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I. INTRODUCTION

Consider the matrix Schrodinger equation

(1.1) V" (k,x) + k*Y(k, z) = Q(z) ¥ (k, ), z € R,

where z € R denotes the spatial coordinate, the prime stands for the derivative with respect
to x, k2 is the energy, Q(z) is an n x n selfadjoint matrix potential, i.e. Q(z)" = Q(z)
with the dagger standing for the matrix conjugate transpose, and ¢ (k,z) is either an
n X 1 or an n X n matrix function. Let L. (I) with a > 0 denote the Banach space of all
measurable functions f for which (1 + |z|)*f(z) is integrable on the interval I. We will
use Q@ € Ll (R;C™ ") to mean that the entries of Q(z) belong to Ll (R). In studying
(1.1), we will generally use Q € L}(R; C™*") when k € C*+\ {0}, Q € L}(R; C"*") when
k = 0 in the generic case, and @ € L1(R; C"*") when k = 0 in the exceptional case. The
distinction between the generic and exceptional cases is indicated in Section IV. We use

C* to denote the upper-half complex plane and write C+ for CT U R.

The scattering solutions of (1.1) correspond to the solutions whose entries behave like

e’ or e 35  — +00. The bound state solutions are the solutions whose entries belong

to L?(R), and it is known that such solutions can only occur when k takes certain values
on the positive imaginary axis in C*. Among the n X n scattering solutions of (1.1) are the
Jost solution from the left, f;(k, z), and the Jost solution from the right, f.(k, z), satisfying

the boundary conditions

(1.2) e % f)(k,x) = I, + o(1) and e "*f/(k,z) = ik, + o(1), x — +00,

(1.3) e* f.(k,x) = I, +0(1) and e**f](k,z) = —ikI, + o(1), T — —00,
where I,, denotes the identity matrix of order n. For each k£ € R\ {0} we have

(1.4) filk, ) = a;(k)e™™™ + b (k)e™*® + o(1), T — —00,
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(1.5) fr(k, ) = a,(k)e™*® 4+ b.(k)e™*® + o(1), r — +00,
where a;(k), b;(k), a.(k), and b,.(k) are certain n x n matrix functions of k.

The direct scattering problem for (1.1) consists of the analysis of the scattering matrix
given in (2.22) when @Q(z) is known; on the other hand, the inverse scattering problem
deals with the determination of Q(z) in terms of an appropriate set of scattering data
involving a reflection coefficient and information on the bound states. The direct and
inverse scattering problems for (1.1) were studied in Refs. 1-6. In our paper we will
concentrate on what has not been done in the references cited, namely the analysis of the
scattering solutions and coefficients of (1.1) at & = 0 and the unique solvability of the
Marchenko equations arising in the analysis of the inverse scattering problem for (1.1). In
Sections II and III we establish our notations and present a review of some basic known
results; for the proofs and details we refer the reader to Refs. 3 and 5. We prove the
continuity of the scattering matrix at £ = 0 and obtain its asymptotics as k£ — 0; the
generic case is treated in Section IV and the exceptional case is treated in Section V.

Finally, in Section VI we prove the unique solvability of the Marchenko integral equations.

The study of the inverse scattering problem for (1.1) with a selfadjoint Q(z) is re-
lated to the analysis of the Cauchy problem for certain nonlinear evolution equations
such as the n-component nonlinear Schrodinger equation?3 and the Calogero-Degasperis
equations.®"8 There are also other evolution equations related to (1.1) when Q(z) is non-

selfadjoint, but we will confine our analysis to the case with selfadjoint Q(z).

The pioneering paper! for the study of the inverse scattering problem for (1.1) is that
of Wadati and Kamijo, in which Q(z) was assumed continuous, selfadjoint, and belonging
to L1(R; C"*™); however, some of the results stated and used in Ref. 1 such as the an-
alytic extension of the reflection coefficients from R to C* cannot hold under the stated
conditions on Q(z). In the review paper based on Ref. 1, Wadati? assumed that Q(z) is self-

adjoint and continuous and its entries “decrease sufficiently rapidly as £ — +00.” Schuur?
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analyzed the inverse scattering problem for (1.1) when Q(x) is nonselfadjoint, continuous,
and belonging to L1(R; C"*"). None of these three papers addressed the behavior of the
scattering solutions and scattering coefficients as £k — 0. In order to avoid any problems
that may arise at k£ = 0, based on the results in Ref. 9 for the scalar case, Q@ € L}(R; C"*")
was assumed in Refs. 3 and 5, where the inverse scattering problem for (1.1) was analyzed
for a nonselfadjoint Q(x) under some additional assumptions. Our work supplements the
analysis in Refs. 3 and 5 for a selfadjoint Q(z), as we provide the analysis of the scatter-
ing solutions and scattering coefficients as k¥ — 0 and prove the unique solvability of the
Marchenko integral equations. Finally, when the reflection coefficient is a rational function
of k, Alpay and Gohberg,® by using some results stated in Ref. 2, obtained the (selfadjoint)
potential in terms of the minimal realization of the reflection coefficient by stating without
a proof that the unique solvability of the Marchenko equation holds in the matrix case as

it does in the scalar case.

II. SCATTERING SOLUTIONS AND SCATTERING COEFFICIENTS

In this section we review some basic results regarding (1.1). The proofs can be found
in Refs. 3 and 5 or are simple generalizations of those for the scalar case.>!0 Let [F;G] =
FG' — F'G denote the Wronskian of the square matrix functions F' and G of z. Let us use
an asterisk to denote complex conjugation and use || - || to denote the operator norm. The

following standard result is based on the selfadjointness of Q.

