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Abstract

Recent inverse problems research aims to develop a mathematically coherent foundation

based on data-driven models. These researches use deep learning to deal with the limits

in the classical methods for solving inverse problems. As a matter of fact, these classical

methods are often time-consuming and are limited to solving particular problems. The

present thesis investigates the aforementioned methods. We cover specifically three clas-

sical regularization methods. Moreover, we deep dive into one recent method which aims

to solve the problem of image denoising using deep learning and architectures based on

convolutional neural networks. This problem is considered to be one of the most famous

inverse problems in imaging.
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Introduction and Motivation

1. Overview of inverse problems

From a mathematical point of view, the concept of inverse problem has a certain degree

of ambiguity, which is well illustrated by J.B KELLER ‘’ Two problems are said to be

inverses of each other if the formulation of one calls into question the other ‘’, a more

operational definition is that an inverse problem is to determine causes with known effects.

Thus this problem is the reverse of the one called direct problem, consisting of deducing

the effects when the causes being known. From the definition of an inverse problem, we

can see that it is likely to cause difficulties, indeed it is reasonable to demand that a

direct problem be well posed : the same causes produce the same effects, on the other

hand, it is easy to imagine that the same effects can come from different causes. Another

difficulty in the study of inverse problems is that it often requires a good knowledge of the

direct problem because these are generally situations in which we are ignorant of a set of

information, some of which may be related to geometry, materials, or initial conditions.

And in order to reconstruct the lost information as much as possible, it is necessary

to have information perhaps partial about the output. So we try to get back to certain

characteristics, usually internal and outside the direct measurement, by using information

about the physical model knowing the output.

These problems fall into two large groups. On the one hand, there are the linear problems

that boil down to solving an integral equation of the first type in the continuous state or
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to solving a linear system in the discrete case, the use of functional analysis and linear

algebra provides precise results and algorithms effective. On the other hand, there are

nonlinear problems that we will not address in this work.

Now, the question " what we mean by inverse problems? " may seem simple but in fact

it still holds a lot of ambiguity. From an empirical point of view, we can define inverse

problems as follows:

The fact of determining a non-directly observable quantity x from a finite set of measure-

ments of an observed quantity b depending on parameters θ according to the model

b = A(x; θ) (1)

This equation can be considered as the main objective to solve a set of real problems in

different experimental sciences. we can say that:

• The calculation of b given A, θ, x : is a direct problem.

• The calculation of x given A, θ , b : is an inverse problem.

So we can classify as an inverse problem every situation in which we wish to evaluate a

particular physical quantity x that is inaccessible to the experiment by the measurement of

another quantity b that is directly accessible to the experiment. Knowing a mathematical

model of the direct problem which explicitly gives b from x. Having doubts in the model

and measurements greatly affects this kind of problem, so it is more realistic to written:

b = A(x, θ)+ e (2)

where e represents the errors commonly called noise.

A typical property of inverse problems is ill-posedness, a property which is opposite of

well-posedness that was introduced by J.HADAMARD (1) from a well-posed :

• There exist a solution ;

• The solution is unique ;
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• The solution is continually dependent on the data.

A problem that does not satisfy one of the conditions mentioned above is ill-posed, the

inverse problems often do not satisfy one of these conditions, or even all three together.

This is not surprising for several reasons First, a physical model is fixing, the available

empirical data is usually noisy, and there is no guarantee that this noisy data comes from

this model. Let us analyze the three conditions of a well-posed problem in the case of

inverse problems.

First the existence condition seems to be trivial since we can easily formulate problems

that do not have a solution. However the fact that the solution to an inverse problem may

not exist is not a great difficulty. It is usually possible to restore existence by relaxing

the notion of solution.

Second non-uniqueness is a little more serious, if a problem has more than one solution we

need additional information (prior information). To choose between them. The stability

condition is much harder to deal with because a violation implies that arbitrarily small

perturbations of data can produce arbitrarily large perturbations of the solution.

The key is to reformulate the problem such that the solution to the new problem is

less sensitive to the perturbation, we say that we stabilize or regularize the problem.

Regularization is the heart of all our discussion, it is the process of adding information

in order to solve an ill-posed problem or to prevent over-fitting, and can be applied to

objective functions in ill-posed optimization problems. The regularization term or penalty

imposes a cost on the optimization function to make the optimal solution unique. In

general, we could think about the regularization in inverse problems like this :

x̂ = Argmin ∥b−Ax∥22 + r(x) (3)

We have got some observations b and we’re going to try to estimate x by perhaps solving

an optimization problem where we try to minimize a measure of error such as squared

error plus some regularizer r, and the question is what this regularizer should be. We
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focus on the discrete inverse problem defined by a system of linear algebraic equations:

b = Ax+ e (4)

It is obvious that if we want to solve Ax = b, and A is a regular square (det A ≠ 0), then

the unique solution is simple and worthy. this can be calculated in different numerical

ways. On the other hand, if we want to solve Ax = b with A ∈ Rm×n, and if we assume that

the problem is ill-posed, there are several approaches according to Hadamard’s condition

which are not respected. We focus on the regularization methods.

The matrix A in discrete ill-posed problem is often highly ill-conditioned, and when this

is the case it is well known from matrix computations that small perturbations of b can

lead to large perturbations of the solution.

Such difficulties and others is always face us whenever we solve an inverse problem, and

before addressing these difficulties and present some strategy to regularize an ill-posed

problem we have to define some building blocks:

• ∥b−Ax∥2: we call it a data fidelity term, measures the goodness-of-fit (how well the

solution predicts the given data b.

• ∥x∥2: we call it a prior knowledge because the incorporation of this term is based on

our knowledge that the naïve solution is dominated by high-frequency components,

and the hope is therefore that if we control the norm of x then we can suppress the

large noise components.

We are kind of having multiple stages of enlightenment, our work is going to be based on:

1. Presenting classical methods of regularization for solving inverse problem.

2. Using deep neural network on solving an inverse problem in imaging.
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2. Examples

Image reconstruction (deconvolution)

Inherently, all image generation systems have a resolution limit. Furthermore, due to a

number of physical phenomena such as motion in the object or picture planes, turbulence,

light diffusion, and other physical effects, some images can be blurred and/or distorted.

When an image has been deteriorated in this way, a variety of digital image processing

techniques can be used to ’de-blur’ it and improve its information richness. As a result,

’de-blurring’ an image entails solving the model’s inverse problem, known as Image re-

construction( deconvolution), is an inverse problem that deals with the reconstruction of

data from known sources (2). It is vitally dependent on past understanding of how the

data (the digital image) was generated and recorded, this inverse problem occurs When

the pixel value is affected by nearby pixels. Deconvolution attempts to produce a resolu-

tion that is suitable with the imaging system’s bandwidth (a resolution limited system).

The goal of image reconstruction is to give a resolution that is higher than the data’s

inherent resolution (i.e. the resolution limit of the imaging system). We will discuss this

in detail in the second part. The data obtained is usually mathematically connected to

an object function via an integral transform. Deconvolution is concerned with inverting

certain types of integral equations, notably the convolution integral, in this way. Because

it is an ill-posed problem, there is no exact or unique solution to the image reconstruction

problem.

