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A direct and inverse scattering theory on the full line is developed for a class of
first-order selfadjoint 2n x 2n systems of differential equations with integrable potential
matrices. Various properties of the corresponding scattering matrices including unitarity
and their canonical Wiener-Hopf factorization are established. The Marchenko integral
equations are derived and their unique solvability is proved. The unique recovery of the
potential from the solutions of the Marchenko equations is shown. In the case of rational
scattering matrices, state space methods are employed to construct the scattering matrix
from a reflection coefficient and to recover the potential explicitly.

1. INTRODUCTION

Let us consider the selfadjoint Hamiltonian system of differential equations

—z‘JMW _V(z) X(z,)) = AX(z,)), z€R, (1.1)
where
[0 S L

with I,, the identity matrix of order n, the n X n matrix function k£ has complex-valued
entries belonging to L'(R), A € R is an eigenvalue parameter, and { denotes the ma-
trix conjugate transpose. We call the function k£ the potential and the parameter A\ the

wavenumber. Note that V(z) is a selfadjoint 2n x 2n matrix and
Jan V(z) = =V () Jan.

We can think of X (z, A) in (1.1) either as a column vector of 2n entries or as a 2n x 2n

matrix. For A\ € R, we define the Jost solution from the left, Fj(z, \), and the Jost solution
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from the right, F.(z, \), as the 2n x 2n matrix solutions of (1.1) satisfying the boundary
conditions

Fi(z,\) = €202 I, + o(1)], T — 400, (1.3)
F.(z,)) = e?2n® [, + o(1)], x — —o0. (1.4)

Using (1.1), (1.3), and (1.4), we obtain

Fila, ) = M —idy, [ dyem M0 Vi) Ry, ), (1.5)

x

F(z,)) = e?P2n® 4], / dy €M@YV (y) F.(y, \). (1.6)

For a given square matrix function E(z), let us use ||E||; to denote [*°_dz ||E(z)||, where

|| - || stands for the matrix norm defined by ||A||= sup ||Av||2 and ||-||2 is the Euclidean
llv]la=1

vector norm. Since the entries of k(z) belong to L!(R), for each fixed A € R it follows

that (1.5) and (1.6) are uniquely solvable and that ||F;(z, A)|| and ||F}.(z, A)|| are bounded

above by exp(||k||1). From (1.3)-(1.6) we get

Fi(z, \) = 222 [q;(\) + 0(1)], T — —00, (1.7)
F.(z,\) = 2% g, ()) 4 o(1)], T — +00, (1.8)
where
W) = Ion = i [ dy NV () Ry, )
ar(N) = Loy + iJoy, /_ b dy e~ MYV (y) Fr.(y, \).

The term “canonical differential equations” to denote the system (1.1) has been used
by Melik-Adamyan [32-34], L. A. Sakhnovich [39,40], and A. L. Sakhnovich [38], who have
studied the direct and inverse scattering problems for (1.1) on the half line. Under minor
restrictions on the given so-called reflection function, a characterization of the scattering

data corresponding to an L!-potential on the half line was given by Melik-Adamyan [34],

2



who also supplied a method to reduce the inverse spectral problem on the full line to an
inverse spectral problem on the half line for a canonical equation of order 4n [32]. We will
comment on that characterization result at the end of Section 6. More recently, Alpay
and Gohberg [3-6] have applied state space methods to derive explicit expressions for the
solution of the inverse scattering problem for (1.1) on the half line from the general theory
in [34] when the scattering data are rational functions and consist of either the spectral
function of the differential operator —iJa,(d/dx) — V(x) or a reflection function. A more
self-contained treatment of these results was given by Alpay et al. [7]. Gohberg et al. have
solved a similar inverse problem when the scattering data consist of the spectral function
of —iJap(d/dx) — V(x) and this function is rational, both on the half line [24,25] and on
the full line [26].

Let us mention that there are other, more general first-order systems for which the
direct and inverse scattering problems have been analyzed. Shabat [41] and Beals and Coif-
man [10,11] considered the nxn system dy/dz = AJp+q(z) ¢, where J = diag {o1, ..., an}
with distinct complex o; and g(z) an n x n off-diagonal matrix with entries belonging to
L(R) or more restrictive classes, without requiring ¢(z) to be selfadjoint. As indicated in
[16], the distinctness of «; is not an essential restriction. It has been proved that the inverse
problem has a unique solution within a certain class of potentials for an open and dense set
of scattering data. The solution of the inverse scattering problem for such linear systems is
useful in solving the Cauchy problem for various nonlinear evolution equations; for details
and further references, we refer the interested reader to [2,12,16] and the references therein.

1
Note that letting Z(z, \) = —=[Ian + iqan| X (z, A), where

V2

0 I,
d2n = )
I, 0
we can convert (1.1) into the massless Dirac equation of order 2n given by

dZ(z,\) p(z) A, = v(z) Z(e.)
=, ),

dx In - ’U(SB) —p(.’)’))
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1 1
where p(z) = i[k(x) + k()] and v(z) = —Ei[k(w) — k(z)'] are the real and imaginary
parts of k(z), respectively. The direct and inverse scattering problems for the Dirac system
on the half line were studied in [22]. The interested reader is referred to [22,28,29] and the

references therein for more information on the Dirac system.

The direct scattering problem for (1.1) consists of the determination of the scattering
matrix S(A) defined in (3.11) when the potential k(z) is given, whereas the inverse scat-
tering problem is the determination of k(z) from S()) or, equivalently, from either of the
reflection coefficients R(A) and L(\), which are defined in (3.7) in terms of the matrices
a;(A\) and a. (). In this article we develop a direct and inverse scattering theory for (1.1)
when k(z) has entries belonging to L'(R). Working within the framework established by
Faddeev [21] and Deift and Trubowitz [20] for the Schrodinger equation on the line, we
derive the analyticity and asymptotic properties of the Faddeev matrices and the scatter-
ing coefficients, employ them to derive a Riemann-Hilbert problem and various Marchenko
integral equations, and recover the potential in terms of the solutions of the Marchenko
equations. We derive the unitarity of the scattering matrix and exploit this property to
prove the unique solvability of the Marchenko equations. We also establish the unique
canonical Wiener-Hopf factorization of the (unitarily-dilated) scattering matrix and show
how the potential is obtained once the factors in the factorization are known. We then
give a rather general sufficient condition on the reflection coefficient to lead to a potential
whose entries belong to L!(R). After that, for rational reflection coefficients we present a
procedure to compute explicitly the scattering matrix from a reflection coefficient. This
is no longer as elementary as in the case of the Schrodinger equation [20,21] and involves
a suitable extension of a contractive n X m matrix function to a unitary 2n x 2n matrix
function (cf. [8,27]). We then apply state space methods [13] to solve the Marchenko equa-
tions and the inverse problem explicitly when the reflection coefficients are rational. This
approach provides us with a systematic inversion method for rational reflection coefficients

which is more complete and totally different from previous methods, for example, those
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used in [9].

This article is organized as follows. In Section 2 we introduce the Faddeev matrices,
obtain their analyticity properties, and analyze some other properties of the Faddeev
matrices and the Jost solutions of (1.1). In Section 3 we define the scattering matrix
S()) in terms of the spatial asymptotics of the Jost solutions, prove the unitarity of S(}\),
and obtain various properties of the scattering coefficients. In Section 4 we analyze the
Fourier transforms of the Faddeev matrices and the scattering coefficients. We then go
on, in Section 5, to derive a Riemann-Hilbert problem for the Faddeev matrices and show
that the (unitarily-dilated) scattering matrix has a canonical Wiener-Hopf factorization;
we also show by an example that the canonical factorization of the scattering matrix and
the unique recovery of the potential need no longer be true if the entries of the potential
do not belong to L'(R). In Section 6, we convert the Riemann-Hilbert problem into both
coupled and uncoupled Marchenko integral equations, prove their unique solvability by a
contraction mapping argument, and give a partial characterization of the scattering data
corresponding to potentials with entries in L' (R). In Section 7 we show how the scattering
matrix can be constructed from a reflection coefficient, and we also construct S(A) explicitly
when one of the reflection coefficients is a rational function. Finally, in Section 8 we give
an explicit solution of the inverse scattering problem with rational reflection coefficients;
this is done by using the minimal realization of the reflection coefficients as input to the

Marchenko equations.

2. SCATTERING SOLUTIONS

In this section we introduce the Faddeev matrices and study their properties. The
results obtained here will be used later to establish various properties of the scattering

matrix and to solve the inverse scattering problem by the Marchenko method.

