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Introduction

The main topic of the thesis is the study of inverse problems and, in particular, it is
the study of numerical methods for the computation of the minimal-norm solution
of linear inverse problems in the continuous case and nonlinear ones in the discrete
case.

Inverse problems arise in many areas of science and engineering, from the need to
interpret indirect and incomplete measurements. Inverse problems are the opposites
of direct problems. Informally, in a direct problem, one finds an effect from a cause,
and in an inverse problem, one is given the effect and wants to recover the cause.

The most usual situation giving rise to an inverse problem is the need to interpret
indirect physical measurements of an unknown object of interest, for instance, if one
is interested in determining the internal structure of a physical system from the
system’s measured behavior, or in determining the unknown input that gives rise to
a measured output signal.

Inverse problems are a recent topic in mathematics. Their study is motivated
by the technological development of the last decades; for example, some of the
more sophisticated medical diagnostic machines solve inverse problems, such as X-
ray computed tomography, in which the inverse problem is to reconstruct the inner
structure of an unknown physical body from the knowledge of X-ray images taken
from different directions.

An example of inverse problem, which will be treated in some numerical exper-
iments of this thesis, concerns the study of the subsoil in a non-destructive way,
through the propagation of electromagnetic waves, in order to know some proper-
ties of the subsoil. Another example concerns image processing, where the goal is
to find the sharp photograph from a given blurry image.

An inverse problem takes the form F (x) = b, where F is a linear or nonlinear
operator, x represents the unknown solution, and b is the information available, that
is, the measurements dataset. The goal is to reconstruct x starting from b. Inverse
problems are closely related to the concept of ill-posed problems. To understand
this concept we need to resort to the definition given by Hadamard at the beginning
of the last century: such problems may not have a solution, or may have more
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than one, or that solution is not stable with respect to perturbation in the data.
In applications, ill-posed problems are common whenever there is little available
measured data compared to the number of unknowns. In this case, it is necessary
to reformulate the original ill-posed problem into a well-posed problem. A typical
approach is to resort to a least-squares problem, in which the mean squared error
between F (x) and b is required to be minimal, i.e.,

min ‖F (x)− b‖2,

where ‖ · ‖ is the Euclidean norm.

In this thesis, we are concerned with problems that have no unique solution.
Among the different solutions, we want to determine the minimal-norm solution.

Definition 1. Let F be a linear or nonlinear operator defined in a Banach space B
with norm ‖ · ‖. Then, x† ∈ B is a minimal-norm solution to F (x) = b if

‖x†‖ ≤ ‖x∗‖,

for any other solution x∗ ∈ B.

The subjects discussed in this thesis can be divided into two themes: nonlinear
least-squares problems and systems of linear integral equations of the first kind.

It is common to solve nonlinear least-squares problems by Newton’s method
or one of its variants such as the Gauss–Newton algorithm. The idea of constructing
an iterative method for the computation of the minimal-norm solution of such prob-
lems was first studied by Eriksson et al. They analyzed the cases of rank-deficient
and ill-conditioned problems and proposed different solution techniques based on
the Gauss–Newton method and on Tikhonov regularization in standard form. In
this thesis, we review the results obtained by Eriksson et al. and extend them by
introducing the minimization of a seminorm. We name our algorithm the minimal-
norm Gauss–Newton method (MNGN). We further analyze the computation of the
regularized minimal-norm solution of ill-conditioned nonlinear least-squares prob-
lems by two standard procedures, namely, the truncated generalized singular value
decomposition applied to the Gauss–Newton method, and Tikhonov regularization
in general form.

Then, since occasionally the MNGN method does not converge, we propose an
improved version of this method. The problem of non-convergence has been consid-
ered by Campbell et al. They introduce a single parameter to enhance the conver-
gence. In this thesis, we develop an algorithm based on two parameters to control
both the Gauss–Newton and the projection step. We call our new algorithm the
doubly relaxed minimal-norm Gauss–Newton method (MNGN2).

The other topic dealt with in this thesis concerns the solution of systems of
linear integral equations of the first kind. We focus on overdetermined sys-
tems, that is, at least two integral equations whose solution is a single unknown
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function that satisfies known boundary constraints. According to our knowledge,
this problem has not been addressed before in the literature, although it arises in a
variety of applications.

In an experimental setting, the available data is represented by the right-hand
side evaluated at a finite set of points. This leads to a system of integral equations
with discrete data. We show that this problem has infinitely many solutions. Then,
we reformulate it as a minimal-norm solution problem and solve the latter in suitable
function spaces. Specifically, we consider a reproducing kernel Hilbert space where,
by using Riesz theory, the minimal-norm solution can be written as a linear combi-
nation of the so-called Riesz representers. While this approach is rather standard in
functional analysis, it has never been applied before to an overdetermined system.

The thesis is divided into 6 chapters.

Chapter 1 is devoted to some recalls of numerical linear algebra and functional
analysis. We remind the concept of ill-conditioned problem and we describe
some regularization methods, useful to obtain a well-conditioned problem.

Chapter 2 introduces an iterative method to solve nonlinear least-squares prob-
lems, based on the linearization of the residual function. We study the com-
putation of the minimal-norm solution, as well as the case where the solution
minimizes a suitable seminorm. When the nonlinear function is ill-conditioned,
we consider some regularization techniques for the solution.

Chapter 3 deals with the computation of the minimal-norm solution of nonlinear
least-squares problems in the large-scale case.

Chapter 4 illustrates a numerical method to compute the minimal-norm solution
of a linear system of integral equations of the first kind in the presence of
boundary constraints. The problem is solved in particular Hilbert spaces.

Chapter 5 collects several test problems both artificial and deriving from real-
world applications, of which some properties are studied.

Chapter 6 presents the numerical experiments that test the performance of the
methods introduced in this thesis. The methods are applied to the problems
presented in the above chapter.
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CHAPTER 1
A review of some concepts

In this preliminary chapter, with the purpose of making this thesis self-contained, we
recall some basic concepts and results in numerical linear algebra and in functional
analysis that will be used in the forthcoming chapters.

1.1 Linear algebra

Here we report some basic concepts of linear algebra that will be useful throughout
the thesis. A subspace of Rm is a subset that is also a vector space. Given a collection
of vectors v1, . . . ,vn ∈ Rm, the set of all linear combinations of these vectors is a
subspace referred to as the span of {v1, . . . ,vn}:

span{v1, . . . ,vn} =

{
x ∈ Rm : x =

n∑
j=1

αjvj , αj ∈ R

}
.

There are two important subspaces associated with a matrix A ∈ Rm×n. The range
of A is defined as the subspace of Rm spanned by the columns of A:

R(A) = {y ∈ Rm : y = Ax, x ∈ Rn} ,

and the null space of A is defined as the subspace of Rn spanned by the vectors
mapped to the zero vector, i.e., those vectors x for which Ax = 0:

N (A) = {x ∈ Rn : Ax = 0} .

Similarly, we can define the range and the null space of AT , where the superscript T

stands for transposition. For a matrix A, these spaces are sometimes referred to as
the four fundamental subspaces.

If A = [a1, . . . , an] is a column partitioning, then

R(A) = span {a1, . . . , an} .
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The rank of a matrix A is defined by

rank(A) = dim(R(A)).

It can be shown that rank(A) = rank(AT ) ≤ min(m,n). A matrix A ∈ Rm×n

is rank-deficient if rank(A) < min(m,n). The rank of a matrix is the number of
linearly independent columns or rows. Moreover, from the Rank-Nullity Theorem,
it follows that

dim(N (A)) + rank(A) = n.

Norms furnish a measure of distance on vector spaces. More precisely, Rn to-
gether with a norm on Rn defines a metric space.

A vector norm on Rn is a function ‖ · ‖ : Rn → R that satisfies the following
conditions:

� ‖x‖ ≥ 0, x ∈ Rn, (‖x‖ = 0 iff x = 0),

� ‖αx‖ = |α|‖x‖, α ∈ R, x ∈ Rn,

� ‖x + y‖ ≤ ‖x‖+ ‖y‖, x,y ∈ Rn.

A useful class of vector norms are the Hölder p-norms defined by

‖x‖p = (|x1|p + · · ·+ |xn|p)1/p , 1 ≤ p <∞.

The most commonly used norms for vectors are the 1, 2, and ∞ norms:

‖x‖1 =
n∑
i=1

|xi|,

‖x‖2 =

(
n∑
i=1

|xi|2
)1/2

=
(
xTx

)1/2
,

‖x‖∞ = max
1≤i≤n

|xi|.

The 2-norm, also called the Euclidean norm, is invariant under orthogonal transfor-
mation, i.e., if Q ∈ Rn×n is an orthogonal matrix and x ∈ Rn, then ‖Qx‖2 = ‖x‖2.
A sequence {x(k)} of vectors converges to a vector x if and only if

lim
k→∞
‖x(k) − x‖ = 0

for any norm.

Let A ∈ Rm×n be a matrix. A matrix norm is a function ‖ · ‖ : Rm×n → R
that satisfies, in addition to the analogous three vector norm properties, two further
properties:
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� a matrix norm is submultiplicative if it holds for each pair of matrices of com-
patible size ‖AB‖ ≤ ‖A‖‖B‖;

� a matrix norm is consistent with the vector norms ‖ · ‖a of Rn and ‖ · ‖b of Rm

if ‖Ax‖b ≤ ‖A‖‖x‖a, with A ∈ Rm×n and x ∈ Rn.

One of the most used matrix norms is the Frobenius norm

‖A‖F =

(
m∑
i=1

n∑
j=1

|aij|2
)1/2

=
(
Trace(ATA)

)1/2
.

A matrix norm can be constructed from any vector norm by defining

‖A‖ = max
x 6=0

‖Ax‖
‖x‖

= max
‖x‖=1

‖Ax‖.

Such a norm is generally called natural. The Frobenius norm does not fall in this
definition. Formulas for the p-norms are known for p = 1, 2,∞:

‖A‖1 = max
1≤j≤n

m∑
i=1

|aij|,

‖A‖∞ = max
1≤i≤m

n∑
j=1

|aij|,

‖A‖2 =
(
λmax(ATA)

)1/2
,

where λmax(ATA) is the largest eigenvalue of the matrix ATA. An important prop-
erty of the Frobenius norm and the 2-norm is that they are invariant with respect
to orthogonal transformations.

Throughout the thesis, from now on, we indicate the Euclidean norm as ‖ · ‖
without subscript.

Now, we introduce the concept of orthogonality. A set of vectors {x1, . . . ,xp} in
Rn is orthogonal if xTi xj = 0 whenever i 6= j and orthonormal if xTi xj = δij, where
δij is the Kronecker delta. A collection of subspaces S1, . . . , Sp in Rn is mutually
orthogonal if xTy = 0 whenever x ∈ Si and y ∈ Sj for i 6= j.

The orthogonal complement of a subspace S ⊆ Rn is defined by

S⊥ =
{
y ∈ Rn : yTx = 0 for all x ∈ S

}
.

It is not hard to show that R(A)⊥ = N (AT ) and N (A)⊥ = R(AT ). Moreover,

Rn = {w : w = u + v,u ∈ R(AT ),v ∈ N (A)},

that is,
Rn = R(AT )⊕N (A),
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where ⊕ denotes the direct sum. Similarly,

Rm = R(A)⊕N (AT ).

Let S ⊆ Rn be a subspace. P ∈ Rn×n is the orthogonal projection onto S if
R(P) = S, P2 = P , and PT = P . From this definition it is easy to show that if
x ∈ Rn, then Px ∈ S and (In−P)x ∈ S⊥. The last expression means that (In−P)
is the projector for the subspace complementary to that of S.

If P1 and P2 are orthogonal projections, then for any z ∈ Rn we have

‖(P1 − P2)z‖2 = (P1z)T (In − P2)z + (P2z)T (In − P1)z.

If R(P1) = R(P2) = S, then the right-hand side of this expression is zero, showing
that the orthogonal projection for a subspace is unique. If the columns of V =
[v1, . . . ,vk] are an orthonormal basis for a subspace S, then it is easy to show that
P = V V T is the unique orthogonal projection onto S.

