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INVERSE SCATTERING IN ONE-DIMENSIONAL NONCONSERVATIVE MEDIA
Tuncay Aktosun, Martin Klaus, and Cornelis van der Mee

The inverse scattering problem arising in wave propagation in one-dimensional non-
conservative media is analyzed. This is done in the frequency domain by considering the
Schrodinger equation with the potential ¢kP(z) + Q(z), where k? is the energy and P(z)
and Q(z) are real functions vanishing at infinity. Using a pair of uncoupled Marchenko
integral equations, P(z) and Q(z) are recovered from an appropriate set of scattering data
including the bound-state information. Some illustrative examples are provided.

0. INTRODUCTION

The wave propagation in a one-dimensional medium, where energy absorption or gen-
eration may occur, can be described in the frequency domain by the generalized Schrédinger
equation

" (k,z) + kT (k, 2) = [ikP(2) + Q(z)] ¥+ (k,2), =z €R, (0.1)

where R is the real line, the prime denotes the derivative with respect to the spatial
coordinate z, k is the wavenumber, k? is the energy, P(z) represents the energy absorption
or generation, and Q(z) represents the restoring force density. By changing the sign of

P(z) in (0.1) we obtain the associated equation
7" (k) + k'~ (k,2) = [-ikP(z) + Q(z)] ¢ (k,z), =z €R, (0.2)

whose scattering data are to be used along with the scattering data from (0.1) in order to
recover P(z) and Q(z).

Let L?(I) denote the measurable functions f(z) such that [, dz (1 + |z|)?|f(z)| is
finite. Note that we have LP(I) = L¥(I). We will assume that Q(z) is real valued and
belongs to L}(R) and that P(z) is real valued and satisfies P € L'(R). We will use ||f],
to denote the norm on LP(R) and write ||f|[14 for [ _dz (1 + |z])?|f(z)|. We will later

impose further restrictions on P(z) and Q(z).
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T*(k)TF(-k) =1— RY(k) RT(—k), keR. (0.9)

The bound-state solutions of (0.1) and (0.2) are those nontrivial solutions belonging
to L%(R). Such solutions correspond to the values of k£ € C* at which the Jost solutions
from the left and from the right are linearly dependent. For detailed information on the
bound states of (0.1) and (0.2), we refer the reader to [AKV97] and the references therein.

When P(z) =0, from (0.1) and (0.2) we get

YO (k,2) + KOk, 2) = Q(a) ¥ (k,a),  z € R. (0.10)

Let fl[O](k, z) and fl%(k,z) denote the Jost solutions of (0.10) from the left and from the
right, respectively. The zero-energy Jost solutions fli(O,.’L') and f£(0,z) of (0.1) and (0.2)

are determined by Q(z) alone, and we have

fF0,2) = £7(0,2),  £E(0,2) = f)(0,2). (0.11)
Let SI°/(k) denote the scattering matrix associated with (0.10):

TCN (k) RPl(k)

S[O](k): L[O](k) T[O](k) ’

where T1%l(k) is the transmission coefficient and RI°! (k) and L[®l(k) are the reflection coeffi-
cients from the right and from the left, respectively. Generically fl[O](O, z) and fvl,o](O, r) are
linearly independent and T[O](O) = 0. However, in the exceptional case these two functions

are linearly dependent and T!°/(0) # 0; in this case, let us define

_ 0,0)
(0,2)°

Then « is a nonzero real constant determined by Q(z) alone.

(0.12)

As for (0.10), the generic case for (0.1) and (0.2) occurs if TI%(0) = 0 and the
exceptional case occurs if T1°1(0) # 0. In the generic case we have [JJ76a,AKV97]

T*0)=0,  R*(0)=L*0)= -1,

and in the exceptional case TF(0) and 77(0) are both nonzero. From Propositions 4.10

and 5.1, Theorem 5.2, and Theorem 5.6 of [AKV97], we have the following result.
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THEOREM 0.1 Assume P,Q € L*(R) and 1/T*(k) does not vanish for k € R\ {0};
then S*(k) is continuous for k € R\{0}. In the generic case, S*(k) is continuous at k = 0 if
we further assume Q € L}(R). In the exceptional case, let us further assume P,Q € Li(R);
then St (k) is continuous at k = 0 of and only of ffooo dz P(z) l[o](O,:zz)2 # +(v% +1), where
~ 1s the constant defined in (0.12).

The inverse scattering problem for (0.1) that we consider in this paper consists of the
recovery of P(z) and Q(z) from an appropriate set of scattering data. To stay in touch
with the scattering data traditionally adopted [JJ76a,JJ76b,Ja76,5595,5596], we use as our
scattering data the two reflection coefficients Rt (k) and R~ (k) from the right, the bound-
state energies or equivalently the poles k;’ of TT(k)in C* for j =1,--- , NT and the poles
k; of T~(k)in C* for j =1,--- , N~ the multiplicities n;' and n for each of these poles,
and the bound-state constants c}fs for s = 0,--- ,nj —landc;, fors =0,---,n; — 1
defined in Section 4. In that section, we relate these bound-state constants to the ratio of
the Jost solutions in a neighborhood of each bound-state wavenumber by generalizing the
relationship between the Jost solutions of (0.10) and the so-called bound-state norming
constants. In order to have a unique solution of the inverse problem, the total number
of bound-state constants must agree with the total number of bound states including
multiplicities. Let N(P,Q) and N(—P, Q) denote the number of bound states of (0.1) and
(0.2), respectively, including multiplicities. We then have N(+P,Q) = Zj\’:l n;t Thus,
the total number of bound-state constants in our scattering data is given by N(P,Q) +
N(-P,Q).

We recover P(z) and Q(z) as follows. In terms of the scattering data, we first
evaluate the two real-valued functions S;'(z) and $; (z) defined in (5.4). These functions
are used to obtain the two kernel functions K; (z;y,z) and K, (z;y,2) defined in (5.12).
Then, the pair of uncoupled Marchenko equations (5.14) with kernels K;"(z;y,2) and
K| (z;y,z), respectively, is solved, and from their solutions a; (z,y) and a; (z,y), the
functions ] (z,y) and b; (z,y) are constructed by simple integration as in (5.19). The
four functions af (z,y), a; (z,v), b (z,y), and b, (z,y) are used to recover P(z) and Q(z)
as indicated in Theorem 5.5. Note that in order to obtain our uncoupled pair of Marchenko

equations, we first convert the Riemann-Hilbert problem given in (5.2) into the pair of two
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coupled Marchenko integral equations (5.9) and (5.10). We then further decouple the two
equations (5.9) into the pair of uncoupled Marchenko equations (5.14).

In the inverse scattering problem for the Schrodinger equation (0.10), the scattering
data usually consist of a reflection coeflicient, N(0,Q) bound-state energies, and N(0,Q)
bound-state norming constants [Fa64,DT79,CS89]. In this comparatively easy case, the
poles of the transmission coefficient TI°)(k) in C™ are all simple and located on the imag-
inary axis. The scattering matrix S[®/(k) can be uniquely constructed [Fa64,DT79,CS89)
from a reflection coefficient and the poles of TI%)(k) in C*t. The poles of T*(k) in Ct,
however, are not necessarily restricted to the imaginary axis, and the multiplicity of each
such pole may be larger than one. The scattering matrix S (k) is not unitary and cannot
be constructed from a reflection coefficient and the poles of 77 (k) in C*; some examples

illustrating this can be found in [AKV97]. On the other hand, from (0.7) we see that

1 TH(—k)? — L*(—k) R*(—k)

T-(k) T+(—k) J keR, (0.13)
_ —Lt(—k

R (k) = TF (k) = LJr((_k)) B R’ k €R, (0.14)

L~ (k) —RT (k) k € R.

T TH(—k)2 — LT(—k)Rt(—k)’
If St(k) is continuous and invertible for £ € R, using (0.13) we can uniquely construct
1/T~(k) in C* by an analytic continuation from R to C*. Thus, with the help of (0.13)
and (0.14) we can construct the scattering data {R+(k),R_(k),k;',k;z,n}',n;t,c;s,c

by using ST (k) for k € R and a set of N(P,Q) + N(—P, Q) constants, where N(—P,Q) is

m,u}

equal to the number of zeros in C* of the analytic continuation of the right-hand side of
(0.13). Thus, it is possible to formulate and solve the inverse scattering problem for (0.1)
without using (0.2) but by using the scattering data consisting of S*(k) for £ € R and a
set of N(P,Q) + N(—P, Q) constants.

Let us now discuss the history of the inverse scattering problem for (0.1). In the radial
case, when there are no bound states, Jaulent and Jean presented an inversion method
[JJ72] when P(z) is complex and Q(z) is real. In [JJ76a,JJ76b] they applied their method

to solve the one-dimensional inverse problem with real @Q(z) and imaginary P(z); Jaulent
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[JaT6] also applied this method when P(z) is real, although many details were not given.
As indicated in Section IV of [Ja76], in this method, in our own terminology, using the
scattering data {R*(k), R~ (k)}, a pair of coupled Marchenko integral equations similar
to our (5.9) and (5.10) was obtained. From the solutions of one of these pairs, by solving
a differential equation, P(z) and Q(z) were recovered. This extra differential equation
was needed in the solution of the inverse problem; in our own notation this is because the
coupled Marchenko equations given in (5.9), in addition to containing the two unknown
functions Bj (z,y) and B; (z,y), also contain the unknown function ¢(z) defined in (1.2).
In [Ja76] no details and no proofs were given in the one-dimensional case with real P(z),
and it was only mentioned that the results could be obtained analogously to the radial

case.