PROPOSITION 2.1. Let X (x,A) and Y (z,A) be any two solutions of (1.1). Then, for

real \, X (z,\)1J2,Y (x, ) is independent of x.
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PROOF. This result follows from (1.1) using the selfadjointness of V (z) and Jo,. |

PROPOSITION 2.2. For A € R, either of the Jost solutions Fi(x, \) and F,.(x, \) forms

a fundamental matriz of (1.1) and has determinant equal to one, and

det a;(A) = deta,()\) = 1. (2.1)

Moreover, for A € R, the Jost solutions satisfy

Fi(z,)\) = Fo(z, ) ai(\), (2.2)
Fo(z, ) Jon Fy(2, N) = ar (V) Jon = Jon ar(N), (2.3)
Fi(z, N Jon Fi(z,A) = ai(N) Jan ar(A) = Jon, (2.4)
Fo(z, N Jon Fr(z,)) = ar (V) Jan ar (X)) = Jon, (2.5)
and hence
ai(N) ar(N) = ar(N) ar(X) = Loy, (2.6)
a(N) 7= Jonai(N) oy ar (V)7 = o ar (V)T Jop. (2.7)

ProOF. From (1.1) it follows [35] that

d[det Fy(z, \)]
dz

= (tr {iJon V(z) + i\, }) (det Fy(z, M),

where tr denotes the matrix trace. By (1.2), iJa, V(z) + iAJa, has zero trace, and hence
det Fj(x,\) is independent of x and its value can be evaluated as * — +oco. Thus, we
get det Fy(z,\) = 1, from which we also conclude that Fj(z, ) is a fundamental matrix
of (1.1). Similarly, we find that det F,.(z,\) = 1 and F,.(x,\) is a fundamental matrix
of (1.1). Then, from (1.2), (1.7), and (1.8) we obtain (2.1). Since either of Fj(z, \)
and F,.(x, ) is a fundamental matrix of (1.1), with the help of (1.3) and (1.7), we get
(2.2). Using Proposition 2.1, we obtain (2.3)-(2.5) by evaluating F;(z, \)fJo, Fi(z, \),
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Fi(z,\) Jan Fy(z,X), and F,(z, ) Jo, Fr(z,)\) as ¢ — +oo. Equations (2.6) and (2.7)

then follow readily. I

In terms of the Jost solutions, the Faddeev matrices M;(z, \) and M, (z, \) are defined

as

Mi(z,)\) = Fi(z,\) e~ ™22 M, (z,)) = Fp(2,\) e 2n®, (2.8)

From (1.3) and (1.4) we see that
M(z, ) = Iy, + 0(1), r — 400,

M, (x,\) = Iy, + o(1), r — —00.

Let us partition the Jost solutions and Faddeev matrices into n xn matrices as follows:

Ry = | O Tl A)], Foa = | 0N A)], (2.9)
Fiz(z,\) Fu(z, ) | Fr3(z, ) Fra(z, A)

Ml(m,)\): Mu(x,A) Mlg(.’ﬂ,)\) ’ Mr(m’)\): MT1($,>\) Mrg(w,)\) . (2.10)
Mz(z, A)  My(z, ) | My3(z,A)  Mpa(z, N)

By CT and C~ we denote the open upper half and lower half complex plane, respec-

tively. We also define

+oo
ou(z) =+ / dy ||k(@)]- (2.11)

PROPOSITION 2.3. Assume that the entries of k(z) belong to L*(R). Then:
Mll(.’L’, )\)

(i) For each fized x € R, [Mlg,(a:, y

] can be extended to a matriz function that is

0
(ii) For all X € C+, each entry of My (x, ) and Mj3(x, \) is bounded by e”+(*) in absolute

. . T . I . =T
continuous in A € Ct and analytic in A € CT and tends to [ n] as A\ — oo in Ct.

value.
Mlg (11?, )\)

(iii) For each fired z € R, [Ml4(a:, A)

] can be extended to a matriz function that is

continuous in A € C— and analytic in A € C~ and tends to [ 0

I } as A\ — oo in C—.
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(iv) For all\ € C—, each entry of Mis(z, \) and M (z, ) is bounded by e+®) in absolute

value.

PROOF. Using (2.8) in (1.5), we obtain
Mi(z,\) = Ipp — iJoy / dy e~ AM2nW=2) 7 (3)) My (y, \) eM2n(v=2) (2.12)
X

Iterating (2.12) once, we get the uncoupled systems

Mir(2,)) = I + / dy / dz M=) () B(2)T Miy (2, V), (2.13)
z y

M (z, N) = —i/ dy e~ 2AW=2) k() +/ dy/ dz e 22=2) k() k(2)T Mia (2, N),

T T Y

(2.14)

Mis(z,\) =i / dy W= k()T 4 / dy / dz e22=2) k()T k(2) Mis(z, \), (2.15)
Yy

Mia(z,2) = I, + / dy f dz e=2AE) (y)F B(2) Mia(z, V). (2.16)
z y

Iterating the Volterra integral equations (2.13) and (2.15), we prove that the series of
iterates converge absolutely and uniformly in A € C+, and we also get the estimate in (ii).
Similarly, we prove that the series of iterates of (2.14) and (2.16) converge absolutely and
uniformly in A € C~ and that the estimate in (iv) holds. The large-)\ asymptotics follow

from the use of the Riemann-Lebesgue lemma in (2.13)-(2.16). 1
As in Proposition 2.3, we have a similar result for the Faddeev matrix M, (z, ) :

PROPOSITION 2.4. Assume that the entries of k() belong to L*(R). Then:
Mrl(.’L', )\)

(i) For each fized z € R, [Mrg(m, \

} can be extended to a matrix function that is

n

0
(ii) For all\ € C—, each entry of My1(x, \) and M,3(x, \) is bounded by e?~®) in absolute

continuous in A € C~ and analytic in A € C~ and tends to [ } as A — oo in C—.

value.
MTQ (.’E, )\)

(iii) For cach fized @ € R, [MM(x, \)

} can be extended to a matrix function that is

continuous in A € Ct and analytic in A\ € Ct and tends to [ 0

I } as A — oo in CT.
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(iv) For all\ € C+, each entry of Myy(z, \) and My,4(z, \) is bounded by e~ (*) in absolute
value.
PROOF. Using (2.8) in (1.6), we obtain
M, (2,)) = Loy + iJan / dy e ==V (y) M, (y, A) e on (@), (2.17)

— o0

Iterating (2.17) once we obtain the four systems given by

x Y )
M (z, ) =1, + / dy/ dz e 2AV=2) k(y) k(2)T My (2, M), (2.18)
x ) x ) .
Moz, \) =i / dy @Y k(y) + / dy / dz @Y k(y) k(2)T My (2, ),
(2.19)
T ) T y )
M,3(z,\) = —i/ dy e~ 2AN@=Y) f ()T -I-/ dy/ dz e 2@ k) k(2) Mys(z, N),
—0o0 —0o0 —0o0
(2.20)
T y )
Myy(z,\) = I, + / dy / dz e M=) k()T k(2) Mya(2, N). (2.21)
Iterating (2.18)-(2.21) as in the proof of Proposition 2.3, we complete the proof. |
Let us write
ain(A)  ap(A ar1(A)  apa(A
a()) = [ 1) ol )], ar()) = [ 1) o )]. (2.22)
ai3(A)  aa(A) ar3(A)  ara(N)
From (1.7), (1.8), and (2.8) we see that
ain(A) aip(\)] [ M (x, ) e 2T Moo (z, A
() a(d) ~ i | 1n(z, A) 12(z, A) | (2.23)
ais(A)  au(A) | 2o | €2 Mis(z, ) Mis(z, N)
ar1(A)  apa(N)] [ M, (z, ) e~ 2T Mo (2, A
1) 2 = lim , @) () . (2.24)
ar3(A)  ara(N)| FFo | €2 M o5(z, M) My(z, N)
Using (2.12), (2.17), (2.23), and (2.24) we find the integral representations
on) =T —i [ dyk(y) Mis(y, ) (2.25)
— o0
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aip(A) = —i /00 dy e~ 2 k(y) Mia(y, A), (2.26)

aiz(A) =i _o:o dy e*™ k(y)T My (y, ), (2.27)
s\ = I, +i /_ o:o dy k(y)t Mia(y, \), (2.28)
o) =Tt [ dyhla) My, ), (2.20)
ra) =i [ dye () Moo ), (2:30)
ra) = =i [ dy e k() M), (2:31)
N =T =i [ dyk(s) M) (2.32)

PROPOSITION 2.5. Assume that the entries of k() belong to L*(R). Then:
(i) The matrices a;1(\) and ar4()\) are continuous in X € C+ and analytic in A € C*
and tend to I, as A\ — oo in CT.
(ii) The matrices aja(N) and a1 (X) are continuous in A € C— and analytic in A € C~
and tend to I,, as A — oo in C—.
(iii) The matrices ajz(N), a;3(N), ara(A), and ar3(\) are continuous in A € R and vanish
as A — £oo.

(iv) The matrices ajz(A), a;z(A), ar2(N), and ar3(A) satisfy

ara(\) = —ais(N)T,  ap3()) = —ap(V), A ER. (2.33)

Proo¥F. Using Propositions 2.3 and 2.4 in (2.25)-(2.32), we get (i), (ii), and (iii). We

obtain (iv) from (2.3). §

Using the notations of (2.9), let us form the following matrices:

fr(z,A) =

Fri(z,\) Fw(x,”]_ (2.34)
Frs(z, ) Fia(z, )



Let an asterisk denote complex conjugation. From Propositions 2.3 and 2.4, it follows
that f,(z,)) is a solution of (1.1) that is continuous in A\ € C+ and analytic in A € C*;
similarly, f_(z,)) is a solution of (1.1) that is continuous in A € C— and analytic in

AeC.

PROPOSITION 2.6. The 2n x 2n matriz f_(z, \*)T Jon, f1(z, \) is independent of x for
all X € C*. Similarly, fi(z,\*)t Jon, f_(x, \) is independent of = for all \ € C—. We have
ary () 0

0 —ar4(A)

(2, X)) Jop fo(z,\) = [ ,  AeCt. (2.35)

Further, a;(\)' and a,4(\)' have analytic extensions to C~, ay1(A)T and au ()T have

analytic extensions to CT, and

() = (W), a() =au(\),  AeCF (2.36)

ari(N) = an (M), @A) = ara(A9)T, AeC-. (2.37)

PROOF. Using (1.1), one can show that the z-derivative of f(z, A\*)" Ja, fi(z, )
vanishes for A € CE, and evaluating it as = — +o0o we get (2.35)-(2.37). 1

PRroOPOSITION 2.7. For A € R, either of fi(z,\) and f_(z, ) is nonsingular and

hence is a fundamental matriz for (1.1).

