) can be plotted in the (4, F) plane for # > 0. As seen in the proof of
Theorem 9.7, the bound states of (1.1) with real energies correspond to the 3 values where the eigenvalue
curves intersect the parabola £ = —(3%. When a = 0 and b = 10, from (11.18) we obtain two eigenvalue
branches intersecting the parabola £ = —f3?. Let E3(8) denote the eigenvalue branch responsible for the
lowest real bound-state energy. We see that E3(/3) emerges from (0,0) and intersects the parabola £ = — 32
at B3 = 9.273. The second eigenvalue branch, E1(f3), emerges from zero at 3 = 72/10 and then intersects the
parabola E = —f3? at 3, = 2.144 and at #; = 5.963. These eigenvalue branches and the parabola E = —3?

are plotted in Fig. 1.

-20}

-40!

-60¢+

-80¢+

-100*

Fig. 1 The parabola £ = —/3? intersecting the eigenvalue curves E1(8) and E2(f)
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As seen from (10.5), the values 31, B2, and 33 correspond to the simple zeros of 1/7F(iB). If 3 > 3, then
[t (iB,z) has no zeros. If B € [B2,33), then f¥(iB3,2) has one zero because E,(3) is the only eigenvalue
below —32. If 3 € (B1,32), then f,+ (i3, ) has two zeros because both E5(3) and E1(B) lie below —g%. If
B € (0, 31] then f;F (i3, z) has one zero, and if 8 = 0 then f;'(0, z) has no zeros because (2.17) with Q(z) = 0

has no bound states.

(b) When @ = 0, one can choose the parameter b such that the branch E1(8) just touches the parabola

E = —3? at ;. Then, the slope of the eigenvalue curve at 3; must be equal to —20;, and this happens when

; Vb2 -4y Vb2
Y\ ) T T a2

from which we get b = 9.2066, leading to 3; = 3.603, and 3; corresponds to a double zero of 1/T+(i3). The

eigenvalue branch E(f) intersects the parabola £ = —f3? at 32; we have 8, = 8.433, which is responsible for
the lowest real bound-state energy. In this case, ff(iﬁ, z) has no zeros for 8 = 0, one zero for € (0, 82),
and no zeros for B € [B2,+00), where B2 = 8.433. We show the two eigenvalue branches and the parabola
E = —/? in Fig. 2.

-20¢+

- 40!

-60¢+

-80¢+

-100!
Fig. 2 The parabola £ = —f3? touching E1(3) and intersecting E2(83)

(c) Let b =10 and let us adjust a such that the lowest real bound-state energy corresponds to a double zero
of 1/T*(iB). Proceeding as in (b), we obtain
L 10B(B—4)
pr—3
where (37 is obtained by solving
V91084362 -3 BNGB—3
(11.19) tan = .
2P =3 V103 + 367 — 38

From (11.19) we get $; = 4.724 and hence a = 19.852. In this case f,+ (i6, «) has no zeros for any 8 > 0.

The eigenvalue curve E1(8) and the parabola E = —3% are plotted in Fig. 3, and it is seen that there are

no other real bound-state energies besides —37.
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4 6 8 10
-20}
-40!
_60.

-80¢+

-100*
Fig. 3 The parabola £ = —f3? touching the eigenvalue curve E;(3)

In the next example, when £ is on the positive imaginary axis, we evaluate the number of zeros of the
Jost solutions of (1.1) corresponding to some of the potentials considered in Example 10.1. The numerical

values in this example were obtained by using Maple.

Example 11.8 Consider the same P(z) and Q(z) studied in Example 10.1. For various specific values of
a and b listed in that example, the zeros of 1/T*(i3) were all simple. Hence, as Theorem 11.6 (iv) states,
we expect the number of zeros of f;f(i3,z) and f}(if,z) to change by +1 at each zero of 1/7(if) as
3 varies in (0, +oc). For example, when a = 0 and b = 21/10, one finds that f;" (i3, z) has one zero for
B € (0,61) and no zeros for 3 € (B1,+0c0), where 81 = 0.15; moreover, f;F (i3, z) has no zeros when 8 = 0
because N(0,Q) = 0. When a = 0 and b = 100, one finds that f;¥ (i3, z) has no zeros for 3 = 0, no zeros for
B € (Bs1,+00), one zero for B € (0, 51) and one zero for 3 € (B30, f31), j zeros for B € (Bj-1,3;) and j zeros
for B € (B31-j, P32—j) with j = 2,3,--- 15, and sixteen zeros for 3 € (Bis, f17).

The next proposition concerns the zeros of the Jost solutions when k lies off the positive imaginary axis.

Proposition 11.9 Assume P, @ € L}(R) and let kg = a + i3 for some o # 0 and B > 0. If P(z) < 23, then
fit(ko,z) and f}(ko, z) cannot vanish for any = € R.