When P(z) is purely imaginary and ffooo dz P(z) = 0, Sattinger and Szmigielski
[SS95] showed that one can simplify the method of Jaulent and Jean and recover P(z)
by solving an algebraic equation rather than a differential equation. The pair of two
coupled Marchenko equations (3.5) and (3.6) of [SS95] corresponds to our (5.20), and the
algebraic equation of [SS95] corresponds to our (5.21). If P(z) is purely imaginary, then
the scattering matrix S*(k) is unitary, the reflection coefficient R*(k) cannot exceed one
in absolute value, any pole of T*(k) in Ct must be located on the imaginary axis, and
1/T*(k) cannot vanish on the real axis. If P(z) is real and nontrivial, then S*(k) is no
longer unitary, R*(k) is not necessarily bounded by one in absolute value, 1/T*(k) may
have poles in C* off the imaginary axis, and 1/T*(k) may vanish on the real axis. Thus,
the analysis of the inverse scattering problem with real P(z) is more complicated than

with purely imaginary P(z).

Assuming that P(z) and Q(z) are in the Schwartz space, when P(z) is real and

[ _dz P(z) = 0, Sattinger and Szmigielski [SS96] also studied the inverse scattering prob-
o0

lem for (0.1) by analyzing an associated Riemann-Hilbert problem in order to solve the

initial value problem for a pair of evolution equations. However, some of the assumptions

made on the reflection coefficients in [SS96] may severely restrict the class of potentials

that can be recovered. We should also mention the study by Kaup [Ka75] on the direct
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and inverse scattering problem for

6+ |1+ | 6 = ikPG) + Qe

where 3 is a positive constant and P,@ € L}(R). In [Ka75,5596] the inverse scattering
problem was analyzed by studying a Riemann-Hilbert problem on a particular Riemann
surface.

This paper is organized as follows. In Section 1 we introduce the auxiliary functions
nit(k,z) and n;t (k, ) in terms of the Jost solutions of (0.1) and (0.2), establish their analyt-
icity in CT, and obtain their large-k asymptotics. In Section 2 we study various properties
of the Fourier transforms of n;f(k,z) — 1 and n¥(k,z) — 1. In Section 3 we analyze cer-
tain properties of the scattering coeflicients and their Fourier transforms. In Section 4
we analyze the bound states of (0.1) and (0.2) and present the bound-state constants. In
Section 5, using the results of the prior sections, a pair of uncoupled Marchenko integral
equations is obtained, the compactness of the corresponding integral operators is analyzed,
and the recovery of P(z) and Q(z) from the solutions of the uncoupled Marchenko equa-
tions is described. In Section 6 we present some conditions for the unique solvability of

the Marchenko equations. Finally, in Section 7 we present some examples illustrating the

recovery of P(z) and Q(z).

1. PROPERTIES OF SOLUTIONS

In terms of the Jost solutions of (0.1) and (0.2), let
nl:E(k7m) = e_ikz:tcfli(k’m)7 nf(k,m) = eikzipqchf(k’w)? (1.1)

where we have defined

(=c@) =y [ aPe), e [ 4P (12

z 2 — o0

Since P(z) and Q(z) are real, from (0.1)-(0.4) and (1.1) we get

nli(ﬁk,z) = nli(k,:c), n;t(—k,:c) = n;t(k,:c), k€ R. (1.3)
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The functions 7 5(k,z) and 7 (k,z) will be used to formulate the coupled Marchenko

equations (5.9) and (5.10). In this section we analyze certain properties of nli(k,:c) and
(k).
Using (0.1)-(0.3), (1.1), and (1.2) we obtain

nl:t”(kaw) + [27”9 + P(w)]nlil(k?w) = Wﬂ:(m)nli(k’w)’ LS R7 (1'4)

nl:t(k,—l-oo) =1, nli'(k,—i—oo) =0, (1.5)

where we have defined
+ 1 ! 1 2
W(z) = Q) F 5 P'(z) — 1 P(a)’ (1.6)

Note that, if P(z) is piecewise continuous, then the discontinuities of P(z) lead to Dirac
delta contributions in (1.6). We will elaborate on this at the end of Section 3.
Let pli(k,:c) = ¢?h2F2¢ Multiplying (1.4) by u;t(k,:c) we obtain

[p,f(k,m)nli'(k,w)]' = p,li(k,a:)Wi(w)nli(k,m), z € R. (1.7)

Integrating (1.7) and using (1.5) we get
(o ]

+
i (k,z) = —/ dy Z%E:z; W (y)nE (k, y). (1.8)

Integrating (1.8) and using (1.5) once again, we find

oo (e’ :i:k
wke) =1+ [ at | dy%Wi(y)mi(k,y)- (1.9)

Changing the order of integration in (1.9) we have
w(ha) =1+ [ dy G, W) (k) (1.10)

where we have defined

k) :tk Y i .
Gzi(kw,y):/ dt%:/ dt 2FW t):l:f' P
z ! ? T

1 [ zik(y-=2)xf* P 1 /y 2ik(y—t)£ [* P
_ 1 P =L [T apa e F
2ik [e o ), dF®)e

(1.11)
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Similarly, using (0.1), (0.2), (0.4), (1.1), and (1.2) we obtain
0" (ky2) - [2tk + P(e)] 0y (k,z) = W7 ()07 (k, ), (1.12)

nt(k,—c0) =1,  nE'(k,—o0)=0. (1.13)

Integrating (1.12) twice and using (1.13) we get

v 2ik(z—y)£ [* P
nf'(k,w)=/ dy W (y)n (k,y) "7 J, , (1.14)
t(k,z)=1 "4 GE(k;z,y) WF(y)nE(k 1.15
ny (k,z) =1+ y G (ksz,y y)n; (k,y), (1.15)

where we have defined

GE(k;z,y) / g MEnE] P
Y
1
2ik

2tk(z— 1 e 2tk(t— !
[ k( y):l:f P 1:| :I:_k/ dtP(t)e k(t y):i:fy P.

2zy

THEOREM 1.1 Assume P € L*(R) and Q € Li(R). Then, for each fized z € R, the

functions n; t(k,z) and nt(k,z) are analytic in C* and continuous in C¥, and
nt(k,z) =14+0(1), nE(k,z)=1+o(1), k — oo in C*.
If we further assume that W W~ € L}(R), then
nt(k,z) =1+ 0(1/k), nE(k,z)=1+0(1/k), k— ocoin C*. (1.16)

PROOF. We only prove (1.16) because the rest of the proof is given in Theorems 3.1
and 3.2 of [AKV97|. Note that for y > z, from (1.11) we get

GE (ks ,9)] < ,O—l ke T\ {0}, (117)

where C = (1 +(1+ ||P||1)e”PH‘) . Thus, iterating (1.10) and using (1.17) we obtain

N

InF(k,z) — 1] < — Tl [/ dt|Wi(t)|] exp (/m dz|Wi(z)|>, k e Ct\ {0},
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from which we have (1.16) for n;"(k,z) whenever W* € L!(R). The proof of (1.16) for
nE(k,z) is obtained in a similar manner.

From Theorem 1.1 we obtain the following result which will be used in Section 2.

COROLLARY 1.2 Assume Q € Li(R) and P,W* , W~ € L}(R), where W¥(z) and
W~ (z) are the functions defined in (1.6). Then, for each fized z € R, the functions
nE(,2) — 1 and nE(-,z) — 1 belong to the Hardy space H (R), and thus their Fourier
transforms defined in (2.1) have their support on the positive half-line.

Using (1.10) and (1.15), it is possible to improve (1.16) and prove that, for each fixed

z € R, as k — oo in Ct we have

nEha) =1 o [ dyWE) +o(1/k), (118)
nEke) =1 oo [ W) +o(1/k). (1.19)

Similarly, from (1.8) and (1.14), as k — oo in C* we get

i (k,z) = —/ dy W(y) SFO =P oy, (1.20)
0 (k,z) = / dy W (y) VR o). (1.21)

2. FOURIER TRANSFORMS OF SOLUTIONS

In this section we analyze the properties of the Fourier transforms of nli(k, z)—1 and
Uﬁt(kﬂc) - L
Assume Q € L}(R) and P,W* , W~ € L}(R). Define

1 o[ 1>
BEew) = - [ dbe b o) -1, By =5 [ dke Mo -1l

2 —00 — o0
(2.1)
From Corollary 1.2 it follows that, for each fixed z € R, the functions Blﬂ:(m, -) and B¥(z,-)
belong to L?*(R), and moreover we have Bli(w,y) = Bf(z,y) = 0 for y < 0. Thus,
i (k,z) =1 +/ dye™ B (z,y),  nFf(k,z)=1 +/ dye*¥BE(z,y). (2:2)
0 0
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Using (2.2) in (1.10) and (1.15), we obtain the integral relations

Brew) =5 [

z+y/2

oo

dt Wi(t)eif*—y/zp

(2.3)
1 Y o t
+—/ dz/ dtWi(t)Bli(t,y—z)eif'—:/?P
2 Jo z+2/2
+ 1 z-y/2 g + f’+y/2 P
By =y [ awFnet]
o o (2.4)

1 Y z—2z/2
+§/ dz/ dtW:F(t)B;t(t,y—z)eifz P
0 —o00

THEOREM 2.1 Assume P € L'(R), Q € Li(R), and W, W~ € L{, (R) for some
a > 0. Then, for each fized x € R, the functions Bli(a:,-) and BE(z,-) are continuous in

y € [0,400) and are o((1 +y)~17*) as y — +oo. Moreover, for each fized z € R, we have
+ ¢ 4 C ~E(z) + C 4 C ~E(z)
1Bif(2,9)l < 5 o (2 +y/2) e, B (2 y)l < 5 oz +y/2)e” 1, (2.5)
where C = ellPllh gnd

o) = [ aw) afwrzfzduw¢mn (2.6)

T

7ﬂm=/wau—wm¢mu e = [ de 0wl

— o0

PROOF. Let us iterate (2.3) by writing

Bif(2,y) = ) Bi,(2,v), (2.7)
n=0
where we have
1 = [ P
Bﬁn+1(m,y): 5/ dz/ / dtWi(t)Bl:t:n(t,y—z)e f*—:/z , n=0,1,---, (2.8)
0 z+2/2

and Bfo(w,y) is given by the first term on the right-hand side of (2.3). Note that