Proposition 2.1 Let ¢(k,z) be any n x p solution and 3 (k,z) be any n X g solution of
(1.1). Then, for k € C+, the p x ¢ Wronskian matrix [¢(—k*, z)T; ¢ (k, z)] is independent

of z. For real k, the Wronskian matrices [¢(£k, z)"; ¥ (k, z)] are independent of z.

Define the matrix Faddeev functions m;(k,z) and m,(k,z) as

(2.1) my(k, ) = e=*® fi(k, z), my(k, z) = e*® f.(k, z).



Then, from (1.1)-(1.5) we obtain for £ € R\ {0}

(2.2) my(k,z) = I, + ﬁ / dy [ =) _ 1] Q(y) my(k, ),
(2.3) my(k,z) = I, + % /_oo dy [e¥*E=Y) 1) Q(y) m,(k, ).

The properties of the Faddeev functions are summarized in the next theorem. We use

C to denote a generic constant that does not depend on z or k.

Theorem 2.2 Assume Q € L'(R; C"*"). Then, for each z € R, the functions m,(k,z),
my(k, x), m}(k, ), and m..(k, ) are analytic in k € C* and continuous in k € C+ \ {0}.
For each k € C+ \ {0}, these four functions are continuous in = € R. Consequently, for
each z € R, the Jost solutions and their z-derivatives are analytic in CT and continuous
in C* \ {0}; for each k € CT \ {0} they are continuous in z € R. Moreover, for each

k € CT\ {0}, we have
Ima(k, z)|| < Ce“ 1M, {lm, (k, z)|| < Ce“/1M,
my(k,z) = I, + o(1), mj(k,x) = o(1), x — +oo,
my(k,x) = I, + o(1), m. (k,z) =o(1), z— —oc.

Theorem 2.3 Assume @) € L}(R; C"*"). Then, the continuity of the functions in Theo-

rem 2.2 is valid also as k — 0 in C*, and we have

(24)  [mu(k,2)[| < C1+max{0, —z}],  [lm,(k, 2)|| < C[1 + max{0, z}],
my(k,z) = o(1/x), = — +oc; m..(k,z) = o(1/x), x— —oo,

uniformly in k € C+.

Corollary 2.4 Assume @ belongs to L](R;C"*"). Then, for each fixed z € R, the
matrices fi(—k*, z)t, f.(—k*, )T, f/(—k*, )T, and f.(—k*,z)! are analytic in k € C* and

continuous in Ct.



Theorem 2.5 Assume Q € Li(R; C"*"). Then, for each fixed z € R, we have

(2.5)  my(k,z) = I +/ dy Bi(z,y) 6ikyv my(k,z) = I, +/ dy By(z,y) eik:y,
0 0

where every entry of B;(z,-) and B,(z,-) belongs to L'(RT) N L2(R1).

The coefficient matrices a;(k), b;(k), a-(k), and b,.(k) appearing in (1.4) and (1.5) can

be expressed in terms of certain Wronskians of the Jost solutions, as follows:

(26) wk) = o lfn (K@) Ak o), ke TT\ {0},
(27) ar(k) = =5 (=K, 2 £k, @), ke T\ {0},
(2.8) bik) = 5 (k) Ak, 2)], ke R\ {0},

(2.9) be(k) = 5o [k, ) fo(h2)), B ERA{0).

From (1.4), (1.5), and (2.1)-(2.3) it follows that

(2.10) (k) = I, - ﬁ /_ O:o dz Q(z) my(k, z),
(2.11) by(k) = ﬁ /_ o; dz €257 Q(2) mu(k, 7)),
(212) o) =1 g [ doQUe)mi(hz),
(2.13) by (k) = ﬁ /_ o; dz e=2%% Q(z) my (k, 2).

Proposition 2.6 Assume Q € Li(R;C"*"). Then ka;(k) and ka,(k) are continuous in

C+ and analytic in C*, det{a;(k)} = det{a,(k)} for k € C*\ {0}, and

ai(k) =1I,+0(1/k) and a.(k) = I, + O(1/k), k — oo in C+.
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Moreover, kb;(k) and kb, (k) are continuous in R and

bi(k) = o(1/k) and b.(k) =o(1/k), k — t+oo.

In general b;(k) and b.(k) do not have extensions to & € C*, and hence (1.4) and
(1.5) cannot be valid for £k € C*; instead, one must use the following result for the spatial
asymptotics of the Jost solutions for £ € C*, whose proof can be obtained as in the scalar

case.

Proposition 2.7 If Q € L}(R; C™*"), then for each fixed k € CT we have
my(k, z) = ai(k) +o(1), @ — —oo,
m(k,z) = a,(k) + o(1), x — +00.

Using (1.2)-(1.5) and some Wronskian relations for the Jost solutions, we obtain

(2.14) ar (k) =ai(k), ke CT\ {0},
(2.15) by (k) = —by (k)T k€ R\ {0},

(2.16) ar(k)Tay(k) = by (k)0 (k) + I, k€ R\ {0},
(2.17) ar (k) ar (k) = b, (k)Tor (k) + I, k€ R\ {0},
(2.18) ar(=k)Toy (k) = by(=k)Tai(k), ke R\ {0},
(2.19) ar(=k)Tor (k) = b, (=k)Ta,(k), ke R\{0}.

From (2.16) and (2.17) we have the following result.
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Corollary 2.8 Assume @ € L'(R;C™*"). Then q;(k) and a,(k) are nonsingular for
ke R\ {0}.