PROOF: Using (4.2) in (4.28) we obtain
d —
(11.20) T (=R, 2); 7 (ko, @)] = 2 [P(z) = 28] | £ (ko, 7).

Suppose f,+(k0, z) has at least one zero and let d be the right-most zero of f,+(k0,a:). Note that, as seen
from (4.2), the zeros of f;"(—ko, ) and f;t(ko,z) coincide. Integrating (11.20) over (d,+oo) and using (2.3),
Proposition 8.2, and the boundedness of 1/7+ (k) for each k € C*, we obtain

iaoox x)— F(ko,z)|* = 0.
via [ dz [P(&) = 201 f7 (ko ) = 0

This is impossible if & # 0 and P(z) < 2; note that P(z) = 26 on a semi-infinite interval would contradict
P e LY(R). Hence, f,+ (ko, z) cannot vanish for any z € R. The proof for f(ko,z) is analogous. I
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APPENDIX: SMALL-k ESTIMATES

In this appendix, proceeding as in Refs. 10 and 11, we obtain various small-k estimates that are needed

in the proof of Theorem 5.2.

In the exceptional case, let 1Z(k', z) be the solution of (1.1) satisfying the initial conditions
(A1) U(k,0) = £i(0,0),  ¥'(k,0)= £{(0,0), kER.

Note that 1/:(0, z) = f1(0, ), and hence 1/:(0, z) is bounded in such a way that 1/:(0, +00) =1 and 1/:(0, —0) =
v, where v is the constant defined in (2.27). We have

sinkz 1

(A.2) Pk, z) = £1(0,0) cos kz + £/ (0, 0)——+72 /0 dy sin k(z — y) [ikP(y) + Q(v)] ¥ (k, ).

Let 11 (k, z) denote the solution of (1.1) with P(z) = 0 and satisfying (A.1). We have

sinkz 1

(A.3) Y1(k,z) = f1(0,0) cos kz + f(0, O)T + z /0”” dy sink(z — y) Q(y) ¥1(k, y).

Note that 15(0, z) = ¥1(0, z).

Proposition A.1 Assume @ € L}(R). For k,z € R, we have

kx| \? |kz|
k
<1+|m| kT e

where C' is a constant independent of z and k.

(A4) b1k, z) — ¢1(0,2)| < C ok 2)| < OO+ K],

PROOF: Note that ¢1(0,z) = fi(0, ) and hence it is uniformly bounded for € R. Furthermore,

(A5) 6102 = £10.0) +2 50,0+ "y (2 — 1) Q) ¥ (0,y).

Subtracting (A.5) from (A.3) and iterating the resulting integral equation as in the proof of Proposition A.1
of Ref. 11, we obtain the first inequality in (A.4). Using that inequality and the boundedness of ¥;(0, z),

we obtain the second inequality in (A.4). 1

Let us choose a second linearly independent solution of (1.1) with P(2) = 0 such that the Wron-
skian [¢1(k, z);¥a2(k, 2)] is equal to 1. For example, we can choose ¥5(k, ) satisfying the initial conditions
¥a(k,0) = 0 and ¥4(k,0) = 1/£i(0,0); note that there is no loss of generality in assuming f;(0,0) # 0, and
the case f;(0,0) = 0 can be handled by a shift of the origin. We have

sin kx 1

/ " dy sin k(z — y) Q) va k. ).

Proposition A.2 Assume ) € L1(R). Then, for z,k € R we have

(A7) ok, z)| < — =, |1/’2(ka$)_1/}2(0,$)|§0|33|< kx| ) |

1+ |kz|
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where C' is a constant independent of z and k.

PROOF: Tterating (A.6) as in the proof of Proposition A.1 of Ref. 11, we obtain the first inequality in (A.7).
Note that from (A.6) we have

(A8) 6a00.0) = 5+ | Cdy (2~ ) Q(y) ¥ (0, ).

Subtracting (A.8) from (A.6) and iterating the resulting integral equation, we obtain the second inequality
in (A.7). 1

Proposition A.3 Assume P, @ € L}(R). Then, for x € R and as k — 0 in R, we have

T

1/:(]@ z) — Y1(k,x) = — iky1(0, ) /0’” dz ¢4(0, 2z) P(2) ¥1(0, z) + ik2(0, :L‘)/O dz P(2)11(0, 2)*

kx| [ Jke] 77
+O<|k|1+|kx| Okl | T ey )

PROOF: Recall that 1 (k, z) and ¥a(k, z) are two linearly independent solutions of (1.1) when P(z) = 0.

(A.9)

Using variation of parameters on (1.1), we obtain

(A.10)
J(k,:c)—%(k,x):—ik«pl(k,x)/0 dz%(k,z)P(z)&(k,z)+ik¢2(k,x)/0 dz iy (k, 2) P(2) d(k, 2).