Sar imaging inverse problems

Synthetic aperture radar (SAR) is a critical remote sensing technique that can provide

high-resolution photographs of the Earth at any time of day or night (3), in a variety of

terrains, and in difficult situations. Despite the fact that SAR photos have resolutions as

high as, factors such as atmospheric delays and speckle noise still limit the quality of SAR

photographs. As a result, it’s critical to improve this in order to make target detection

and tracking, classification, and security-related jobs easier. In all imaging systems, the
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difficulty of estimating an object of interest directly from measurements (image) arises.

Imaging inverse problems are a general term for situations of this nature. SAR imaging

inverse problems are one example of this type of challenge. One of them, as we saw in the

previous example, is image reconstruction. We can also find Ship Wake Detection in the

inverse problems of Sar imaging. A moving ship in the deep sea produces various types

of wakes, one of which is turbulent wake, which limits the moving ship’s signatures. Ship

wake detection approaches mainly require solving an inverse problem, assuming that ship

wakes can be described as linear structures.

14



Chapter 1

Classical regularization methods for

ill-posed problems and their

applications

In the following we present different methods for computing approximate solutions that

are less sensitive to perturbations. These methods are called regularization methods since

they impose regularity on the computed solution usually in the form of condition that

the solution is smooth. We suppress some unwanted noise components, resulting in more

stable approximate solutions.

1. The Singular Value Decomposition

The Singular Value Decomposition is a very powerful tool for analyzing discrete ill-posed

problems, for any matrix A ∈ Rm×n with m ≥ n, the SVD takes the form :

A = U Σ V ⊺ =
n

∑
i=1

ui σi v⊺i (1.1)

• Σ ∈ Rn×n is a diagonal matrix with the singular values, satisfying : σ1 ≥ σ2 ≥ ⋯ ≥
σn ≥ 0
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• U ∈ Rm×n and V ∈ Rn×n consist of the left and right singular vectors and both

Matrices have orthonormal columns i.e U⊺U = V ⊺V = I

The singular value and vectors obey a number of relations, the most important of them

are:

Av1 = σ1ut, ∥Av1∥2 = σ1, i = 1, . . . , n (1.2)

if A is square and nonsingular we can found the second relation:

A−1u1 = σ−1
1 vt, ∥A−1u1∥2 = σ−1

1 , i = 1, . . . , n (1.3)

We can use some of these relations to find an expression for the solution x (1). The matrix

V is orthogonal so we can always write the vector x in the form

x = V V ⊺x = V

⎛
⎜⎜⎜⎜⎜
⎝

vT
1 x

⋮
vT

n x

⎞
⎟⎟⎟⎟⎟
⎠

=
n

∑
i=1
(vT

1 x) vi (1.4)

Similarly the matrix U is orthogonal we can also write the vector b in the form

b =
n

∑
i=1
(u⊺i b)ui (1.5)

Now we combine the expression for x with the SVD for A we obtain:

Ax =
n

∑
i=1

σi (v⊺i x) ui (1.6)

By comparing the coefficients in the expression Ax = b we see immediately that the

solution is given by:

x = A−1b =
n

∑
i=1

uT
1 b

σt
vr (1.7)

In connection with discrete ill-posed problems, at the SVD of A we often find two char-

acteristic features, those we found in many discrete ill-posed problems arising in practical

applications. The first one, is that the singular values σi decay gradually to zero with no

particular gap in the spectrum, and will increase the number of small singular values by

increasing the dimensions of A. The second is that the singular vectors ui and vi tend to
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cause more changes in their elements as the index i increases, i.e., the lower σi.

The SVD gives important insight into an aspect of discrete ill-posed problems, namely,

the smoothing effect , as we have seen when σi decreases, the singular vectors ui and vi

become more and more oscillatory. Consider now the system Ax = b of an arbitrary vector

x. Using the SVD we get:

x =
n

∑
i=1
(v⊺i x) vi (1.8)

and

Ax =
n

∑
i=1

σi (v⊺i x) ui (1.9)

This clearly shows that the due to the multiplication with the σi the high-frequency

components of x are more damped in Ax than low-frequency components. Moreover, the

inverse problem namely that of computing x from Ax = b , must have the opposite effect

it amplifies the high-frequency oscillations in the right-hand side b.

In order to understand how the small singular values affect the solution we consider a

simple model:

b = Ax+ e (1.10)

Where the vector x represents the true and exact solution and e is the noise that is always

present in data, and b is the measured data. These quantities are unknown in practice

but our aim is to find a vector approximating to x .

By substituting the singular-value decomposition of A we obtain:

b =
⎛
⎝

n

∑
i=1

σiuiv
T
i

⎞
⎠

x+ e (1.11)

As we have seen the approximate solution is given by :

x = A−1b =
n

∑
i=1

uT
1 b

σt
vr (1.12)
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We can see that the relationship between the exact and approximate solution is as follows:

x̃ =
n

∑
i=1

⎛
⎝

vT
i x+

uT
i e

σi

⎞
⎠

vi = x+
n

∑
i=1

(uT
i e)
σi

vi (1.13)

We see that the error term is divided by the singular value σi, then if some single values

of it are small which is the case in most problems in reality, this division will give a very

large random component, often completely overwhelming the x component. Therefore, as

soon as there is noise even if it is small we will lose the exact solution completely.

Then the least squares method usually fails when small single values are present. It is

better to consider small single values effectively as zero, this is what we will introduce in

the following, and is known as Truncated SVD and Selective SVD.

2. Methods for the repair of SVD

2.1. Truncated SVD

The extremely large errors in the solution that we computes by SVD ( naïve solution ),

come from the noisy SVD components associated with the smaller singular values. The

idea behind TSVD is to chop those SVD components that are dominated by the noise, so

by retaining the first k components of the naïve solution.

The TSVD regularization method is based on this observation where solving the problem:

min ∥b −Ax∥2 is needed in order to find the solution, but it is not enough to give us a

unique and regular solution , we do that by a prior knowledge ∥x∥2 . The truncated SVD

solution xk corporate these to the requirement and it is defined by:

xk ≡
k

∑
i=1

u⊺i b

σi
vi (1.14)

The truncation parameter k should be chosen such that all the noise-dominated SVD

coefficients are discarded (4).

There is an alternative version of the TSVD method. No less important than the first,

while the definition of xk takes its basis for calculating the regularized solution in a specific
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formula. We can define a regularized solution as the solution to a modified and better

conditioned problem. Let us introduce the TSVD matrix Ak, which is the rank−k matrix

defined as:

Ak =

⎛
⎜⎜⎜⎜⎜
⎝

∣ ∣
u1 ⋯ uk

∣ ∣

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

σ1

⋱
σk

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

∣ ∣
v1 ⋯ vk

∣ ∣

⎞
⎟⎟⎟⎟⎟
⎠

⊺

=
k

∑
i=1

ui σi v⊺i (1.15)

We have seen that the singular values of A satisfies σ1 ≥ σ2 ≥ ⋯ ≥ σn ≥ 0. It can be shown

that the condition number of this matrix is cond(Ak) = σ1/σk, and it is immediately much

smaller than the condition number cond(A) = σ1/σn of the original matrix A. Hence a

good idea is to replace the original and ill-conditioned problem Ax = b with the better

conditioned problem Akx = b. In this case the least squares formulation ∥b −Akx∥2 is

needed, because we can no longer expect to find an x such that Akx = b . However, since

Ak is rank deficient ( as long as k < n ), there is not a unique solution to this least squares

problem, to determine a unique solution, we should add a constraint to the least square

problem. and this constraint is generally seeking the solution in many applications with

minimum 2-norm i.e:

min ∥x∥2 subject to min ∥Akx− b∥2 (1.16)

It is clear to show that the solution to this constraining problem is exactly the TSVD

solution xk, and thus we can consider it an alternative definition of the TSVD solution,

in which a minimization of its modulus ∥x∥2 is the regularity requirement on x.