Even though a;(k) and a, (k) extend to k € C*\ {0}, b;(k) and b,(k) in general do
not have extensions off the real axis. Such extensions can only be established under special
restrictive conditions, such as in the following, where a proof can be obtained as in the

scalar case.

Proposition 2.9 If Q € L1(R; C"*") vanishes when z > 0, then b, (k) has an analytic ex-
tension to Ct and that extension is continuous for k& € C+. Similarly, if Q € L1(R;CM*n)
vanishes when z < 0, then b;(k) has an analytic extension to Ct and that extension is

continuous for k € C+.

Wherever q;(k) and a,.(k) are invertible, we define the transmission coefficient from

the left, 7;(k), and the transmission coefficient from the right, 7,.(k), as
(2.20) Ty (k) = a; (k)™ T, (k) = ar(k)7,

and the reflection coefficient from the left, L(k), and reflection coefficient from the right,

R(k), as
(2.21) L(k) =bi(k)a(k)~™",  R(k) = by (k)ar (k).
Let S(k) denote the scattering matrix given by

(2.22) S(k) =

From (2.15), (2.16), and (2.17), we respectively get
Ty(k)'R(k) + L(k)'T,(k) =0, ke R\ {0},

Ty(k)'Ti(k) + L)L) = L, k€ R\ {0},
T, (k)T (k) + R(K)TR(E) = I, ke R\ {0},
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and hence S(k) is unitary for £ € R\ {0}. Using (2.14), (2.18), and (2.19) we obtain
(2.23) T, (k) = Ti(—k*)", ke CH\{0},
except at the poles of T;.(k) in C™T, and

L(-k)" = L(k),  R(-k)" = R(k), k<€ R\ {0}.

We will study the behavior of S(k) as k — 0 in Sections IV and V.

ITII. SINGULARITIES AND BOUND STATES

In terms of the Jost solutions of (1.1), let us define

fi(k, ) fr(k,x)]

3.1 F(k,xz) =
( ) ( ) [fll(k’x) f;(k’x)

Proposition 3.1 Assume Q € L'(R; C™*"). Then, the determinant of F(k, x) is indepen-

dent of x and we have

(3.2) det{F(k,z)} = (—2ik)" det{a;(k)} = (—2ik)" det{a.(k)}, k€ C+\ {0}

Theorem 3.2 Assume QQ € L'(R;C™*"), and fix kg € CT \ {0}. Then, the following

statements are equivalent:
(i) The 2n vectors formed by the columns of f;(ko, z) and f,.(ko, ) are linearly dependent.
(i) The Wronskian [f.(—k&, z)T; fi(ko, )] is singular.
(iii) The Wronskian [f;(—kg, z)'; f»(ko, )] is singular.
(iv) ai(ko) and a, (ko) are both singular.
(v) ai(ko) is singular.

(vi) ar(ko) is singular.



(vii) (1.1) has a nontrivial n X n matrix solution with entries in L?(R).

(viii) (1.1) has a nontrivial n X n matrix solution with entries that are continuous in z and

that decay exponentially as z — +o0.

Theorem 3.3 Assume that Q@ € L'(R;C"*"). Except for possibly a countable set of
points on the positive imaginary axis in CT, none of (i)-(viii) of Theorem 3.2 hold for

k€ CF\ {0}.

We will establish the continuity of Tj(k) at kK = 0 by assuming Q € L}(R;C"*")
in the generic case (see Proposition 4.2) and Q@ € Li(R;C™*") in exceptional case (see
Corollary 5.11). These two results then imply the finiteness of the number of zeros of

det a; (k). More precisely, we have the following result.

Proposition 3.4 Assume Q € Li(R; C™*") in the generic case and Q € L}(R; C"*") in
the exceptional case. Then, except at a finite set of points on the positive imaginary axis
where det a;(k) = 0, T;(k) and T,.(k) are continuous in C+ and analytic in C*. Moreover,

the poles of T;(k) and T;.(k) on the positive imaginary axis are simple.

Because of (3.2) the poles of Tj(k) and T (k) coincide in CT. Let us denote these
common poles as the distinct points k = ix; with j = 1,..., N; they correspond to the

bound states of (1.1).

Proposition 3.5 Assume Q € L'(R;C"*") and let k = ix; correspond to the bound

states of (1.1). Then, there exist unique constant n x n matrices C;; and C,; such that

(33) fr (Z'K:j, :17) [Res T (Z'F{,j)] = ifl(iﬁj, x) Clj, x € R,

(3.4) fi(ikj, z) [Res Ty (ik;)] = @ fr(ikj, ) Crj, z € R,

where Res T;(ix;) and Res T, (ik;) denote the residues of T;(k) and T).(k), respectively, at

k = ixk;. Moreover, Cj; and C,; are positive selfadjoint matrices.
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The proof of Proposition 3.5 can be found in Appendix A of Ref. 5. The matrices Cj;

and C,; are the analogs of the norming constants in the scalar case.

IV. SMALL k-BEHAVIOR IN THE GENERIC CASE

In this section we analyze the behavior of the Jost solutions and the scattering coef-

ficients at k£ = 0.

When k = 0, from (2.1)-(2.3) we get

oo

£1(0,2) = my(0,2) = I, + / dy (v — ) Q(y) mu(0,y),

x

T

£r(0,2) = my(0,2) = I + / dy (= — v) Q(y) mr (0,9),

— 00

from which the following result follows.

Proposition 4.1 Assume @ € L}(R; C"*"). Then m;(0, -) is continuous on R, m,; (0, z) =
I, + o(1) as * — +o0, and m;(0,z) = O(z) as * — —oo. Similarly, m,.(0,-) is continuous,

m,(0,z) = O(x) as x — 400, and m,.(0,x) = I,, + o(1) as ¢ — —oo.