Let us write (A.10) as
(A.11) Ok, 2) — 1 (k,2) = Ay + Ay + As + Ay + As + As + A7z + By + By,

where we have defined

By = —ik ¢y (k, z) /0 dz s (k, 2) P(2) [k, z) — ¢ (k, 2)],

By = ik o (k, ) /x dz 1 (k, 2) P(2) [(k, 2) — ¢1(k, 2)],

0

Ay = —iky1(0, 2) /0“7 dz ¢4(0, 2) P(z) ¢1(0, 2),
Az = —ik[¢1(k, z) — ¥1(0, 2)] /“*" dz ok, z) P(2) Y1k, 2),

A = —iks(0,2) [ de ia(k.2) = 62(0,)] P() balk.2),
Av=—ib620,2) [ d292(0,2) P) a8 2) = 420,2)]
As = ik (0, x)/ox dz P(2) ¥1(0, 2)?,

Ao = ikfpalk,2) = 2(0,2)] [ dz PG (ko)
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A7 = iky2(0, ) /0’” dz[Y1(k, z) — 10, 2)] [ (k, 2) + ¥1(0, 2)] P(2)1(k, 2).

Using the estimates in (A.4) and (A.7), we obtain

kx| \? |ka|
k
<1+|kx| gy

(A.12) [As] < CIRI(L+ k) / “aep),

|kz| )2/|x|
A13 As| < Clk dt |t P(1)],
(A1) (aal < el (EL) [T

(A.14) |Aq| < C|

/ )

kx| \? kx|
k
<1—|—|k;7:| I e

kx| 2 plel
Al Ag| < Clkz|(1 + |k])? | / dt|P(t
(A.15) (ol < Cleal(1+ k)7 (5) [T e o),
(A.16) < e [T (LY g B
. zZ Z)|.
= 1+ [kz| Jo 1+ [kz| 1+ [kz|

Tterating the integral equation for ¢(k, ) — 1 (k, ) given in (A.11) and using (A.12)-(A.16), we obtain
(A9). 1
In order to estimate the small-k asymptotics of T (k), we will use (4.4). Note that as in (A24) of Ref.

11 we have

(A.17)
£1(0,0) [fF (&, 2); £ (k, 2)] = (k,0) [—ikﬁ(o,O) + £(0,0) + / dz e [ikP(z) + Q(z)]i(k,z)]

0
0

i (k0) [ucf,(o,m +A00 - [

— 00

= kP() + QUK. ).
Proposition A.4 Assume P, @ € L1(R). Then, as k — 0 we have

(A.18) /000 dz e [ikP(2) + Q(2)] (k, z) = —f1(0,0) + ik f(0,0) — ik + ik /Ooo dz P(2) f1(0, 2) + o(|k|),

(A.19)/_ dze—i’“Z[ikP(z)+Q(z)]&(k,z):f;(o,O)—ikwikﬁ(o,0)+(ik/~y)/_ dz P(2) fi(0, 2)*+o(|k]),

where 7 is the constant defined in (2.27).

PROOF: Let us write

(A.20) /OOO dz ™ [ikP(2) + Q(2)] ¥k, 2) = J1 + Jo+ Js + Ja + J5s + Js,
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where

Ty = /OO dzQ(2)¥(0,2),  Jo= /Oo dzQ(2) [ — 1]4(0, 2),

0 0
Jo—ik [ dzeitop 0
3 =1 /0 ze (2) (0, 2),
Jg = / dz e’ Q(2) [W1(k, 2) — ¥(0, 2)],
0
Js = ik /oo dz €% P(2) [(k, z) — (0, 2)],
0
Jo= [ dzd QU (k. 2) — (k)
0
As in (A25) and (A26) of Ref. 11 we have J; = —f/(0,0) and
Js = ik{fi(0,0) = 1]+ ofkl),  k—0,

As k — 0, using (A.4) we obtain J4 = o(]k|) and

Jo = ik / "z P(2) (0, 2) + of[k]),

and using (A.9) we have J5 = o(|k|) and

(A21) Js :uc/ooo dz Q(z) [—1/}1(0,2) /0 dt (0, 1) P(£) 1(0, 1) + (0, 2) /0 dt P(t) 1(0,0)2| + o([k]).

Note that [¢1(k, z); Ya(k,z)] = 1 and Q(2)¢s(0,2) = ¥¥(0,z) for s = 1,2. Hence, using ¥4(0,+00) = 1,
¥'(0,2) = o(271) as z — 400, and integration by parts twice in (A.21), we obtain

Jo = —ik /OOO dz P(2)4%(0,2) + zk/o dz P(2)¥(0,2)2 +o(|k]), &k — 0.

Thus, from (A.20) we obtain (A.18). Similarly, using ¢} (0, —oc0) = 0 and ¢1(0, —o0) = 7, we get (A.19). 1
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