C [ C
|B$wwns—3/ dt |WE(t)| = — oif(z +y/2).
2 ’17+y/2 2
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Starting from the induction hypothesis

n+1

2n!

|B:t (w?y)l <

ln

op (2 +y/2) 7 (2)",

and using (2.8) and the fact that dy:*(z)/de = —oi*(z), we obtain (2.5) for B(z,y). The
proof of (2.5) for B¥(z,y) is similar. For each fixed z € R, using (2.8) and W* € L}(R), we
see that Bfn(w,y) are continuous in y € [0, 400). Since o;f(z) and vF(z) are decreasing
functions of , it follows that for each fixed z € R, the terms Bl:f:n(a:,y) are uniformly
bounded in y € [0,400). Thus, for each fixed z € R, the series in (2.7) is uniformly
convergent and hence Bif(z,y) are continuous in y € [0,+o00). From (2.5), (2.6), and
W* e L1 (R), we get B (z,y) = o((1 +y)™*~%) as y — +o0o. The proof for BE(z,y) is
similar. JJ

From (2.3) we obtain

2___3Bli(:c,y) + WE(z +y/2) et f:ﬂn P

Oa (2.9)

Y x4z/2
:—/ dei(w+z/2)Bli(:n—l—z/2,y—z)eifz P
0

Using (2.5) in (2.9), we get

8B (z,y)

x+y/2
) FWEe g2yt T
&L

2 < 02O (@) o (z) o (z + y/2). (2.10)

In a similar way, using (2.4) we obtain

&

+
0B (2,y) W¥(z —y/2) AL, P

Oz
y . (2.11)
:/ deq:(m—z/2)B,:,t(m—z/2,y—z)eif1-=/2p

0
and using (2.5) in (2.11) we get

x

W —y/2) et LT

337#(:”73/)

2
Oz

< 02 (=) o (z)oE(z —y/2). (2.12)

As in the proof of Theorem 2.1, one can show that if P € L'(R) and Q, W+, W~ € Li(R),
then the left-hand sides of (2.9) and (2.11) are continuous in y > 0 for every z € R.
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PROPOSITION 2.2 Assume P € L'(R), @ € Li(R), and WH, W~ € L}, (R) for
some a > 0. Then, for each fized z € R, the functions Bli(:c,'), B*(z,), aBl:t(w,')/E):c,
and OBE(z,-)/0z belong to LL(R*).

PRrOOF. Note that

o) oo 2(z—z)
/0 dy (1 + y)°of (= + 3/2) = / dz / dy (1 +9)*[W*(2)

it (2.13)

< [1+ max{0,—z}]""* [[WE|1 144

1+ «

Using (2.13) in (2.5) we see that Bi(z,-) and B¥(z,-) are in LL(R*). Similarly, using
(2.13) in (2.10) and (2.12) we see that 8B (z,-)/dz and 8BE(z,-)/dz belong to L1 (R*). I
From (2.3) and (2.4) we have

z

Bf(z,04) = %/oodtWi(t), Bi(z,04) = %/ dt WF(t), (2.14)

-0

and from (2.2) and (2.14) it follows that

ky 8Bl:t(w?y)

1 [ e .
ik[l—nli(k,:z:)] = 5/ dt VVjE(t)—I—/0 dy e’ Y

1 [° kg OBE
ik[l—nf(k,w)]:i/ dtW:F(t)+/0 dy ™Y ra(yw,y).

— o0

3. SCATTERING COEFFICIENTS

In this section we analyze certain properties of the scattering coeflicients and their
Fourier transforms. At the end of the section we discuss the large-k behavior of the
reflection coefficients in case W (z) or W~ (z) contains some delta-function terms.

For a > 0 let W, denote the set of all functions ¢(k) of the form ¢(k) = ¢ +
[ dte'**h(t) where c is a complex constant and h € L(R). Then W, endowed with

the norm
o

16w, = lel + / dt (1 + 1)) A(t)

is a commutative Banach algebra with unit element. Its multiplicative linear functionals

are the maps ¢ — ¢ = @#(+o0) and, for every k € R, ¢ — ¢(k). We have the following
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result ([GRS64]; Example (c) in Section XXIX.2 and Example (vii) in Section XXX.1 of
[GGK93]).

PROPOSITION 3.1 If $ € W, and ¢(k) # O for every k € R and ¢(+o0) # 0, then the
function 1/¢ belongs to We.
From (6.1)-(6.3) of [AKV97] we have

2ik R*(k) _ _sikagpiac

TRy C [0 (k,2)inf (<k,2)],  kER, (3.1)
ik L . ,
_%(k(Tk) = ket FUE ()T (—k,2)], kER, (3.2)
Tii(kk)eip = [2ik + P(z)) U?E(k,w)n;t(k,:c) + [U?(k,w);nli(k,m)], keCF.  (33)

PROPOSITION 3.2 Assume P,Q,WT W~ ¢ L}Y(R). Then

1 [ _—

RE(k) = ﬂ/ dy WT(y) e 2HRvE2W) 4 o(1/k), |k| — +o0 in R, (3.4)
I 2ikyF2

LE(k) = ~ % dy W(y) 2 *¥F2W) 4 o(1/k), |k| = +o00 in R, (3.5)

and as k — oo in Ct we have

eTPTE(k) -1 = mik _oo dy WE(y) +o(1/k) = zz—k /_oo dyWF(y) + o(1/k).  (3.6)

PrOOF. When P,Q,W* W~ € L!'(R), for each fixed z € R, one can show that
(1.18)-(1.21) hold as k — oo in CT when |k| > a for any positive constant a. Using
(1.18)-(1.21) in (3.1) and (3.2), we get

& RE(k o . .

2k R ( ) _ e:Fp/ dy W:F(y) e—szy:EZQ(y) + 0(1)’ |k| — 400 1In R,, (37)
T*(k) —
. + o . A

Zz;f(k()k) _ —eip/ dy WE(y) 2FvF2W) | (1), |k| = 400 in R, (3.8)

and as k — oo in CT, using (1.18)-(1.21) in (3.3) we obtain

+p 1 oo

Te:i:(k) SRt B WE(y) +o(1/k) =1 — 21_]6 /: QW)+ o(L/k).  (39)
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Thus, from (3.7)-(3.9) we obtain (3.4)-(3.6). 1

PROPOSITION 3.3 Assume P,WT W~ ¢ L}(R), Q € L}(R), and 1/T*(k) does not
vanish for k € R\ {0}; then in the generic case, the three functions eT?T*(k) — 1, R*(k),
and LE(k) belong to L%(R). In the exceptional case, these three functions belong to L%(R)
if we further assume that P € L}(R) and [°_dz P(z) fl[o](O,az:)2 # +(v2 + 1), where v is
the constant defined in (0.12).

PROOF. From Proposition 4.10 of [AKV97], it follows that T+ (k), R*(k), and L (k)
are continuous for £ € R\ {0} if we assume that P,Q € L'(R) and 1/T(k) does not
vanish for £ € R\ {0}. By Proposition 3.2 we see that e ?T"(k)—1, R*(k), and L* (k) are
O(1/k) as k — +co in R if we further assume W+, W~ € L}(R). From Proposition 5.1 of
[AKV97] we see that T (k), R*(k), and L (k) are continuous also at k = 0 in the generic
case when P € L'(R) and Q € L!(R). In the exceptional case, when P,Q € L}(R), these
three functions are continuous at £ = 0 if and only if ffooo dz P(z) f;7(0,2)% # 4% + 1, as
shown in Theorem 5.2 of [AKV97]. The proof for the three functions related to (0.2) is

obtained in a similar manner. |

THEOREM 3.4 Assume P € L'(R), Q € L}(R), and W, W~ € L, ,(R) for some
o > 0. Then, the quantities 2ik[1 — e*? /T*(k)], 2ikR*(k)/T*(k), and 2ikLE(k)/T* (k)
are Fourier transforms of real functions in L. (R).

PROOF. From Proposition 2.2 it follows that the right-hand sides in (3.1) and (3.2)
belong to W, and vanish as |k| — +oco in R. On the other hand, the right-hand side of
(3.3) equals 2ik plus a function in W, that vanishes as k — oo in C*. |

THEOREM 3.5 Assume P € L*(R), Q € Li(R), and W+, W~ € L1 (R) for some
a > 0, and suppose 1/T*(k) does not vanish for k € R\ {0}. Then, in the generic case
T*(k) — e*?, R*(k), and L*(k) are all Fourier transforms of functions in L (R).
PRrOOF. Note that

k eP 1= 1 B 1
k+iTt(k) k41 2i(k+1)

2ik [1 - T:—zk)} . (3.10)

Using Theorem 3.4 we see that the left-hand side of (3.10) is the Fourier transform of a
function in LL(R). Using Proposition 3.1 and the absence of zeros of k/[(k + 2)T (k)]
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for k € R, we see that [(k +1)/k]TT (k) is e plus the Fourier transform of a function in

L1 (R). Hence T* (k) — €? is the Fourier transform of a function in L} (R). Similarly, since

L) = L k+iT+(k)-

1 k+i,.,, . 2kR(k)
C 2i(k+e) Kk

2ik L+ (k)
R R O TR

R*(k) ek

using Theorem 3.4 and the fact that W, is an algebra, we conclude that the inverse Fourier
transforms of Rt (k) and LT (k) belong to L. (R). The proof for the quantities related to

(0.2) is obtained in a similar manner. i

THEOREM 3.6 Assume P,Q € Li(R) and W, W~ € L}, (R) for some a > 0, and
suppose 1/T%(k) does not have any real zeros. Then, in the exceptional case T*(k) — e*P,
R*(k), and L*(k) are all Fourier transforms of functions in LL(R).