1.1.1 Matrix decompositions

In the following, we review some of the most important factorizations of a matrix
A [10, 45].

We start with the eigendecomposition. Symmetry guarantees that all eigen-
values are real and that there is an orthonormal basis of eigenvectors. If A ∈ Rn×n

is symmetric, then there exists a real orthogonal Q = [q1, . . . ,qn] such that

A = QΛQT , (1.1)

where Λ = diag(λ1, . . . , λn) whose elements are the eigenvalues of A. The columns
qi of Q are the eigenvectors of A. Moreover, for i = 1, . . . , n, they satisfy Aqi = λiqi.

As the eigenvectors are the non-trivial solutions of the linear system (A−λIn)q =
0, the eigenvalues have to be the roots of the characteristic polynomial of A, defined
by pA(λ) = det(A − λIn). The set of these roots, solutions of the characteristic
equation det(A− λIn) = 0, is the so-called spectrum of A and the spectral radius of
A is the largest absolute value of its eigenvalues. The decomposition (1.1) is called
spectral factorization.

Then, we recall a matrix decomposition of great importance for the treatment
of least-squares problems. For a matrix A ∈ Rm×n with r = rank(A), the singular
value decomposition (SVD) is a matrix decomposition of the form

A = UΣV T =
r∑
i=1

σiuiv
T
i , (1.2)

where U = [u1, . . . ,um] ∈ Rm×m and V = [v1, . . . ,vn] ∈ Rn×n are matrices with
orthonormal columns, and Σ ∈ Rm×n is a diagonal matrix. The non-zero diagonal
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elements of the matrix Σ are the singular values σ1 ≥ σ2 ≥ · · · ≥ σr > 0. The ui
and the vi are the left and the right singular vectors of A, respectively, associated
with σi, i = 1, . . . , r. The SVD gives an expression to write a matrix A as the sum
of r rank-1 matrices; see equation (1.2).

The SVD of a matrix A furnishes orthonormal bases for its null space and its
range, as well as for their orthogonal complements

R(A) = span{u1, . . . ,ur}, N (AT ) = span{ur+1, . . . ,un},
R(AT ) = span{v1, . . . ,vr}, N (A) = span{vr+1, . . . ,vn}.

From (1.2) it follows that

Avi = σiui, ‖Avi‖ = σi, i = 1, . . . , r,

ATui = σivi, ‖ATui‖ = σi, i = 1, . . . , r.

From these relations, we see that for each small singular value σi, compared to
σ1 = ‖A‖, there exists a linear combination of the columns of A such that ‖Avi‖ = σi
is small. This means that A is nearly rank-deficient, and the vectors vi associated
with the small singular values are vectors in the numerical null space of A. The
same holds for the rows of A, and the vectors ui associated with the small σi are
vectors in the numerical null space of AT .

From the relations ATA = V ΣTΣV T and AAT = UΣΣTUT we see that the
SVD of A is linked to the eigenvalue decompositions of the symmetric semidefinite
matrices ATA and AAT . Thus σ2

1, . . . , σ
2
r are the non-zero eigenvalues of the matrices

ATA and AAT , and vi and ui are the corresponding eigenvectors.

The SVD has a critical role to play because it can be used to identify an approx-
imation of a matrix by another one of lower rank.

Theorem 1.1.1. (Eckhart-Young’s Theorem [45, Theorem 2.4.8]). If k < r =
rank(A) and

Ak =
k∑
i=1

σiuiv
T
i ,

then

min
rank(Zk)=k

‖A− Zk‖ = ‖A− Ak‖ = σk+1,

min
rank(Zk)=k

‖A− Zk‖F = ‖A− Ak‖F =
(
σ2
k+1 + · · ·+ σ2

n

)1/2
.

The SVD gives the explicit expression for projectors. Indeed, matrices U and V
can be partitioned

U =
[
U1 U2

]
, V =

[
V1 V2

]
,

where U1 and V1 consist of the first r columns of U and V , respectively, U2 is
composed of the m − r remaining columns of U , and V2 of the remaining n − r of
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V . We can write the orthogonal projectors onto the four fundamental subspaces of
A in terms of its singular vectors:

PR(A) = U1U
T
1 , PN (AT ) = U2U

T
2 ,

PR(AT ) = V1V
T

1 , PN (A) = V2V
T

2 .

Another important concept related to least-squares problems is that of pseu-
doinverse of a matrix A ∈ Rm×n (or Moore-Penrose inverse), which can be de-
fined by using the SVD. Assuming that r = rank(A) and m ≥ n, it is the matrix
A† ∈ Rn×m such that

A† = V Σ†UT ,

where

Σ† = diag

(
1

σ1

,
1

σ2

, . . . ,
1

σr
, 0, . . . , 0

)
∈ Rn×m.

The pseudoinverse A† is defined to be the unique matrix X ∈ Rn×m that satisfies
the four Moore-Penrose conditions:

AXA = A, XAX = X,

(AX)T = AX, (XA)T = XA.

It can be characterized as the unique minimal Frobenius norm solution to the prob-
lem

min
X∈Rn×m

‖AX − Im‖F .

The pseudoinverse has interesting properties, similar to those of the ordinary inverse,
that are summarized in [10, Theorem 1.2.12]. On the contrary, the pseudoinverse
does not share some other properties of the ordinary inverse, for instance AA† 6=
A†A.

The pseudoinverse gives simple expressions for the orthogonal projectors onto
the four fundamental subspaces of A:

PR(A) = AA†, PN (AT ) = Im − AA†

PR(AT ) = A†A, PN (A) = In − A†A.

If m > n and rank(A) = n, then A† = (ATA)−1AT , while if m = n = rank(A), then
A† = A−1. If m < n and rank(A) = m, then A† = AT (AAT )−1.

We recall two other important factorizations. The QR decomposition: let
A ∈ Rm×n, m ≥ n, then there exists an orthogonal matrix Q ∈ Rm×m and an upper
triangular matrix R ∈ Rm×n with nonnegative diagonal elements such that

A = QR.
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The Cholesky factorization: a symmetric and positive definite matrix A ∈ Rn×n

can be decomposed as
A = RTR,

where R is an upper triangular matrix with positive diagonal entries.

We conclude the paragraph on matrix decompositions with a review of a simulta-
neous decomposition of a pair of matrices. Let A ∈ Rm×n and L ∈ Rp×n be matrices
with rank(A) = r and rank(L) = p. Assume that m+ p ≥ n and

rank

([
A
L

])
= n,

which corresponds to requiring that N (A)∩N (L) = {0}. The generalized singu-
lar value decomposition (GSVD) of the matrix pair (A,L) is a decomposition of
the form

A = UΣAW
−1, L = V ΣLW

−1, (1.3)

where U ∈ Rm×m and V ∈ Rp×p are matrices with orthonormal columns ui and
vi, respectively, and W ∈ Rn×n is nonsingular. If m ≥ n ≥ r, then the matrices
ΣA ∈ Rm×n and ΣL ∈ Rp×n have the form

ΣA =


On−r

C
Id

O(m−n)×n

 , ΣL =

 Ip−r+d
Op×d

S

 , (1.4)

where d = n− p,
C = diag(c1, . . . , cr−d), 0 < c1 ≤ c2 ≤ · · · ≤ cr−d < 1,

S = diag(s1, . . . , sr−d), 1 > s1 ≥ s2 ≥ · · · ≥ sr−d > 0,
(1.5)

with c2
i + s2

i = 1, for i = 1, . . . , r−d. The identity matrix of size k×k is denoted by
Ik, while Ok and Ok×` are zero matrices of size k×k and k×`, respectively; a matrix
block has to be omitted when one of its dimensions is zero. The scalars γi = ci

si
are

called generalized singular values, and they appear in non-decreasing order.
If r ≤ m < n, then the matrices ΣA ∈ Rm×n and ΣL ∈ Rp×n take the form

ΣA =

 Om−r
Om×(n−m) C

Id

 , ΣL =

 Ip−r+d
Op×d

S

 , (1.6)

where the blocks are defined as above.
When L is the identity matrix, then the matrices U and V of the GSVD are the

same U and V of the SVD, and the generalized singular values of (A, In) coincide
with the singular values of A, except for the reverse ordering.

The GSVD is connected to regularization methods in general form, in which
the regularization term takes the form ‖Lx‖; see equations (1.14) and (1.15) in
Section 1.2 for examples of matrices L.
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1.1.2 Linear systems and least-squares problems

A system of linear equations (or linear system) is a collection of one or more linear
equations involving the same set of variables. A system of m linear equations with
n unknowns can be written in matrix form as

Ax = b,

where A ∈ Rm×n, x ∈ Rn, and b ∈ Rm. When there are more equations than
unknowns, i.e., m ≥ n, we say that the system is overdetermined. On the contrary,
if m < n, we are dealing with the so-called underdetermined systems.

We say that a linear system Ax = b is compatible if the right-hand side
b ∈ R(A). If m ≤ n and A has full rank, then R(A) = Rm and all systems
are compatible.

If m ≥ n and A has full rank, then it has the trivial null space N (A) = {0}. An
overdetermined system has no exact solution if b is not an element of R(A). This
suggest to consider the least-squares problem

min
x∈Rn
‖Ax− b‖, (1.7)

where the matrix A and the vector b are given. We want to find a vector x such that
Ax is the “best” approximation to b. The least-squares problem originally arose
from the need to fit a linear mathematical model to given observations.

We now characterize the set of all solutions to the least-squares problem (1.7).

Theorem 1.1.2. [10, Theorem 1.1.2] Denote the set of all solutions by

S = {x ∈ Rn : ‖Ax− b‖ = min}. (1.8)

Then x ∈ S if and only if
AT (b− Ax) = 0.

Denoted by r = b − Ax the residual vector, the theorem shows that for every
least-squares solution it is true that r ∈ N (AT ), and viceversa. Any least-squares
solution x uniquely decomposes the right-hand side b into two orthogonal compo-
nents

b = Ax + r, Ax ∈ R(A), r ∈ N (AT ).

From Theorem 1.1.2 it follows that a least-squares solution satisfies the normal
equations

ATAx = ATb.

The matrix ATA ∈ Rn×n is symmetric and nonnegative definite. The normal equa-
tions are always consistent since

ATb ∈ R(AT ) = R(ATA).
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If m ≥ n and rank(A) = n the matrix ATA is positive definite, then the unique
least-squares solution and the corresponding residual are given by

x = (ATA)−1ATb, r = b− A(ATA)−1ATb.

Since r ∈ N (AT ), then r = (Im − PR(A))b. In the full rank case

PR(A) = A(ATA)−1AT .

If rank(A) = r < n then A has a non-trivial null space and the least-squares
solution is not unique. If x̂ is a particular least-squares solution then the set of all
least-squares solutions is

S = {x = x̂ + z : z ∈ N (A)}.

If x̂ ⊥ N (A) then ‖x‖2 = ‖x̂‖2 + ‖z‖2, and therefore x̂ is the least-squares solution
of minimal norm. It can be proved that it is unique.

However, even if rank(A) = n, difficulties may arise if A is nearly rank deficient.
We use the SVD (1.2) to analyze least-squares problems. The solution is given by

x = A†b =
n∑
i=1

uTi b

σi
vi.

If σn is small, small changes in A or b can induce relatively large changes in x. The
presence of one or more small non-zero singular values is the problem, because ‖x‖2

may become very large due to a small σi. At the end of this section, we explain how
to measure this sensitivity.

The problem of computing the minimal-norm solution y ∈ Rm to an underde-
termined system of linear equations

min ‖y‖, ATy = c,

where A ∈ Rm×n, m > n, occurs as a subproblem in optimization algorithms. If
rank(A) = n, then the system ATy = c is consistent and the unique solution is
given by the normal equations of the second kind

ATAz = c, y = Az,

that is, y = A(ATA)−1c. If rank(A) < n, then at least one row of AT is a linear
combination of the others. If the right-hand side c does not satisfy the same linear
combination, then the system is incompatible.