In terms of the matrices a;(k) and a,(k) appearing in (1.4) and (1.5), let us define

(4.1) A; = lim 2ikai(k), A, = lim 2ika,(k),
k—0

k—0

where the limits are taken from within C+. From (2.6), (2.7), (2.10), and (2.12) we see

that

(42) 8= (102550, 0)] = = [ e Q) mu(0,2),
(4.3) A, = —[£1(0,2); £.(0,2)] = —/_oo dz Q(z) m.(0, ),
(4.4) A=Al
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From (3.2) and (4.1) it follows that the 2n columns of f;(0,x) and f,.(0, z) are linearly
independent if and only if A; is nonsingular. Let p denote the rank of A;. From (4.4) it
follows that A; is singular if and only if A, is singular, and that the ranks of A; and A,
are the same. In analogy with the scalar Schrédinger equation, we will call Q(z) a generic
potential if p = n. We will call Q(z) an exceptional potential of order n — p when p < n.

The case p = 0 will be called the purely exceptional case.

Proposition 4.2 Assume Q(z) is a generic potential belonging to L1(R; C"*™). Then,

the scattering coefficients are continuous at £ = 0 and

(4.5) R(0)=L(0) = ~-I,,  Ti(0)=T,(0) =0.

PROOF: Using (2.10), (2.12), (2.20), and (4.1) we get
(4.6)  Ti(k) = 26k[A" +0(1)], T.(k) = 2ik[A; ' +0(1)],  k— 0in CF,
From (2.8), (2.9), (2.11), (2.13), (4.2), and (4.3), we obtain

(4.7) lim 2ik b (k) = —Ay, lim 2ik b, (k) = —A,.
k—0 k—0

Generically, A; and A, are nonsingular, and hence using (2.11), (2.13), (2.21), and (4.7),

we get
(4.8) L(k)=—I,+0(1), R(k)=-I,+0(1), k—0inR.

Thus, the proof is complete. |

Proposition 4.2, shows that the zeros of det a;(k) and det a, (k) cannot accumulate at

k = 0. Thus, we have the following result.

Corollary 4.3 Assume Q(z) is a generic potential belonging to Li(R;C"*™). Then, the
zeros of deta;(k) in C+ are confined to the positive imaginary axis and their number is

finite.

12



In the generic case, (4.5) holds and hence ||L(0)|| = ||R(0)|| = 1. In the exceptional
case of order n — p for some positive rank p of A;, we also have ||L(0)|| = ||R(0)|| = 1, as we
will see in Proposition 5.14. Thus, in general, we cannot expect ||L(0)|| < 1 or |[|R(0)|| < 1
as stated by Alpay and Gohberg.® This is apparent in the scalar case or when Q(z) is a
diagonal matrix. Let Q(z) = diag (v1(z), va(z),...,v,(x)), and assume that exactly p of
the scalar potentials are generic and the remaining n — p are exceptional. Let us use ¢;(k),
l;(k), and r;(k) to denote the transmission coefficient and the reflection coefficients from

the left and right, respectively, for the scalar potential v;(k). We then get
T (k) = diag (tl(k), ta(k), ..., tn(k)),

R(k) = diag (r1(k), r2(k), . .., rn(k)),
L(k) = diag (11 (k), l2(k), .. ., n(k)).

Hence, unless p = 0, we have ||R(0)|| = ||L(0)|| = 1. Note that if p = 0, then all the n

scalar potentials are exceptional and we have

IL0)[| = [IR(0)] = max{|ry(0)],- .., |rn(0)[} < 1.

Whenever Q € L'(R; C™"*™), both in the generic and exceptional cases, from Propo-
sition 4.1 it follows that the n columns of f;(0,x) are linearly independent, and similarly
the n columns of f,.(0,z) are linearly independent. As indicated earlier, in the exceptional
case the 2n columns of f;(0,z) and f,.(0, z) are linearly dependent. Hence, there are n x n

constant nonzero matrices M; and M, of maximal rank such that

(4.9) 710, 2) My + £,(0,z) M, = 0.
Let
(4.10) qﬁ(x) = fl (0, x) Ml = —fr (0, $) MT.
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Because of (1.2), (1.3), and Theorem 2.1, it follows that ¢(x) is a continuous and bounded

solution of (1.1), and in fact
(4.11) d(z) =M+ o(1), z— +o0; ¢(z) = —M, +o(1), x— —o0.

From (2.15), (2.16), and (4.10) we see that

oo x

(412)  $(e) = M+ / dy (y - 2) Q) $(y) = —M, + / dy (z — 1) Q(v) H(v).

x — 00

In order for (4.11) to hold, from (4.12) we must have

(4.13) / T QW) ) =0,
(4.14) / "y Q) 6ly) = — (M, + M),

Note that (4.13) is equivalent to A; and A, being singular.

Proposition 4.4 Assume Q(z) is an exceptional potential belonging to Li(R; C"*"), and
suppose M; and M, are some constant n X n matrices satisfying (4.9). Then, the columns
of M, belong to the kernel of A; and the maximum number of linearly independent such
columns is equal to n— p, where p is the rank of A;; the columns of f;(0, z) M; are bounded
vector solutions of (1.1) at & = 0, and the total number of such linearly independent
bounded vector solutions of (1.1) at £ = 0 is given by n — p. Similarly, the columns of
M, belong to the kernel of A, and the maximum number of linearly independent such
columns is equal to n — p; the columns of f,.(0,z) M, are bounded vector solutions of (1.1)
at £ = 0, and the total number of such linearly independent bounded vector solutions of

(1.1) at k = 0 is given by n — p. Moreover, we have
(4.15) KerA; L ImA,, Ker A, 1L ImA;.