PROOF. Let a caret denote the Fourier transform, and let f(k) denote the left-hand
side of (3.10). From the proof of Theorem 3.5, we know that f € L, (R), where f is the

inverse Fourier transform of f. Define

a(k) = 1+ 5 1y ), (3.11)

Using [*_dt f(t) = F(0) = —1 in (3.11), we obtain

0o ) oo eikt _
o) = [t - [ at S 5

— 00 — o0

= /:dtei“ f(t)—/ooo dz et** /:o dtf(t)-l—/_ooodze‘ikz /_; dt (t).

Since f € L1, ,(R), from (3.12) it follows that §(k) is the Fourier transform of a function in

(3.12)

L1(R). Because 1/T* (k) is assumed not to have any real zeros, it follows that 7' (k) — e?
is the Fourier transform of a function in LL(R). Using Theorem 3.4 and an argument
similar to that used for T (k), one sees that R*(k)/T* (k) and L*(k)/T*(k) are Fourier
transforms of functions in L. (R). In the exceptional case, 1/T" (k) is continuous on R,
and since 1/T7% (k) is assumed not to have any real zeros, it follows that Rt (k) and L* (k)
are also Fourier transforms of functions in L (R). The proof for the quantities related to
(0.2) is obtained similarly. il

Using (3.5) and (3.6), we see that if W*(z) or W™ (z) contains any delta-function

terms, the coeflicients in those terms can be obtained from the large-k asymptotics of the
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reflection coefficients. For example, assume that Q(z) contains the delta-function term
go 6(z) and that P(z) is discontinuous at z = 0 resulting in the delta-function term for
P'(z) given by p, §(z). In other words, py = P(0+) — P(0—). Then, from (1.6) we see that
W*(z) contains [go F py/2] §(z). Using (3.5) and (3.6) we obtain

/ o
lim 2ik RE(k) [qg + &] exp (i/ dz P(z)) , (3.13)
|k|—=+o0 2 0

/ o0
I S )

We will use (3.13) in Section 7.

4. BOUND STATES

In this section we analyze the bound states of (0.1) and (0.2) and introduce the bound-
state constants which will be used in the scattering data to solve the inverse scattering
problem. Recall that the bound states of (0.1) correspond to the zeros of 1/T+ (k) in C*
and that such zeros are either situated on the positive imaginary axis or are symmetrically
located with respect to the positive imaginary axis; moreover, the multiplicity of each such
zero may be larger than one [AKV97]. If P € L'(R), Q € L}(R), and there are no zeros
of 1/T*(k) for k € R, then the number of zeros (including multiplicities) of 1/TF (k) in
Ct is finite [AKV9T].

Let k]i for j =1,---,N* correspond to the poles of T*(k) in C* and let n;t denote
the multiplicity of the pole of T*(k) at k;IE Let us also define

*(k,x
ct(k,z) = di(}c,:c) = eip%. (4.1)

Note that, in case fli(k]:.t, z) vanishes at some , then f,ft(k]i, z) also vanishes at the same

= because fli(k;-t,a:) and f;t(kji,w) are linearly dependent.

PROPOSITION 4.1 Assume P € L*(R), Q € L}(R), and suppose 1/T*(k) has a zero
at k;h € CT of multiplicity njb Then, in the Taylor series of ct(k,z) and d*(k,z) at k]-i,
the first n;t coefficients do not depend on x.

PRrOOF. From (0.5) and (4.1) we get
aci(k,:l:) _ e:l:p [fli(kam)va:‘t(kam)] —2ik 1

Bz fEk,2)2 e FPTE(K) fE(k,2)?
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Hence, we have

HOREICEE,

J=0

[(%)H fli(k;:c)} . (42)

Since the value of —2ik/T*(k) and its first n;t — 1 derivatives at I<:Ji vanish, from (4.2) we

see that 8sci(l<:;t,w)/8ls:8 vanish for s =0,1,--- ,n;-t — 1. Thus,

ct(k,z) = Z i, (z) (k — kF)*, (4.3)

)
(=]

where c;'fo, e ,c:.IE

mt do not depend on z € R. Note that in the expansion
o

oo

dX(k,z) = ) di,(z)(k — k)°,

s=0

each coefficient dfs(m) can be expressed in terms of cfo(w), e ,cfs(:c) because we have
8
¢im(2) dfs_m(m) = 4.0, s=0,1,--- ,n;.t -1, (4.4)
m=0

where é; , is the Kronecker delta. Hence, the first n;t coefficients in the expansion (4.4)
are independent of z if and only if the same is true for the expansion (4.3). 1

Note that we can construct e ?T* (k) and ePT~ (k) uniquely in terms of R¥(k),
R (k), k;", k;, nj, and n;, where j =1,--- ,N* and s =1,--- , N~. Let us write (0.9)

in the form
[eFPTE(k)] [e*PTTF(—k)] =1 — R*(k)RT(—k), keR. (4.5)

Recall that k e*?/[(k 4 i) T*(k)] is analytic in C*, is continuous in C*, and approaches 1
as k — oo in C*. The construction of eFPT*(k) can be carried out by solving the scalar

Riemann-Hilbert problem (4.5). Having constructed e ?T* (k) and e?T~(k), one can also

construct eT?? LE(k) using (0.8). As we will see later, the constants {c;.'fo, ce ,c:n¢_1} for
J
j =1,---,N¥* play the role of the bound-state norming constants in the inverse scattering

problem for the usual Schrodinger equation [Fa64,DT79,Ne80,CS89,AKV93]. As seen in
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the proof of Proposition 4.1, knowledge of these constants is equivalent to knowledge of
the set {df0,~-~ ’d;'tn.i—l} forj=1,---,N*.
"y
Let us define the reduced transmission coefficients T, (k) and T, (k) by

+ + i k‘ﬁ v
T*(k) = T} (k)H x| (4.6)

Note that Ti(k) is analytic in CT. We have

+

N:E 7’7.J -1
FPTE(k F*(k 4.7
SCAURD I IR SR (41)
where
£ [d [ (k) (k — 1) ]]
ts = e P T*(k k ,
(nj —1—9)! |dk™ 1 -

and F*(k) is analytic in C™, is continuous in CT, and tends to 1 as k — oo in CT.

Note that the parameters t7 and t

7,8 m,u

R~ (k), k+ k.., n ,and n_, where j = 1,--- ,Nt;m =1,--- N ;5s=0,---,n

are uniquely determined when one knows R (k),
+
and v =0,---,n_ —1.

Recall that for each z € R, the functions nl:t(k,a:) and nZ(k,z) are analytic in C¥,

and hence we have the convergent expansions

SN @) (k- kY, mE(he) =S nE (o) (- R, (43)
$=0 $=0
valid for |k — k]il < Im kji Using (1.1), (2.1), (4.1), and (4.3) in (4.8), we get

8—m

(2iw)s—m—n

38
+ 2 2ik ¥ + +
171';].’8(;1)) = C:F C(Z)e Wz Z mnl;j,m(m)cjan' (4-9)
m=0 n=0
Using (2.2) and (4.8), we also have
i 12)° g,
o) = b+ [ e B, o) (410)
0 .




Using (4.7) and (4.8) we get

N:l: ni ln —1—s

:l:
TR (k) 1 = B )+ 3 5 Y TmlEen )

k ki s+1

j=1 8=0 m=0

N n; —1 ni—l s

+ £
e:FpTi(k)nzi(k,w) 1—Hika: +ZZ Z nl]m .78+7n

:l: 1
j=1 s8=0 m=0 (kk3+

where for each z the functions H;"(k,z) and HE(k,z) belong to the Hardy space H2 1(R).

Let us define

1 o .
A(z,y) = %/ dk & [FPTE (k) nE (b, 2) — 1], (4.12)

1 > .
AEe9) = 5 [ kM TR (k) - 1),

From (0.6) and (1.3) it follows that Af(z,y) and A¥(z,y) are real valued. Using (4.11) in
(4.12), for y > 0 we obtain

N:I: n]i—l n]i—l 38

Z Z Z 1’ Zk J n:j,m( )t;‘:s+m (413)

j=1 s=0 m=0

Using (4.9) in (4.13), for y > 0 we can write AF(z,y) as

Ali(.’l:,y)
ni—lni—l —38
f] J m m—u m w—n
L F2(z) zki(')q;-}.y) zy * (2iz) n " "
= te Z Z Z Z% Z _u_n)ntjvs+m’71;j,u(”’)cj~n'
s=0 m=0 u=0 n=0
(4.14)
Note that we can write (4.14) as
Af (z,y)
n —ln lw—sw—
:I: (zy 2'L$ w—8—u—mn
_ ¥ 2\ GikE (2a4y)
(4.15)
Using
n;'t_l n;t_l w—8Ww—8—1u n;t_l w w—sw—8—n nji_l w w—nw—8— j: 1 w—n w— n
)OI Y oYYy vy -y ,
s=0 w=s8 u=0 n=0 w=0 $=0n=0 u=0 w=0 n=0 s=0 u=0 w=0 n=0uZ::0 8$=0
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we can simplify (4.15) to

w—"n

T Li 11 22w+ woumn
AE (e, y)-zewz H’MZ mz e 2 (o 22 FU)"TT 46

— (w —u—n)!

where y > 0. In a similar manner, we obtain

N:l:

] . o 2z + w—u—n

A;t(w,y) :,Le:i:ZQ(z)E ;ebk (—2z+y) § ' § :d § :,r,r]u ( y)] :
j=1

(w —u—n)!

where y > 0 irrespective of the sign of z. Note that eizC(z)Ali(a:,y) and eT2¢(®) A% (z, y)
are functions of 2z + y and —2z + y, respectively.

When P(z) < 0 in (0.1), there are notable simplifications. In this special case,
1/T*(k) cannot have any real zeros and hence St (k) exists for all k € R. We have

T*(R)? + |LF(R)* <1, |TH(k)]* + |RF(K)* <1, ke€R.