PROOF. As in the proof of Proposition 2.1 we find that det f; (z,\) is independent

of z, and evaluating that determinant as £ — 4+00 we obtain
det f1(z,\) = det a;1(\) = det arg(N). (2.38)
From (2.3) it follows that
an(N)Tan(N) = I, +as(NTais(r),  A€ER, (2.39)

and hence a;1()) is invertible for all A € R. Thus, fi(z,\) is nonsingular and forms a

fundamental matrix for (1.1). Similarly, we get

det f_(z,\) = det a,1(\) = det aja(N), (2.40)
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and hence with the help of (2.36) and (2.39), we conclude that f_(z, \) is nonsingular and

forms a fundamental matrix for (1.1). i

Next we will prove that f, (x, \) is nonsingular for A € C+ and f_(z, \) is nonsingular

for A € C—. First, using (2.10) and (2.34), let us define

[ M (z,))  Mpa(z, )] .
3) = — A —iAJan 241
m+(a:, ) _Mlg(x,)\) Mr4(:)3,)\)_ f—l—(xa ) e ) ( )

My (z, ) Mipp(z, M) .
_(z, ) = = f_(z,A) e” A2, :
m_(z, ) Mas(z,)) Mis(e, ) f-(z,N)e (2.42)

PROPOSITION 2.8. For each A\ € C*, f,(x,)) is a fundamental matriz for (1.1).

Similarly, for each A € C—, f_(z,\) is a fundamental matriz for (1.1).

PrROOF. The proof for f_(z,\) is similar to the proof for fi(z,)\), and hence we
will only present the latter. From Proposition 2.7, we already know that f,(z,)\) is a
fundamental matrix for (1.1) when A € R. Thus, we only need to prove that the columns of
f+(z, )\) are linearly independent for A € CT. Because of (1.3) and (1.4), the first n columns
of f(z,\) are linearly independent for A € C*, and also the last n columns of f,(x, \)
are linearly independent for A\ € C™. It is sufficient to prove that an arbitrary nontrivial
linear combination of the first n columns cannot be written as a linear combination of the

last n columns of f, (x, ). Otherwise, we would have

2n

ch e Cy(z,\) = Z cq(N) e Oy, N), (2.43)

g=n-+1

where Cj(x, A) represents the jth column of the matrix my (x,\) defined in (2.41), and
¢;j(A) are independent of x. From Proposition 2.3 (i) and Proposition 2.4 (ii), it follows
that each entry of Cj;(z, ) is uniformly bounded in # € R for each A € C*. The left-
hand side in (2.43) decreases exponentially as £ — 400 while the right-hand side decreases

exponentially as £ — —oo; this would turn either side into a nontrivial L2-solution of (1.1),
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which is a contradiction because the selfadjoint differential operator of (1.1) cannot have
nonreal eigenvalues. i
When Im A # 0, a result similar to the one in Proposition 2.8 was proved in [30].

From Propositions 2.3, 2.4, and 2.8 we obtain the following result.

COROLLARY 2.9. For each © € R, the 2n x 2n matriz my(z,\) and its inverse
my (z,\)~! are continuous in \ € C+, are analytic in X\ € CT, and converge to I, as
A — oo in Ct. Similarly, for each x € R, the 2n x 2n matriz m_(z,)\) and its inverse
m_(z,\)~! are continuous in A\ € C—, are analytic in A\ € C~, and converge to I, as
A — o0 in C-.

PROPOSITION 2.10. Assume that the entries of k(x) belong to L*(R). Then:

(i) The matrices a;1()\) and ar4()\) are invertible for each X € CT, and a;4()\) and a,1())

are invertible for each A € C—.

(i) The matriz functions a;1(N\)~" and ar4(\)~1 are continuous in Ct and analytic in

C* and tend to I,, as A — oo in C+.

(iii) The matriz functions ais(A)~" and a,1(A)~! are continuous in C— and analytic in

C~ and tend to I, as A\ — oo in C—.

PROOF. From Proposition 2.8 it follows that f, (2, A) and f_(x, \*)T are nonsingular
for A € C+. Hence, (2.35) implies that a;;()\) and a,4()) are invertible for each A € C+.
Then, using (2.36), we can conclude that a;4()\) and a,;()) are invertible for each A € C—.

The proof of (ii) and (iii) follows from (i) and Proposition 2.5. §

3. THE SCATTERING MATRIX

We can write (2.6) as
all()\) arl()\) + aio ()\) (Irg()\) = In = arl(/\) all()\) + Qro (A) alg()\), (31)

a1 (A) ara(A) + aia(A) ara(A) =0 = ar1(A) ara(A) + ara(A) aja(A), (3.2)
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ai3(A) ar1(A) + ara(A) arz(A) =0 = ar3(A) ain(A) + ara(A) azz(N), (3.3)
a3 ()\) a,~2()\) + al4()\) al4()\) = In = Q3 ()\) al2()\) + a,.4()\) al4()\). (34)

Let us define the transmission coefficients 7;(\) from the left and 7,.(A) from the right,

and the reflection coefficients R(\) from the right and L(\) from the left, as follows:
TN =an(N)"  T(A)=au(X) (3-5)

R(A) = ap2(A) apa(N)7H, L) = aiz(A) ai (V)7L (3.6)

From (3.2), (3.3), and (3.6) we see that
R(A) =—an(N)tap(y), L) = —ara(A) " ars(}). (3.7)

Note that using (2.3) and (3.1)-(3.7), we can express the matrices in (2.22) in terms

of the scattering coefficients as

TNt TRV

“O=yne @y

TN RN T

o) = T, ()'L() TV ] ’ 59

where the off-diagonal entries can be expressed in terms of L(\) or R()) by using
L) TN = -[RAN) TN (3.10)

which is immediate from (2.33).
Now let us define the scattering matrix S(\) associated with (1.1) as

TN RO
L) TN

(3.11)

THEOREM 3.1. The scattering matriz S(\) is continuous for A € R and converges to

I, as A\ — £oo. It is unitary for each A € R, and hence the scattering coefficients satisfy

Ti(N) TN+ R\ RO = I, = T, T,.(A) + RO)TR(V), (3.12)
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TN T(A) + L)L) = L, = T.(N) T.()T + L(\) L)', (3.13)
T.(\) RN+ LN TV =0=T,(\)TL(\) + RN Ti(N). (3.14)
Moreover, for A € R we have

det T3 (\) = det Tp-(N), (3.15)

ger| PV Cae | P ey 3.16

IRyt I, —e[L(/\)T In]—let (M), (3.16)

det T3 ()
det S(\) = et Tll()\)]* (3.17)

PROOF. The continuity and the large-\ asymptotics follow from Propositions 2.5 and
2.10. Using (3.8)-(3.10) in (2.6), we get S(\) S(A\) = I, from which (3.12)-(3.14) follow.
From (2.38), (3.8), and (3.9) we obtain (3.15). Using (3.10), we can write (3.8) and (3.9)

as

T\ 0 I, —RO]
a(\) = ) , (3.18)
0 W) [-RO L
-1
0 () = [Ti(A)'] 0 ][ I L(A) | (3.19)
0 Tr()‘)_l _L()‘) I

and hence, using (2.1), (3.15), (3.18), (3.19), and det J5, = (—1)"

, we get (3.16). Using

(2.2), (2.34), (3.5), and (3.6) it follows that

Fo(@A) = fo(2,N) Jon S(A) Jon, A ER. (3.20)

Thus, from (3.5), (2.38), (2.40), (3.20), and det Ja, = (—1)", we obtain (3.17). 1

In Proposition 2.10 we have seen that a;1(\) and a-4(\) have invertible, continuous,
and analytic extensions from the real axis to C*. Thus, from (3.5) and Proposition 2.10,

we obtain the following result.

COROLLARY 3.2. The transmission coefficients T;(\) and T.(\) and their inverses

T;(A\) "t and T;.(A) ! are continuous in A € CT and analytic in A € C*; these four matrices

all converge to I, as A — oo in C*. Similarly, the matrices Ty(\*)T and T, (\*)t and their
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inverses [Ty(A*)1]=1 and [T,(A\*)T]~ are continuous in A\ € C— and analytic in A € C;

these four matrices all converge to I, as A — oo in C—.

In general, R(A\) and L(A) do not have analytic continuations off the real axis. In the

special case when k(x) vanishes on a half line, we have the following.

PROPOSITION 3.3. If k(z) is supported in the right half line RT, then L()\) extends
to a function that is continuous on C¥, is analytic on CT, and vanishes as A — oo in CT.
Similarly, if k(x) is supported in the left half line R, then R(\) extends to a function that

is continuous on Ct, is analytic on CT, and vanishes as A — oo in CT.

PROOF. If k has support in R*, then from (2.27) and Proposition 2.3 we see that
a;3()\) has an extension that is continuous in A € C+, is analytic in A € C*, and converges
to 0 as A — oo in C+. Thus, using (3.6) and Corollary 3.2, we can conclude that L()\)
extends to a function that is continuous on C¥, is analytic on C*, and vanishes as A — oo
in C+. In a similar manner, if k is supported in the left half line R~, using (2.30), (3.6),
Proposition 2.3, and Corollary 3.2, we obtain that R()\) extends to a function that is
continuous on CT, is analytic on C*, and vanishes as A — co in CT. |

Considering H = —iJy,(d/dz) — V(z) and Hy = —iJa,(d/dz) as the perturbed and

free Hamiltonians, respectively, one can prove the existence of the Mgller wave operators

Wi = lim eitH g—itHo
t—+oo

as (partial) isometries and construct [1,37] the scattering operator S = W, WZ*. Using the
Fourier transform
o .
FON) = [ daeM o), e IRC),
one can prove that (FSF1¢)(A) = S(A) #(\), where S(A) is given by (3.11). In other

words, S(A) coincides with the scattering matrix obtained from time-dependent scattering

theory.
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4. FOURIER TRANSFORMS

Let W? denote the Wiener algebra of all ¢ x ¢ matrix functions of the form
Z(A\) =Zw + / do z(a) €2, (4.1)
where z(a) is a ¢ X ¢ matrix function whose entries belong to L'(R) and Z., = Z(4+00).