PROOF: If M; satisfies (4.9) for some M,, then ¢(z) defined in (4.10) satisfies (4.13),

which is equivalent to having M; € Ker A;, because of (4.2). Conversely, if M; € Ker A,
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then ¢(z) defined in (4.10) satisfies (4.11). The proof involving M, and f,(0, z) is obtained
in a similar way. Since the nullity and rank of A; must add up to n, it follows that Ker A;

has dimension n — p. Finally, (4.15) follows from (4.4). 1

Proposition 4.5 Assume Q € L}(R;C"*"). Then, the rank of F(0,z), where F(k,z) is

the matrix defined in (3.1), is equal to n + p, where p is the rank of A;.

PROOF: In the generic case, the columns of f;(0,2) and f.(0,2) form 2n linearly inde-
pendent vectors solutions of (1.1) at k¥ = 0. In the exceptional case, by Proposition 4.4,
exactly 2n — (n— p) among the 2n columns of f;(0, z) and f,.(0, z) are linearly independent.
Hence the rank of F(0, z) is equal to n + p. In fact, with the help of (1.3), (1.4), (4.1), and

(4.7), we can show that F(0,+00) is row equivalent to [I 0

6’ A } and F (0, —o0) is row

equivalent to {Ié’ AO } . Since the rank of F'(0,z) is independent of x, it is equal to the
!
I, 0 L.
rank of , which is equal to n + p. I
0 A

V. SMALL k-BEHAVIOR IN THE EXCEPTIONAL CASE

Now let us turn to the exceptional case, i.e. when A; and A, are singular. In this case
we will analyze the asymptotics of the scattering coefficients as £ — 0 under the stronger
condition @ € L}(R;C™*"). This condition also allows us to improve the estimates in

(4.6) and (4.8) in the generic case. Let an overdot denote the derivative with respect to k.

Proposition 5.1 Assume Q € L}(R; C"*"). Then, for each z € R, my(-,z) and m,.(-, x)

are analytic in CT, are continuous in C*, and satisfy

iy (-, 2)|| < C(+22), ||m.(, )| < CO+2?), z € R.

PROOF: Similar to the proof given in the scalar case on pp. 134-136 of Ref. 9.

Proposition 5.2 Assume Q € L1(R; C"*™). Then we have

1 ) S—
(5.1) ailk) = 5= A+ I+ %Gl +o(l), k—0inCT,
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1 ) S—
(5.2) aAMzE%Affh+%&ﬁwﬂ% k — 0in CT,
. .
(5.3) b(k)=—— A+ E — -Gy +0(1), k—0inR,
21k 2
1 i :
(5.4) br(k) = —5 A — By = G+ 0(1), k= 0nR

where A; and A, are the matrices defined in (4.2) and (4.3), respectively, and

(5.5) E, = /00 dz z Q(x) my(0, x), E,. = /00 dz z Q(z) m,(0, z),

— 00 — 00

Q:[%mm@m@@, @:/wmm@mm@.

PROOF: These follow by expanding the integrals in (2.10)-(2.13) and by using Proposi-

tion 5.1 and the mean value theorem. |

In general, as seen from (5.1)-(5.4), the quantities a;(0), a.-(0), b;(0), and b,.(0) do
not exist. However, under the assumption Q € Li(R;C"*"), both a;(k) + b;(k) and
ar(k) + b-(k) have well-defined limits as £k — 0, which we will denote by a;(0) + 5;(0) and

ar(0) + b,-(0), respectively.

Proposition 5.3 Assume Q € Li(R;C"*"). Then, a;(0) + b;(0) and a,(0) + b.(0) are

both nonsingular and are inverses of each other.

PROOF: Because of (2.4) and (5.1)-(5.5), both a;(0) + b;(0) and a,(0) + b.(0) are well
defined when @Q € L}(R; C™*"). Using (2.14)-(2.19) in the limit as ¥ — 0 in R, we get

(5.6) [a:(0) 4 b:(0)][ar (0) + b-(0)] = [a7(0) + b7(0)][a:(0) + b (0)] = In.

Thus, the proof is complete. I

Using (2.10), (2.11), (4.2), and (4.10) we can write (4.13) and (4.14) as

AlMl = 0, MT = —[al(O) -+ bl(O)] Ml.
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From (5.1)-(5.4), we see that
(5.7) a;(0) + b;(0) = I, + Ei, a,(0) +b.(0) =1, — E,,
and hence, with the help of (5.6) we conclude that

G,=-Gi, E.=E/+iG], E —E.=EE,=E,BE.

Proposition 5.4 Assume Q € L}(R; C™*™). Then, in the generic case we have
Ti(k) = 2ik A7+ K2 A4 - GA +o(k?),  k—0in CTF,
T, (k) = 2ik AT+ K2 A4 — G ]AT + 0(k?),  k—0in CT,
L(k) = —I,+ 2k [I, + E)A; " +o(k), k—0inR,
R(k) = —I, + 2ik [I,, — E,] A + o(k), k— 0in R.

PROOF: These follow from (2.20) and (2.21) with the help of Proposition 5.3. 1

Proposition 5.5 Assume Q € L1(R;C"*") and let 1 < q < n. Then, for any n x ¢ matrix
M, that satisfies (4.9), there is a unique n x ¢ matrix M, satisfying (4.9). Conversely, for
each n X ¢ matrix M, satisfying (4.9), there corresponds a unique n X ¢ matrix M; that

satisfies (4.9).