The number of poles of T (k) in C* is equal to N(0,Q), and each such pole is simple
and located on the imaginary axis. Let us order these poles such that Im k;" < Im k;’+1.
Then the Jost solutions fl'"(k;",w) and fﬂ'(k;",:c) each have exactly N(0,Q) — j zeros,
and hence from Theorem 11.4 of [AKV97] and (1.1) we conclude that the common sign
of 7 (k , —00) and n;"(k;",—l—oo) is the same as the sign of (—1)N(®@)~J, Therefore, in
this case the quantity c+(k;.",m) is a nonzero real constant, usually called a bound-state

norming constant, whose sign agrees with that of (—1)N(0.@)=J3,

5. MARCHENKO EQUATIONS AND THE INVERSE PROBLEM

In this section, we derive the two uncoupled Marchenko integral equations (5.14) and
show that the corresponding integral operators are compact and have the same nonzero
eigenvalues. We also describe the recovery of P(z) and Q(z) from the solutions of these
Marchenko equations.

When k € R, the quantities f; (—k,z) and f(—k,z) are also solutions of (0.1), and
hence, they can be expressed as linear combinations of f["(k,w) and f;F(k,z), unless the

latter functions are linearly dependent. Using (0.3) and (0.4) we obtain

fE(ka)] [ TEHR) SRR [ £ (k)
[flf(—k,:c)} [Li(k) Ti(k)} fli(k,a:)]’ ke R. (5.1)
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Using (1.1), we can write (5.1) in the form

nf(—k2)] _ e¥? T (k) —RE (k) 2#2F26@) ) [ (ko
U;F(—k,m) - _L:t(k)e—zikzzpz;p:tzg(z) e:FpTi(k)

For z € R, define

RE () = iﬂ /Z db e RE(R),  LE(z) = % /Z dke** LER),  (5.3)
N n¥—1 m e s
Svl:t(z) _ Ri(z) — eik}tZ t;%m Z %—S-)—' c;}fs, (5.4)
j=1 m=0 5=0 ’
Ni n¥—1 m s
SE(z) = eFPLE(2) =i Y i o D ((Lmz):? ds,. (5.5)
j=1 m=0 s=0

Note that $(z) and SF(z) are real valued because of (0.6) and the real-valuedness of

A¥(z,y) and A¥(z,y). Let us write (5.2) in the form
nf(—k,e) =1 = TP T*(k)n; (k,2) — 1 — R¥(k) 2F* T ik (k,2),  (5.6)

nF(—kya) — 1 = ¥ TE(R) (b, o) — 1 - LE(k) e 2HFPEAG 2k 0). (5.7)

With the help of (2.1), (4.12), and (5.3), the Fourier transform of (5.6) gives us for y > 0

B (z,y) = A (z,y) — 7

RE(2z +y) +/ dz Rf(2¢ +y + z)Bli(a:,z)] . (5.8)
0

Using (4.10) and (4.16) in (5.8), we obtain the coupled Marchenko equations
B (z,y) = —eTX® [S‘f’:(zx +y) + / dz §E(2¢ 4y + 2) Bli(w,z)} , y>0. (5.9)
0

In a similar way, applying the Fourier transform to (5.7) we obtain the coupled Marchenko

equations

B (z,y) = —e***)

S';b(—ch-I—y)—l—/oodz S';t(—2w+y+z)B;t(w,z)] , y >0,

’ (5.10)
where S'f:(:c,y) and BX(z,y) are the quantities defined in (5.5) and (2.1), respectively.
In (5.9) and (5.10) the coupling refers to the fact that the quantities pertaining to (0.1)
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and (0.2) appear in the same equation; for example, both B(z,y) related to (0.1) and
B/ (z,y) related to (0.2) appear in the same equation.

We will only analyze the pair of coupled integral equations (5.9). The analysis of
(5.10) is similar. Note that Sl:t(z) and SE(z) given in (5.4) and (5.5), respectively, can be
constructed uniquely in terms of the scattering data consisting of the reflection coefficients
R*(k) and R~ (k), the bound-state energies corresponding to the k;’ each with multiplicity
nj’ and the k,, each with multiplicity n,,, and the corresponding bound-state constants c;-':s

and ¢ ,,

where j =1,--- ,Nt*;m=1,--- ,N";5=0,--- ,n;-"—l; andu =0,---,n_ —1.

m

PROPOSITION 5.1 Let g € LL(R™) for some a € [0,1]. Then, for every p € [1,+00)
and for every B € [0, ], the integral operator Oy defined by

(0,1)(=) = / T dyg(e +v) f)

is a compact operator on LP(R™) and on LE(R""). In all of these cases, the operator norm
of Oy is bounded above by ||g]|1 8.

PROOF. Since the Fourier transform g(k) of g(z) is continuous and vanishes as
k — 400 in R, the compactness on LP?(R™) follows from the Hartman-Wintner theorem
on the compactness of Hankel operators (Theorem 1.4 and the discussion following (1.1)
of [Po82]; Corollary 4.7 of [Pa88|). Here we give an independent proof. The convolution
product of a function in L}*(R%) and a function in LP(R*) belongs to LP(R™"), and hence
the norm of Oy is bounded above by ||g||;. The convolution product of two functions
in L},(R"’) is again in L};(R"’), and hence the norm of O, is bounded above by ||g]|1 g.
Approximating g by integrable step functions in the norm of either LP(R*) or L. (R™), we
approximate Oy in the operator norm by compact operators, which implies the compactness
of O4. 1

Let us introduce the integral operators M (z) and Kif(z) :

[M{() hl(y) = /oo dz S (2 +y+2)h(z), y>0, (5.11)

0
Kli(m;y,z):] dugli(2w+y+u)5'f(2m+u—l—z), y,z >0,
0

(5.12)

K(2) hl(y) — /OOO dz K (239, 2) h(2), y > 0.

23



We may then decouple the system of equations (5.9) to obtain the two uncoupled equations

Bl:F(:c,y) — / dz Kli(:c;y,z)Bl:F(cc,z) = _eq:zg(z)s“.li(zw +y) + Kli(:c;y,O), y > 0.

0

These equations are not convenient for solving the inverse scattering problem, because

their right-hand sides contain the unknown quantity e¢(*). However, letting
Bif(z,y) = —eF*™afF (z,y) + bF (z,y), (5.13)
we can obtain Bli(:c,y) by using €2$(#) and the solutions of the equations

af(z,y) — /0 dz Ki(z;y,2) af (z,2) = $E(22 +9), y >0, (5.14)

b (z,y) — / dz KE(z;y,2) b (2, 2) = KE(z;9,0), y >0, (5.15)
0

where the right-hand sides are now known in terms of the scattering data. Note that the
coupled Marchenko equations (5.9) are equivalent to the uncoupled equations (5.14) and

(5.15). We will refer to (5.14) and (5.15) as the uncoupled Marchenko equations.

PROPOSITION 5.2 In the generic case, assume that P € L*(R), Q € Li(R), 1/T* (k)
and 1/T~ (k) do not vanish for k € R\ {0}, and W, W~ € Li, ,(R) for some a > 0.
In the exceptional case, assume that P,Q € L}(R), 1/T*(k) and 1/T~ (k) do not vanish
for k € R, and W, W~ € L3, ,(R) for some o > 0. Then, for each ¢ € R, the integral
operators M (z) and M; (z) defined in (5.11) are compact on LL(R™).

PRrROOF. From Proposition 5.1 and Theorems 3.5 and 3.6, it follows that the operators
corresponding to the kernels R*(z) and L*(z) are compact on L (R*). Since $3(z) —
R*(z) and §%(z)—eF?? [*(z) correspond to degenerate kernels, it follows that the integral
operators in (5.9) and (5.10) are compact on LL(R™). 11

In the next theorem we show that the Marchenko integral operators in (5.14) and
(5.15) are compact perturbations of the identity. Thus, the uncoupled Marchenko inte-
gral equations (5.14) and (5.15) are uniquely solvable if the corresponding homogeneous

equations do not have any nontrivial solutions.
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THEOREM 5.3 Under the assumptions in Proposition 5.2, the kernels Kl"'(a:;y,z) and

K| (z;y,z) defined in (5.12) are real valued and satisfy
Kli(:c;y,z) = K[*(z; 2,y), y,z > 0. (5.16)

Moreover, the operators K (z) and K; (z) are compact on Ly(R*) for B € [0,a] and have
the same nonzero eigenvalues, and these eigenvalues are real.

PROOF. Since S’?'(z) and S'l—(z) are real valued, it follows that K, (z;y,z) and
K[ (z;y,2) are real, and from (5.12) we get (5.16). The compactness of M; (z) and
M; (z) on Ly(R*) follows from Propositions 5.1 and 5.2. From (5.11) and (5.12) we have

K;(z) = M (2) M (), (5.17)

and hence K (z) and K; (z) are compact operators on Ly(R*) having the same nonzero
eigenvalues. By Theorems 3.5 and 3.6 we have RT, R~ € LL(R™"); thus, using Proposition
5.1 and an argument as in the proof of Proposition 5.2, we can conclude that M*(z)
and M~ (z) and hence K*(z) and K~ (z) are compact operators on both Li(R™) and
L*(R7). Then a simple Fredholm argument implies that the nonzero eigenvalues of K*(z)
on Lj(R*) and on L*(R™) are identical. However, as a result of (5.16) and the realness of
K*(z;y,2) and K~ (z;y, 2), it follows that K*(z) and K~ (z) are selfadjoint operators on
L?(R™) that are each other’s adjoints. Thus the nonzero eigenvalues of K*(z) and K~ (z)
are all real. |

PROPOSITION 5.4 Under the assumptions in Proposition 5.2, if the integral equations
(5.14) are uniquely solvable in L*(R*), then so are (5.15).