The fact of based the criterion for choosing the truncation parameter k on the size of the

singular values σi, it is a fairly common mistake in connection with TSVD. The truncation

parameter k should define the break-point between the retained and discarded ( filtered)

SVD coefficients (4), as long as the noise is restricted to the right-hand side, and therefore

the choice of k in this case is determined based of the noisy coefficients UT
i b.
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2.2. Selective SVD

The rationale behind the TSVD regularization and many others is that the underlying

problem satisfies the Picard condition (1) . Hence we are assured that regular solutions will

capture important components of the exact solution, TSVD depends on including all SVD

components corresponding to the largest single values but this is not always necessary,

for example we can consider a problem where we say that every second component of the

SVD is zero, in In this case the inclusion of these SVD components is meaningless.

We introduce a variant of the TSVD method, this variant is called SSVD method in

which we include or select only the components of the SVD that make them important

contributions to the structured solution. Specifically, given a threshold τ for the right-

hand side’s SVD coefficients. The SSVD solution xτ is defined as:

xτ ≡ ∑
∣u⊺i b∣>τ

u⊺i b

σi
vi (1.17)

We sum all the SVD components (UT
i b) /σ(i), for which the absolute value ∣UT

i b∣ of the

right-hand side’s SVD coefficient is above the threshold t. Thus the filter factors for the

SSVD method are:

φ
[τ]
1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, ∣u⊺1b∣ ≥ τ

0, otherwise
(1.18)

It is natural to choose the threshold τ such that the SSVD filters remove the coefficients

UT
i b below their noise level. We know that the noise in the right-hand side b is white

then the noise in the coefficients UT
i b is also white with the same statistics Thus we can

choose t in order to avoid including components at the noise level.

3. Tikhonov Regularization

The TSVD method has a large set of advantages, the most important of which is that it

is intuitive. Once computed the SVD , TSVD solutions xk can easily be calculated for

different truncation parameters, but in contrast, it has a clear drawback, which is that it
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explicitly requires the calculation of SVD or, at least, the k singular values and vectors.

This computational task can often be very overwhelming when it comes to solving big

problems (5), and therefore there is a need for other methods of Regularization that are

more suitable for this type of problems.

Tikhonov is one of successful regularization method of all time. Similarly, with the TSVD,

tikhonov’s method explicitly incorporates the regularity requirement in the reformulation

of the problem, which it is replaced by another one will-posed, but the difference between

them is that the Tikhonov regularization is based on the idea that we want to minimize a

combination of data fidelity and a prior knowledge. We don’t give the same importance

to both through the solution of this problem:

min
x
{∥Ax− b∥22 +λ2∥x∥22} (1.19)

The main difficulty in the application of Tikhonov regularization in particular problems

is the determination of the regulation positive parameter λ.

Through the factor λ2. we control the balance between the two terms, If λ is larger we

mainly focus on the solution criterion ∥x∥2 ( a prior knowledge ) to minimize the combi-

nation, i.e., more weight is given to reduce ∥x∥2 Because in this case, any perturbation

will be very impactive. While if λ is smaller we focus on data fidelity (∥b −Ax∥2) with

the same reasoning. Finding a good balance between these two terms depends mainly on

finding a suitable value of λ.

We can use the SVD to obtain more insight into the Tikhonov solution xλ, when we insert

the SVD of A into the normal equations we obtain:

xλ = (V Σ2V T +λ2V V T )
−1

V ΣU⊺b

= V (Σ2 +λ2I)−1
V ⊺V ΣUT b

= V (Σ2 +λ2I)−1
ΣU⊺b

(1.20)

Which lead to the following expression:

xλ = V (Σ2 +λ2I)−1
ΣU⊺b (1.21)
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If we insert the singular values and vectors, we obtain :

xλ =
n

∑
i=1

φ
[λ]
i

uT
i b

σi
vi (1.22)

where φ
[λ]
i is the filter factor which satisfy :

φ
[λ]
i =

σ2
i

σ2
i +λ2 ≈

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, σi ≫ λ

σ2
i /λ2, σi ≪ λ

(1.23)

We see that for singular values σi larger than the parameter λ, the filter factors are close to

one then the corresponding SVD components contribute to xλ with almost full strength.

On the other hand, for the singular values much smaller than λ the filter factors are small,

and therefore these SVD components are damped or filtred. We conclude from this SVD

analysis that Tikhonov’s solution is a filtered solution, in the same way as the TSVD

solution.

4. Choice of the regularization parameter

We have covered three regularization approaches, but the most important item we have

left out is an effective way for determining the regularization parameter.

Because it’s the only way to set up an effective regularization method . As previously

stated, a suitable regularization parameter should result in a reasonable balance of per-

turbation and regularization errors in the regularized solution. Several parameter choice

procedures have been proposed. Parameter choice methods can be classified according to

the input used to make the choice. There are two basic types :

1. Methods based on knowledge, or a good estimate, of ∥e∥2 . Such methods are not

discussed here

2. Methods that do not require ∥e∥2 , but instead seek to extract the necessary infor-

mation from the given right-hand side.

We present one of recent ,parameter choice method that belong to class 2 :
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4.1. The l-curve criterion

For a continuous regularization parameter λ we compute the curvature of the curve:

(log ∥Axλ − b∥2 , log ∥Lxλ∥2) (1.24)

The l-curve corner is defined as a point with maximum curvature, then we choose a value

of λ that corresponds to this corner.

The 2-norm is not always the best approach to gauge the size of a solution or residual

vector. The choice of regularization method determines the most natural approach to

measure size. We can see that the l-curve is a parametric plot of the magnitude of the

regularized solution as well as the related residual. The basic notion is that, in addition

to using information about the residual size, a reasonable technique for determining the

regularization parameter for discrete ill-posed problems should include information about

the solution size. This is entirely natural.This is entirely logical, as we are attempting to

strike a reasonable balance in keeping both of these values low. The l-curve has a char-

acteristic l-shaped corner that marks the point at which the solution x shifts from being

dominated by regularization errors to being dominated by errors on the right side. hence

the l-corner curve’s corresponds to a good balance, and the accompanying regularization

parameter is also a good one.

When the regularization parameter is discrete, we use a 2D spline curve to approximate

the discrete lcurve in log-log scale, compute the point on the spline curve with the most

curvature, and define the discrete L-corner curve’s as the point closest to the spline curve’s

corner.