Then W1 is a Banach algebra with unit element with respect to the norm
00
1Zlwe = 1Zeoll + [ dalz(a)1

and its invertible elements are those Z(\) as in (4.1) for which Z,, and Z()) for all A € R
are nonsingular matrices [23]. We will use W1 to denote the subalgebra of those functions
Z () for which z(a) has support in R* and Wi, to denote the subalgebra of those
functions Z () for which Z., = 0 and z(«) has support in R*. Then, W? = W4 ow? ;=
Wi e WL

In this section we prove that the matrix functions M;(z, -), M,(z,-), and S(-) belong
to W2, and that m (z,-) belongs to W3". Contrary to the case of the usual Schrodin-
ger equation with potentials in Li(R), we cannot exploit estimates [20,21] of the type
M(z,\) = Iy, + O(1/A) as A — £oo to construct the function z(a) in (4.1) first as an

L?-matrix function and then go on to prove that it in fact belongs to L'(R).

Let us construct the L!-matrix functions b (z,-), Bi(z,-), and B,(z,-) such that
ma(z,A) = I, + / doby (z, o) et (4.2)
0

M(z,A) = Ion + /OO do By(z, a) e M, (z,\) = I, + /oo do B, (x, o) e 2ne,

0 ’ (4.3)

Indeed, partitioning the matrix functions B;(z,a) and B,(z,«) in (4.3) into n x n
blocks as

Bn(z,a) Bia(z,a)

By(z, o) = Bis(z,a) Bu(z, )




so that

Bji(z,a) Bz, « B,1(x,a) Bz,
by(z,a) = (e e) ( )] ) b_(z,a) = 5 Ex a; Bz Ex a; . (44)

Bis(z,a) Bra(z, )

we apply (4.3) to (2.12) and (2.17), and derive the coupled integral equations for o > 0

Bi(z,a) = —i/ dy k(y) Bis(y, @), (4.5)

i z+a/2
Bl2(wa Oé) = _Ek(m + O[/2) - / dyk(y) Bl4(ya a+ 2z — 2y)a (46)

i Tzta/2
Bis(z,a) = 2k(x+a/2 T—i—z/ dy k(y)' Bi(y, o + 2z — 2y), (4.7)
Biy(z, a) z/ dy k(y)' Bia(y, o), (4.8)
/ dyk 7'3 y, )7 (49)
Bra(z, ) = ;k(ac—a/2)+z B dy k(y) Bra(y, o + 2y — 2x), (4.10)
Bs(z, o) = —%k(av—a/2)Jr —i/ P dy k(y)" Bu(y, o + 2y — 2z), (4.11)
Bry(z,a) = —i/ dy k(y)" Bra(y, @). (4.12)

We first prove that, for each z € R, the four systems of integral equations (4.5) and (4.7),
(4.6) and (4.8), (4.9) and (4.11), (4.10) and (4.12) have unique solutions with entries in
LY(R™). Then for the matrix functions m4 (z, ), M;(z, \), and M,.(x, \) defined in (4.2)
and (4.3), we derive the integral relations (2.13)-(2.16) and (2.18)-(2.21). In this way we
will have proved that M;(z,-) and M, (z,-) belong to W?™ and m.(z, ) belongs to W3™.
Let us introduce the following mixed norm on the 2n x 2n matrix functions B(z, a)

depending on (z,a) € R x R*:
IB(s)loo,1 = = sup 1B (z; )]l (4.13)
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THEOREM 4.1. Assume that the entries of k(x) belong to L*(R). Then, for each
z € R, the four systems of integral equations (4.5) and (4.7), (4.6) and (4.8), (4.9) and
(4.11), (4.10) and (4.12) have unique solutions with finite mized norm as defined in (4.13).
Consequently, m, (z,-) belongs to W3"™, m_(z, -) belongs to W™, and M,(z, ) and M, (z, -)
belong to W?".

PRroOOF. Consider (4.5) and (4.7). We can solve this system by iteration as follows.
Define
Bl(??)(:v, a) =0,

Bl(f)(m,a) = —i/ dy k(y) Bl(g)(y, a), j >0, (4.14)

. ; o+a/?2 .
B (@,0) = Zk(w + a/2)' +7;/ dyk(y)' BY (y,a+2c - 2y),  j>0. (4.15)

Taking operator norms we obtain from (4.14) and (4.15)

1B @l < [ dylkwl 15w,

1 z+a/2 .
1B all < ke a2+ [ dylE@IIBY et 20— 2

T

Then the norms of Bl(f)(x, -) and Bl(g)(a:, -)in LY(R™T) satisfy

1B (@, )| < /wdynk( M1BL (s s, (4.16)

z+a/2
15 e <o)+ [Cda [ aylk@IIBD e+ 20 - )
(4.17)

=@+ [ ayIk)NIBY )k,
where o () is the quantity defined in (2.11), the order of integration has been changed,
and the change of variable 7 = o + 2z — 2y has been applied. From (4.16) and (4.17) we

obtain by induction

1

2s
”B z, Z 1 “Bl ||1 < Z (28 Jj=1

=1
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Consequently,

1B )l + 1Bl < 3 T — exp(or (2 - 1.

At the same time we have proved that, for each z € R, the system of equations (4.5) and
(4.7) has a unique solution with entries belonging to L!(R™).
The proofs for the three other systems of equations, namely (4.6) and (4.8), (4.9) and

(4.11), (4.10) and (4.12) are analogous. In each case we get the estimates

1Bij(x; )1 < exploy(z)) =1, ||Brj(, )|l < exp(o—(z)) -1, (4.18)
where 7 =1,2,3,4. 1

The integral equations (4.5)-(4.12) allow one to derive the following relations for the

potential k(z);
k(x) = 2i Bjy(z,0%) = —2i Bya(z,0%) = 2i Bis(z,0")" = —2i B.3(z, 07)1. (4.19)

To justify (4.19), let us fix & > 0 and integrate the norm of the left-hand side in (4.7) with

respect to £ € R. We obtain

1 o0 Y
1By )1y < Skl + / ds / da k()] | B (g, & + 2 — 20)|
Yy

—o0 —a/2

N e
< 3 |1kl + [ i 1Bt <  esalely - 1.

where we have used (4.18). Hence, for each o > 0, Bj3(-, ) is a matrix function with

entries in L'(R). We now easily derive the estimate

HBlg(-,a) - %k(- + a/2)7

1 o0 o4
<5 Wkl [ dlBu 2l =0, a0,
1 0

— 00
which justifies the identity k(z) = 2i Bj3(x,0%)". In an analogous way one proves the

similar result for Bys(-, @), Bra(-, ), and Bp3(-, a).
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THEOREM 4.2. The reflection coefficients R(\) and L()\) belong to W™, and R(+o0) =
L(+o0) = 0. The transmission coefficients T;(\) and T, (A) belong to WY, and they converge

to I, as A\ — oo in C+.

PROOF. Using (2.3) and (2.8) we get
a;(N) = e~z o M, (2, N)T Jop My (2, \) €202 (4.20)

ar(N) = e" T 1o My (2, A)T Jop M(z2, \) e2720%, (4.21)

From Theorem 4.1 we see that M;(z,\) and M,(z,)\) belong to W?". Using (4.20) and
(4.21) for x = 0, we can show that a;(\) and a,()\) are products of elements of W?" and
hence belong to W?". Using (3.5)-(3.7) and Proposition 2.10, we complete the proof of the

theorem. J

5. WIENER-HOPF FACTORIZATION

Using (2.34), (2.41), (2.42), and (3.20), we obtain
m_(z,\) = my(z,\) G(z, \), A €R, (5.1)

where G(z, A) is the dilated scattering matrix given by

. . T () —R()) %Xz
Gz, \) = €207 T S(N) Jop €M on® — o W . (52
L\ e % ()

Since S()) is unitary, so is G(z, ). Hence, we can write (5.1) also in the form
my(z, \) = m_(z,\) G(z, \)T, A € R. (5.3)

We have the following result.
THEOREM 5.1. Assume the entries of k(x) belong to L'(R). Then, for each x € R,
G(z,-) has a unique left-canonical Wiener-Hopf factorization
G(z,\) = my(z, ) Tm_(z,N), A €R, (5.4)
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where my (x,-) and m,y (z,-)" ! belong to W, m_(z,-) and m_(z,-)"! belong to W*",
my(z, ) and my(xz,\)~"! tend to I, as A — oo in CT, and m_(z,)) and m_(z, )~}

tend to I, as A — oo in C—.

ProOF. Using (3.5) and (3.7) we write

Ti(N) 0 [ I, ajp(N) e2Ae

CEN=1 Lo

a,,g(/\) 6—21')\:5 In

where the right factor has a positive selfadjoint real part when A € R, and, as seen in
Theorem 4.2, the left factor and its inverse belong to Wi" and tend to Iy, as A — oo in
C+. Thus the right factor has a unique left-canonical Wiener-Hopf factorization [19] of the

form ‘
In a ()\) 621)\.%

[%30\) 6—27.'/\95 In

where W ()\) and W4 (\)~! are continuous in A € CE, are analytic in A € C*, and tend

] —W,.(AO)W_()), AeR,

to I, as A — oo in CE. From (2.38) and (2.40)-(2.42), we have

1 _

P ——— +
det my (x, \) AT’ A e CH
det m (x)\)—; AeC-

— ) - detfz—,l(A*)T, .