Since the set (1.8) of all minimizers is convex, it follows that among all least-
squares solutions there is a unique solution which minimizes ‖x‖. We have the
following fundamental result, which applies to all cases, either overdetermined or
underdetermined linear systems, full rank or rank-deficient.
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Theorem 1.1.3. [45, Theorem 5.5.1] Suppose A = UΣV T is the SVD of A ∈ Rm×n

with r = rank(A). Then

xLS = A†b =
r∑
i=1

uTi b

σi
vi (1.9)

minimizes ‖Ax− b‖ and has the smallest norm among all minimizers. Moreover

‖AxLS − b‖2 =
n∑

i=r+1

(uTi b)2.

Conditioning. Here we give some results on the sensitivity of least-squares so-
lutions to perturbations in the right-hand side b. In [10, Chapter 1] there are the
details about the results on the sensitivity to perturbation in A and b.

It is needed to introduce the concept of condition number of a matrix A ∈
Rm×n, defined by

κ(A) = ‖A‖‖A†‖ =
σ1

σr
,

where r = rank(A). Herein we consider the 2-norm condition number and it is
equivalent to the ratio between the largest singular value σ1 and the smallest non-
zero singular value σr. The quantity κ(A) measures the sensitivity of the solution to
perturbations of b. Indeed, assume that the exact xexact and the perturbed solution
x satisfy

Axexact = bexact, Ax = b = bexact + e,

where e denotes the perturbation. If A has full rank, then the perturbed solution is
given by x = A†b = xexact +A†e, and an upper bound for the relative perturbation
is given by

‖xexact − x‖
‖xexact‖

≤ κ(A)
‖e‖
‖bexact‖

.

The larger the condition number, the more sensitive the system is to perturbations
in the right-hand side. If κ(A) is large, this implies that x can be very far from
xexact. For any of the p-norms, we have κp(A) = ‖A‖p‖A†‖p ≥ 1.

If κ(A) is large, then A is said to be an ill-conditioned matrix. Matrices
with small condition number are said to be well-conditioned. Orthogonal ma-
trices are perfectly conditioned in the 2-norm, indeed, if Q is orthogonal, then
κ(Q) = ‖Q‖‖QT‖ = 1.

1.2 Regularization

When talking about ill-conditioned matrices, knowledge of the SVD is useful. In par-
ticular, the condition number of a matrix is defined as the ratio between the largest
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and the smallest singular values. The numerical treatment of systems of equations
with an ill-conditioned coefficient matrix depends on the type of ill-conditioning
of A. There are two important classes of problems, and many practical problems
belong to one of these two classes [57].

Rank-deficient problems are characterized by the matrix A having a cluster
of small singular values, and there is a well-determined gap between large and small
singular values. In this case, one or more rows and columns of A are nearly linear
combinations of some or all of the remaining rows and columns. In other words,
the matrix A contains almost redundant information, and the key to the numerical
treatment of such problems is to consider only the linearly independent information
inA, to arrive at another problem with a well-conditioned matrix. The small singular
values approximate the zero singular values. Once the numerical rank has been
identified, the matrix could be well-conditioned.

Discrete ill-posed problems arise from the discretization of ill-posed problems
such as Fredholm integral equations of the first kind. Here all the singular values of
A, as well as the SVD components of the solution, decay gradually to zero, and we
say that a discrete Picard condition is satisfied. Since there is no gap in the singular
value spectrum, there is no notion of numerical rank for these matrices. For discrete
ill-posed problems, the goal is to find a balance between the residual norm and the
size of the solution. The word “size” should be interpreted in a broad sense; e.g.,
size can be a norm, a seminorm, or a Sobolev norm.

Figure 1.1 shows these two different behaviors: on the left we can clearly see the
gap between large and small singular values of a rank-deficient problem, while on
the right picture, the singular values of a discrete ill-posed problem decay gradually
to zero. The test problems are included in the “Regularization Tools” [58] package
as functions heat and baart.
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Figure 1.1: The 32 singular values σi of A for the heat test problem (left) and for
the baart test problem (right).

The word ill-posed is almost automatically associated with inverse problem. To
explain the concept of ill-posed problem, we need the notion of a well-posed problem
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introduced by Hadamard [52]. Problems of this type must verify the following
conditions:

� Existence. There should be at least one solution.

� Uniqueness. There should be at most one solution.

� Stability. The solution must depend continuously on data.

A problem is said ill-posed if at least one of these conditions fails. If the last
condition is not verified, it means that an arbitrarily small perturbation of the data
can cause an arbitrarily large perturbation of the solution.

A classical example of a linear ill-posed problem is a Fredholm integral equation
of the first kind with a square-integrable kernel∫ b

a

k(s, t)f(t) dt = g(s), c ≤ s ≤ d, (1.10)

where the right-hand side g and the kernel k are known functions, while f is the
unknown. Let L2([a, b]) be the Hilbert space of square-integrable functions in the
interval [a, b]. The corresponding integral operator is K : L2([a, b])→ L2([c, d]) (see
Section 1.3)

(Kf)(s) :=

∫ b

a

k(s, t)f(t) dt.

In many practical applications the kernel k is given exactly by the underlying mathe-
matical model, while the right-hand side g typically consists of measured quantities,
i.e., it is only known in a finite set of points s1, . . . , sm∫ b

a

k(si, t)f(t) dt = g(si), i = 1, . . . ,m. (1.11)

The analytical tool for the analysis of first kind Fredholm integral equa-
tions (1.10) with square-integrable kernels is the singular value expansion (SVE)
of the kernel. First, we need to introduce a bit of notation. Given two functions φ
and ψ defined on the interval [a, b], their inner product is defined in L2 as

〈φ, ψ〉 =

∫ b

a

φ(t)ψ(t) dt,

and the norm of the function φ is defined as

‖φ‖L2 = 〈φ, φ〉1/2 =

(∫ b

a

φ(t)2 dt

)1/2

.

A kernel k is square-integrable if the norm

‖k‖2 =

∫ b

a

∫ d

c

k(s, t)2 ds dt
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is finite. For any square-integrable kernel k the SVE takes the form

k(s, t) =
∞∑
i=1

µiui(s)vi(t). (1.12)

The functions ui and vi are termed the singular functions. They are orthonormal
with respect to the inner product, i.e.,

〈ui, uj〉 = 〈vi, vj〉 = δij,

where δij is the Kronecker delta. The numbers µi are the singular values ; they are
nonnegative, they are ordered in non-increasing order such that

µ1 ≥ µ2 ≥ · · · ≥ 0,

and they satisfy the relation ‖k‖2 =
∑∞

i=1 µ
2
i .

The most important relation between singular values and functions is the follow-
ing fundamental relation:∫ b

a

k(s, t)vi(t) dt = µiui(s), i = 1, 2, . . . ,

which shows that any singular function vi is mapped onto the corresponding ui,
and that the singular value µi is the amplification of this particular mapping. The
integral in the above equation can be written as an operator and by considering the
concept of adjoint K∗ (see Section 1.3), the following relations hold

Kvi = µiui, K∗ui = µivi, i = 1, 2, . . . ,

Kf =
∞∑
i=1

µi〈f, vi〉ui, K∗g =
∞∑
i=1

µi〈g, ui〉vi, i = 1, 2, . . . .

Each system {µi, ui, vi} with these properties is called a singular system of K.
The left and right singular functions ui and vi form bases for the function spaces

L2([c, d]) and L2([a, b]), respectively. Hence, we can expand both f and g in terms
of these functions:

f(t) =
∞∑
i=1

〈vi, f〉vi(t), and g(s) =
∞∑
i=1

〈ui, g〉ui(s).

If the SVE (1.12) is inserted into the integral equation (1.10), then we obtain, after
some computation, the following expression for the solution to (1.10)

f(t) =
∞∑
i=1

〈ui, g〉
µi

vi(t). (1.13)

There is also a system of m triplets {µi, ui, vi} associated with the operator in the
Fredholm integral equation (1.11) with a discrete right-hand side. In this case, ui
are m orthonormal functions while vi are m orthonormal vectors in Rm.
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The Picard condition. In order that there exists a square-integrable solution
f to the integral equation (1.10), the right-hand side g must satisfy the Picard
condition

∞∑
i=1

(
〈ui, g〉
µi

)2

<∞.

This condition says that from some point in the summation in (1.13), the absolute
value of the coefficients 〈ui, g〉 must decay faster than the corresponding singular
values µi in order that a square-integrable solution exists. The trouble with first
kind Fredholm integral equations is that, even if the exact data satisfies the Picard
condition, the measured and noisy data g usually violates the condition.

As we have seen, the primary difficulty with ill-posed problems is the presence
of the cluster of small singular values. Hence, it is necessary to incorporate further
information about the desired solution in order to stabilize the problem and to single
out a useful and stable solution. This is the purpose of regularization.

In order to solve the problem numerically, we must discretize it. There are
essentially two main classes of methods, namely, quadrature methods and Galerkin
methods, to discretize integral equations. Both methods compute an approximation
to f . In the quadrature method (see Section 1.3), a quadrature rule with abscissas
t1, . . . , tn and corresponding weights w1, . . . , wn is used to approximate an integral
as ∫ b

a

φ(t) dt ≈
n∑
j=1

wjφ(tj),

and when this rule is applied to the integral equation (1.10) for m distinct values
s1, . . . , sm, then we obtain an m×n matrix A and a right-hand side b with elements
given by

aij = wjk(si, tj), bi = g(si).

The discretization leads to a system

min
x∈Rn
‖Ax− b‖, A ∈ Rm×n,

where the vector x represents the function f .

When a rank-deficient or ill-posed problem is discretized, then the difficulties
carry over to the discrete problem in the sense that the coefficient matrix will also
have either a cluster of small singular values or singular values that decay gradually
to zero. Hence, some kind of regularization is also required to solve the discretized
problem.

There exist different approaches to regularization: applying the regularization
means

� minimizing the residual norm ‖Ax − b‖ subject to the constraint that the
solution belongs to a specified subset;
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� minimizing the residual norm subject to the constraint that the “size” of the
solution is less than some specified upper bound;

� minimizing the “size” of the solution subject to a constraint on the residual
norm;

� minimizing a linear combination of the residual norm and the “size” of the
solution.

In order to select solutions exhibiting different degrees of regularity, the “size” of
the solution is often of the form ‖Lx‖, where the matrix L is typically either the
identity matrix, a diagonal weighting matrix, or a p × n discrete approximation of
a derivative operator, in which case L is a banded matrix with full row rank. For
example, the matrices

D1 =

1 −1
. . . . . .

1 −1

 and D2 =

1 −2 1
. . . . . . . . .

1 −2 1

 , (1.14)

of size (n− 1)× n and (n− 2)× n, respectively, are approximations to the first and
second derivative operators. Regularization operators of this form are often referred
to as smoothing operators.

An effective choice of L is such that the solution x is (at least approximately)
in the null space of L. For p < n the matrix L always has a non-trivial N (L).
If L = D1, then N (L) contains constant vectors, while N (D2) includes constant
and linearly varying vectors, i.e., N (D2) is spanned by the vectors [1, 1, . . . , 1]T and
[1, 2, . . . , n]T . In this case, ‖L · ‖ is said to be a seminorm, i.e., there exist vectors
x 6= 0, in the null space of L, i.e., such that ‖Lx‖ = 0.

The constraint p ≤ n is not restrictive. Indeed (see, e.g., [57]), if p > n it
is possible to perform the compact QR factorization L = QR with Q ∈ Rp×p1 ,
R ∈ Rp1×n, and p1 = rank(L) ≤ n. In this case the matrix L can be substituted by
the triangular matrix R, as ‖Lx‖ = ‖Rx‖ for any vector x.

Other regularization matrices might be used. For instance, the regularization
matrix

L =

[
In ⊗D1

D1 ⊗ In

]
, (1.15)

where In denotes the identity matrix of order n and ⊗ stands for the Kronecker
product, is commonly used in image restoration [19, 70].