There are numerous advantages to using the l-curve approach to select the regularization

parameter. The computation of the comer is a well-defined numerical problem, and

coupled mistakes seldom "trick" the approach. Even highly correlated errors will make

the size of the solution grow once the regularization parameter A becomes too small, thus

producing a corner on the L-curve.
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4.2. Generalized cross-validation (GCV)

The generalized cross-validation is one of the most important ways to estimate values for

regularization parameters such as k in the truncated singular value decomposition, and λ

in Tikhonov, is based on the philosophy that the choice of regularization parameter should

be independent of an orthogonal transformation of b, and if an arbitrary element bi of

the right-hand side b is left out, then the corresponding regularized solution x∗ should

predict this observation well, by choosing the regularization parameter which minimizes

the GCV function:

G = ∥Ax∗ − b∥22
T 2 (1.25)

Note that G is defined for both continuous and discrete regularization parameters. It

can be used in both methods TSVD and Tikhonov. Where the numerator is the squared

residual norm and the denominator is a squared effective number of degrees of freedom

(4) the effective number of degrees of freedom T (which is not necessarily an integer) can

be written in terms of the filter factors as:

T =m−
rank(A)
∑
i=1

fi (1.26)

Then we can see that In the case of :

1. Tikhonov regularization, GSV works as follow

Choose λ as the minimizer of G(λ) = ∥Axλ − b∥22

(m−∑n
l=1 φ

[λ]
1 )

2

2. TSVD regularization, GSV is much simpler :

Choose k as the minimizer of G(k) = ∥Axk − b∥22
(m− k)2 .

The most appealing advantage of the method is that it does not require the knowledge

of the noise variance. The basic idea of GCV is that the parameter is a good choice, if it

minimize the GCV function.
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Chapter 2

Fundamental of deep learning

1. From the Artificial intelligence to the Deep learning

To talk about deep learning, we need to clarify what is meant by artificial intelligence

and machine learning, and what is the location of deep learning in between as we can see

with the help of the Figure 2.1:

Figure 2.1: Deep learning is a subset of machine learning which in turn is a subset of

AI that focuses on a narrow range of activities (6)
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1.1. Artificial intelligence

Artificial intelligence (AI) began in the 1950s when a group of pioneers in the field of

computer science wondered if computers might be programmed to "think," a topic whose

repercussions we’re still debating today. It covers a range of disciplines that have been

the subject of a tremendous amount of research, scrutiny, confusion, and fanciful hype

(6). It is based on a general class of algorithms capable of very effectively approximating

complex nonlinear processes, which are used to automate tasks previously restricted to

humans. Yet it is disingenuous to assert that today’s machines are learning to "think" in

any human sense of the word.

The quest to automate intellectual functions traditionally performed by humans is a

succinct definition of the field. As a result, AI is a broad term that embraces not only

machine learning and deep learning but also a wide range of non-learning approaches.

Many scientists believed for a long time that human-level AI could be reached by having

programmers construct a large enough set of explicit rules for manipulating knowledge.

From the 1950s through the late 1980s this technique was known as symbolic AI and it

was the dominant paradigm in AI.

Although symbolic AI proved to be suitable for handling well-defined, logical problems

such as chess. figuring out explicit rules for more complex, fuzzy issues such as picture

classification, speech recognition, and language translation proved to be intractable. A

new approach has emerged to take the place of symbolic AI and that is machine learning.

1.2. Machine learning

Machine learning originates from the question of whether a machine can learn on its own

how to accomplish a task beyond what humans know how to instruct it to do. Is it

possible that a computer will surprise us? Could a machine learn data-processing rules

by looking at data instead of programmers constructing them by hand?

This question ushers in a new paradigm of programming. Humans input rules (a pro-
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gram) and data to be processed according to these rules in classical programming, which

is the paradigm of symbolic AI. Humans input data as well as the expected replies from

the data, and machine learning generates rules. These rules can then be applied to new

data to provide unique responses.

Figure 2.2: Replacing the classic programming paradigm with machine learning (6).

Rather than being explicitly designed, a machine-learning system is trained. It is

presented with a large number of instances related to a task, and it detects statistical

structure in these examples, allowing the system to develop rules for automating the

work. Although machine learning is closely related to mathematical statistics, it differs

from statistics in a number of ways. Machine learning, unlike statistics, deals with enor-

mous, complicated datasets (such as a dataset of millions of photos, each with tens of

thousands of pixels) for which traditional statistical analysis, such as Bayesian analysis,

is impracticable.

To explain deep learning and understand how it differs from previous machine-

learning approaches, we must first grasp what machine learning algorithms are. Machine

learning as we have just stated develops rules to carry out a data-processing task given

instances of what is expected. So we’ll need three things to do in machine learning :

27



1. Input data points : As an example, they could be photos if the task is image tagging.

2. The expected output : "dog," "cat," and so on could be predicted in an image task.

3. A measure for testing whether the algorithm is doing a good job : This is required

in order to calculate the distance between the algorithm’s current output and the

target output.

A machine-learning model learns how to transform its input data into meaningful outputs

by being exposed to known examples of inputs and outputs. As a result, the primary

problem in machine learning and deep learning is to convert data in a meaningful way, we

want to learn valuable representations of the input data we have on hand-representations

that will help us move closer to the predicted output. Before we go any further, let’s define

what a representation is. It is at its root a new way of looking at data—a new way to

describe or encode data. For example, a color image might be encoded in the RGB (red-

green-blue) or HSV (hue-saturation-value) formats which are two distinct representations

of the same data. Some tasks that are tough with one representation become simple

with a different one. For example, in the RG format the process of "selecting all red

pixels in the image" is easier whereas in the HSV format, the effort of "making the image

less saturated" is easier. We have to Found appropriate representations for their input

data-transformations of the data that make it more accessible to the task at hand.

So, to put it another way machine learning is the process of looking for meaningful repre-

sentations of some input data within a preset field of possibilities while being guided by

a feedback signal. This simple concept can be used to solve a wide range of problems.

1.3. Deep learning

Deep learning is a subfield of machine learning that emphasizes learning successive layers

of increasingly meaningful representations when learning representations from data. The

deep in deep learning refers to the idea of multiple layers of representations rather than
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any form of deeper knowledge produced. The depth of the model refers to how many

layers contribute to a data model. Layered representations learning and hierarchical

representations learning could have been better names for the field. Tens or even hundreds

of consecutive layers of representations are typically used in modern deep learning, and

they’re all learned automatically from training data. these layered representations are

(nearly always) learned in deep learning using neural network models, which are arranged

in literal layers piled on top of each other (7). Although some of the key principles in

deep learning were developed in part by drawing inspiration from our understanding of

the brain, deep-learning models are not models of the brain, as the term neural network

implies. There is no indication that the brain uses learning techniques similar to those

used in recent deep-learning models.

In short, deep learning is a mathematical framework for learning representations from data

for our purposes. To understand it, you need to be familiar with a number of concepts.

When we discuss deep learning, we generally refer to deep neural networks.

2. Deep neural networks

2.1. Definition and components

Deep neural networks have recently become the standard tool for solving a variety of

computer vision problems. we will look at the elements that make it up and that are also

used to train it:

Deep neural networks are a system as shown in the Figure 2.3. that is composed of small

Nodes that function similarly to neurons in the human brain. When they are stimulated

a reaction occurs in these nodes, some are connected and marked, while others are not

although nodes are generally grouped into layers (8). the system must process layers of

data between the input and output to solve a task.

Layers: The layer is the most basic data structure in neural networks. Is a data

processing module that accepts one or more tensors as input and produces one or more
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Figure 2.3: Deep neural network architecture (7).

tensors as output. Some layers are stateless, but the majority of them have a state:

the layer’s weights, one or more tensors learned using stochastic gradient descent that

They hold the knowledge of the network as a whole. Different layers are acceptable for

various tensor formats and data processing method. For example, densely linked layers

also known as fully connected or dense layers, are frequently used to handle simple vector

data stored in 2D tensors of shape. Recurrent layers such as an LSTM layer, often handle

sequence data which is stored in 3D tensors of shape. 2D convolution layers are typically

used to process image data contained in 4D tensors.