PROOF: In (4.9), by letting z — +o00, we get

(5.8) M, = —[a;(0) + b;(0)] My,

(5'9) M, = _[ar(o) + br(o)] M;..

Because of (5.6), (5.8) and (5.9) establish a unique link between M; and M,. 1
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Proposition 5.6 Assume @ € Li(R;C"*") and let 1 < ¢ < n. Then, for any n X ¢

matrices M; and M, satisfying (5.8) or (5.9), we have

1 _
(5.10) lim M ay(k) My = =3 [M,TM,- + MM +0(1), keCT.

%
PROOF: Note that M; belongs to Ker A; as shown in Proposition 4.4, and M, is determined
by M, as indicated Proposition 5.5. Hence, from (5.1) we see that the limit in (5.10) exists
and unique and is equal to M[[I, + iG;/2]M; as k — 0 in C+. Thus, in order to obtain

(5.10) it is sufficient to evaluate the limit as £ — 0 in R. Note that

w(k) = 3 lou(k) + bi(k)] + 5 [an(k) — bu(h)]

1

(5.11) 1
= 3 [a;(k) + by (k)] + 5 [ar(_k)T + br(k)T] )

where we have used (2.14) and (2.15). From (5.1)-(5.4) we obtain

1
(5.12) ar(—k) + b, (k) = —%AT + ar(k) + b, (k) + o(1), k— 0in R.
Using (5.12) in (5.11) we get
(5.13)

T
MY aa (k) My = M fan (k) + bu(k)] My + [(—ikA Tan(k) + br<k)) Mr] M; + o(1),

By Proposition 4.4 we have A, M, = 0, and by using (5.8) and (5.9) in (5.13) we obtain

(5.10). 1

Proposition 5.7 Assume Q € L}(R;C"*"). If M; € Ker A; and M, is as in (5.8), then
(5.10) holds. Similarly, if M, € Ker A,. and M; is as in (5.9), then (5.10) holds.

PROOF: Because of (5.6), (5.8) and (5.9) are equivalent. Using (5.8), (5.9), and the fact
that M; € Ker A; on the right hand side of (5.13), we get (5.10). The proof of the second

assertion is obtained in a similar manner. |

Proposition 5.8 Assume Q € L}(R;C"*"). Then

(5'14) Al[ar(o) + br(o)] = [ar (0) + br(O)]TAra
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(5.15) Arlar (0) + bi(0)] = [a1(0) + b (0)]' A,

PROOF: In terms of the Jost solutions of (1.1) we get

(5.16) [fi(k, )T fi(k, @)] = 2ikI, = 2ik [a;(k) i (k) — by (k)b (k)]

(5.17) (£ (k@) £ (k,2)] = —2ikT, = —2ik [an (k) a, (k) — b, (k) b (k)]

keR,

k € R.

Using (5.1)-(5.4) and (5.7), we see that the terms proportional to k on both sides of (5.16)

and (5.17) lead to (5.14) and (5.15). 1

Having obtained the small-k asymptotics of the scattering coefficients in the generic

case, we now turn to finding such asymptotics in the exceptional case. Since A; defined in

(4.1) is not invertible in the exceptional case, we cannot directly use (2.20) and (2.21) to

determine such asymptotics.

Let us use W (k) to denote 2ika;(k). By (5.1) we see that W(0) = A;. In general we

do not expect A; to be diagonalizable, but we can always put it in a Jordan normal form

by using a special Jordan basis. Let W (k) denote the matrix W (k) in the special Jordan

basis of W (0), i.e.

v v
(5.18) W(k) =@ Wak),  W(0) = Pn.(Xa),
a=1 a=1
with J,_ (Aa) is the ny X ngy given by
A 1 O 0 07
0 X 1 0 0
0 0 X 0 0
(5.19) In, (M) = | . . : : .
0 0 0 ... A 1
[0 0 0 ... 0 A4l
where )\, denotes the corresponding eigenvalue of A;. Let us assume that \; =--- =X, =0
and the remaining A\, # 0 for o = p+1,...,. Since Ker A; has dimension n — p, we have
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Y i na =n—pand ZZ:;H—I no = p. Let {€4;} denote our special Jordan basis with

a=1,...,7vand j =1,...,n, so that

(520) gaj = (Al - )\a)na_jganaa (Al - )\a)nagana =0.
We can construct another basis {xqo;} witha=1,...,yand j =1,...,n4 so that
(5'21) legpt = 5ap5jta

where §;; denotes the Kronecker delta. Since

[(Ar = Xo)Xa(i-1) = Xasl'€at = X -1yate—1) = Xgéat

with the help of (5.20) and (5.21), it follows that
(5‘22) Xaj = (A'I‘ - )‘Z)j_IXala (A’I‘ - )‘Z)naXal =0.

Proposition 5.9 Assume Q € L}(R; C™*"), and let [W,(k)],..1 denote the (n,,1) entry

of the matrix W, (k) defined in (5.18). Then, as k¥ — 0 in R we have

(5.23) (Wa(k)ln, 1= cak + o(k), a=1,..., 4,

for some nonzero constant c,,.

PROOF: Because of (5.21) we have

X:rxtW(k) gpj = ELtW(k) gpj'

Recall that A, =0 for o = 1,..., u, and hence A,.£,,, = 0; thus, with the help of (5.13)

we obtain

(5:24)  [Wal(k)lna1 = ik Xk, [a1(0) + 8:(0)]€ar + ik ([ar (0) + b(0)]Xan,) a1 + (k).