If an a priori estimate x of the desired regularized solution is available, then this
information can be taken into account by the following term

‖L(x− x)‖. (1.16)
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From general to standard form. A regularization problem with regularization
term ‖L(x−x)‖ is said to be in standard form if the matrix L is the identity matrix
In. In many applications, regularization in standard form is not the best choice.
Since only the matrix A is involved, instead of the matrices A and L, it is much
simpler to treat problems in standard form, from a numerical point of view. A given
regularization problem with residual ‖Ax− b‖ and regularization term ‖L(x− x)‖
can be transformed into one in standard form, with a new residual ‖Âx̂− b̂‖ and a
new regularization term ‖x̂− x̂‖, where

Â = AL†A, b̂ = b− Ax0, x̂ = Lx,

while the transformation back to the general-form setting becomes

x = L†Ax̂ + x0.

In the above equations, L†A is the A-weighted pseudoinverse of L, defined as

L†A =
(
In −

(
A(In − L†L)

)†
A
)
L†,

and x0 =
(
A(In − L†L)

)†
b is the component of the regularized solution in N (L).

Note that, if p ≥ n then L†A = L†; if p = n then L†A = L−1 and x0 = 0.

1.2.1 Rank-deficient problems

In this section, we discuss numerical methods that are suited for the solution of
problems with a numerically rank-deficient coefficient matrix A, i.e., problems for
which there is a well-determined gap between the large and small singular values of
A.

The rank of a matrix A is defined as the number of linearly independent columns
(or rows) of A. It is immediate to prove that the rank is equal to the number of
non-zero singular values of A: r = rank(A) means that σr > 0 and σr+1 = 0. The
matrix A has full rank only if all of its singular values are non-zero. In applications,
the presence of errors of various kind (measurement errors, approximation and dis-
cretization errors, as well as rounding errors) makes this definition not appropriate.
Columns of A that are theoretically strictly linearly independent, may result to be
linearly dependent from a numerical point of view. To correctly describe the situa-
tion, it is necessary to introduce the concept of numerical rank: it is the number of
rows or columns of A that are linearly independent with respect to some error level.

The numerical ε-rank rε of a matrix A, with respect to the tolerance ε, is
defined by

rε = min
‖E‖≤ε

rank(A+ E).
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It is equal to the number of columns of A that are guaranteed to be linearly inde-
pendent for any perturbation E of A with norm lesser than or equal to the tolerance
ε. In terms of the singular values of A, the numerical ε-rank satisfies

σrε > ε ≥ σrε+1.

The definition of rε is satisfactory only when there is a well-determined gap between
σrε and σrε+1.

Associated with the numerical rank rε = k are the numerical null space and the
numerical range of A, defined as

Nk(A) = span{vk+1, . . . ,vn}, (1.17)

Rk(A) = span{u1, . . . ,uk}. (1.18)

Truncated SVD. In the ideal setting, without perturbations and rounding errors,
the treatment of rank-deficient least-squares problems is easy: simply ignore the
SVD components associated with the zero singular values and compute the solution
by means of (1.9).

In practice, A is never exactly rank-deficient, but instead numerically rank-
deficient, i.e., it has one or more small non-zero singular values such that rε <
rank(A) = min(m,n). The small singular values give rise to difficulties. Indeed the
norm of the solution is given by

‖xLS‖2 =
n∑
i=1

(
uTi b

σi

)2

,

Hence, the norm is very large due to the small σi, unless the coefficients uTi b satisfy
|uTi b| < σi, for i = rε + 1, . . . , n. This requirement is very unlikely to be satisfied,
whenever errors are present in b. To deal with this phenomenon, it is necessary to
introduce the Picard condition for the discretized problem.

Discrete Picard condition. Let τ denote the value at which the singular values
σi level off due to rounding errors. The discrete Picard condition is satisfied if, for
all singular values larger than τ , the corresponding coefficients |uTi b|, on average,
decay faster than the σi.

In Figure 1.2 we plotted the singular values, the coefficients, and the ratios
between them for the shaw test problem [58]. On the left pane, without noise, the
singular values σi and the coefficients |uTi b| both level off at the machine precision.
On the contrary, if we introduce the noise on the data, that is, b = b+10−5w, where
w is a normally distributed random vector, the right part of the figure shows that
the coefficients |uTi b| level off at the noise level 10−5 and only ≈ 11 SVD components
are reliable.



28 CHAPTER 1. A REVIEW OF SOME CONCEPTS

0 5 10 15 20 25 30
10

-20

10
-15

10
-10

10
-5

10
0

10
5

i

|u
i

T
b|

|u
i

T
b|/

i

0 5 10 15 20 25 30
10

-20

10
-10

10
0

10
10

10
20

i

|u
i

T
b|

|u
i

T
b|/

i

Figure 1.2: The 32 singular values σi of A (asterisks), the coefficients |uTi b| (tri-
angles), and the ratios |uTi b|/σi (circles) for the shaw test problem. On the left:
without noise. On the right: with noise level 10−5.

The most common approach to the regularization of numerically rank-deficient
problems is to replace A with a matrix that is close to A and mathematically rank-
deficient. The standard choice is the matrix Ak with rank(Ak) = k defined as

Ak =
k∑
i=1

uiσiv
T
i ,

i.e., we set to zero the small non-zero singular values σk+1, . . . , σn. Among all rank-k
matrices Zk, the matrixAk minimizes both the 2-norm and the Frobenius norm of the
difference A−Zk, i.e., Ak is the best rank-k approximation of A; see Theorem 1.1.1.

It is natural to choose the rank k of Ak as the numerical ε-rank of A, i.e., k = rε,
because k < rε leads to loss of information associated with large singular values,
while k > rε leads to a solution with large norm. Unfortunately choosing ε is not
easy.

When the matrix A is replaced by Ak, then we obtain a new least-squares problem

min
x∈Rn
‖Akx− b‖.

The corresponding solution is given by

xk =
k∑
i=1

uTi b

σi
vi,

which is the truncated SVD solution. The method is referred to as truncated SVD
(TSVD) [55]. The truncation parameter k should be chosen such that all the noise-
dominated SVD coefficients are discarded. A suitable value of k often can be found
from an inspection of the Picard plot, as we have seen above.
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Since the TSVD solution xk is a regularized solution with minimal-norm, it is
connected with regularization in standard form, i.e., with the regularization term
‖x‖. However, it is common in regularization problems to use the more general
constraint ‖Lx‖. To deal with such problems we can use a standard-form transfor-

mation to compute the matrix Â and the corresponding right-hand side b̂, and then
apply the TSVD method to Â and b̂. After some computation (see [57, Section
3.2]), the solution is given by

xL,k =

p∑
i=p−k+1

uTi b

ci
wi +

n∑
i=p+1

(uTi b)wi,

where ci and wi are elements deriving from the GSVD of the matrix pair (A,L); see
(1.3) and (1.5). It is referred to as the truncated GSVD (TGSVD) solution.

Tikhonov regularization can also be successfully applied to rank-deficient prob-
lems, despite the fact that this method does not seem to involve the numerical rank
of the matrix.

1.2.2 Problems with ill-determined rank

In this section, we see how to regularize discrete ill-posed problems. The main
feature of these problems is that all the singular values of the coefficient matrix
decay gradually to zero, with no gap. Obviously, in this case, the numerical rank of
the matrix is not well-determined. Problems which yield matrices that lack a well-
determined numerical rank are often discretizations of continuous ill-posed problems.

Also in this case, the last SVD components of the solution, corresponding to
small singular values, are dominated by the errors and they should be filtered out
in the regularized solution. It is useful to introduce the concept of filter factors.

If A has full rank then we can always write the regularized solution xreg in terms
of the SVD (or GSVD). Specifically, for regularization methods in standard form
with L = In, the regularized solution can be written in terms of the SVD of A as

xreg =
n∑
i=1

fi
uTi b

σi
vi,

where the elements fi are called the filter factors. The filter factors are typically
close to 1 for a large σi and much smaller than 1 for a small σi. In this way, the
contributions to the regularized solution corresponding to the smaller singular values
are effectively filtered out.

Similarly, for regularization methods in general form with L 6= In, we can write
the regularized solution in terms of the GSVD of (A,L) as

xL,reg =

p∑
i=1

fi
uTi b

ci
wi +

n∑
i=p+1

(uTi b)wi.
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The difference between various regularization methods with the same L-matrix lies
in the way the filter factors are defined. For example, the filter factors for the TSVD
and TGSVD methods are

fi =

{
1, i ≤ k,

0, i > k,
fi =

{
0, i ≤ n− k,
1, i > n− k,

respectively, where k is the truncation parameter. For the expression of the filter
factors for Tikhonov regularization, the reader is referred to the next paragraph.

Tikhonov regularization. The idea in Tikhonov’s method is to incorporate a pri-
ori assumptions about the size and smoothness of the desired solution. For discrete
ill-posed problems, Tikhonov regularization in general form leads to the minimiza-
tion problem

min
x∈Rn

{
‖Ax− b‖2 + λ2‖Lx‖2

}
, (1.19)

where the regularization parameter λ controls the weight given to minimization of
the regularization term, relative to the minimization of the residual norm. The
Tikhonov problem (1.19) has two important alternative formulations:

(ATA+ λ2LTL)x = ATb and min
x∈Rn

∥∥∥∥[ AλL
]

x−
[
b
0

]∥∥∥∥ .
The assumption N (A) ∩N (L) = {0} leads to a unique Tikhonov solution

xL,λ = (ATA+ λ2LTL)−1ATb.

The ill-conditioning of A is bypassed by introducing a new problem with a new
well-conditioned coefficient matrix [ AλL ] with full rank.

By inserting the SVD of A or the GSVD of (A,L), depending on whether the
regularization method is in standard or in general form, into the above equation, it
can be shown that the filter factors for Tikhonov regularization are

fi =
σ2
i

σ2
i + λ2

if L = In, i = 1, . . . , n,

and

fi =
γ2
i

γ2
i + λ2

if L 6= In, i = 1, . . . , p,

where σi are the singular values of A (see (1.2)) and γi are the generalized singular
values of (A,L) (see (1.3)). If the regularization term includes an a priori estimate
x of the desired solution, as in (1.16), the formulation takes the form

min
x∈Rn

∥∥∥∥[ AλL
]

x−
[

b
λLx

]∥∥∥∥ .
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Other regularization methods. Regularization methods in norms different from
the 2-norm are also important. For example, the `p-`q minimization problem takes
the form

min
x∈Rn

{
1

p
‖Ax− b‖pp +

λ

q
‖Lx‖qq

}
,

where 0 < p, q < ∞. The interested reader can consult [14, 15, 16, 17, 18, 67, 73]
and the references therein for a detailed discussion.

In image processing, the total variation (TV) functional is useful as a measure
of the “size” of the regularized solution. For a one-dimensional function u defined
on an interval [a, b] ⊂ R, the TV functional is

JTV(u) =

∫ b

a

∣∣∣∣dudt
∣∣∣∣ dt,

and in multidimensional case is

JTV(u) =

∫
Ω

|∇u| dΩ,

where Ω ⊆ Rn is a bounded open set and ∇u is the gradient of u.

1.2.3 Choosing the regularization parameter

A regularization method, to be complete, must include a method for choosing the
regularization parameter, either the continuous parameter λ or the discrete param-
eter k. In this section, we discuss several parameter-choice methods.

Most of the parameter-choice methods are based on residual norms and, in the
case of the L-curve, also on the (semi)norm of the solution.

Parameter-choice methods can be divided into two classes depending on their
assumptions about the error norm ‖e‖:

� a posteriori methods based on the knowledge, or on a good estimate, of ‖e‖,
like the discrepancy principle;

� methods that do not require ‖e‖, but instead seek to extract this information
from the given right-hand side, sometimes called heuristic methods, such as
the L-curve criterion. For an analysis of other heuristic methods see [66, 81].

The interested reader can see [87] for a review of parameter-choice methods.

Discrepancy principle. The best known ‖e‖-based method is the discrepancy
principle, introduced by Morozov [77]. The idea is to choose the regularization
parameter such that the residual norm equals the “discrepancy” in the data, as
measured by τ‖e‖, where τ > 1 is a constant independent of ‖e‖. For a discrete
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regularization parameter k, the relation can not be satisfied exactly, so instead, we
choose the smallest k such that

‖Axk − b‖ ≤ τ‖e‖, τ > 1.

The same strategy applies to the Tikhonov method and here the equality can be
obtained:

‖Axλ − b‖ = τ‖e‖.