Model (networks of layers): A directed acyclic graph of layers is a deep-learning

model. A linear stack of layers which maps a single input to a single output is the most

typical example. There is however a wide variety of network architectures, a hypothesis

space is defined by the architecture of a network, we defined machine learning as "looking

for usable representations of some input data within a predefined range of possibilities,

guided by a feedback signal." by deciding on a network architecture, you limit your range

of options (hypothesis space) to a set of tensor operations, that map input data to output
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data. Then you’ll need to find a good set of values for the weight tensors that are involved

in these tensor operations.

Loss functions and optimizers: After we have defined the network structure, we

will need to choose two more things: first, the loss function (objective function) which

determines how much will be lowered during training. It is a metric for determining

whether or not the task at hand was completed successfully. The second component, is

an optimizer which determines how the network should be updated based on the loss

function.

Choosing the proper objective function for the right problem is critical, our network

will take every shortcut it can to reduce loss, so if the objective does not entirely correlate

with success for the task at hand, our network may do things we may not want.

2.2. How deep neural networks works ?

At this point, we know that machine learning is concerned with mapping inputs (such

as noisy images) to targets (such as “clean image”), which is accomplished by seeing a

large number of pairs of input and target observations. We have also shown that deep

neural networks perform this input-to-target mapping using a deep sequence of simple

data transformations (layers) which learns from examples. We show how this learning

takes place in practice.

The weights of a layer which are essentially a set of numbers, store the definition

of what a layer performs with its incoming data. In technical terms, we can state that a

layer’s transformation is parameterized by its weights (see figure 2.4). (A layer’s weights

are also known as its parameters). Learning in this instance refers to determining a set

of weights for all layers in a network that allows the network to accurately map sample

inputs to their corresponding targets.
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Figure 2.4: The weights of the neural network are the main parameters.

Next, comes the role of the loss function for the network, which is based on measuring

how far this result is from what you expected. It takes the network predictions and the

real target, calculates the distance score and capture How well the network performs in

this specific example (see figure 2.5). The essential idea in deep learning is to utilize this

score as a feedback signal to adjust the weights’ values slightly, in the direction of lowering

the current example’s loss score (see figure). This adjustment is the job of the optimizer,

which implements what’s called Backpropagation algorithm which represent the central

algorithm in deep learning.

The network’s weights are initially given random values, so it just performs a series

of random transformations. Naturally, its productivity falls well short of what it should

be, and the loss score reflects this. However, as the network analyzes more examples,

the weights are modified somewhat in the right direction, and the loss score lowers. A

network with a minimal loss is one for which the outputs are as close as they can be to

the targets (trained network).
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Figure 2.5: Evaluate the network output quality using loss function.

3. Convolutional neural networks

There are many models of deep learning for different tasks that we are trying to solve,

as we have seen each model is ideal for a specific task. Our main task in this work is

the solving inverse problems in imagine. Therefore, we introduce convolutional neural

networks also known as convnets, a type of deep learning model that is often used in

image recognition that we are interested as an application.

CNN is a type of deep learning model for processing data with a grid pattern such as

images. This class of artificial neural networks it has been a dominant method in computer

vision tasks, designed to automatically and adaptively learn spatial hierarchies of features,

from low- to high-level patterns. Convolutional neural networks (CNNs) are generally

made up of three types of layers: convolution, pooling and fully connected layers.

The convolutional layer is the most important layer in a CNN because it is where
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Figure 2.6: How weights are adjusted when training the network using the loss score.

the majority of computation takes place (10). It requires input data, a filter and a feature

map among other things. Let’s pretend the input is a color image which is made up of a

3D matrix of pixels. This means the input will have three dimensions: height, width and

depth which match to the RGB color space of a picture. A feature detector also known

as a kernel or a filter will traverse across the image’s receptive fields, checking for the

presence of the feature. Convolution is the term for this procedure. The feature detector

is a two-dimensional (2-D) weighted array that represents a portion of the image. The

filter size which can vary in size, is usually a 3x3 matrix which also affects the size of the

receptive field. The filter is then applied to a portion of the image, and the dot product

between the input pixels and the filter is determined. After that, the dot product is loaded

into an output array. The filter then shifts by a stride, and the procedure is repeated

until the kernel has swept across the entire image.

As you can see in the image below, it is not necessary to connect every output value in
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Figure 2.7: An example of CNN architectures for a classification task (9)

the feature map to every pixel value in the input image.

Figure 2.8: The filter is applied by the convolution layer (9)

Before the neural network training begins, there are three hyper-parameters that

determine the output volume size that must be established. These are some of them:

• Number of filters : has an impact on the output’s depth. Three distinct filters,

for example, would result in three different feature maps, resulting in a depth of

three.
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• Stride : is the distance, in pixels, that the kernel travels across the input matrix.

Although stride values of two or more are uncommon, a bigger stride results in a

lesser output.

• Padding : When the filters don’t fit the input image, it’s frequently utilized. This

reduces the size of all elements outside of the input matrix to zero, resulting in a

larger or more evenly proportioned output.

We now know that convolution is the process of multiplying and adding pixel values

by weights (hence the name Convolutional Neural Network). A CNN usually consists

of several convolutional layers, but it also contains other components: the poling layer,

which is also known as downsampling, reduces the dimensions of each feature map and

retains the most important information for the image. Similar to the convolutional layer,

the pooling operation sweeps a filter across the entire input, but the difference is that

this filter does not have any weights. Poling can be of different type: Max, Average,...etc.

While the pooling layer loses a lot of information, it does have a few advantages for the

CNN. They assist in reducing complexity, increasing efficiency and reducing the risk of

overfitting.

The name of fully connected layers is self-explanatory, each node in the output layer is

directly connected to a node in the previous layer, and this layer performs classification

tasks (which are not the main task in our work), based on the features retrieved by the

previous layers and their various filters (11).

36



Chapter 3

Deep neural network for solving

inverse problem in imaging

In most applications, an observed signal y can be modeled as the output of a system T,

whose input is denoted by x. as we have seen there are many ways to characterize the

system T, through for instance, a differential equation, an integral equation, or a general

mathematical mapping (12). It might model the image edge detection process or the

defocusing introduced by the imaging device. Finding the input x for a given output y

and knowledge of the system T represents the inverse problem and When the system is

related to one of the tasks of image processing, here we are talking about inverse problem

in imaging.

As shown in the figure 3.1 in the direct problem, the system T is applied to an input

image. While the inverse problem aims to obtain an estimate of the input image, we show

here the image restoration case where T represents the blurring operator.

In this chapter we discuss the problem where T is the noise factor known as the image

denoising problem, and it is also a case of image restoration, we present a set of neural

architecture to solve this problem, and we end with a practical section in which we discuss

the application of one of these architectures to solve the problem at hand.
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Figure 3.1: Moving from a direct problem to an inverse problem (13).

1. The concept of image processing

Image processing has become an exciting subject of study, due to the amazing diversity

of applications it benefits from (figure 3.2).

In this section we will talk about a few fundamental definitions such as image, digital

image, and digital image processing. we will talk also about the continuum from image

processing to computer vision.