By (5.20), £,1 € Ker A; because A\, = 0; then (5.15) implies that [a;(0) + 5;(0)]€a1 €
Ker A,. Therefore, with the help of (5.21) we conclude that [a;(0) 4 5;(0)]a1 = wWaXan,
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for some nonzero wq, because xo; with 1 < j < n, — 1 do not belong to Ker A, for this
particular «. In a similar way, using (5.14), (5.15), (5.21), and (5.22), we conclude that
1
[ar(0) + b,-(0)]Xan, = —&a1- Thus, (5.24) implies that
Wo

~ 1
Wa(k)lna,1 = ik —[lwal*Xhn, Xan, +ELr€arl + o(k),

which gives us (5.23). §

Proposition 5.10 Assume Q € L1(R;C"*"), and let c, be the constant appearing in
(5.23). Then, as £k — 0 in R we have
{ 2ikDy (I, + o(1)], a=1,...,p4,

2ikJn, (Aa) " HIn, + o(1)], a=p+1,...,7,
where J,,_ (Ay) is the Jordan matrix defined in (5.19) and

(5.25) 2ikWo (k)™ =

0 0 0 ... 0 1/(ikes)]

1.0 0 ... 0 0

010 ... 0 0
Do(k)=1{. . . . . :

0 00 ... 0 0

0 0 0 ... 1 0

PROOF: The proof for o = p+1,...,v follows from (5.18). For o =1, ..., 1, we proceed

as follows. With the help of Proposition 5.9 we obtain

- O(k) 1+ O(k) O(k) ... O(k) O(k) 1
O(k) O(k) 1+0(k) ... O(k) O(k)
O(k) ok)  Ok) ... O(k) 1+0(k)
Likcq, + o(k) O(k) O(k) ... O(k) O(k)
Writing
Wa(k) = Ag(k) [Ha + 0(1)], a=1,...,u,
where
1 0 O 0 07 [0 1 O 0 07
0 1 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 O 0 0
Aa(k) = . Ha = . ,
0 0 O 1 0 0 0 O 0 1
|0 0 O 0 2k e, 0 O 0 0]
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we see that

Wa(k)™ = [H.' +o(1)]Aa (k)
from which (5.25) follows for o =1,...,u. L.
Since T;(k) = 2ik W (k), from Proposition 5.10 we obtain the following result.

Corollary 5.11 Assume Q € L}(R; C™*"), and let c,, be the constant appearing in (5.23).
Then, T;(k) is continuous and differentiable at k¥ = 0; moreover, as k — 0, in the special

basis in (5.20) the transmission coefficient 7;(k) is given by

Ty(k) = T1(0) + kT1(0) + o(k), Kk — 0 in CF,

where
~ 7 2 ~ 7 4
Tl(O)z@c—Pa, Tl(O):—§®Ua,
a=1 ¢ a=1
with
[0 0 0 ... 0 17 [0 0 0 ... 0 07
0 0 0 ... 00 1 0 0 ... 0 O
0 0 0 ... 00 01 0 ... 00
Pa=1. . . |y Ua= 0 0 a=1...,u
0 00 ... 00 0 0 0 ... 00
[0 0 0 ... 0 O] [0 0 0 ... 1 0.
P, is the n, X ny zero matrix and U, = J, (M)t fora=p+1,...,7.

As an analog of Corollary 4.3, using Corollary 5.11, we conclude that the zeros of

det a;(k) and det a,(k) cannot accumulate at k¥ = 0. Thus, we have the following result.

Corollary 5.12 Assume Q(z) is an exceptional potential belonging to Li(R; C™"*"). Then,
the zeros of det a;(k) in CT are confined to the positive imaginary axis and their number

is finite.

Having found the small-k asymptotics of Tl(k), we can evaluate the small-k asymp-
totics of Tj(k) by using
Ty(k) = M Ti(k) M,
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where M is the transition matrix from the basis {{,;} to the standard basis.

The small-k asymptotics of T;.(k), L(k), and R(k) can be obtained in terms of the

small-k asymptotics of Tj(k) as follows.

Proposition 5.13 Assume Q € L1(R;C"*"). Then, the scattering coefficients are con-

tinuous and differentiable at £ = 0, and we have

(5.26) T, (k) = T;,(0)F — k* T,(0)f + o(k), ke CH,
(5.27) L(k) = I, + [I, + E| T;(0) + k [I, + E;] T;(0) + o(k),  k €R,
(5.28) R(k) = —In + [I, — E,]Ty(0)' — k[I, — E,]Ti(0)' + o(k),  kE€R,

where E; and E, are the matrices defined in (5.5).

PROOF: We get (5.26) from (2.23), and we obtain (5.27) and (5.28) from (2.20), (2.21),
and (5.7). 11

Proposition 5.14 Assume Q € L(R; C"*"). Then, for all h; € Im A; and h, € Im A,,

we have
(5.29) lim L(k) h; = —h, lim R(k)h, = —h,, k— 0in R,
k—0 k—0
(5.30) lim 7j(k)h; = 0, lim T, (k) h, = 0, k— 0in CT.
k—0 k—0

As a result, unless A; has zero rank, we have ||L(0)|| = ||R(0)|| = 1.