Generalized cross-validation. (GCV) [44] is a popular ‖e‖-free method for
choosing the regularization parameter. The GCV method is based on statistical
considerations, namely, that a good value of the regularization parameter should
predict missing data values.

The GCV method seeks to minimize the residual error ‖Axλ−bexact‖. Since bexact

is unknown, the GCV method chooses a regularization parameter that minimizes
the GCV function

G(λ) =
‖Axλ − b‖2

(Trace(Im − A(λ)))2 ,

where the influence matrix for Tikhonov regularization is defined by

A(λ) = A(ATA+ λ2LTL)−1AT .

In Figure 1.3 we represent the GCV function.
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Figure 1.3: Representation of the GCV function. The minimum corresponds to the
regularization parameter for TSVD (left) and for Tikhonov regularization (right).

L-curve. Here we discuss another ‖e‖-free parameter-choice method. It is based
on the so-called L-curve [56, 59, 60], which is a plot of the logarithm of (semi)norm
‖Lxreg‖ of the regularized solution versus the logarithm of corresponding residual
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norm ‖Axreg − b‖. It is also perhaps the most useful graphical tool for analysis of
discrete ill-posed problems. The L-curve displays the compromise between the min-
imization of these two quantities, which is the heart of any regularization method.
The L-curve is a continuous curve when the regularization parameter is continuous,
as in Tikhonov regularization. For regularization methods with a discrete regular-
ization parameter, such as TSVD, the L-curve consists of a discrete set of points

(log ‖Axreg − b‖, log ‖Lxreg‖) .

We mention that, for different regularization algorithms, it can sometimes be advan-
tageous to plot the L-curve. In these cases, different norms, seminorms, and other
measures of “size” of the regularized solution, instead of ‖Lxreg‖, are plotted on the
y-axis of the graph in log-scale. The name of the curve derives from the characteris-
tic L-shaped appearance it often assumes when plotted in doubly logarithmic scale;
see Figure 1.4.

The error xexact−xreg consists of two components, namely, the perturbation error
and the regularization error. When very little regularization is introduced, most of
the filter factors are approximately 1, and the error is dominated by the perturbation
error. This situation corresponds to the uppermost part of the L-curve above the
middle “corner”. When a large amount of regularization is introduced, then most
filter factors are small, fi � 1, and the error is dominated by the regularization
error. This situation corresponds to the rightmost part of the L-curve to the right
of the “corner”. There is an optimal regularization parameter that balances the
perturbation error and the regularization error. The idea is to determine it near the
“corner” of this L-curve. It also represents a compromise between a small residual
and a small (semi)norm of the solution.

10
-6

10
-4

10
-2

10
0

10
2

residual norm || A x - b ||
2

10
0

10
2

10
4

10
6

10
8

10
10

10
12

s
o

lu
ti
o

n
 n

o
rm

 |
| 
x
 |
|

2

L-curve, TSVD corner at 12

39

15

21

27

10
-6

10
-4

10
-2

10
0

10
2

residual norm || A x - b ||
2

10
0

10
2

10
4

10
6

10
8

s
o
lu

ti
o
n
 n

o
rm

 |
| 
x
 |
|

2

L-curve, Tikh. corner at 6.0916e-07

0.12490.000155651.9397e-07

2.4173e-10

3.0124e-13

Figure 1.4: Representation of the L-curve. The corner corresponds to the regular-
ization parameter of TSVD (left) and of Tikhonov regularization (right).
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1.3 Linear operators and integral equations

In this section, we review some concepts of functional analysis related to bounded
linear operators in Hilbert spaces. For a more complete discussion of linear operators
and their properties, such as boundedness and compactness, the reader is referred
to [13, 50, 72, 101].

A Hilbert space is a vector space H equipped with an inner product such that
H is complete for the norm ‖u‖H = 〈u, u〉1/2.

An example of Hilbert space is the set of square-integrable functions L2([a, b])
with inner product

〈f, g〉 =

∫ b

a

f(x)g(x) dx.

We recall that two elements ϕ and ψ of a Hilbert space H are called orthogonal
if 〈ϕ, ψ〉 = 0. Let U be a subspace of H. The set

U⊥ = {ψ ∈ H : ψ ⊥ U}

is called the orthogonal complement of U .

Theorem 1.3.1. [50, Theorem 3.1.4] If U is a closed subspace of a Hilbert space
H, then H can be written as the direct sum of U and its orthogonal complement
U⊥, denoted H = U ⊕ U⊥, meaning that each ϕ ∈ H can be written uniquely as
ϕ = ϕ1 + ϕ2, where ϕ1 ∈ U and ϕ2 ∈ U⊥.

Now, we recall some basic facts about linear operators on Hilbert spaces.

Definition 1.3.2. A linear operator A : X → Y from a normed space X into a
normed space Y is called bounded if there exists a positive number C such that

‖Aϕ‖Y ≤ C‖ϕ‖X

for all ϕ ∈ X.

Theorem 1.3.3. [72, Theorem 2.6] Each linear operator A : X → Y from a finite-
dimensional normed space X into a normed space Y is bounded.

If H1 and H2 are Hilbert spaces, we denote the space of all bounded linear
operators from H1 into H2 by B(H1, H2).

An example of bounded linear operator is the integral operator K defined on
L2([a, b]) space by

(Kf)(s) :=

∫ b

a

k(s, t)f(t) dt,

where the function k(s, t) ∈ L2([a, b]× [a, b]) is called the kernel of the operator K.
Moreover, K is a compact operator.

The next result is known as the Riesz Representation Theorem.
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Theorem 1.3.4. [72, Theorem 4.8] Let F : H → R be a bounded linear functional
on a Hilbert space H. Then, there exists a unique f ∈ H such that

F (ϕ) = 〈ϕ, f〉

for all ϕ ∈ H.

Definition 1.3.5. Let H1 and H2 be Hilbert spaces and A : H1 → H2 is a linear
operator. The null space of A is the set N (A) = {ϕ ∈ H1 : Aϕ = 0}. The range of
A is the set R(A) = {ψ ∈ H2 : ψ = Aϕ for some ϕ ∈ H1}.

N (A) and R(A) are subspaces of H1 and H2, respectively. If A is bounded, then
N (A) is a closed subspace.

Definition 1.3.6. Let H1 and H2 be Hilbert spaces. Given A ∈ B(H1, H2), the
unique linear operator A∗ ∈ B(H2, H1) satisfying

〈Aϕ,ψ〉 = 〈ϕ,A∗ψ〉

for all ϕ ∈ H1 and ψ ∈ H2 is called the adjoint of A.

Here we present results which relate the concepts of range, null space and, ad-
joint.

Theorem 1.3.7. [50, Theorem 3.3.2] If A ∈ B(H1, H2), then

R(A)⊥ = N (A∗), N (A)⊥ = R(A∗),

R(A∗)⊥ = N (A), N (A∗)⊥ = R(A).

Two of the most standard forms of linear integral equations are∫ b

a

k(x, y)f(y) dy = g(x) (1.20)

and

f(x)− γ
∫ b

a

k(x, y)f(y) dy = g(x), (1.21)

where γ is a given non-zero constant, c ≤ x ≤ d, and a ≤ y ≤ b. Both, the
function k(x, y), called the kernel, and the function g(x) are known. The function
f is to be determined. Equation (1.20) is a linear Fredholm integral equation of
the first kind, while equation (1.21) is of the second kind. In the first equation the
unknown function only occurs under the integral whereas in the second equation it
also appears outside the integral. In terms of the compact operator K, the above
equations may be written as

Kf = g,
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and
f − γKf = g,

respectively. We have seen in Section 1.2 that integral equations of the first kind
are ill-posed.

In an applicative context, the function g in (1.20) often represents experimental
data, measurable only at a finite set of points xi. Frequently these points are few,
and the data usually contain errors.

An important tool for the numerical solution of integral equations is provided
by the quadrature formulae. Numerical integration formulae, or quadrature for-
mulae, are methods for the approximate evaluation of definite integrals. They are
needed for the computation of those integrals for which either the primitive function
of the integrand cannot be expressed in terms of elementary functions or for which
the integrand is available only at discrete points.

Let f be a continuous function over the interval [a, b]. A quadrature formula is
a numerical method for approximating a definite integral

I(f) :=

∫ b

a

f(x) dx

by a weighted sum

In(f) :=
n∑
k=0

akf(xk) (1.22)

with n+ 1 distinct quadrature points x0, . . . , xn ∈ [a, b] and n+ 1 quadrature weights
a0, . . . , an ∈ R.

An important group of quadrature formulae, called polynomial interpolatory
quadrature, is obtained by integrating an interpolating polynomial instead of the
integrand f , i.e., by approximating f(x) ≈ (Lnf)(x), where Ln : C([a, b]) → Pn
denotes the polynomial interpolation operator with n + 1 interpolation points
x0, . . . , xn, C([a, b]) is the space of continuous functions on the interval [a, b], and Pn
is the space of polynomials p(x) =

∑n
k=0 akx

k. A polynomial interpolatory quadra-
ture formula takes the form

In(f) =

∫ b

a

(Lnf)(x) dx. (1.23)

Expressing the interpolating polynomial in the form of Lagrange

(Lnf)(x) =
n∑
k=0

f(xk)Lk(x), with Lk(x) =
n∏
j=0
j 6=k

x− xj
xk − xj

,

we obtain In(f) in the form (1.22) with the weights given by

ak =

∫ b

a

Lk(x) dx.
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Theorem 1.3.8. [71, Theorem 9.2] Given n + 1 distinct quadrature points
x0, . . . , xn ∈ [a, b], the interpolatory quadrature (1.23) of order n is uniquely de-
termined by its property of integrating all polynomials p ∈ Pn exactly, i.e.,

In(p) = I(p).

The polynomial interpolatory quadrature with equidistant quadrature points
xk = a + kh, for k = 0, . . . , n, and step width h = (b − a)/n is called the Newton–
Cotes quadrature formula. Details and properties, like the expression of the weights
and the errors, can be found in [71].

Gaussian quadrature formulae. We just saw that given n+1 arbitrary quadra-
ture points, the quadrature weights of a polynomial interpolatory quadrature are de-
termined such that all polynomials of degree less than or equal to n are integrated
exactly. Now we see that by choosing the quadrature points in a certain way, it is
possible to construct a quadrature formula with precision equal to 2n+ 1.

To achieve this degree of exactness the quadrature points and the quadrature
weights have to satisfy the conditions

n∑
k=0

akx
i
k =

∫ b

a

xi dx, i = 0, . . . , 2n+ 1.

We shall proceed with a more general treatment considering quadrature formulae
for the integral

I(f) :=

∫ b

a

w(x)f(x) dx,

where w denotes some weight function.

Definition 1.3.9. A quadrature formula with n + 1 distinct quadrature points is
called a Gaussian quadrature formula if it integrates all polynomials p ∈ P2n+1

exactly.

For an in-depth discussion, the reader is referred to [24, 71]. Here we report
some properties without proof.

The quadrature points of the Gauss quadrature are given by the n + 1 dis-
tinct zeros in (a, b) of the polynomial pn+1 of order n + 1 that is orthogonal to all
polynomials p ∈ Pn of degree less than n + 1 with respect to the scalar product
〈f, g〉 =

∫ b
a
w(x)f(x)g(x) dx, that is 〈pn+1, p〉 = 0. The weights of the Gaussian

quadrature formulae are all positive. As for the error of the Gaussian formulas, the
following theorem holds.

Theorem 1.3.10. [71, Theorem 9.20] Let f ∈ C2n+2[a, b], the space of (2n+2)-times
continuously differentiable functions. Then the error for the Gaussian quadrature
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formula of order n is given by∫ b

a

w(x)f(x) dx−
n∑
k=0

akf(xk) =
f (2n+2)(ξ)

(2n+ 2)!

∫ b

a

w(x)[pn+1(x)]2 dx,

for some ξ ∈ [a, b].

Gauss–Legendre quadrature. Now, we consider the weight function w(x) = 1
in the interval [−1, 1]. The Legendre polynomial Ln of degree n is defined by

Ln(x) =
1

2nn!

dn

dxn
(x2 − 1)n, Ln ∈ Pn.