PrOOF. This follows from Theorem 5.3 and the fact that (5.14) and (5.15) are
uniquely solvable if and only if 1 is not an eigenvalue of Kli(a:) ]

From (5.17) we have
M (o) KE(2) = K7 (2) M7 (2). (5.18)

From Proposition 5.2 it follows that M;*(z) is a bounded operator on L*(R"), and hence
M7 (z)ai (z,-) belongs to L!(Rt) whenever af(z,-) € L*(R"). Applying M7 (z) to (5.14)
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and using (5.18), we see that M (z) ai°(z, -) satisfies (5.15), and hence the unique solution
af(z,y) of (5.14) leads to the unique solution bli(:c,y) of (5.15) given by

bE(z,y) = M (2) af (2, )|(y) = /Ooo dz ST (2 +y+ 2)af(z,2), y>0. (5.19)

Note that (5.14) and (5.15) are equivalent to the linear system of coupled Marchenko

equations

/ dz §E(2z +y + 2) b (2, 2) = SF (22 + ), y >0,
o (5.20)
/ dz §F(2¢ + y + z) aff (z,2) = 0, y > 0.
0

Under the general assumptions of this section, we have 5’;", g_ € L}(R). This means that
the integral terms in (5.20) are continuous in y € (0,400) whenever a;*(z,-) and b (z, )
belong to L*(R*). Thus, from (5.20) we see that for each z € R, the discontinuities of
a?:(:c,y) and S'li(2:c + y) coincide for y > 0 and that bft(:c,y) is continuous in y > 0.

In the next theorem we show how the unique solutions of the pair of uncoupled

equations (5.14) lead to the solution of the inverse scattering problem.

THEOREM 5.5 Suppose that, for each ¢ € R, the two integral equations (5.14) have
unique solutions a?‘(m,y) and a; (z,y) belonging to L'(R*). Then e2(®) | P(z), and Q(z)

can be obtained from af (z,y) and a; (z,y) as follows:

L2(2) _ 1+ < af (z,-) > + < b (2,-) > (5.21)
- T , )
14+ < aj(z,)) >+ < b/ (z,-) >
where bft(:c,y) is the quantity in (5.19) and < f >= fooo dy f(v),
B oy 1 de*®
P(m) - —2< (CB) - _egc(z) dz ’ (5.22)
_ 54 [ 2¢(e) 7 F 1o 1 2
Qe) =2 |e oF (z,04) — b (:c,0—|—)] + P'(a) + P(a). (5.23)
PROOF. From (0.11), (1.1), and (2.2) it follows that
((z + +
62(;(1:) _ e )fl(O,LB) _ M (O?w) — 1+ < Bl (:13,) >. (524)

N e=¢(=) £(0, ) n, (0,z) 14+ < B, (z,-) >
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Furthermore, from (5.13) we have
< BE(z,) >= —e**®) < aF(z,) > + < bF(z,-) >. (5.25)

Eliminating < Bi(z,-) > from (5.24) and (5.25), we get (5.21). Next, from (2.3) we get
(5.22), and from (1.6), (2.14), and (5.25) we get (5.23). 1

In order for the inversion algorithm contained in Theorem 5.5 to lead to real potentials
P e L'(R)and Q € L1(R), the right-hand side of (5.21) should be positive for every z € R,
the derivative in (5.22) should exist for all but finitely many z € R, and the derivative in
(5.23) should exist almost everywhere. Even then, restrictions on the scattering data are
usually necessary to assure that the potentials P(z) and Q(z) thus obtained satisfy the

general conditions of this article.

6. UNIQUE SOLVABILITY OF THE MARCHENKO EQUATIONS

In this section we present some conditions on the scattering data for the unique
solvability of the Marchenko integral equations (5.14). The assumptions for the results in
this section to hold are the same as those stated in Proposition 5.2. That is, in the generic
case, we assume that P € L'(R), Q € Li(R), WH, W~ € L}, ,(R) for some a > 0, and
1/T*(k) and 1/T~ (k) do not vanish for k € R\ {0}; in the exceptional case, we assume
that P,Q € Li(R), Wt,W~ € L, (R) for some a > 0, and 1/T*(k) and 1/T (k)
do not vanish for £ € R. Under these conditions, as we have seen in Theorem 5.3, the
Marchenko integral operators are compact perturbations of the identity acting on L} (R+)
for any 8 € [0,a], and hence the unique solvability of the two uncoupled Marchenko
equations (5.14) follows from the nonexistence of nontrivial solutions of the corresponding
homogeneous equations.

Using (5.4) let us define

*

oo Ni n] —1 m :t
SE(k) :/ dze *25F(2) = RE(k) - > Y 5, ) 6 ki — (6.1)
- j=1 m=0 s=

Because gli(y) is real valued, we have the symmetry relation

SE(k) = Sit(—k), keR. (6.2)
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The Banach space Wj of Fourier transforms of functions in L4(R) can be decomposed
in a natural way as W9 = Wg“*’ &) Wg’_, where Wg’i denotes the Banach space of Fourier
transforms of functions in Lé(Ri). The projection II4 of Wg onto Wg’i is bounded with

unit norm if we endow this space with the norm ||7z||wg = ||h||1,8. We write
hy =Tih,  heW). (6.3)

In our analysis of the uncoupled Marchenko equations (5.14) and (5.15), h will be one of
a*(z,-) and b*(z,-) extended to the full line.

Let [M]; », stand for the (j,m)-entry of a matrix M. Let Z(k) be a continuous matrix
function for k € R tending to the identity as |k| — 400 such that its entries belong to Wy

for some B > 0. Then by a right canonical factorization of Z(k) we mean a representation

of Z(k) in the form Z(k) = Z; (k) Z_(k), such that for j,m € {1,2} we have
E - :
1Z+(Njm = 8im €WGE,  [Z2() im — 8jm € Wy'™. (6.4)

By a left canonical factorization of Z(k) we mean a representation of Z(k) in the form
Z(k) = Z_(k) Z+(k), where Z4 (k) satisfies (6.4). Right and left canonical factorizations
are unique when they exist.

The next theorem will be proved by converting (5.20) into a Riemann-Hilbert prob-
lem whose unique solvability can be reduced to the existence of a canonical Wiener-Hopf

factorization following a procedure given in [Fe61,FGK94].

THEOREM 6.1 Under the assumptions of Proposition 5.2, the scalar 1 1s not an eigen-
value of the integral operator Kl:t(:c) defined in (5.12) if and only if the matriz function
Z*(-,z) defined by

1 Sf(k) g2ike

Z%(k,z) = —Sli(~k) e—2iks 1 _ S,i(—k) ST (k)

(6.5)

has both a right canonical factorization and a left canonical factorization.
PRrOOF. Note that (5.20) is valid only when y > 0. Let us extend (5.20) to y € R by
letting

a‘?:(a:ay) = a’i(w,y) + af(:c,y), b?:(wfy) = bi(a},y) + b:i:(w?y)a
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where a+( y) = bt T(z,y) = 0for y < 0 and aE(z,y) = b%(z,y) = 0 for y > 0. Thus, we

have

a¥(z,y) + a*(z,y) — / dz $E(2z +y + 2) bE(z,2) = SE(2z +v), y € R,

o (6.6)
bf(a:,y)—l—bf(:c,y)—/ szl:F(2a:+y+z)a$(a:,z) =0, y € R.
Let us define

r poo ] +oo

&i(k,w) =14 / dya;t(a;,y) et | = :t/o dy al z,y)e ’ky, (6.7)

R r poo O +oo

bE (k,z) = T4 / dy b (z,y) e*V | = i/ dy bF (z,y) e, (6.8)
LJ —o0 J 0

~t [ [~ + ik ] Foo

az(k,z) = I / dyaj(z,y)e™? | = IF/ dyal z,y) et (6.9)

l;$(k,:c) =1z / dy bli(a:,y) erv | = ?/ dy bi(w,y) ety (6.10)
LJ —o0 J 0

where II and II_ are the projections given in (6.3). Applying the Fourier transform to
(6.6) and using (6.7)-(6.10) we obtain

[a&(k,w)} N [fg(k,w)

ik (i) - [z T [ECT)]

o

Substituting —k for k£ in (6.11) we get

a ( k,z) + ( k,z) B 0 ' Sli(k)ezik” &f(k,z) B Sli(k)ezucx
bE(~k,z) | [bE(—k,2)] | S[(k)e* 0 bE(k,z) | 0
(6.12)
Letting .
C:L+(k,:1:) Sli(k) o2ike
bE(k,x 0
+ _ | b¥(k, 4
X (k,(l)) - &:E(_k,w) ’ Y (k,(l:) = Sl:t _k) e—?zkz ,
bt (—k,z) 0
1 0 00
+ - 0 1 0 0
L: (k,(l))_ 0 _Sl:t(_k) —2ikz 1 0 )
_S;F(#k) e——sz:c 0 0 1



0 ~S5F(k)e*™* 1 0
—SF(k)e2ike 0 0 1
+ — l
0 1 0 0
we can write (6.11) and (6.12) together as the single system
LE(k,z) XE(—k,z) + RY(k,z) XE(k,2) = YE(k,2), k€ R. (6.13)

From Theorem 5.3 it follows that, for each fixed z € R, the entries of the vector function
X*(-,z) belong to Wg‘+, where 3 € [0, a]. Thus, finding X *(k, ) in terms of the scattering

data constitutes a Riemann-Hilbert problem. Let us define

0 -1 0 O 0 1 0 0
0 0 1 0 0 0 0 1
M1_1000’M2_0010
0 0 0 1 -1 0 0 0
It can be verified that
My LE (k,z) " RE(k,2) My = ZE(k,z) ® ZE(k,2)*, (6.14)

where Z%(k,z)* denotes the conjugate transpose of Z*(k,z). Multiplying (6.13) on the
left by My L*(k,z)! and using (6.14), we can write (6.13) as the pair of Riemann-Hilbert
problems

[—g((;,ké)w)] + Z%(k, ) [_2%((;,’2):6)] _ [sli(—ko)e‘”“] .,  keR, (6.15)

V§$§W+Zﬂh@ﬂ?§ﬁﬁﬂ=L#i%i%A’ beR (649)
It is known [GFT71] that the two problems described by (6.15) and (6.16) are uniquely
solvable if Z*(k,z) and Z*(k,z)* both have a left canonical factorization, or equivalently,
if Z*(k,z) has both right and left canonical factorizations. Thus, we have shown that
(5.20) is uniquely solvable if Z*(k,z) has both right and left canonical factorizations.