A digital image is a representation of a real image as a set of numbers that can be stored

Figure 3.2: The amazing diversity of applications that benefit from image processing

(14).

and handled In order to translate the image into numbers, it is divided into small areas
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called pixels (picture elements). each pixel location only contains a single numerical value

representing the signal level at that point in the image. For each pixel, the imaging device

records a number, or a small set of numbers, that describe some property of this pixel,

such as its brightness (the intensity of the light) or its color, an image contains one or

more color channels that define the intensity or color at a particular pixel location. The

numbers are arranged in an array of rows and columns that correspond to the vertical

and horizontal positions of the pixels in the image.

Any meaningful two-dimensional matrix of integers can be considered an image from a

mathematical point of view. In the real world, we need to be able to effectively display

and store images for the purpose of using them in a range of tasks (15). the choice of

image format used can be largely determined by not just the image contents, but also the

actual image data type that is required for storage. there is a number of distinct image

types:

1. Grey-scale images : are 2-D arrays that assign one numerical value to each pixel

which is representative of the intensity at this point.

2. Colour images (RGB) : are 3-D arrays that assign three numerical values to each

pixel, each value corresponding to the red, green and blue (RGB) image channel

component respectively

As demonstrated in Figure 3.3, we can easily separate and view the red, green, and blue

components of a true-color image. It’s worth noting that the colors in a real image are

almost always a combination of color components from all three channels.

An image can be regarded as a function f (x, y) of two continuous variables x and y, to

be processed digitally, it has to be firstly sampled, sampling is the process of converting

a continuous-space (or continuous-space/time) signal into a discrete-space (or discrete-

space/time) signal. and transformed into a matrix of numbers. Secondly these numbers

have to be quantized to be represented digitally, quantization is the process of converting
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Figure 3.3: Separate and display the red, green and blue components of a true color

image (15).

a continuous-valued image that has a continuous range (set of values that it can take)

into a discrete-valued image that has a discrete range. This is ordinarily done by a pro-

cess of rounding, truncation, or some other irreversible, nonlinear process of information

destruction. that is necessary because a computer represents the numbers using finite

precision, and the image intensities must be represented with a finite precision in any dig-

ital processor. The manipulation of those finite precision numbers is what digital image

processing is all about.

One of the major issue in image processing, storage, transmission, and display is the large

volume of image data, the amount of data in visual signals is typically fairly vast, and it

grows geometrically in proportion to the data’s dimensionality. The storage required for

a single digital still image that has (row × column) dimensions and B bits of gray level
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resolution is (row × column × B) bits, digital images that are delivered by commercially

available image digitizers are typically of approximate size 512×512 pixels. This what

makes handling and analyzing a huge data set consisting of images so difficult.

Image enhancement, image restoration, image analysis, and image compression are some

of the types of digital image processing (16). We shall concentrate on image restoration

in our work as a must important application of inverse problem in imaging.

Image processing is related to many fields and has continuity and intersection with them on

a number of levels. Computer vision is one of the most important fields that is considered

an extension of image processing. Continuity from image processing to computer vision

Figure 3.4: Image Processing Extensions (15).

can be divided into three levels of operations, the lowest level of which processes an

image in the input and gives an image in the output, for example reducing noise on the

image, while in the second level the image is processed in the input in order to obtain

attributes for example object recognition, while at the third level based on the processing

of attributes the system aim to create an understanding through them for example scene

understanding and autonomous navigation (14).

In this work, we will address one of the applications of this continuity at its lowest
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level, since our system will be based on processing an image in the input and giving the

clean image in the output.

2. Neural networks architectures for inverse problems in imag-

ing

An alternative model for solving our inverse problems, considered as the most frequent

approach, relies on the use of DNN for minimize ∥x− gϕ(y)∥
2 for a convenient gϕ(⋅)

which plays the role of T−1 we will show some designs for this function that correspond

to a DNN with parameters Φ , and how to trained it using some data sets with pairs of

examples (y, x).

The choice of the neural network architecture determines the generic set of alternative

gϕ(⋅) that will be investigated by the optimization technique for solving our inverse prob-

lems. as a result, it is critical to pay particular attention to the model’s design, which

will be the subject of our discussion in the following sections.

2.1. End-to-end mapping with the convolutional neural network

Due to DNNs’ capacity to execute fast-forward inference, training DNNs to learn a map-

ping from the observation y to its reconstruction x is often the preferred strategy. a

frequent architectural choice for performing this mapping was fully connected neural net-

works, such as the one shown in Figure.

The universal approximation theorem (17) states that a fully connected neural network

with a large number of neurons in its hidden layer may represent any function we want

to learn, as long as our activation functions meet some minor constraints. however when

handling highly structured modalities like images or videos, a convolutional neural network

(CNN) is often the preferred model.

CNNs are especially well-suited to image processing because they can quickly extract the
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Figure 3.5: An example of a fully connected neural network with two hidden layers (13).

statistics of their input and utilize them to solve the inverse problem (18), the difference

between it and fully connected neurons is that apply convolutions to the previous layer,

on the input layer, several convolution kernels are used, resulting in various feature maps

that collectively capture a new representation of the input.

Using CNNs to solve our inverse problems has a number of benefits. First, compared to

fully connected neural networks, there are often far fewer parameters to learn because the

weights of the kernels are fixed as they glide across the input. The optimization problem

is made easier by the reduction in the number of parameters.

When we use neural networks to solve inverse imaging problems, the model produces a

high-dimensional image with the same dimensions as the input.

As a result, keeping the dimensions of the output feature maps fixed to the size of the

input to the convolutional layer, which is achieved by the use of proper padding with

zeros, is a popular method when creating a CNN for addressing an inverse problem. the

Figure shows an example of a three-layer CNN design that follows this technique.

CNN-based architectures, if properly designed, can be powerful tools for solving

inverse problems in imaging.
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Figure 3.6: Convolutional layers, which maintain the same spatial dimensions of feature

maps and those of input and output images (13).

2.2. Residual Networks (ResNet)

Different CNN architectures use more layers in a deep neural network to reduce the error

rate. However as the number of layers increases, there is a typical problem in deep

learning associated with the so-called Vanishing/Exploding gradient. When we increase

the number of layers, the error rate of training and testing also increases.

In the graph below, we can see that a 56-layer CNN has a greater error rate on both

training and testing dataset than a 20-layer CNN architecture, if this was the result of

over fitting, then we should have lower training error in 56-layer CNN but then it also

has higher training error. After analyzing more on error rate it was discovered that it is

caused by vanishing/exploding gradient.

Resnet architecture proposed the concept of residual network to overcome this problem.

Instead of learning a new mapping function from one layer to the next, residual blocks

learn a residual between two or more layers by adding a skip connection from the input

of the residual block to its output (19). It skips training from a few layers and connects

directly to the output. the benefit of including this type of skip connection is that any

layer that degrades architecture performance will be bypassed by regularization. As a

result, very deep neural networks can be trained without the issues caused by vanishing/-
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Figure 3.7: Vanishing gradient problem caused by increasing network depth.

exploding gradients.

A generic architecture of a deep residual CNN is shown in the Figure 3.8 to explain

this concept. Where each residual block, consisting here of three convolutions, learns a

residual between its input and its output.