If m < n, the following relation is verified∫ 1

−1

xm
dn

dxn
(x2 − 1)n dx = 0.

Therefore Ln is orthogonal to all polynomials of degree less than n with respect
to the scalar product on [−1, 1]. The quadrature points of the Gauss–Legendre
quadrature are given by the n zeros −1 < x1 < x2 < · · · < xn < 1 of Ln and the
corresponding quadrature weights can be computed as

ak =
2(1− x2

k)

[nLn−1(xk)]2
, k = 1, . . . , n.

From the Gauss–Legendre quadrature formula for the interval [−1, 1], we can
obtain the quadrature formula for an arbitrary interval [a, b]∫ b

a

f(t) dt ≈
n∑
k=1

λkf(tk),

by setting

tk = a+
b− a

2
(xk + 1), λk =

b− a
2

ak, k = 1, . . . , n, (1.24)

where xk ∈ (−1, 1) are the zeros of the Legendre polynomial in [−1, 1], and ak the
corresponding weights.

Other types of orthogonal polynomials provide useful Gaussian quadrature for-
mulas when the integrand has a particular form. Some of these are tabulated in
Table 1.1.
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Table 1.1: Gaussian quadrature formulae for particular weight functions.

[a, b] w(x) orthogonal polynomials

[−1, 1] 1 Legendre

[−1, 1] (1− x)α(1 + x)β, α, β > −1 Jacobi

[−1, 1]
1√

1− x2
Chebyshev (first kind)

[−1, 1]
√

1− x2 Chebyshev (second kind)

[0,∞) e−x Laguerre

[0,∞) xαe−x, α > −1 Generalized Laguerre

(−∞,+∞) e−x
2

Hermite
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CHAPTER 2
Minimal-norm Gauss–Newton
method

2.1 Introduction

Let us assume that F (x) = [F1(x), . . . , Fm(x)]T is a nonlinear twice continuously
Fréchet-differentiable function, with values in Rm for any x ∈ Rn. For a given
b ∈ Rm, we consider the nonlinear least-squares data fitting problem

min
x∈Rn
‖r(x)‖2, r(x) = F (x)− b, (2.1)

where ‖·‖ denotes the Euclidean norm and r(x) = [r1(x), . . . , rm(x)]T is the residual
vector function between the model expectation F (x) and the vector b of measured
data. The solution to the nonlinear least-squares problem gives the best model fit to
the data in the sense of the minimum sum of squared errors. Classical approaches
to the numerical solution of a nonlinear least-squares problem consist of applying
Newton’s method and its variants such as the Gauss–Newton method [10, 61, 78].

Linear least-squares problems have been widely studied; an exhaustive review
can be found in [10]. There also exists a vast literature concerning regularization
methods for discrete linear inverse problems; see [35, 57]. The same references
discuss numerical methods for the solution of nonlinear least-squares problems, as
well as suitable regularization techniques.

The Gauss–Newton method and its variants have been investigated in many
papers; see, e.g., [21, 54, 69, 75, 90]. The application of the Levenberg–Marquardt
method to ill-posed problems was studied in [22, 64], and in [53] it was applied to an
inverse problem in groundwater hydrology. In [84], an iterative algorithm based on
the minimization of the Tikhonov functional by the gradient method was developed.
The application of Tikhonov regularization to nonlinear inverse problems has been
further investigated in [74, 85]. The case where the regularizing term is substituted
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by a penalty term which promotes the selection of a sparse solution was analyzed
in [86].

At the kth step of the Gauss–Newton method, the current approximation is com-
puted by solving, in the least-squares sense, a linearization of the original nonlinear
problem. When the Jacobian of the residual function does not have full column
rank, the solution is not unique, and the usual approach is to select the one hav-
ing minimal-norm. This ensures that each update of the solution of the nonlinear
least-squares problem has a minimal-norm, but this property does not apply to the
solution itself. The same is true when a regularization technique is introduced.

The idea of constructing an iterative method for the computation of the minimal-
norm solution of a nonlinear least-squares problem was first studied by Eriksson et
al. In [36, 37, 38], the case where the Jacobian is rank-deficient or ill-conditioned
was analyzed, and the solution techniques based on the Gauss–Newton method and
on Tikhonov regularization in standard form were proposed.

In this chapter and in [82], we review the results obtained by Eriksson et al. and
extend them by introducing the minimization of the seminorm ‖Lx‖, where L is a
regularization matrix; see equation (2.14). In case of lack of a unique solution, the
employment of such a seminorm is often essential to select an effective reconstruction
when suitable a priori information is available. We further analyze the computation
of the regularized minimal-L-norm solution by two standard procedures for approx-
imating the solution of ill-conditioned nonlinear least-squares problems, namely, the
truncated generalized singular value decomposition (TGSVD) applied to the Gauss–
Newton method, and Tikhonov regularization in general form, whose solutions are
given by (2.27) and (2.37), respectively. Though the two regularized solutions are
different, they both converge to the minimal-L-norm solution when the regulariza-
tion level decreases. The algorithms are applied to a small-scale test problem and to
the inversion of a medium-size nonlinear model typical in applied geophysics. The
numerical results are compared to those produced by the classical approaches.

To ensure the computation of the minimal-norm solution [36, 37, 38, 82], at the
kth iteration, the Gauss–Newton approximation is orthogonally projected onto the
null space of the Jacobian matrix. Unfortunately, the algorithms developed in the
above papers occasionally lack to converge. They take the form

x(k+1) = x(k) + αks̃
(k) − PN (Jk)x

(k),

where s̃(k) is the solution of (2.9), αk is a step length, and PN (Jk) is the orthogonal
projector onto the null space of Jk = J(x(k)). In [82], the damping parameter
αk is estimated by the Armijo–Goldstein principle; we refer to this method as the
MNGN algorithm. One reason for the non-convergence of such methods is that
the projection step may cause the residual to increase considerably at particular
iterations. Moreover, the rank of the Jacobian may vary as the iteration progresses,
and its incorrect estimation often leads to the presence of small singular values for
the Jacobian, which amplify computational errors.
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This problem of non-convergence has been considered by Campbell, Kunkel,
Bobinyec in [20] using a method which will be denoted CKB in the following. The
authors consider a convex combination of the Gauss–Newton approximation and its
orthogonal projection, and apply a relaxation parameter γk to this search direction,
chosen according to a given rule. After some manipulation, the method can be
written as

x(k+1) = x(k) + s̃(k) − γkPN (Jk)x
(k).

This approach makes the computation of the minimal-norm solution more robust,
but it may not converge in some situation; see Section 2.9. Moreover, both the
MNGN and the CKB methods suffer from serious convergence problems caused by
the variation of the rank of the Jacobian along the iterations. The rank often drops
to a small value in a neighborhood of the solution, while the two methods consider
a fixed rank, generally assumed to be the smaller dimension of the Jacobian.

In the second part of this chapter, we aim at improving the convergence of the
methods presented in [20] and [82]. We do this by first introducing in the MNGN
method a technique to estimate the rank of the matrix J(x(k)) at each iteration.
This procedure has the effect of improving the convergence of the method, reducing
the possibility that the iteration diverges because of error amplification. Then,
we introduce a second relaxation parameter for the projection term, as well as a
strategy to automatically tune it, besides the usual damping parameter for the
Gauss–Newton search direction. This approach produces, on the average, solutions
closer to optimality, i.e., with smaller norms, than those computed by the CKB
method. Furthermore, we consider a model profile x for the solution, which is useful
in applications where sufficient a priori information on the physical system under
investigation is available.

The chapter can be divided into two parts. The content of the first part is
based on our work [82], while the second part is based on our paper [83]. The first
part is organized as follows: Section 2.2 recalls Newton and Gauss–Newton methods
as well as some basic computational tools. In Sections 2.3 we review the results
from Eriksson et al. on the computation of the minimal-norm solution to a nonlin-
ear least-squares problem, and in Section 2.4 we extend them for the computation
of the minimal-L-norm solution. Two regularization techniques for ill-conditioned
problems are introduced in Section 2.5, and we discuss in Section 2.6 some details of
our implementation. The reader is referred to Section 6.1 for the results of numeri-
cal experiments regarding the M(L)NGN method and the regularized variants. The
second part is structured as follows: in Section 2.7, we revise the MNGN method
and reformulate Theorem 2.3.1 ([82, Theorem 3.1]) by introducing a model profile
for the solution. Then, we give a theoretical justification for the fact that the con-
vergence of the method may not be ensured. Section 2.8 explains how to estimate
the numerical rank of the Jacobian J(x(k)) at each iteration. In Section 2.9, we
describe an algorithm which introduces a second parameter to control the size of
the correction vector that provides the minimal-norm solution, and which estimates
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automatically such parameter. In Section 2.10, we extend the discussion to the
minimal-L-norm solution, where L is a regularization matrix. Numerical examples
regarding the application of the “doubly relaxed” M(L)NGN method can be found
in Section 6.2. Section 2.11 contains concluding remarks.

2.2 Mathematical preliminaries

We will rewrite the minimization problem (2.1) as

min
x∈Rn

f(x), where f(x) =
1

2
‖r(x)‖2 =

1

2

m∑
i=1

ri(x)2.

Let the Jacobian of the residual vector function r(x) be J(x) ∈ Rm×n, defined by

[J(x)]ij =
∂ri(x)

∂xj
, i = 1, . . . ,m, j = 1, . . . , n,

and the Hessian matrix of ri(x) be ∇2ri(x) ∈ Rn×n, i = 1, . . . ,m, with entries given
by

[∇2ri(x)]jk =
∂2ri(x)

∂xj∂xk
, j, k = 1, . . . , n.

Then, the gradient and the Hessian of f(x), written in matrix form, are given by

∇f(x) =
∂f

∂x
= J(x)T r(x), (2.2)

and

∇2f(x) = J(x)TJ(x) +Q(x), where Q(x) =
m∑
i=1

ri(x)∇2ri(x). (2.3)

Indeed, using the chain rule,

[∇f(x)]j =
∂f(x)

∂xj
=

m∑
i=1

ri(x)
∂ri(x)

∂xj
,

[∇2f(x)]jk =
∂2f(x)

∂xj∂xk
=

m∑
i=1

∂ri(x)

∂xj

∂ri(x)

∂xk
+

m∑
i=1

ri(x)
∂2ri(x)

∂xj∂xk
.

If the point x∗ is a local minimum for a twice continuously differentiable func-
tion f(x), then x∗ is a stationary point, i.e., the gradient (2.2) of f at x∗ is zero.
Conversely, a sufficient condition for a stationary point to be a local minimum is
that the Hessian ∇2f(x∗) is positive definite.
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Newton’s method for optimization [10] is based on the minimization of the
second-order Taylor approximation of the function f(x),

f̃(x + s) = f(x) +∇f(x)T s +
1

2
sT∇2f(x)s.

The minimizer is obtained by equating to zero the derivative with respect to s,

∂f̃(x + s)

∂s
= ∇f(x) +∇2f(x)s = 0.

Starting from an initial guess x(0), assuming that the Hessian of f(x) is invertible in
x(k), and substituting (2.2) and (2.3), the iteration of Newton’s method is obtained:

x(k+1) = x(k) −
(
JTk Jk +Q(x(k))

)−1
JTk rk, (2.4)

where Jk = J(x(k)) is the Jacobian of F in x(k) and rk = r(x(k)) is the residual
vector. Newton’s method is rarely used for nonlinear least-squares problems be-
cause computing the mn2 derivatives appearing in Q(x) is often computationally
too expensive and it is unfeasible for large-scale problems.

Initially, we assume that the problem is overdetermined, i.e., m ≥ n. An alter-
native to Newton’s method is to neglect the term Q(x(k)) in (2.4), obtaining the
Gauss–Newton method. If m ≥ n and Jk is full rank, then the matrix JTk Jk is
nonsingular, and we can write

x(k+1) = x(k) −
(
JTk Jk

)−1
JTk rk, k = 0, 1, 2, . . .