Hence with the help of Theorems 4.1 and 4.2, we conclude that m. (x, \) and my (z, \)~?

belong to W2" and tend to I, as A — oo in C=. Thus, with
mi () = W) M) e T Y, m(m,)) = W (),

we get the left-canonical factorization in (5.4). 1

The matrix V(z) can be recovered from the scattering matrix S(\) as follows. First,
form the matrix function G(z, ) as in (5.2). Next, obtain the Wiener-Hopf factors of

G(z,\) as in (5.4). One can then recover V(z) as

V(z) = —iJan m/(x,0) my(z,0)" . (5.5)
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Indeed, from (1.1) using (2.41) and (2.42) we easily derive
—iJon ml (2, N) — V() my(z,\) = A[my(z,\) — Jop my(z, N) Jan] ,

which implies (5.5). To make (5.5) a viable way of computing the potential k(z) from the
Wiener-Hopf factors of (5.2), one needs to prove that m. (z,0) are absolutely continuous
and that the entries of the 2n x 2n matrix on the right-hand side in (5.5) belong to L!(R)).

If the potential k is outside the class L'(R), the matrices a;(\) and a,.()\) may fail to
be continuous at A = 0; in this case the scattering matrix S(\) might not have a canonical
Wiener-Hopf factorization and the inverse problem may have a one-parameter family of
nonintegrable potentials as its solutions. For example, let n = 1 and use the scattering
coefficients

l A

RN =L =-177 T =50 =" (5.6)

Note that (3.12)-(3.14) are satisfied, but T;(0) = 0 so that 7j;(\)~! is not continuous at
A = 0. Hence, in view of Corollary 3.2, the scattering coefficients in (5.6) do not correspond
to an L'-potential. In fact, there is a one-parameter family of potentials k(z, &) given by

27 —43¢

k(z,&) = 9(—$)m + 9(@@»

where 6(x) is the Heaviside function and £ € [0,400) is the parameter. The matrices

m4(x, \) defined in (2.41) and (2.42) are obtained as

([ k(:ﬂ,g) k(:L‘,g) i k(x,&) U 2iAx
=70 <1_X>+(1_ 2X )X
’ <0a
Hod) (i, HO) (1) HeD '
N L ) ) X A
o= (1-He0) (12 1) MO K
) ) X A )
, x>0,
k(d?,f) U k(.’[), ) i —2iAzx k(x7€)
[ L7 2x (1_X)+<1+ 2\ )Xe Lo



[ (-55) (o) 50 5
e _k(;cf) <1+ %) _ (1+ k(zw/,.\ﬁ)) Loane 1y k(;c)\ )
560 250 5)- (250

| ke (1 M )) (1 +1’) _ k@8 i e

22 A
One easily finds that

> |
S| .

- 1==
A A

z <0,

is discontinuous at A = 0. Moreover, the left Wiener-Hopf factorization for G(z, \) corre-

sponding to (5.6) is noncanonical and given by

)‘ ie2z’>\:c
S
G =] T “ — G (2, ) D) G_(z, \),
? —2i\x A
A+ A+1

where

Gl ) =mie ) (A ) @+ @y

G- = |(527) @+ Q| mote),

DA A—i 1|1+l
= Q- +Qs, ==

W= (3)e-+an  Q-z|

6. THE MARCHENKO METHOD

Using (4.2) and (5.1) we get

m (2, ) [G(z, \) — o] = / dafb_(z,0) — by (z,—a) e, AeR.
From (5.2) and Theorem 4.2 we conclude that

G(z,\) — Iy, = / daH(a) e,  NER,
—00
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with )
v () —R(2z — «)

Hie) = [—ﬁ(—2m - a) vr (@)

where the hat is used to denote the Fourier transform so that

] , a€R, (6.3)

RO\ = / T dak(e)e e, L) = / " dal(a)eire, (6.4)
T\ = I, + / T dav(e)ed. TN =1, + / T dam(a) e (65)

By Theorem 4.2, v;(a) and v,.(a) vanish for @ > 0 and their entries belong to L'(R™),
and the entries of R(-) and L(-) belong to L!(R). Let us define
0 —R(2z + a)

. . a>0. (6.6)
—L(—2z + «) 0

g(m,a) =

Upon writing
my(z,A) [G(2,A) — L] = [G(z, A) — Lon] + [my (z,A) — Ion] [G(2, A) — Ton],

by using (6.1) on the left-hand side, (4.2) and (6.2)-(6.6) on the right-hand side, together
with the convolution theorem and the fact that by (z,-) and b_(z, -) have their supports in

R, we obtain the 2n x 2n system of coupled Marchenko equations
b_(z,0) = g(z,a) + /000 dBby(z,B) g(z,a + B), a > 0. (6.7)
Similarly, using
m_(z,\) [G(z,\)| — Inp] = [G(2, \)| — Iop] + [m_(2,)) — I2,] [G (2, \)T — Ipp],
we obtain the 2n x 2n Marchenko system

by(z, ) =g(z,a) + /000 dBbv_(x,B8) g(z, o+ B)T, a > 0. (6.8)

In fact, using (6.7) in (6.8) and vice versa, we can uncouple them and write the
resulting uncoupled systems in an n X n form with the notations used in (4.4). This leads

to the uncoupled Marchenko equations for o > 0 given by
Bu(e,0) = ~Rla+20)+ [ d5 [ dyBu(e,7) R+ +20)! Rla+ §+22), (69)
0 0
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Bis(e,0) = ~Rla+22) + [ d5 [ dy Bur,2) R(8++22) Rla+ 5+ 22", (610)
0 0

Bs(z,a) = —L(a — 2z)f +/°° dg /00 dy Byo(z,v) L(B+~ — 2z) L(a+ 8 — 22)F, (6.11)
0 0

B,s(z,a) = —L(a — 2z) + /oo dﬁ/oo dy Bys(z, ) L(B+ v — 22)  L(a + 8 — 2z), (6.12)
0 0

Biu(s,) = [ dBR(5+20) Rla+ 6+ 22"
0

o o (6.13)
+/ dﬂ/ dy B (z,7) R(B+ v + 2z) R(a + B+ 2z)1,
0 0
Buo,a) = [~ 8 R(3+20)! Rla+ 5+ 20)
o poo (6.14)
+/ dﬁ/ dy Bia(z,v) R(B+ v + 22)T R(a + 6 + 22),
0 0
Bueia) = [ 9 L6 -20)" Lo +5 - 20)
o -~ (6.15)
+[ a8 [ avBae) LB+ - 20)! Ela+ - 22),
0 0
Brs(z,0) = /OO dBL(B — 2z) L(a+ 3 — 2z)}
0 (6.16)

- /°° dﬂ/w dy Bra(z,7) L(B + v — 22) L(a + 8 — 22)T.
0 0

By L}(R*; C?%%) we denote the Banach space of all complex ¢ X ¢ matrix functions

z(a) where each entry belongs to L' (R ™), endowed with the norm fooo da||z(a)]|-

THEOREM 6.1. The coupled system of Marchenko integral equations (6.7) and (6.8) is
uniquely solvable in L*(R*; C?"*2"), The integral operator in each of the eight uncoupled

Marchenko equations (6.9)-(6.16) is selfadjoint, and each of these eight equations is uniquely
solvable in L*(RT; C"X").

PrOOF. The selfadjointness of the integral operators in (6.9)-(6.16) is clear. From

(3.12), (3.13), and Corollary 3.2 it follows that

sup [|[L(N)]| < 1, sup ||R(N)| < 1. (6.17)
AeR AeR
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Now observe that the integral operators on L2(R*; C") with kernels (o, 8) — R(a+8+2z),
(a, B) = R(a+ B+ 22)T, (o, B) = L(a+ B — 2z), and (o, 8) = L(a + 8 — 2z)T all have
the following action: one imbeds L?(R™;C") into L?*(R;C") isometrically, applies the
sign flip h(a) — h(—a) followed by the convolution with an L!-matrix function, and then
projects orthogonally back onto L?(R™; C"). Since the Fourier transforms of these matrix
functions have norm strictly less than one, this is also the case for the norms of these
integral operators. Hence, the system of equations (6.7) and (6.8) as well as each of the
eight equations (6.9)-(6.16) are uniquely solvable on the direct sum of a suitable number of
copies of L?(R™). Since the integral operators are compact as a result of the integrability
of L(-) and R(), both on L? and on L' (cf. Lemma XII 2.4 of [23], the proof for the
L2-case there can easily be adapted to cover the Ll-case; also p. 401 of [18]), the system
of equations (6.7) and (6.8) as well as each of the eight equations (6.9)-(6.16) are uniquely

solvable on the direct sum of a suitable number of copies of L'(R™). I

From (4.19), we see that we can recover the potential k(z) by solving either one of
the four Marchenko equations (6.9)-(6.12).

The unique solvability of the Marchenko equations (6.9)-(6.16) has a number of other
consequences. For example, if R()\) is analytic on C*, then R(a) is supported on R~
and hence the right-hand sides in (6.9), (6.10), (6.13), and (6.14) vanish when z > 0.
Since these equations are uniquely solvable, their solutions vanish as well and therefore &
is supported on R™. On the other hand, if L()\) is analytic on C*, then IA/(a) is supported
on R, and hence the right-hand sides in (6.11), (6.12), (6.15), and (6.16) vanish when
x < 0. Since these equations are uniquely solvable, their solutions vanish as well, and
therefore k is supported on R™. We have thus proved the converse of Proposition 3.3.

It remains to prove that the potential k(z) obtained by the Marchenko method has
entries in L'(R). To do so, we modify the inversion procedure as follows. We solve one of
the Marchenko equations (6.9) and (6.10) for 2 > 0 and then employ (4.19) to compute

k(z) for x > 0. By the same token, we solve one of (6.11) and (6.12) for z < 0 and then
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use (4.19) to find k(x) for z < 0. In fact, this procedure will be implemented in the case
of rational reflection coefficients in Section 8.

We first derive the following partial characterization result.