We will next prove that if (5.20) is uniquely solvable, then Z*(k,z) has both right

and left canonical factorizations. Let us replace (6.6) with the system

o0

ﬁ@w+&mw—/ dz5E (20 +y+ 2)bE(e,2) — #5(y), v ER,
e (6.17)
ﬁ@w+ﬁmw—/ 4257 (22 +y + 2)at(z,z) = #E(y), yER,

— o0
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where 75,75 € Ly(R). Writing r;t(k) = [7_dye ™*7;(y) for j = 1,2 and following the
above procedure, instead of (6.15) and (6.16) we get for k € R

l_i)f(_k,z)] + 25k, 2) [—iﬁ(—k,m)} _ [ —ry (k) J (6.18)

i (k, o) iE(k,2) | T [rE(k) + SE(R) 2k E( k)
&i(—k,a:) N &f(—k,w) Ti(_k)
+ + - 1
[ b (k, 2) }” (k:2) [ b (k, 2) ] - [mf(k)+Sf(—k>e—2ierf(—k>J' (6.19)

Analogously, replacing (6.17) by the linear system

at(z,y) +af(w,y)+/ dz 5F(2z +y + 2)bf(z,2) = #f(y), yER,

~ (6.20)
bE(z,y) + bE (2, y) + / dz §F(2z + y + z) af(z, 2) = 75 (y), y €R,

— o0

where 75,75 € Li(R), we get instead of (6.18) and (6.19)

[z;%((—sz,m :3)} T 2% (k) [b*ig(—kk a;)] _ [T;(k) ) Sligc;f)z,.kz ” (_k)] ., keR,

[ai(—k,m) &f(—k,w)] _ [ ry(—k) k€R.

—B%(k,m)}J“Zi(k"”)* [—iﬁ(k,m) —ry (k) + SF(—k)e2ike rsi(—k)} ’
The systems (6.17) and (6.20) are uniquely solvable if and only if Z*(k,z) has both right
and left canonical factorizations. Thus, we see that the existence of both right and left
canonical factorizations of Z*(k,z) is equivalent to 4+1 and —1 not being eigenvalues of

the linear operators [cf. (5.11)]

0 Mj(z)
[M;F(m) . } (6.21)
defined on L}B(R"') fas L};(R*’). From (5.11) and (5.12) we have
I- NKi(z) 0 ] _ [ I )\Mf(:c)} [ I —AMi(z) .
0 I- MK/ (z) AM () I —AMj (z) I b22)

Note that none of the three matrices in (6.22) can be one-sided invertible unless they are
two-sided invertible. Hence, from (6.22) we see that the nonzero eigenvalues of Ki(z),
which coincide with the nonzero eigenvalues of Kj7(z), are exactly the squares of the

nonzero eigenvalues of the two operators defined by (6.21). Hence the existence of both
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right and left canonical factorizations of Z*(k,z) is equivalent to 1 not being an eigenvalue

of K¥(z).

PROPOSITION 6.2 Suppose

sup |S;H (k) + S; (k)| < 2, (6.23)
kER

where Sit(k) and S; (k) are the quantities defined in (6.1). Then the matriz function
Z*(k,z) given in (6.5) has both right and left canonical factorizations.
PROOF. Let

C*(k,z,¢) = [Zi(k,w) + Zi(k,w)*] — el

!
2
where ¢ is a positive parameter. From Proposition III 1.2 and Theorem II 6.3 in [CG81],
it follows that the matrix Z*(k,z) has both right and left canonical factorizations if and
only if for some small € the matrix C*(k, z,¢) is selfadjoint and nonnegative for all k € R.
Note that C*(k,z,¢) is selfadjoint for any real €. To show that C*(k,z,¢) is nonnegative,

it is enough to show that the determinant and the trace of C*(k,z,0) are positive. Using

(6.2), from (6.5) we get
det CX(k, ,0) = 1 — %|Sli(k) + SF(R)P, (6.24)

1 2
tr C*(k,z,0) =1+ Z|sf:(1c) — SF(k)|* + det CE(k, z,0). (6.25)

From (6.2), (6.24), and (6.25) we see that C*(k,z,0) has positive trace and positive
determinant if and only if |SF(k)+ S; (k)| < 2 for k € R. Hence, if (6.23) is satisfied, then
C*(k,z,€) is selfadjoint and nonnegative for sufficiently small positive . I

From Theorem 6.1 and Proposition 6.2 we have the following.

COROLLARY 6.3 Assume that (6.23) s satisfied. Then, under the assumptions of
Proposition 5.2, the uncoupled Marchenko equations (5.14) and (5.15) are uniquely solvable
in Ly(RT) for B € [0,

Consider the function

("’; 1>d [1- R (k)R (-k)], keR, (6.26)
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where d = 0 in the exceptional case and d = 1 in the generic case. Let w denote the
winding number of the graph of the function in (6.26) as k varies from —co to 400 on the

real axis.

THEOREM 6.4 Suppose R™ (k) and R~ (k) are continuous in k € R. Then, the winding
number w of the graph of the function defined in (6.26) is given by

w = N(_P, Q) - N(P’Q)a (6’27)

where N(P, Q) and N(—P, Q) are the number of bound states of (0.1) and (0.2), respectively.
PRrRoOOF. Using (0.9) and (4.6) we have

J=1

- -
Nt T\ " N- A\ n;
k—k; k+k;\"~’
+ (LR _ |t i - i
L= R OR (R = |70 ]] (k_,ﬁ) Ty (W] <k+F) . keR,
Jj=1 J J
where [(k +1)/k]*TE(k) are continuous in k € CT, are analytic in k € C*, do not vanish
in C*, and have nonzero limits as k — oo in C*. Thus the winding number w of (6.26)
is equal to Z;\; n; — E?:l n}" Note that N(+P, Q) coincides with the number of poles
of T*(k) in C* including multiplicities, and hence N(£P,Q) = 2;‘\: n;t Thus, (6.27)
holds. R
From Theorem 6.4 we see that (0.1) and (0.2) must have the same number of bound

states if the winding number of the function in (6.26) is zero. Conversely, if neither (0.1)

nor (0.2) have any bound states, the winding number must be zero.

7. EXAMPLES

In this section we present some examples illustrating the recovery of P(z) and Q(z)

by the Marchenko method outlined in Section 5.

EXAMPLE 7.1 Consider the inverse scattering problem with no bound states, where
R~ (k) = 0 and R*(k) satisfies some mild technical conditions that will be apparent as we
proceed. From (4.5) we get T*(k) = e*?. Thus we are in the exceptional case, and further
details can be found in Example 4.7 of [AKV97]. Using (5.12) we see that Kl:t(:c; y,z) = 0.
Solving (5.14) and using (5.19) we get

a?'(m,y) = R+(2w + ), al—(m’y) = b?-(:z:,y) = bl_(w’y) =0,
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so that

(e = [ R, far(e) = (b)) = (b () <o
Then from (5.21) we get
O 1y [y R (),

iz

from which we see that, in order to have P € L'(R), our scattering data need to satisfy
infzer [y, dy R*(y) > —1. When this condition is satisfied, as outlined in Theorem 5.5,
we obtain

_ 2R*(2e)
1+ [ dy RH(y)’

O(z) = 2R*'(2z) N 3 Rt (2z)?

P(z - ; "
() PSRNy e ay R

Note that if we further require that Rt € L'(R) and (R*)?,R*' € L}(R), then we have
P e LY(R) and Q € Li(R).

EXAMPLE 7.2 Let us consider the inverse scattering problem with the scattering data

consisting of the reflection coefficients

ic(k + ic) R-(k) = =B+ )k +iB)
(k —iB)(k + ic)’ c(k — i)k +i(B — a+e)]’

where c is a nonzero real constant and «, 3, € are positive parameters such that 8—a+¢ > 0.