In this case, the matrix J†k =
(
JTk Jk

)−1
JTk is the Moore–Penrose pseudoinverse of

Jk; see Section 1.1. If m = n, then the iteration simplifies to x(k+1) = x(k) − J−1
k rk.

For underdetermined full rank problems (m < n) the iteration of the Gauss–Newton
method becomes

x(k+1) = x(k) − JTk
(
JkJ

T
k

)−1
rk.

The behavior of the Gauss–Newton method can be expected to be similar to
that of Newton’s method when the term Q(x) is negligible, i.e., when the quantities
|ri(x)|‖∇2ri(x)‖, i = 1, . . . ,m, are small compared to JTJ , where J = J(x). This
happens if the functions ri(x) are mildly nonlinear in a neighborhood of the solution
or if the problem is consistent.

We can give a different characterization of the Gauss–Newton method. It replaces
the nonlinear problem by a sequence of linear approximations of r(x), obtained
through a first-order Taylor series expansion. The residual at the new iterate is
approximated by

r(x(k+1)) ' rk + Jks.

Chosen an initial point x(0), if x(k) denotes the current approximation, then the new
approximation is

x(k+1) = x(k) + s(k), k = 0, 1, 2, . . . , (2.5)
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where the step s(k) is computed as a solution to the linear least-squares problem

min
s∈Rn
‖Jks + rk‖2. (2.6)

In order to ensure convergence, (2.5) is replaced by the damped Gauss–Newton
method

x(k+1) = x(k) + αks
(k), (2.7)

where the scalar αk is a step length. We estimate it by the Armijo–Goldstein prin-
ciple [3, 42], but it can be chosen by any strategy which guarantees a reduction in
the norm of the residual. In our case, the Armijo condition [3, 30] implies

f(x(k) + αks
(k)) ≤ f(x(k)) + µαk∇f(x(k))T s(k),

where µ is a constant in (0, 1). Since f(x) = 1
2
‖r(x)‖2 and ∇f(x) = J(x)T r(x), it

reads
‖r(x(k) + αks

(k))‖2 ≤ ‖rk‖2 + 2µαkr
T
k Jks

(k).

Note that, as s(k) satisfies the normal equations associated to problem (2.6) and
JkJ

†
k is an orthogonal projector, and therefore symmetric, it holds

rTk Jks
(k) = −rTk JkJ

†
krk = −rTk JkJ

†
kJkJ

†
krk = −‖JkJ†krk‖

2 = −‖Jks(k)‖2.

The Armijo–Goldstein principle [10, 42] sets µ = 1
4

and determines the scalar αk as
the largest number in the sequence 2−i, i = 0, 1, . . . , for which it holds

‖rk‖2 − ‖r(x(k) + αks
(k))‖2 ≥ 1

2
αk‖Jks(k)‖2. (2.8)

The step length αk may also be determined by solving the minimization problem

min
α
‖r(x(k) + αs(k))‖2.

In [90], this approach is denoted as Gauss–Newton algorithm with line search.

The solution to (2.6) may not be unique: this situation happens when the matrix
Jk does not have full column rank, in particular, when m < n. To make the solution
unique, the new iterate x(k+1) is often obtained by solving the following minimal-
norm linear least-squares problemmin

s∈Rn
‖s‖2

s ∈
{

arg min
s∈Rn
‖Jks + rk‖2

}
,

(2.9)

where the set in the lower line contains all the solutions to problem (2.6). Prob-
lem (2.9) has the solution

s(k) = −J†krk.
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Such minimal-norm solution is orthogonal to the null space N (Jk) of Jk. This is
generally assumed to be a good choice among the infinitely many solutions to the
problem unless other constraints for the solution are available.

In order to select solutions with different degrees of regularity, the term ‖s‖2

in (2.9) is sometimes substituted by ‖Ls‖2, where L ∈ Rp×n (p ≤ n) is a ma-
trix which incorporates available a priori information on the solution. Examples
of regularization matrices L are reported in equations (1.14) and (1.15). When a
regularization matrix is introduced, formulation (2.9) becomesmin

s∈Rn
‖Ls‖2

s ∈
{

arg min
s∈Rn
‖Jks + rk‖2

}
.

(2.10)

It is important to remark that both (2.9) and (2.10) impose some kind of reg-
ularity on the update vector s for the solution x(k), and not on the solution itself.
We will explore in this chapter what the consequence is of imposing a regularity
constraint directly on the solution x of problem (2.1). Approaches of this kind
were studied by Eriksson and Wedin [36, 37, 38]: they proposed a minimal-norm
Gauss–Newton method and a Tikhonov regularization method in standard form. We
extend, in Theorem 2.4.2, the minimal-norm Gauss–Newton method by introducing
a regularization matrix L. Moreover, in Section 2.5 we investigate Tikhonov regular-
ization in general form and the use of truncated SVD/GSVD in the minimal-norm
Gauss–Newton method.

In Section 2.5.2 we will see that, in the limit, the minimal-norm Gauss–Newton
iteration and the iteration obtained through Tikhonov regularization in standard
form are closely related; the same happens for the minimal-L-norm Gauss–Newton
iteration and Tikhonov regularization in general form.

2.3 Nonlinear minimal-norm solution

Let us discuss the computation of the minimal-norm solution to the nonlinear prob-
lem (2.1), min

x∈Rn
‖x‖2

x ∈
{

arg min
x∈Rn
‖F (x)− b‖2

}
.

(2.11)

The problem of imposing a regularity constraint directly on the solution x of prob-
lem (2.1) is studied in [36, 37, 38, 82]. These papers are based on the application of
the damped Gauss–Newton method to the solution of (2.11).

We consider the following iterative method of type (2.5), based on a first-order
linearization of the problem:min

s∈Rn
‖x(k) + s‖2

s ∈
{

arg min
s∈Rn
‖Jks + rk‖2

}
.

(2.12)
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We will denote this as the minimal-norm Gauss–Newton (MNGN) method.
A theorem similar to the following one is presented, in a slightly general form,

in [36, 37, 38]. We provide here a statement and a proof in terms of the SVD, which
is useful from a computational point of view.

Theorem 2.3.1. Let x(k) ∈ Rn and let x̃(k+1) = x(k) + s̃(k) be the Gauss–Newton
iteration for (2.1), where the step s̃(k) is determined by solving (2.9). Then, the
iteration x(k+1) for (2.12), starting from the same point x(k), is given by

x(k+1) = x̃(k+1) − V2V
T

2 x(k),

where rank(Jk) = rk and the columns of the matrix V2 = [vrk+1, . . . ,vn] are or-
thonormal vectors in Rn spanning the null space of Jk.

Proof. Let UΣV T be the singular value decomposition of the matrix Jk. The norm
of the solution x(k+1) of (2.12) may be expressed as

‖x(k+1)‖2 = ‖V T (x(k) + s)‖2 = ‖y + z(k)‖2,

with y = V T s and z(k) = V Tx(k). Replacing Jk by its SVD and setting g(k) = UT rk,
we can rewrite (2.12) as the following diagonally constrained least-squares problemmin

y∈Rn
‖y + z(k)‖2

y ∈
{

arg min
y∈Rn
‖Σy + g(k)‖2

}
.

Solving the second minimization problem uniquely determines the components yi =
−σ−1

i g
(k)
i , i = 1, . . . , rk, while the entries yi, i = rk + 1, . . . , n, are undetermined. In

order to minimize the norm of the solution

‖y + z(k)‖2 =

rk∑
i=1

(
−g

(k)
i

σi
+ z

(k)
i

)2

+
n∑

i=rk+1

(
yi + z

(k)
i

)2

,

we set yi = −z(k)
i = −vTi x(k), i = rk + 1, . . . , n. The solution to (2.12), that is, the

next approximation to the solution of (2.11), is then

x(k+1) = x(k) −
rk∑
i=1

g
(k)
i

σi
vi −

n∑
i=rk+1

(vTi x(k))vi, (2.13)

where the last summation can be written in matrix form as V2V
T

2 x(k).
Similarly, we rewrite (2.9) as the following diagonal least-squares problemmin

y∈Rn
‖y‖2

y ∈
{

arg min
y∈Rn
‖Σy + g(k)‖2

}
,
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with y = V T s, obtaining

x̃(k+1) = x(k) + s̃(k) = x(k) −
rk∑
i=1

g
(k)
i

σi
vi.

Then,

x(k+1) = x̃(k+1) − V2V
T

2 x(k),

where the columns of V2 = [vrk+1, . . . ,vn] are a basis for N (Jk). This completes the
proof.

Remark 2.3.2. Let PN (Jk) represent the orthogonal projector onto N (Jk). Since
PN (Jk) = V2V

T
2 (see Section 1.1), the above theorem shows that, unlike the Gauss–

Newton method, the (k + 1)th iterate of the MNGN method is orthogonal to the
null space of Jk. Then, equation (2.13) may be expressed in the more general
form [36, 37, 38]

x(k+1) = x(k) −
[
J†k PN (Jk)

] [ rk
x(k)

]
.

Corollary 2.3.3. If x(k) is orthogonal to the null space of Jk, then the solution
x(k+1) of (2.12) is the same as that of (2.9).

Remark 2.3.4. It is useful to remember that V2V
T

2 = In − V1V
T

1 with the matrix
V1 = [v1, . . . ,vrk ]. So, the updated solution can be obtained without necessarily
computing the singular vectors vi, i = rk + 1, . . . , n, i.e., when a compact SVD is
available

x(k+1) = x(k) + s̃(k) − V2V
T

2 x(k) = s̃(k) + V1V
T

1 x(k).

Remark 2.3.5. In the first numerical example of Section 6.1, the approach of
projecting the iterates orthogonally to the null space of Jk will also be applied to
Newton’s method. This approach is only heuristic in this case. It will be shown that
the solution at convergence coincides with the one produced by the MNGN method
but that the speed of convergence of Newton’s method degrades.

2.4 Nonlinear minimal-L-norm solution

The introduction of a regularization matrix L ∈ Rp×n, p ≤ n, in least-squares prob-
lems was originally connected to the numerical treatment of linear discrete ill-posed
problems, and in particular to Tikhonov regularization. The use of a regularization
matrix is also justified in underdetermined least-squares problems to select a solu-
tion with particular features, such as smoothness or sparsity, among the infinitely
many possible solutions.



50 CHAPTER 2. MINIMAL-NORM GAUSS–NEWTON METHOD

Here, we seek to compute the minimal-L-norm solution to the nonlinear prob-
lem (2.1), that is the vector x which solves the constrained problemmin

x∈Rn
‖Lx‖2

x ∈
{

arg min
x∈Rn
‖F (x)− b‖2

}
.

(2.14)

Similarly to the previous section, we consider an iterative method of type (2.5),
where the step s(k) is the solution of the linearized problemmin

s∈Rn
‖L(x(k) + s)‖2

s ∈
{

arg min
s∈Rn
‖Jks + rk‖2

}
.

(2.15)

We will denote this as the minimal-L-norm Gauss–Newton (MLNGN) method.
Let Jk = UΣJW

−1, L = V ΣLW
−1 be the generalized singular value decomposi-

tion of the matrix pair (Jk,L). We indicate by wi the column vectors of the matrix
W , and by ŵj the rows of W−1, that is,

W = [w1, . . . ,wn], W−1 =

ŵ1

...
ŵn

 .
The columns of W and the rows of W−1 form a pair of biorthogonal bases, i.e.,
ŵiwj = δij.

Lemma 2.4.1. If rk = rank(Jk), then

N (Jk) = span(w1, . . . ,wn−rk).

Proof. Any vector x in Rn can be represented in the basis {wi}ni=1 by writing

x = W (W−1x) =
n∑
j=1

(ŵjx)wj. (2.16)

From the GSVD of (Jk, L), we obtain

Jkx =
m∑
i=1

δiui,

where δ = [δ1, . . . , δm]T = ΣJW
−1x. When m ≥ n, ΣJ is of the form (1.4) and it

leads to

δi =


0, i = 1, . . . , n− rk,
ci−n+rk(ŵ

ix), i = n− rk + 1, . . . , p,

ŵix, i = p+ 1, . . . , n,

0, i = n+ 1, . . . ,m,
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so that Jkx = 0 if and only if ŵix = 0, for i = n − rk + 1, . . . , n. By (2.16), this
means that

x ∈ span(w1, . . . ,wn−rk).