Deep residual networks can be regarded of as a stable alternative to training DNNs

Figure 3.8: An example of a deep residual CNN. Each residual block, consisting here of

three convolutions, learns a residual between its input and its output (13).

because learning residual is easier than learning a new mapping from layer to layer (20).
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2.3. Encoder-decoder architecture

The more we discover about deep learning’s success, the more enigmatic deep neural

networks become. in particular in inverse problems, the so-called encoder-decoder CNN

is one of the most extensively used network architectures, these encoder-decoder CNNs

frequently have more intricate network designs, such as symmetric network setup, skipped

connections, and so on, in contrast to the basic form of neural networks that is often

employed (21).

Encoder-decoder CNNs distinguish themselves from the networks previously mentioned

by choose to downsample the feature, maps at each convolution step all the way down

to a bottleneck layer, and then upsample them back to the size of the output, as shown

in the Figure 3.9. While the networks previously mentioned keep the dimensions of the

feature maps fixed to the dimension of the input and output images.

We can see in the architecture that the feature maps are spatially compressed by

an encoder network (Pooling) , then increased back to the size of the output image by a

decoder network(Upsamplig) . Downsampling and upsampling feature maps has gained

popularity in segmentation and depth prediction applications (the architecture illustrated

in the figure is for a segmentation task) .The "compressive" portion of the network learns

an abstract representation of the input image, which is then used by the "expansive"

portion of the network to generate an output image.

An encoding-decoding architecture may result in a significant loss of detail in the output

image because the encoder compresses the spatial information of the feature maps at

each step. Inserting symmetric skip connections between the lower-downsampling convo-

lutional layers of the network and the matching up-sampling convolutional layer, which

preserves the crucial features in the input image, is one solution to this problem. We

should note that the encoder-decoder architecture with skip connections is commonly re-

ferred to as the U-Net architecture (22), which we will discuss in greater depth in the

following section because it is the architecture we will utilize in our application.
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Figure 3.9: The encoder (Pooling) and decoder network (Upsampling) components (22).

This encoder-decoder CNN or U-Net has been effectively used to a variety of inverse

imaging problems, including the image denoising problem which we will go over in detail.

3. Image denoising with deep CNN

3.1. Introduction

There are various image denoising models that have recently attracted great interest due

to their positive noise reduction performance (23). In this section, we try to use deep

convolutional neural networks (CNNs) with PyTorch in the form of U-Net architectures

to solve an image denoising problem (Gaussian denoising). Specifically, residual learning

and batch normalization are utilized to speed up the training process as well as improve

the denoising performance.
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In the first step, we will deepen our knowledge of the deep learning architecture that we

will work with (U-Net), and one of the main software libraries for CNN’s application of

image processing called PyTorch. In the second step, we use an already available data set

( BSDS300 ) to train and test our U-Net model and analyze the results received.

Image restoration problem:

Inverse problems arise in a variety of imaging applications such as inpainting and super

resolution (SR), one of the must important application is image reconstruction which

aimed at restoring the original signal, is the process of restoring original uncorrupted

images from corrupted ones. Motion blur, low resolution, and noise are all examples of

corruption. The mean goal of image reconstruction is to improve the quality of an image by

understanding the physical processes that lead to its creation (24). Image formation can

be thought of as a process that converts an input distribution into an output distribution.

The input distribution represents the ideal or perfect image to which we do not have direct

access, but seek to restore or at least approximate by treating the imperfect or corrupted

output distribution appropriately. The task of recovering the image (in principle at least)

is a simple equation that we can model as :

g(x, y) =∬ f (x′, y′)h (x− x′, y − y′)dx′dy′ +n(x, y) (3.1)

Estimate the input distribution f (x′, y′) using the measured output g(x, y) and any

knowledge we may possess about the PSF h (x− x′, y − y′) and the noise term n(x, y).
These two factors are responsible for the imperfect output distribution which is obtained.

We have to give an overview to both since the simple remark that any strategy to image

reconstruction, will ultimately be constrained by our explicit or tacit understanding of

PSF and the noise process.
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Nature of the point-spread function and noise

The PSF is typically a constant or deterministic number that is determined by the physical

hardware which constitutes the overall imaging system and which may, therefore, be

considered to be stable with time. For example, in a simple optical imaging system, the

overall PSF will be defined by the physical nature and shape of the lenses; in a medical

diagnostic imaging system, such as the Anger camera (which detects gamma-rays emitted

from the body of a patient), the PSF is determined by a combination of a mechanical

collimator and a scintillator– photomultiplier system which allows the detection of the

origin of an emitted gamma photon with a certain limited accuracy.

The noise term on the other hand, is often stochastic and causes a random and undesirable

fluctuation in the measured signal. The main feature of noise processes is that we usually

have no influence over them and can’t foresee what kind of noise will be present at any

particular time. Noise is created by the physical nature of detection processes and comes

in a variety of shapes and sizes. The unpredictable nature of the signal fluctuations is

a common aspect of whatever physical process leads to the development of an image.

we can often understand and model the statistical features of a given realization of the

noise, even if we can’t know the values of that realization. The various noise models and

behaviors are frequently a major element in the subtle differences in image restoration

procedures.

Denoising problem

Denoising image is a technique for recovering a high-quality image from a noisy (degraded)

observation. It’s one of the most well-known and essential image processing and computer

vision problems, where user experience and the success of high-level vision tasks such as

object identification and recognition are affected by the quality of the resulting images.

A simplified general image degradation model for the denoising task is:

y = x+n (3.2)
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where x refers to the unknown high-quality image or clean image, y is noisy observation,

and n represents the additive noise. For decades, most of the noise reduction research

has been done on the additive white gaussian noise (AWGN) box it is Probably the most

frequently occurring noise, which we will also rely on in this work.

AWGN assumes that n is the symmetrically distributed Gaussian noise with zero mean and

standard variance value . The Gaussian distribution has a number of useful mathematical

features as well as a few less useful ones. The fact that the cumulative distribution

function cannot be written in closed form using elementary functions is undoubtedly

the least convenient property of the Gaussian distribution. It is however numerically

tabulated, perhaps the most significant property of the Gaussian distribution is called the

Central Limit Theorem, which states that the distribution of a sum of a large number of

independent, small random variables has a Gaussian distribution.

The major problem with image denoising is that a large amount of information is lost

Figure 3.10: Original picture of San Francisco skyline (15).

throughout the degrading process, making it an inverse problem with a high degree of

ill-posedness. Prior knowledge is necessary to offer supplemental information in order to

obtain an accurate estimation of the latent image. as a result, therefore how to appro-

priately model the prior of high quality (clean) images is the main difficulty in image
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Figure 3.11: San Francisco corrupted by additive Gaussian noise with σ = 10 (15).

reconstruction problems.

3.2. works tools

In this section we introduce PyTorch as a library and its place in the deep learning

revolution, touching on what distinguishes PyTorch from other deep learning frameworks,

and we describe the network architecture of the model used for this application.

PyTorch:

PyTorch is an open source machine learning framework, and an optimized tensor library

primarily used for deep learning applications using GPUs and CPUs. Mainly developed

by the Facebook AI research team.

PyTorch is software for machine learning it contains a full tool kit for building and deploy-

ing machine learning applications including deep learning primitives (25), it comes with

features to perform accelerated mathematical operations on dedicated hardware, which

makes it convenient to design neural network architectures and train them on individual

machines or parallel computing resources.