R*(k) =

Let us also assume that neither (0.1) nor (0.2) have any bound states. We construct

eT? T*(k) by using (4.5) and obtain

_ k+ic _ k+18
PTH(k) = PT— (k) = ,
¢ (k) k+ e’ ¢ (k) k+iB—a+e)
In fact, using (0.8) we also construct eT??L*(k) and get
—_ ) — + 6) 9 _ iC
(k) = 2 2B L (k) = . 7.
¢ (k) iy LR k+i(B—oa+te) (7.1)

From (7.1) we see that e¥>? L*(k) belongs to the Hardy space H%(R), and hence from
(5.10) we conclude that B¥(z,y) = 0 for z < 0, and thus P(z) = Q(z) = 0 for z < 0.
Now let us find P(z) and Q(z) for £ > 0. We will do so by using the procedure outlined
in Theorem 5.5. With the help of (5.3) and (5.4) we obtain

SH(z) = R*(2) = —c(;—ifle—ﬁz, 2> 0, (7.2)
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Using (7.2) and (7.3) in (5.12) we get

(a+ﬂ)(€_a) —2(a z _—By—az
K{F(m;y,z) = B+e e atP)ze=Fy )

Y,z >0,

K[ (z;y,2) = (e +,§?{E€s— a)e—z(a+ﬂ)ze—ay—ﬁz,

Thus we have the two uncoupled Marchenko equations (5.14) for z > 0 given by

y,z > 0.

a?—(m’y) - (a + ﬂ)(s - a)e—z(a-i-ﬂ)z—ﬁy/ dz e 9% af(a:,z)
0

B+e
c(_a+_'8)e—ﬂ(2x+y)

:_,B+€ y>07

al_(:c,y) _ (a +I§£E€_ a)e—'z(a-i-ﬁ):l?—ozyV/0 dz e—ﬁz al—(m,z)

=—c N a+PB)(e —a)e @ty 4>,

The solutions of the Marchenko equations (7.4) and (7.5) are given by

B+e)— (e — a)e2(atB)z’

a?-(x7y): ( y>0>

e (a+ B)(e — a)(B + ) e Gty

. = 0.
a (w3y) (,B + 6) _ (5 — a)e_g(a+ﬁ)z ) y >
Substituting (7.6) and (7.7) in (5.19), we obtain
+B)(e — a) e 2atBz—ay
b (2,y) = © 0
l (il:,y) (/3 + E) _ (8 - a)e_z(“+ﬁ)z ) y >0,
) o+ B)(e — o) e=2(@+B)z—By
bl (:Il,y) = ( )( ) —2(a+B)z y > 0.
(B+e)—(e—a)e
Using (7.6)-(7.9) in (5.21) we get for z > 0
ey oB(B+ )~ cala+B)e P 1 ad(e - a)e

T aBBre) e BlatB)c — a)(Bte) et + B2 — a) e 2ot

(7.5)

(7.6)

(7.7)

(7.10)

Note that the right-hand side in (7.10) must be positive for z > 0, and this forces us to

impose certain additional restrictions on the parameters o, f,¢,c if we want P € L'(R).

For example, by choosing ¢ < 0 and € > «, we see that both the numerator and the
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denominator of the right-hand side in (7.10) are positive. On the other hand, the choice
a = ¢ results in the scattering data e¥PT*(k) = 1, R=(k) = 0, and R*(k) = ¢/(k — i8).
Note also that since P(z) = 0 when z < 0, from (7.10) we see that

o2 _ af(B +e) —cala+p) +a’(c —a) (111)
aB(B +e) —ctBlatB)(e —a)(B+e) + 5 (e — o) '

Since R*(k) is O(1/k) but not o(1/k) as k — +oco, from the argument leading to (3.13)

we see that Q(z) and P'(z) contain delta-functions at £ = 0. In fact, from (3.13) we get
go = —ce P —c e —a)(B+e)eP, po = —2ce P +2c e — a)(B +¢)e’®, (7.12)

where e?? is the constant given in (7.11). Hence go and p{ given in (7.12) are completely
determined by the scattering data. Thus, using (5.22), (5.23), (7.10), and (7.12), we get
P(z) and Q(z) also for z > 0.

EXAMPLE 7.3 Let us consider the inverse scattering problem with Rt (k) = R~ (k) =
0, when (0.1) has a bound state at k = iat with the bound-state constant ¢* and (0.2)
has a bound state at & = 1o~ with the bound-state constant ¢~, where a® and a~ are
some positive constants. Using (4.5) and (4.6) we obtain eT?T*(k) = (k+iaT)/(k —ia™).
With the help of (4.7) we obtain from (5.4)

SE(2) = (o + a_)cie_aiz.

From (5.12), for € R, we obtain

_ _ _ + N L F
Kif(z3y,2) = cte (b +a7)e e taiemaiymatz oy 2> 0.

The two uncoupled Marchenko equations (5.14) are given by

o0
- +
allL(a:,y) _ c+c—(a+ + a—)e—2(a++a )z —o y/ dz e_a:an?:(w,z)
0 (7.13)
=ct(at +a) et (2o4y)

The solutions of the Marchenko equations (7.13) are

0+ —\ o—at (22+4y)
C [0 (87 e
(o +o7) yeR', zeR.

+ —
a4 (:Z!,y) - 1 — cte— e 2(at+ta™)z
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Using (5.19) we get

cte (at + a‘)e‘z(oﬁ"'a_)z_a;y

1 —cte e 2(attar)z ’

b (z,y) =

yc Rt zeR.

From (5.21) we obtain

sy _ @ta” teta(at $am)e e 4 ete (oo b )
e =
ata~ + C_a+(a+ + Oz_) e~ 2a "z + C+C_(a_)2e—2(ot++a—):c 3

reR. (7.14)

Proceeding as in Theorem 5.5, from (7.14) we compute P(z) and Q(z). Note that, when
the bound-state constants ¢t and ¢~ are positive, we are assured that the numerator and
the denominator in (7.14) are positive for all z € R. Then, letting z — —oo in (7.14) we
see that P € L}(R) and e? = a™/a"™.

Note that the integral equations (7.13) are not uniquely solvable when ctc™ > 0
and z = z9, where o = In(ctc™)/[2(at + a7)]. However, for ¢*,¢™ > 0 the right-hand
side of (7.14) is well defined and ((z) remains continuous as z — zo. Moreover, tedious
but straightforward analysis shows that P(z) and Q(z) are continuously differentiable

everywhere (also at z¢) and exponentially decreasing as ¢ — Foo.

EXAMPLE 7.4 Consider the inverse problem with R*(k) = ia®/(k —i8) with 8 > 0
and B2 > ata~. Assume that there are no bound states. Let ¢ = 1/8% — a*a~. From (4.5)
we obtain eFPTE(k) = (k+ie)/(k+iB). Using (5.3) and (5.4) we get S (2) = —ate™P*4(z),
where 6(z) is the Heaviside function.

When z > 0 we proceed as follows. From (5.12) we obtain

ata™
Kli(m;y,z) = 23 e~ 4P2—Bly+z) z,y,z > 0. (7.15)

Using (7.15) we write the Marchenko equations (5.14) as

+

— 0
£ ate e—ﬁ(4z+y)/ dze P a(a,2) — —at e PO 5y,
0

whose solutions are

—4B32 o e~ A22+y)
z,9) = 4632 — ata= e~4Az’

£ z,y > 0. (7.16)
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From (5.19) and (7.16) we get

- 482 — ot~ e—4Bz’

bli(:c,y) z,y > 0. (7.17)

Hence, using (7.16) and (7.17) in (5.21) we obtain

2oz 407 —4atBe P 4 atam e tP"
e =
432 — 4o~ Be 2Pz  qta— 4Pz’

z > 0. (7.18)

Note that the numerator and the denominator in (7.18) are positive when at and o~ have
the same sign and are each bounded in absolute value by 8. As outlined in Theorem 5.5,
we obtain P(z) and Q(z) for z > 0 explicitly.

When z < 0, using (5.19) we get

ata~

28 e Blv==l 0 < min{y, z} < —2z,
Kli(:c;y,z) 4 atan (7.19)
76_4‘62_ﬁ(y+z), min{y, z} > —2z.

Using (7.19) we write the Marchenko equations (5.14) as

— Y —2z [ee]
|:/ +/ +/ :| dz e—ﬁly—zl a,li(;c,z) = 0, 0< y < —2:1.'3, (720)
0 Y —2z

ata

ata” —
ali(m,y) — e_ﬂy/ dz eP* a;t(:c,z)
0

zﬂ_ o (7.21)
_ 22 Aty / dze Pra(z,2) = —ate PRtV 45 g
2/3 -2z
The solution af(z,y) of (7.20) and (7.21) have the form
=+ €Yy _ B—e —ey:| 0 —
z)|e e , <y< -2z,
af(z,y) = P () [ B+e (7.22)
wt(z)e Py, y > 2z,

-where p*(z) and w*(z) are to be determined. Using (7.22) in (7.20) and (7.21) we get

(a:t)zaq: e2ez
r(z)

2Bat e~ A2ety)

r(z)

[(B+e)e? —(B—c)e™], 0<y< —2a,
+

a(z,y) = (7.23)

[(B+e)* —(B—e)’e], y> -2z,
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where

Using (7.23) in (5.19) we get
ata” 2 _—ey 2 _e(4z+y)

+ _
bl (m,y) - 4[8 €a+a_ e2€$—ﬂ(2z+'y) (7-24)
y > —2z.

r(z) ’

Using (7.23) and (7.24) in (5.21) we obtain

26 _ (B=a)(B+e)’ +2(af)a"(B—a")e™ + (B —at)(B —¢)’ et
(B—a7)(B+e)’ +2at(a (B —at)e® +(B—a”)(B—c) e’

z < 0.
(7.25)
As in (7.21), the numerator and the denominator in (7.25) are positive when o™ and o~
have the same sign and are each bounded in absolute value by 3. Letting ¢ — —o0 in
(7.25) we see that e’ = (8 — a’)/(8 — a”). As outlined in Theorem 5.5, we can write
P(z) and Q(z) for ¢ < 0 using (7.23)-(7.25).

Since 2ikR*(k) approaches —2a* as k — +oo, from (3.13) we see that Q(z) and

P'(z) contain Dirac-delta distributions at z = 0 with coeflicients
g = —a— X _ om0 g 90 g2000) _gte=2(0), (7.26)
where

2¢(0) _ 46% —4atB + ata” '
462 —4a= B+ ata~

e

Thus, having go and pj in (7.26), we have completed the recovery of Q(z) and P(z) for all
z € R. In the special case o™ = a~, from (7.18) and (7.25) we get {(z) = 0 for z € R. Note
that in the limiting case 82 = aTa ™, i.e. when ¢ = 0, we are in the generic case and we
must have o~ = ot = B in order to have R*(0) = —1; in this case we get Q(z) = —28 6(z)
and P(z) = 0.

Finally, we remark that the solution of the inverse scattering problem in the last three
examples can also be obtained by solving the Riemann-Hilbert problem in (5.2) directly.
In fact, whenever the scattering coeflicients are rational functions, the Riemann-Hilbert

problem in (5.2) can be solved explicitly, leading to the recovery of P(z) and Q(z).
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