THEOREM 6.2. Let R()\) be a matriz function in W™ such that
w A A
sup ROV < 1, / da (1R(@)] + | R(@)]) < +o, (6.18)
AeR 0

where R(c) is defined in (6.4). Then, forz > 0, the unique solutions By (x, o) and Bys(z, o)

of (6.9) and (6.10), respectively, satisfy
(o )
| delBule,0n) <400, =23
0

In particular, the entries of k(x) = 2i Bia(x,07) and k(z) = 2i Biz(z,0)T belong to
LY(R™T). Similarly, let L()\) be a matriz function in W™ such that
0 A A
sup L) <1, [ da (IE(@)] - all(@)]?) < +oc, (6.19)
AeR o

where L(c) is defined in (6.4). Then forz < 0 the unique solutions By (z, ) and Bys(z, )

of (6.11) and (6.12), respectively, satisfy

0
| dnlBoeoh <+, =23
In particular, the entries of k(z) = —2i Bya(x,0%) and k(z) = —2i B,3(x,0%)T belong to
LY (R™).

PrROOF. We only prove the theorem for x > 0, as the proof for z < 0 is similar. Put

Rala) 0 —R(o)
A\O) = A )
—R(a)f 0
and consider the integral equation
Bi(z,a) — / dB By(x, B) Ra(2z + o + ) = Ra(2z + ), a> 0. (6.20)
0
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Then its unique solution in L!'(R™; C2"*2") coincides with the matrix function B;(z, c)
in (4.3) and the integral operator is a strict contraction on L?(R™; C?"%2"), Iterating the

adjoint of (6.20) we have

where Bl(o)(x, o) = Ra(2¢ 4 a) and

Bl(ﬂ(x,a)fz/ d3Ra(2z+a+8)BY V(z,B)!,  j>1.
0

Now let p € [0,1) be the spectral radius of the integral operator appearing in (the adjoint
of) (6.20). Then, by the selfadjointness of this operator on L?(R*;C?"*2") and the

Schwarz inequality, we get

1B (@, 0)| <ot [ dBIRABIZ 5> 1,

2z
and therefore
> L[ [ . 1 oo oo ) 2
/0 dz ||B)(z, a)|| < 3 [/a dp ||Ra(B)| + fﬂ/o dy /y+a dB||Ra(B)] ]
1~ . L [ )
A LNCTE Y ARCICERIERETH

which is finite. |

Let us observe that (6.18) and (6.19) amount to requiring that the integral operators
with integral kernels R(a + 8)! and L(—a — ) have square integrable kernels and hence
are Hilbert-Schmidt on L?(R™*; C™). Note also that rational matrix functions R()\) and
L()\) without real poles that vanish at infinity satisfy the assumptions of Theorem 6.2.
The identities [cf. (6.4) and (3.14)]

L) = / T daerei(—a), RO = /  dae e R(a),

L(\) = -T,(\) RN [Ti(V)T] A ER, (6.21)
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in combination with the analyticity properties of T,.(\) and Tj(A\*)" and their inverses,
imply that if one of the integral operators is Hilbert-Schmidt then so is the other. In other
words, the conditions (6.18) and (6.19) are equivalent.

The natural conditions under which one expects to reconstruct a potential with L!-

entries for x > 0 would be R € W" and
sup |[R(V)| <1, lim |[R(A)|| = 0.
AER A—+oo

However, evaluating the first iterate of (6.20) as a — 07, i.e.,

. " 46 R(5) R(B)! 0
BM(z,07) = / dBRA(B)? = Vz ]

2z

0 / " dBR(B)T R(B)

T

one sees that (6.18) is expected to hold if the integral [ da ||Bl(1)(a:, 0%)]| is to be finite.
Using the method of the proof of Theorem 2 of [34], one easily obtains the estimate
o0 (2 ) 1 oo " J+1
[ asis®@oni<g ([“asizen) . izo
o Zo

where one assumes only that [ do |R(c)|| < 400. Unfortunately, this estimate does not
extend to the odd iterates of (6.20). However, since R belongs to the class K 4 introduced

in [34], it follows from this theorem that the potential k(x) obtained has an L!-tail in the

—xQ o
dzg > 0: (/ +/ )dx||k(:c)||<+oo.
— 00 ity

Moreover, for every A € R the Jost solution Fj(z, ) is differentiable with respect to z

sense that

if x > xo and Fy.(x,\) is differentiable with respect to z for * < —xg, thus providing a
partial justification of (5.5). In other words, neither in the work of Melik-Adamyan [34]
for the half line nor in the present work for the full line, a complete characterization is
given of the scattering data leading to a unique L!-potential. One does not obtain such

a characterization either even if one combines Melik-Adamyan’s reduction of the inverse
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problem on the full line to that on the half line [32] with his solution of the inverse problem
on the half line [34].

7. CONSTRUCTION OF THE SCATTERING MATRIX

We now show that the scattering matrix S(A) can be constructed in terms of L(\)
or R()) alone. This can be seen as follows. Since the construction from L(\) is similar to
that from R(\), we will only illustrate the latter. Given R(A) for A € R, we can obtain

Ti(\) by solving the matrix Riemann-Hilbert problem
T(N) TV =1, - RA) RN,  AeR, (7.1)

which follows from (3.12). Here T;(}) is continuous in C¥, is analytic in C*, and converges
to I,, as A — oo in C+; similarly, 7;(\*)T is continuous for A € C—, is analytic for A € C~,
and converges to I, as A\ — oo in C~. In a similar way, T}.()) can be constructed by solving

the matrix Riemann-Hilbert problem
T,N)'T.(\) = I, - RA)TR(Y),  A€R, (7.2)

which is found from (3.12). When the scattering coefficients are considered for complex A,

instead of (6.21) we must use
L) = -T.(\) RO)HIT(AHTY, xeC, (7.3)

which follows with the help of Proposition 2.6. Once T;(\) and T,.()\) are obtained, we
can recover L()) using (7.3). Note that from Theorem 4.2, it follows that the n x n
matrices in the right-hand sides in (7.1) and (7.2) both belong to the Wiener algebra W".
Furthermore, from Corollary 3.2 and Theorem 4.2, it follows that 7;(\) and 7;.(\) belong
to the subalgebra W%, and T;(A\*)" and T, (A\*)" belong to W". Hence, (7.1) and (7.2) lead

us to a left and a right, respectively, canonical Wiener-Hopf factorization in W".
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From the theory of transfer functions [13], since R(A\) — 0 as A — +o0, it follows

that any rational R(\) can be represented in the form
R(\)=iC(A—3iA)"'B, AeC, (7.4)

where A, B, and C are independent of A and belong to CP*P CP*™ and C™*P, respectively,
for some integer p. Here it is assumed that the order p of A is minimal, i.e. the realization
(7.4) is minimal and hence unique up to similarity.

Next, when R(]\) is a rational function, we will construct S(\) in terms of the matrices
A, B, and C given in (7.4). Since R()) is continuous for A € R, from the minimality of the
realization given in (7.4) it follows that A does not have any eigenvalues on the imaginary

axis. Using (7.4) in (7.1) and (7.2), we obtain

TV = L-ile oj0-ik)” | 4], (75)
T\ T.(\) =1, +i[0 B |(A—ik,)™" [zg], (7.6)

where now \ € C and we have defined

[A BBt
K=

0 -—Af

A 0
L K= . (7.7)
cic —Af

Note that the inverses of the right-hand sides in (7.5) and (7.6) can be written as

O B = nrile oj0-ie)” | g,

.07 [T =1, —i[0 B](A-i&)™" [’03] :

where £ is the “state characteristic matrix” given by

A —-BBt
£ = ,
cic —Af

which, apart from some factors i = /—1, has been used in [27].
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If A has all its eigenvalues in the left half plane, i.e. if R()) is analytic in C*, then
it is a simple procedure to obtain 7;()), T;-()), and their inverses in terms of 4, B, and C.
This is because certain solutions of some simple Riccati equations can be used to construct
the so-called supporting projections in the realizations (7.5) and (7.6) and then to apply
the factorization theory of [13]. When A has at least one eigenvalue in the right half plane,
similarity transformations must first be applied to (7.5) and (7.6) to bring the similarity
images of ; and K, in a form amenable to the same treatment as if A would have only
eigenvalues in the left half plane.

Let us suppose that

A= A- 0 7.8
[ AJ r8)

with respect to a suitable basis, where A_ has order p_ and has all its eigenvalues in the
left half plane and A, has order p; and has all its eigenvalues in the right half plane.
Here p_ + py = p. This form can always be achieved by means of a suitable similarity

transformation and an appropriate transformation of the matrices B and C. Put

I, 0 0 0 I, 0 0 0
o o o0 I O -P, 0 I
B, = "l e, = 1, (1.9
0 0 I 0 0 0 I, 0
0 -I,, 0 P 0 —-I,, 0 0

where P; and P, will be specified shortly. Let us partition B and C as

B=
By

], c=[Cc. C.], (7.10)

where By and C4 are p4 xn and n X p4 matrices, respectively. We then take for P, and P,
the unique solutions of the Lyapunov equations (cf. Theorem I4.1 of [23], Theorem VII 2.4
of [17])

A+P1 + P1./4.1_.+_ - B+BT 3

PAL + AP =Cley.
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In fact, we have
= [Tacwn st pe [Tactidecs, @y

so that P; and P, are positive selfadjoint. Then, we easily compute

Q3 —Q:0f Q 0
Q= K® " = , Qy = 0, K,8, 1 = , (7.12)
0o —f Ql0s —Qf
where
A- —B_BL A- 0 B_
Q?’: ’ 94: + t ) 95: ) QGZ[C— 0]
0o -Al cle. —AL 0

Due to the contractivity of R()\) and R(A\)! for A € R given in (6.17), we have the
following result (Theorems 3.2 and 3.4 of [27]):

PROPOSITION 7.1. Let A, B, and C be the matrices in the minimal realization given

by (7.4) and consider the quadratic matriz equations
AX + X AT = BB + xC'cx, (7.13)

ATy + YA =cic+yBBY. (7.14)

Then all hermitian solutions X of (7.13) are nonsingular, and the number of positive (resp.
negative) eigenvalues of X coincides with the number of poles of R(\) in CT (resp. in C™).
There is at least one such solution X. An analogous result holds for hermitian solutions of

(7.14).