PROOF: If h; € Im A;, there exists a vector g; such that h; = A;g,. Using (2.21), (4.1),
(4.7), and (5.2) we have
L(0)hy = L(0) Ay g1 = Lim [2ik by (k)][2ik ai (k)] [2ik ar (k)] gy
—

= lim [2’Lkbl(k)] g1 = —Al g1 = —hl.
k—0
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The result for A, in (5.29) is obtained in a similar way. Similarly, using (4.1) we get
Tl(O) h; = TZ(O) Ay g = lim 2¢k [2il€ al(k)]_l[%k al(k)] g1 = lim 2¢k g; = 0.
k—0 k—0

The result for A, in (5.30) is obtained in a similar way. i

By Proposition 3.4, the 2n columns of the Jost solutions f;(k,z) and f.(k,z) are
linearly independent at each k¥ € R\ {0}. Since k appears as k? in (1.1), the functions
fi(—k,z) and f.(—k, x) are also solutions of (1.1). From (1.2) and (1.3) it is clear that the
2n columns of fi(—k,z) and f;(k,z) are linearly independent for £k € R\ {0}; similarly,
the 2n columns of f,.(—k,z) and f,(k, ) are linearly independent. With the help of (1.4)

and (1.5) we get

(5‘31) fr(kam) = fl(k’ él?) br(k) + fl(_kvm) ar(k)a ke R\ {0}5

(5‘32) fl(k’x) = fr(k’x) bl(k) + fr(_k’m) al(k)’ ke R\ {O}

Using (2.20) and (2.21) we can write (5.31) and (5.32) in the matrix form as

Ry Ty |0 e

(533) [fl(_kvx) fr(_kvx)]:[fr(kam) fl(k’m)]

Proposition 5.15 Assume Q € Li(R;C™*") and let A; and A, be the matrices defined
in (4.1). Then, the columns of 7;(0) and of I,, + R(0) belong to Ker A;; the columns of
T,(0) and of I, + L(0) belong to Ker A,..

PROOF: Letting £ — 0 in (5.33) we get

(534) fi (Oa x) [In + R(O)] - fr(oa $) TT(O) =0,

(5.35) fr(0,2) [In + L(0)] = £1(0,2) Ti(0) = 0.

Comparing (5.34) with (4.9) and using Proposition 4.4, we see that in the exceptional

case the columns of I,, + R(0) belong to Ker A; and the maximum number of linearly
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independent columns of I, + R(0) is equal to n — p. Similarly, comparing (5.35) with (4.9)
and using Proposition 4.4, we conclude that the columns of 7;(0) belong to Ker A; and the

maximum number of linearly independent columns is n — p. i

VI. MARCHENKO EQUATIONS

In this section we present the Marchenko integral equations and prove their unique
solvability. We assume that Q € Li(R; C"*") in the generic case and Q € Li(R;C"*")

in the exceptional case.

Using (2.1), we can rewrite (5.33) as

(6.1) [mu(=k,z) me(=k,z)]=[m.(k,2) mk z)] G ke
6.1 mi(—k,x) m.(—k,x)| = |mq(k,x) myk,x )

—R(k) e2zka: Tl(k)
which holds for £ € R due to the continuity of the scattering coefficients. Let us write

(6.1) as the two matrix equations

(6.2) my(—k, z) = m,(k,z) T, (k) — my(k,z) R(k) e***, ke R,

(6.3) my(—k, z) = my(k, z) Ty (k) — m,(k, z) L(k) e~2*2, k € R.

By the results in Section ITI, the bound states correspond to the simple poles of T,.(k)
occurring on the positive imaginary axis at k& = ik; for j = 1,...,N. At k = ik;, as
indicated in Proposition 3.5 the 2n columns of the Jost solutions f;(ix;,z) and f,(ik;, x)
are linearly dependent and are related to each other as in (3.3) and (3.4). Recalling that

Bi(z,y) and B, (z,y) are defined by (2.5), we introduce

1 [ . il
(6.4) Uy) = 5 / dk R(k) ¥ — " Cpj e,
o o
1 [ . N
Q(y) =5 dk L(k) e — ) " Cje™"9Y,
™
[e.°] j=1



where Cj; and C,; are the norming constants given in Proposition 3.5. As in the scalar
case by taking the Fourier transforms of (6.2) and (6.3) and by using (3.3) and (3.4), we

are led to the n x n matrix Marchenko equations

(6.5) Bl(x,y>=szl(2m+y)+/ dzBye,2) W2e+y+2),  y>0,
0

(6.6) B (z,y) = Q.(—2z +y) + / dz B.(z,2) Q.(—2z + y + 2), y > 0.
0

The potential Q(z) can be obtained from the solution of either one of the Marchenko

equations as

9 dBy(z,0") 5 dB,(z,0%)

Q) = dx dx

Theorem 6.1 Assume @ € Li(R; C"*") in the generic case and @ € L}(R; C"*") in the
exceptional case. Then, for each fixed z € R, each of the Marchenko equations (6.5) and

(6.6) has a unique solution belonging to L?(R*; C"*").

PROOF: We will adapt the proof'! given in the scalar case to the matrix case. The
proof for (6.6) is similar the proof of (6.5), and hence we will only present the latter.
From (6.4) and (6.5) we see the Marchenko integral operator is a selfadjoint perturbation
of the identity and has the form I 4+ O 4 C, where I is the identity, the kernel of O is
related to the integral term in (6.4), and the kernel of C is related to the finite sum in
(6.4). In the purely exceptional case we have ||R(k)|| < 1 for all £ € R, and hence the
norm of O is strictly less than one; otherwise for every real x we can find £ > 0 such that

11 we conclude

supycr || R(k) €2** +¢I,|| < 1. Using Nehari’s theorem as in the scalar case,
that the operator O on L?(RT; C"*™) is a strict contraction and hence the corresponding
Marchenko integral equation is uniquely solvable when there are no bound states. On the
other hand, when there are bound states, due to the positive selfadjointness of the matrices

C); as indicated in Proposition 3.5, the operator C is positive selfadjoint, and I + O+ C is

boundedly invertible. 1
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