The concept of tensors is the center of everything doing in Pytorch like model’s inputs
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outputs, and learning weights are all in form of tensors when we say tensors we talking

about a multi-dimensional array with a lot of extra bells and whistles. It shares many

similarities with NumPy arrays. PyTorch has a reputation for simplicity, ease of use,

flexibility, efficient memory usage and dynamic computational graphs. It also feels native,

making coding more manageable and increasing processing speed. It is one of the widely

used machine learning libraries, others being TensorFlow and Keras.

PyTorch is built based on python and torch library, Torch.nn contains the main PyTorch

modules for building neural networks, as well as common neural network layers and other

architectural components, such as fully connected layers, convolutional layers, activation

functions and loss functions. These components can be used to create and initialize the

untrained model in the figure.

To train our model, we’ll need a source of training data, an optimizer to adjust the model

to the training data and a way to send the model and data to the hardware that will

actually be performing the calculations..

Network architectute of the used denoising model

In this section, we present the used denoising model UDnCNN (26), which is a modifica-

tion of the DnCNN model (27). It is the first model founding that the residual learning

integration and batch normalization can lead to fast and stable training and better de-

noising performance.

The input of UDnCNN is a noisy observation, the model aim to learn a mapping function

F (y) = x with depth D to predict the latent clean image in the output, there are three

types of layers, shown in the Figure.

1. Conv+ReLU : for the first layer, 64 filters of size 3 × 3 × c are used to generate

64 feature maps, and rectified linear units (ReLU, max(0, ů)) are then utilized for

nonlinearity. Here c represents the number of image channels, (c = 1 for gray image

and c = 3 for color image)
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Figure 3.12: Basic, high-level structure of a PyTorch project, with data loading, training

(25).

2. Conv+BN+ReLU+Pool : the layers 2 ∼ (D/2), represent The "compressive"

portion of the network( Encoder) that learns an abstract representation of the input

image using the Poolin layes that is much like a filter applied to feature maps, it

is 2×2 pixels applied with a stride of 2 pixels. This means that the pooling layer

will always reduce the size of each feature map by a factor of 2, each dimension is

halved. and batch normalization (27) is added between convolution and ReLU.

3. Unpool+ Conv+BN+ReLU : represent the "expansive" portion of the net-

work(decoder) which use the output of the compressive portion previously men-

tioned and seek to restore the lost features and restore the original dimension of the

input image by adding an Unpooling layer to generate an output image.

4. Conv : the last layer is a simple convolution layer that use , c filters of size 3 × 3

× 64 are to reconstruct the output.
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Figure 3.13: UDnCNN Model architecture (26).

In the architecture we can see the insertion of residual connection and batch normalization

(28) for speed up and stabilize the training process and also for boosting the denoising

performance.

3.3. Experimental Results

Our experiments were based on three main stages:

1. we prepared the dataset BSDS300 (27) It consists of 200 images for training and 100

images for testing, by adding Gaussian noise to the clean images In the training and

test set, we consider three noise levels: σ = 15(low) σ = 25(medium) and σ = 50(high)

2. we run the experiment by training the network with backpropagation based on the

optimizer and training set.

3. we evaluated the experiment by forwarding the test set over the network and re-

turning the computed statistics

With the ultimate goal of reducing image noise, we need to evaluate the quality of the

image obtained for this purpose we used pixel-wise Mean Squared Error.

L(d, y) = 1
N

N

∑
i=0
(d− yi)2 (3.3)

For each image in training set d, we apply a set Gaussian noise to get noisy images x.

The resulting image is entered into the proposed model for training; then the resulting
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Table 3.1: The average PSNR(dB) and loss function results of DnCNN/UDnCNN models

with noise level 15, 25 and 50 on BSDS300 dataset

DnCNN UDnCNN(D=6) UDnCNN(D=8)

Noise level PNSR SSIM PNSR loss PNSR loss

15 31.46 0.8826 32.04 0.0025 32.03 0.0026

25 29.02 0.8190 29.13 0.0049 29.13 0.0049

50 26.10 0.7076 25.30 0.011 25.21 0.012

image y is compared with the clean image d by means of the MSE (the lower the better).

An other classical way to compare the quality of restoration techniques that we used is

the PSNR (Peak Signal-to-Noise-Ratio) defined as :

PSNR = 10 log10
4n

∥y − d∥22
(3.4)

where d is the desired ideal image, y is the estimate obtained from x and n the number

of elements in the tensor. since many signals have a very wide dynamic range, PSNR is

it is usually expressed in terms of the logarithmic scale of decibels (dB). the higher the

PSNR value, the higher similarity to the original image.

The table 3.1 displays the results obtained through training and testing the given archi-

tecture with two different depths and a variation in thetab1 added noise. We followed the

steps in this tutorial (26). and worked on changing some parameters and monitoring the

results and observations. We did almost the same experiments and worked on analyzing

the results.

We note through the observed results in the table that the U-net architecture helps

greatly in giving greater efficiency in denoising problems, but the problem of determining

the depth remains. Through the comparison we made, it was found that the appropriate

depth for the model is D=6 and that the increase in noise significantly affects its perfor-

mance.
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Figure 3.14: The output of the UDnCNN model in the training phase with D = 6 and,

σ = 25.

Figure 3.15: Change of PNSR and loss function based on the change of epoch during

the training phase.

The two figures 3.14 and 3.15 represent the results obtained using the model by

adding a noise level σ = 25. We chose 100 as a maximum of number of epoch because, as
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we note in the figure, after this number, there is no significant change at the level of the

two index PNSR and loss function.
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Conclusions

The present thesis aims to study the inverse problems by highlighting the diversity in

the ways to solve them, as we presented in the first part some classic methods through a

theoretical study in cooperation with Professor G.Rodriguez, via a comprehensive review

of the specific literature and specialized material presented in the references.

In the first chapter we introduced various methods of regularization for calculating approx-

imate solutions.we have covered three regularization approaches , but we have discovered

that the most important thing is to find an effective method for determining the reg-

ularization parameter. Because it is the only way to set up an effective regularization

method. which lead to a reasonable balance of perturbation and regularization errors in

the solution.

While in the second part we have highlighted other Data-driven approaches that deal

with inverse problems. this was a result of an internship in collaboration with Professor

G.Fumera in the Department of Electronic and Electrical Engineering at the Faculty of

Engineering in Cagliari. we used the deep learning methods and architectures to solve

inverse problems in the image reconstruction field.

The first stage, is about extending the knowledge in the deep learning architectures as

one of the most important modern tools for solving inverse, that we presented in the

second chapter by highlighting the fundamental of deep learning and how to train a deep

neural networks, especially Convolutional Neural Networks (CNNs), and the study of one
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of the main software libraries of CNN application for image processing (PyTorch and

TensorFlow).

The second stage, is more about identifying the problem of image denoising as one of the

most famous inverse problems in imaging as a practical application, which we studied in

the therd chapter.

While studying U-Net as one of the effective architecture for image processing, especially

the task of image segmentation , we discovered through the application that it gives a

good performance even in the task of removing noise from the image by comparing it with

the classical CNN models, yet there are some challenges represented in determining the

parameters related to the model architectures such as depth and dimensions.
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Appendix A

Appendix

To give an insight into the technical work performed to get all the resulted tables and

processed images presented in chapter 3, the following appendix shows through code and

plots, the application of UDnCNN model to solve the image denoising problem.
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