Since the order of A is minimal, the number of positive and negative eigenvalues of
any hermitian solution X" of (7.13) coincides with the number of eigenvalues of A in the
right and left half plane, respectively. In counting the number of poles and eigenvalues,
(algebraic) multiplicities have been taken into account. The nonlinear equations (7.13)
and (7.14) are called state characteristic equations in [27] and Riccati equations elsewhere

in the literature (e.g. [31]).
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The following result allows one to obtain explicit expressions for the factors T;(\) and

T, (A\) and their inverses.

THEOREM 7.2. Let A, B, and C be the matrices in the minimal realization given by
(7.4). Then, there exist unique hermitian solutions X and Y of the state characteristic

equations (7.13) and (7.14) such that the matrices
& =A-BBY, &=A-2XC'C, (7.15)

have all their eigenvalues in the left half complex plane.

PrOOF. Let T = Jy,q2,€ and E = iJapqap,. We first observe that —i& is both Y-
selfadjoint and Z-selfadjoint, i.e. both —iYE and —i=E are selfadjoint. Then the spectral
subspaces of £ corresponding to the eigenvalues in the left and right half planes are both

T-neutral and S-neutral, i.e., for any vector u from such a spectral subspace we have
(Yu,u) = (Eu,u) = 0.

Following the proof of Lemma 7.2.2 of [31], let us write the spectral subspace of £ corre-

sponding to its eigenvalues in the left half plane in the form

£:{[;;]C}

where we note that £ is p-dimensional, because of the similarity relation Jo,qap€qopJo, =

—&T. Thus the E-invariance of £ leads to the two identities
AY, — BB'Y, = V.G, (7.16)

ctey, — A, = ),6, (7.17)

where G is some p X p matrix. Then the T-neutrality of £ means that for every u € CP

we get

LB A

s ut (Vfefey - Y] Ay, - 1Ay + VIBBIY, ) u=0. (7.18)
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Hence, when Yu = 0, we have |B'Y,u||2 = 0, implying B Y,u = 0. As a result of (7.16)

we also have Y;Gu = 0 whenever Yyu = 0, and by virtue of (7.17) we have

ATY,u = =Y,Gu € Y, [Ker]

whenever YV;u = 0, where Ker ), denotes the null space of the matrix );. Thus the subspace
V,[Ker )] is invariant under Af, while, as we have seen above, it is contained in Ker BT.

In other words,

V. [KerY)] C ﬁ Ker (BT(A")") = {0},

r=0
due to the minimality of the realization given in (7.4). Consequently, if Yju = 0 then
Yiu = Yyu = 0, which leads to u = 0 because dim £ = p. In other words, we have proved

the nonsingularity of ), and hence we may write £ in the form
Ip
L= u:ueCPy,
Y

In a similar way, let us write the spectral subspace of £ corresponding to the eigen-

where ) = yry,—l.

values in the right half plane as

M:{[j]ec}

where dim M = p. Then the £-invariance of M leads to the two identities
AX, — BBY X, = X, (7.19)

clcx, — ATX, = X, H, (7.20)

where H is some p X p matrix. Then the YT-neutrality of M means that for every u € CP
the expression (7.18) with ), and ), replaced by &; and X, is valid. This implies that

|ICXu||2 = 0 and hence CXju = 0 whenever X, u = 0. From (7.20) in combination with the

36



above, it follows that X.Hu = 0 whenever X, u = 0. With the help of (7.19) it then follows
that the subspace Aj[Ker &, ] is invariant under A and contained in Ker C. Therefore,

X [Ker X, ] C ﬁ Ker (CA") = {0},

r=0
due to the minimality of the realization given in (7.4). Consequently, if X,u = 0 then

Xju = Xru = 0, which leads to u = 0 because dim M = p. In other words, we have proved

the nonsingularity of &) and hence we may write
X
M = u:uéeCPy,
Ip

Since the subspaces £ and M above have dimension p, the 2p X 2p matrix

5 I, x
Yy I,
is nonsingular. Hence, both I,, — XY and I, — Y X are nonsingular, and
n-1 (Ip_Xy)_l _(Ip_Xy)_IX .
_(Ip_yX)_ly (Ip_yx)_l

Using the state characteristic equations (7.13) and (7.14) and passing to the resolvents, we

where X = X X1

obtain

A=) 1=3X

(=) ’ ] 1, (7.21)

0 (A +ighH)1
where &, and & are given by (7.15). Thus &, and & have all their eigenvalues in the left

half plane. i

Before applying the main factorization result from [13] to (7.5) and (7.6), we need the
following proposition ([36], Theorem 6.5.3 of [31]). Recall that K; and K, are the matrices

defined in (7.7).

PROPOSITION 7.3. Let M be the invariant subspace of £ corresponding to the eigen-
values in the left (resp. right) half plane and N be the invariant subspace of K, (resp. K;)

corresponding to its eigenvalues in the right (resp. left) half plane. Then M & N = C?P.
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Now let IT be the projection whose range is the invariant subspace of £ corresponding
to the eigenvalues in the left half plane and whose kernel is the invariant subspace of K,
corresponding to its eigenvalues in the right half plane, and let Q be the projection whose
range is the invariant subspace of K; corresponding to its eigenvalues in the left half plane
and whose kernel is the invariant subspace of £ corresponding to its eigenvalues in the
right half plane. Applying the main factorization result in [13], we obtain the following

expressions for the transmission coefficients in terms of the matrices appearing in (7.4):

T,(A\) =T, +i[0 B'[(A—iK,)"" (I, — ) [ﬂ , (7.22)
T.(\) =1, +i[0 B'II(\—iK,)"! [zg] (7.23)
T\ 1=1,—i[0 B'(\—if) ' m , (7.24)

T, = I, —i[0 B'](Isy — II) (A — i€)~ {ﬂ , (7.25)
() = I, —i[C o](x-m,)—lg[éﬂ], (7.26)

T =1, —i[C 0] (Typ — Q) (A —iky) ™" [éﬂ , (7.27)

L] =1, +4[C 0](A—i&)~" (Iy — Q) [(?T] , (7.28)
T\ = I, +i[C 0]Q(\—i&) " [COT] (7.29)

When A has all its eigenvalues in the left half plane, the projections IT and Q are

I, 0], Q:[I,, _x]-
Y 0 0 0

Then, using X and ) specified in Theorem 7.2, with the help of the identity

given by
=

(I, — XD) & = & (I, — XV), (7.30)
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we can simplify (7.22)-(7.29) considerably. In fact, we get
( T,(\)t =1, —iBT (A +3iAN1YB,  T,(\)7! =1, —iB Y\ —i&) !B,

T,(\) = I, +iBtY(\ —iA) 1B, [T (A*)T] T =1, +iBT (A +iEDH1YB,
4 (7.31)
T,(\) = I, +iC(A — iA)~1xCH, [T, =1, + icx (A + igf)~'ct,

{ T\ =1, —icX(A+iAD~Ict,  T,(\)~'=1I, —iC(\—i&)~txch.

The eight matrix functions in (7.31) have the analyticity properties stated in Corollary 3.2
because &, and & have their eigenvalues in the left half plane as assured by Theorem 7.2.
Moreover, from (7.13) and (7.14) we find that T,.(\) and T;()\) satisfy (7.5) and (7.6),

respectively. Using (7.31) and the identity
icfex = (A +iAY) — (A +ig), (7.32)
we obtain
—RO)T T\~ =BT (A + &)~ et (7.33)

Next, using (7.3), (7.13), (7.31), (7.33), and the identity
iBBY = X(\ +14&)) — (A —iA)X,

we get

L) =BTy —iAd)ract +iBH (1, — yxX)(\ +ig)) 1t (7.34)

and hence our construction of S(\) is complete when A has all its eigenvalues in the left
half plane.
Let us now consider the most general situation in which A may also have eigenvalues

in the right half plane. In that case, for the projection operators Q and II we obtain

e
ImQ=2%,'[C°¢{0}], KerQ=Im I
| “P
A
KerlI=® ' [{0}®CF], ImI=Im N
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Considering the matrices ®; and ®, defined in (7.9) and partitioning their inverses into

p X p blocks as

All Al2 Arl A'r'2
P l=A = , o' =A, = , (7.35)
ANz Ay Ars Ay
we easily find the expressions
B An(An — XA13)_1 —Ap (A — XAls)_1X] (7.36)
Ais(App — XAi3)™ 1 —Ais(App — XA3) T , '
_Ar2 (Ar4 - yAr2)_1y A'r‘2(Ar4 - yArQ)_l
I, - Il = , (7.37)
_Ar4(Ar4 - yAr2)_1y Ar4(Ar4 - yAr2)_1

where the inverses of Aj; — XAj3 and Apy — YA,9 exist, because Im Q @ Ker Q = C?? and
ImII @ KerII = C??.
We will now derive the analogs of the expressions in (7.31). Using (7.21), (7.29),

(7.30), and (7.36), we get
TN =1, —iCAp (A — XA3) T (N —i&)~txct. (7.38)
With the help of (7.21), (7.28), and (7.36) we derive
(MO =1, +icx(A +igH) g ct, (7.39)

where

Ji= I, —YX) I, + (A3 — YAu) (A — XA) 1 X

Using (7.21), (7.24), and (7.37) we obtain
T,(N)" ' =1, — i BTY(\ - i&,) 1 7B, (7.40)

where
j2 = (Ip - Xy)_l [Ip + (Ar2 - XAT‘4)(AT4 - yAr2)_1y:| .
Next, using (7.21), (7.25), (7.30), and (7.37), we get
[T.(A)1] 7" =1 + i BT Apa(Ars — YA2) " (A + i€]) VB, (7.41)
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From (7.12), (7.26), (7.35), (7.36), and the equality

®,Q [COT] = — [%} (A — XAgs)~txCt,

we obtain

Ti(\) = I, + i CApn (N — iQ3) " (A — XA3) "t XCH.

