Tutorato ANALISI MATEMATICA 2

A.A. 2021/2022

Docente: Dott.ssa Silvia Frassu Tutor: Dott.ssa Federica Pes

Esercitazione 12 del 28/01/2022 Riepilogo

Prima parte del programma

1) Stabilire per quali $x \in \mathbb{R}$ la seguente serie converge puntualmente e/o uniformemente

$$\sum_{n=1}^{\infty} \sin\left(\frac{1}{\sqrt[3]{n}}\right) \frac{n(x+1)^n}{n^2+1}.$$

SOLUZIONE: La serie converge puntualmente e uniformemente in [-2,0].

2) Dimostrare che la funzione $f(x,y) = 1 + \sqrt{x^2 + y^2}$ non è differenziabile nell'origine. SOLUZIONE: $f_x(0,0)$ e $f_y(0,0)$ non esistono.

3) Calcolare, se esistono, i seguenti limiti:

(a)
$$\lim_{(x,y)\to(0,0)} \frac{e^{x^2-y^2}-1}{x^2+y^2}$$
, (b) $\lim_{(x,y)\to(0,0)} \frac{\arctan(x^4-y^4)}{x^2+y^2}$.

SOLUZIONE: (a) non esiste. (b) 0.

4) Determinare i punti critici della funzione $f(x,y) = xye^{-\frac{x^2+y^2}{2}}$, studiandone la natura. <u>SOLUZIONE</u>: (0,0) è un punto di sella, (1,1) e (-1,-1) sono punti di massimo relativo. (1,-1) e (-1,1) sono punti di minimo relativo.

5) Determinare gli estremi globali della funzione f(x,y,z)=5-x-y-z sotto il vincolo $g(x,y,z)=x^2+y^2+z^2-1$.

<u>SOLUZIONE</u>: Il punto $(-\frac{\sqrt{3}}{3}, -\frac{\sqrt{3}}{3}, -\frac{\sqrt{3}}{3})$ è di massimo assoluto. Il punto $(\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3})$ è di minimo assoluto.

Seconda parte del programma

1) Calcolare il volume contenuto tra la semisfera superiore $x^2+y^2+z^2=1$ e il paraboloide $z=\sqrt{2}(x^2+y^2).$

SOLUZIONE: $-\frac{2\pi}{3} \left(\frac{1}{2\sqrt{2}} - 1 \right) - \frac{\sqrt{2}\pi}{8}$

2) Sia γ la curva di parametrizzazione $\mathbf{r}(t)=(t\cos t,t\sin t,t),\,t\in[0,1].$ Calcolare

$$\int_{\gamma} z \, ds.$$

1

SOLUZIONE: $\sqrt{3} - (2/3)\sqrt{2}$

3) Calcolare

$$\iint_{\Sigma} \frac{\sqrt{2z+1}}{\sqrt{4+x^2+y^2}} d\sigma, \qquad \Sigma = \{(x,y,z) \in \mathbb{R}^3 : z = \frac{x^2+y^2}{4}, \ x^2+y^2 \le 4, \ y \ge 0\}.$$

SOLUZIONE: $\pi (\sqrt{3} - 1/3)$.

4) Sia $\omega = x^2 dx - y^2 dy$ una forma differenziale. Calcolare $\int_{\gamma} \omega$, dove γ è il segmento che unisce i punti A = (1,0) e B = (2,1), percorso da A a B. Inoltre, verificare se ω è una forma esatta nel suo dominio di definizione; in tal caso, determinare una funzione potenziale U per ω .

SOLUZIONE: $\int_{\gamma} \omega = 2$. ω è esatta in \mathbb{R}^2 . $U(x,y) = \frac{x^3}{3} - \frac{y^3}{3} + c$, $c \in \mathbb{R}$.

5) Sia $\mathbf{F}(x,y,z)=(x^2y,xy^2,z(x^2+y^2))$ un campo vettoriale. Verificare se il campo è conservativo. Inoltre, calcolare il flusso del campo attraverso la superficie $\Sigma=\{(x,y,z)\in\mathbb{R}^3:z=1-x^2-y^2,\ z\geq 0\}.$

SOLUZIONE: F non è conservativo. $\iint_{\Sigma} \langle {\bf F}, {\bf n} \rangle \ d\sigma = \pi/6$

6) Sia definito il dominio $D = \{(x,y) \in \mathbb{R}^2 : x < -y^2 + 5, \ x > y - 3, \ y < 2, \ y > 0\}$. Dopo aver rappresentato graficamente D e l'orientazione positiva $\partial^+ D$, calcolare l'area del dominio utilizzando le formule di Gauss-Green.

SOLUZIONE: 34/3

- 7) Applicando il teorema di Stokes, calcolare il flusso del rotore del campo $\mathbf{F}(x,y,z) = (x-y,y-z,z)$ attraverso la superficie $\Sigma = \{(x,y,z) \in \mathbb{R}^3 : z=x^2+y^2, \ z \leq x+y+1\}$. SOLUZIONE: 0
- 8) Calcolare, applicando il teorema di Stokes, la circuitazione del campo $\mathbf{F}(x,y,z)=(zx^2,zy^2,1)$ lungo la curva che è intersezione fra le superfici z=x+y e $x^2+y^2=1$.

SOLUZIONE: 0

9) Calcolare, applicando il teorema della divergenza, il flusso del campo $\mathbf{F}(x,y,z)=(x^3,y^3,z^3)$ uscente dalla corona sferica $D=\{(x,y,z)\in\mathbb{R}^3:1\leq x^2+y^2+z^2\leq 9\}.$

SOLUZIONE: $2904\pi/5$