Let us partition ®; and @, defined in (7.9) into p X p blocks as

O P
o =
D3 Py

(I)rl (I)rz
q)r3 q)r4

3, =

Y

Using (7.12), (7.27), (7.35), (7.36), as well as the identity
[C 0](I2p — Q)Ql_l =CT3[0 L],

where

T3 =Nz — Ajp(App — XA3) (A — XAyy),

we obtain

Ty = I, —iCTs(A + i) ~1®,4C1.
With the help of (7.12), (7.23), (7.35), (7.37), and the identity
[0 B & '=B8'J,[1, 0],
where
Ts =Mz — Aps(Aps — YAr2) "1 (A — VA1),

we get

T,(\) = I, + i BT Jy(\ — iQ4) " 1®,1B.

Using (7.12), (7.22), (7.35), (7.37), as well as the identity

&, (I, — I0) [ﬂ = [I(l] (Ara — YA2) Y8,
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we are led to

T, (A = I, — i BT A\ +9Q2)) " (Aps — YA,2) L YB. (7.45)

It is easily verified that the expressions in (7.38)-(7.45) have the correct analyticity prop-
erties indicated in Corollary 3.2.

From (7.4), (7.32), (7.39), and Ip — jl = —Alg(All - XAlg)_l.)C', we get

—ROHT T = =BT\ + iAD) A (A — XAg)~txct +iBT(\ + i) L aict.
(7.46)

Using (7.3), (7.44), (7.46), and some standard results on realizations (Chapter 1 of [13]),

we obtain
L()\) =i Qg(A — i) 1Qq, (7.47)
where Q) —,.B88" @86
Q=10 —Af 0 ,
0 0 —&f
0
Q=BT -1, I,], Qo= |As(An—XA3)~tx|Cl.
J

The realization (7.47) will in general not be minimal.

To simplify the realization of L(\) given in (7.47), we let
A=0Q, 01,  C=Qg0" !, B=UQ,,

so that

L\ =iC(A—iA)"'B. (7.48)

Here ¥ is a suitable similarity and we partition the matrices .Z, g, and C by breaking up

the middle blocks of order p into blocks of order p_ and p,. Further, we decompose the

X1 Ay
X = ,
X3 Xy
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so that X; and X are selfadjoint and have orders p_ and p., respectively, and Xg = AXs.

Moreover, for one of the blocks of {29 we can write

oo 0 [h - 1T [H
Az(App — XA3) "X =
_0 Ip+ 0 P1 — X4 Xg X4

0 0
(Pr— X)X (P — X)X, .

Then defining the similarity ¥ by

0o 0 0 I, P P 0 -,
0 I, 0 0 0 I, 0 0
U= ’ , Tl= " :
0 0 I, 0 0 0 I, O
I, P, 0 Py I, 0 0 0

where

P; = / dt /% B, BB et!
0
is the unique (and generally nonselfadjoint) solution of the Lyapunov equation
QuPs + P3E] = —®,,BB",

and

* t
P4 = —/ dt etQ‘l@rlBBietA_
0

is the unique (and generally nonsquare matrix) solution of the Lyapunov equation
QuP; + Py AN = &,,88"

we arrive at

- [Ay 0 . [B ~ -
Azl ' ~], Bz[f , Cc=[cy c_], (7.49)
0 A B_
where
- AR _ AL 0
.A.|_ = ; A_ = 3
0 -Al ®,.B81
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. JiCT N oyl i t
g -7 5 [(Pl Xy) (X3CT_ + 2,01 | (750)
0 P3jlc+
Cr =B, + uPs) BP—Bl], (- =[-B, -Bi7]. (7.51)

8. INVERSE PROBLEM WITH RATIONAL SCATTERING MATRICES

Let R()) have the form (7.4) for certain matrices A, B, and C, where A has the

minimal order and hence does not have zero or purely imaginary eigenvalues. Then

R(\) =iC(\—iA) 'B= —/ dt e C E(t; —A) B, (8.1)
where 1
—tAp(+) _ _/ —tz (, _ A\-1
e o ari Jr., dze ¥ (z—A)~", t>0,
E(t;-A) =
_—tAp(-) L —tz (A1
e~ Py omi | dze ™ (z—A)~, t<0,

is the bisemigroup generated by A (cf. [14,15]). Here T'y and I'_ are the positively oriented

simple Jordan contours in the right and left half plane enclosing all of the eigenvalues of

)

A in the open right and left half plane, respectively, and Pj(:r) and PJ(4_ are the spectral

projections of A corresponding to its eigenvalues in the right and left half plane, respec-
tively.

Let us solve the Marchenko equation (6.10), where
R(t)=-CE(t;-A)B, R@t)'=-B'Et;-A")CH,
which are obtained from (6.4) and (8.1). Introducing the positive selfadjoint p x p matrices
o0 (e}
Dy = / dt E(t;—A)BB'E(t;—A"), D, = / dt E(t; —A" CTC E(t; —A),
0 0
we obtain for > 0 the hermitian integral kernel of (6.10) as

/ dBR(y+ 8+ 2z) R+ 8+ 22)" = C E(y + 22; —A) Dy E(a + 22; —A") CT.
0
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The unique solution of the separable integral equation (6.10) is then given by

1

Biz(z, @) = B'[I, — E(2z; —A") D3 E(22; —A) D1] E(a + 2z; —A') CT, (8.2)

where the inverse exists because of the unique solvability of (6.10). Consequently, from

(4.19) and (8.2) we obtain

1

k(z) = 2iC E(2z;—A)[I, — D1 E(2z; —A") D2 E(2z;—A)] B, 2 >0. (8.3)

With the help of (7.8), (7.10), and (7.11), we get

0 0 0 O
D]_ - y D2 = )
0 Pl 0 P2
as well as
-1
k(z) = 2i Cpe 224+ [IpJr - P e_QwAer2 6_2$'A+] B, x> 0.

Let us now compute k(z) for z < 0, starting from L()) as given in (7.47), so that

A

L(t) = —Qs E(t;—Q7) Q, L)' =—-0f E@t; —Q6) Qf.

Proceeding as in the derivation of (8.3), but with A4, B, C, and x replaced by Q7, Qg, Qg,

and —z, respectively, we obtain
Bya(z, ) = Qf [I,, — B(=2z; —Q}) Dy B(—22; —Q7) D3] E(a — 22; —Q) Qf,

where the inverse exists because of the unique solvability of (6.11). Here D3 and D4 are

the positive selfadjoint matrices given by

D?,:/ dt E(t; —Q7) Qo Q) E(t; —Q), D4:/ dt E(t; —Qb) Qf Qg E(t; —Q).
0 0

Using (4.19) we now obtain for z < 0
k(z) = —2i Qf [I, — E(—2x; —Q}) Dy B(—2z; —Q7) Ds] T E(-2z; -0 Qf,  (8.4)
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where m = 3p.

In order to simplify the expression for k(z) in (8.4), we can use (7.48) instead of
(7.47). We first replace {Q27, (9, Qs} in (8.4) by {4, B,C} and then compute the analogs
233 and 54 of D3 and D4. We get

P 0 0 0 Ps P 0 0
~ 0 0 0 O - Ps Py, 0 0
D3: ) D4_ )

0 0 0 O 0 0 0 O

0 0 0 O 0 0 0 O

where
Py = / dt '€l Jicicgiett,  Py= / dt et€ (I, + PI 7)) BB (I, — J,P3)eé!
0 0

and Py, Py, and Py are irrelevant because they will not contribute to k(z), as we will see.
We now apply (8.4) and obtain
k(z) = —2iB' ©1(z) O4(x) C'

-1
= —2icg] |1, — e € pye~2=€l p| 8 (1, + PIghHB, =z <0,

where we have used (7.49)-(7.51) and

Zi(z)7t 0 0 O e~ 228 0 0 0
—Zy(2)Z1 ()"t I, 0 0 0 e 24 0 0
61(x): ) @2(x): )
0 0 I, 0 0 0 0 0
0 0o 0 I, 0 0 0 0
with

Zl (x) = Ip — 6_2x8l PG 6_2w8l-rP5

and Z,(z) being irrelevant because it does not contribute to k(z).
Now let us consider the special case where R()\) is analytic in CT. Then the matrix

A has its eigenvalues in the left half plane and hence E(¢; —.A) = 0 for ¢ > 0. In that case
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k(z) = 0 for x > 0. We then repeat the calculations of the preceding paragraph with (7.47)
replaced by (7.34), i.e. with L()) given by
fg) X
L) =iB[Y I,-YX] ()\ —i[A® (& )]) . ct.
P
In other words, we replace Q7, o, and Qg in (7.34) by
t Xt t
A@(_gl)’ I Cv B[y Ip_yx]a
P
respectively, and employ the fact that

E(-2z;(—A) @ 5;[) =06 E(—2x; SZT), z < 0.

We also replace D3 by 0 @ D5 and D4 by 0 @ Dg, where

135:/ dt E(t; &) ctC E(t; &),
0

Dg = / dt E(t; &) (I, — XY) BB (I, — YX) E(t; &]).
0

As a result, we obtain from (8.4)

k(z) = —2iC[I, — B(~2; &) Dg B(~2x;€]) D] E(—22;&) (I, - XV)B,  z <0,
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