When m < n, ΣJ is given by (1.6), then we obtain

δi =


0, i = 1, . . . ,m− rk,
ci−m+rk(ŵ

i−m+nx), i = m− rk + 1, . . . ,m+ p− n,
ŵi−m+nx, i = m+ p− n+ 1, . . . ,m,

so the same conclusion holds true: x ∈ N (Jk) if and only if x ∈ span(w1, . . . ,wn−rk).

Theorem 2.4.2. Let x(k) ∈ Rn and let x̃(k+1) = x(k) + s̃(k) be the Gauss–Newton
iteration for (2.1), where the step s̃(k) has been determined by solving (2.10). Then,
the iteration x(k+1) for (2.15), starting from the same point x(k), is given by

x(k+1) = x̃(k+1) −W1Ŵ1x
(k), (2.17)

where Ŵ1 ∈ R(n−rk)×n contains the first n− rk rows of W−1 and W1 ∈ Rn×(n−rk) is
composed of the first n− rk columns of W .

Proof. Replacing Jk and L with their GSVD and setting y = W−1s, z(k) = W−1x(k),
and g(k) = UT rk, (2.15) can be rewritten as the following diagonal least-squares
problem min

y∈Rn
‖ΣL(y + z(k))‖2

y ∈
{

arg min
y∈Rn
‖ΣJy + g(k)‖2

}
.

(2.18)

When m ≥ n, the diagonal linear system in the constraint is solved by a vector y
with entries

yi =


− g

(k)
i

c
i−n+rk

, i = n− rk + 1, . . . , p,

−g
(k)

i , i = p+ 1, . . . , n,

while the components yi, for i = 1, . . . , n− rk, can be determined by minimizing the
norm

‖ΣL(y + z(k))‖2 =

n−rk∑
i=1

(
yi + z

(k)
i

)2

+

p∑
i=n−rk+1

(
− g

(k)
i

γi−n+rk

+ si−n+rkz
(k)
i

)2

, (2.19)

where γi = ci
si

are the generalized singular values of the matrix pair (Jk, L). The
minimum of (2.19) is reached for

yi = −z(k)
i = −ŵix(k), i = 1, . . . , n− rk,
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and the solution to (2.15), that is, the next approximation for the solution of (2.14),
is

x(k+1) = x(k) −
n−rk∑
i=1

z
(k)
i wi −

p∑
i=n−rk+1

g
(k)
i

ci−n+rk

wi −
n∑

i=p+1

g
(k)
i wi, (2.20)

where the first summation at the right-hand side can be rewritten in the form
W1Ŵ1x

(k). Applying the same procedure to (2.10), we obtain

x̃(k+1) = x(k) −
p∑

i=n−rk+1

g
(k)
i

ci−n+rk

wi −
n∑

i=p+1

g
(k)
i wi, (2.21)

from which (2.17) follows. We note that the last summation in (2.20) and (2.21) is
the component of the update vector s in the null space of L.

When m < n, (1.6) yields the following solution for the diagonal system in (2.18),

yi =


−
g

(k)
i−n+m

c
i−n+rk

, i = n− rk + 1, . . . , p,

−g
(k)

i−n+m, i = p+ 1, . . . , n,

from which, after minimizing the weighted norm like in (2.19), we obtain

x(k+1) = x(k) −
n−rk∑
i=1

z
(k)
i wi −

p∑
i=n−rk+1

g
(k)
i−n+m

ci−n+rk

wi −
n∑

i=p+1

g
(k)
i−n+mwi. (2.22)

Since solving (2.10) when m < n leads to a formula similar to (2.21) with g
(k)
i−n+m in

place of g
(k)
i , the validity of (2.17) is confirmed.

2.5 Regularization

The nonlinear function F (x) is considered ill-conditioned in a domain D ⊂ Rn when
the condition number κ(J) of the Jacobian J = J(x) is very large for any x ∈ D.
In this situation, it is common to apply a regularization procedure to each step of
the Gauss–Newton method. Section 1.2 contains a reminder of the reasons that
lead to the need to regularize a problem, as well as an introduction to regularization
methods.

The truncated singular value decomposition (TSVD) solves (2.9) after substitut-
ing Jk by its best rank-` approximation (see Theorem 1.1.1), that is,

J
(`)
k = arg min

rank(M)=`
‖Jk −M‖ =

∑̀
i=1

σiuiv
T
i , (2.23)



2.5. REGULARIZATION 53

where (σi,ui,vi) is the ith singular triplet for Jk; see (1.2). Here, ` plays the
role of a regularization parameter, which has to be carefully chosen. Its role is
to approximate the initial least-squares problem by a better-conditioned problem.
Choosing its value amounts to finding a compromise between fidelity to the original
model and numerical stability.

Another classical approach is Tikhonov regularization, in which the minimization
problem (2.6) is replaced by

min
s∈Rn

{
‖Jks + rk‖2 + λ2‖s‖2

}
, (2.24)

for a fixed value of the parameter λ > 0. The regularization parameter λ controls
the balance between the two terms of the functional, i.e., the weights attributed to
the residual term and to the regularization term.

If a regularization matrix L ∈ Rp×n is introduced, (2.9) becomes (2.10), and
the regularized solution is computed by the truncated generalized singular value
decomposition (TGSVD). If the Tikhonov approach is followed, then the standard
form functional (2.24) is expressed in general form

min
s∈Rn

{
‖Jks + rk‖2 + λ2‖Ls‖2

}
. (2.25)

We stress that both (2.24) and TSVD applied to (2.9) impose a regularity con-
straint on the update vector s for the solution x(k) and not on the solution itself in
the same matter as (2.25) and TGSVD applied to (2.10) do.

2.5.1 Truncated minimal-norm solution

When the function F is ill-conditioned, we propose a truncated minimal-norm
Gauss–Newton (TMNGN) method to solve (2.12). We choose a value for the trun-

cation parameter 1 ≤ ` ≤ rk, an initial solution x
(0)
` , and compute

x
(k+1)
` = x

(k)
` −

∑̀
i=1

g
(`,k)
i

σi
vi − V2,`V

T
2,`x

(k)
` , k = 0, 1, 2, . . . , (2.26)

where V2,` = [v`+1, . . . ,vn], until convergence. In the above formula, g(`,k) =

UT r(x
(k)
` ) as in the proof of Theorem 2.3.1. Notice that the columns of V2,` form a

basis for the null space of the rank-` approximation (2.23) of the Jacobian.

In case a partial SVD is computed, say, up to the truncation index `, the last term
may be expressed as (In − V1,`V

T
1,`)x

(k)
` , where V1,` = [v1, . . . ,v`]. There are several

methods for computing a partial SVD for large-scale problems [7, 8, 9, 65, 92].

To solve (2.15), we employ a truncated minimal-L-norm Gauss–Newton (TML-
NGN) method. This consists of choosing an integer 0 ≤ ` ≤ p − n + rk = rk − d
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(see (2.20) and (2.22)), and computing, for k = 0, 1, 2, . . . , until convergence, the
iterates

x
(k+1)
` = x

(k)
` −

p∑
i=p−`+1

g
(`,k)
i−N

ci−n+rk

wi −
n∑

i=p+1

g
(`,k)
i−Nwi −W1,`Ŵ1,`x

(k)
` , (2.27)

where N = max(n − m, 0). The matrix W1,` ∈ Rn×(p−`) contains the first p − `

columns of W , and Ŵ1,` ∈ R(p−`)×n the first p− ` rows of W−1. Again, the columns

of W1,` span the null space of J
(`)
k .

In formulas (2.26) and (2.27), the solution at convergence will be denoted by x`.
Under the assumption that the exact data vector bexact is perturbed by noise

b = bexact + e, (2.28)

and that the noise level ‖e‖ is known, the classical discrepancy principle introduced
by Morozov [77] can be used to estimate the optimal value of the regularization
parameter, namely, selecting the smallest truncation parameter ` such that

‖F (x`)− b‖ ≤ τ‖e‖, (2.29)

where τ > 1 is a constant independent of the noise level ‖e‖.
When the noise level is unknown, heuristic methods are commonly used. We

use the L-curve criterion [56, 60] which selects the regularization parameter at the
“corner” of the curve obtained by joining the points

(log ‖F (x`)− b‖, log ‖x`‖) . (2.30)

When solving discrete ill-posed problems, this curve often exhibits a typical L-shape.
We determine its corner by the method described in [59] and implemented in [58].

For a summary of the criteria for choosing the regularization parameter, the
reader is referred to Subsection 1.2.3.

2.5.2 Minimal-norm Tikhonov solution

We assume here that a regularizing term is added to the least-squares problem (2.1),
transforming it into the minimization of the nonlinear Tikhonov functional

min
x∈Rn

{
‖F (x)− b‖2 + λ2‖Lx‖2

}
, (2.31)

where λ > 0 is a continuous regularization parameter and L ∈ Rp×n is a regular-
ization matrix. We will apply the Gauss–Newton method to the solution of (2.31)
and compare the iterates to those derived from the application of the same method
to (2.1) followed by the Tikhonov regularization of each step as in (2.25).
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Linearizing (2.31), we obtain

min
s∈Rn

{
‖Jks + rk‖2 + λ2‖L(x(k) + s)‖2

}
. (2.32)

We first analyze the case L = In.

Theorem 2.5.1. Let rank(Jk) = rk. The iteration for (2.32) is given by

x(k+1) = x(k) −
rk∑
i=1

σig
(k)
i + λ2z

(k)
i

σ2
i + λ2

vi − V2V
T

2 x(k), (2.33)

where g(k) = UT rk, z(k) = V Tx(k), and V2 = [vrk+1, . . . ,vn] is defined as in Theo-
rem 2.3.1.

Proof. Computing the gradient of the function (2.32) with L = In yields the normal
equations associated to the penalized least-squares problem

(JTk Jk + λ2In)s = −JTk rk − λ2x(k). (2.34)

By employing the singular value decomposition Jk = UΣV T , the normal equa-
tions (2.34) become

(ΣTΣ + λ2In)y = −ΣTg(k) − λ2z(k), (2.35)

with y = V T s, g(k) = UT rk, and z(k) = V Tx(k). The solution to the diagonal normal
equations (2.35),

yi =

−
σig

(k)
i + λ2z

(k)
i

σ2
i + λ2

, i = 1, . . . , rk,

−z(k)
i , i = rk + 1, . . . , n,

leads to the Tikhonov–Gauss–Newton (TikGN) iterate, which solves (2.32):

x(k+1) = x(k) −
rk∑
i=1

σig
(k)
i + λ2z

(k)
i

σ2
i + λ2

vi −
n∑

i=rk+1

z
(k)
i vi.

The last summation can be rewritten in matrix form as V2V
T

2 x(k), where V2 =
[vrk+1, . . . ,vn]. This completes the proof.

The normal equations associated to (2.24) are

(JTk Jk + λ2In)s = −JTk rk,

which become after substituting the SVD of Jk,

(ΣTΣ + λ2In)y = −ΣTg(k).
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The solution to this diagonal system

yi =

−
σig

(k)
i

σ2
i + λ2

, i = 1, . . . , rk,

0, i = rk + 1, . . . , n,

produces the iterate

x(k+1) = x(k) −
rk∑
i=1

σig
(k)
i

σ2
i + λ2

vi. (2.36)

Comparing equation (2.36), where the approximate solution is obtained by im-
posing the regularity constraint on the update vector s, to the iteration (2.33),
where the regularity constraint is imposed on the approximate solution x(k+1), we
see that the TikGN method implements a different filtering technique with respect
to the standard application of Tikhonov regularization to the Gauss–Newton itera-
tion and produces approximate solutions which are orthogonal to the null space of
the Jacobian matrix Jk.

Remark 2.5.2. Since V2V
T

2 = In − V1V
T

1 , the updated solution (2.33) can be
expressed without the explicit use of the singular vectors vi, i = rk + 1, . . . , n, in
the form

x(k+1) = V1V
T

1 x(k) −
rk∑
i=1

σig
(k)
i + λ2z

(k)
i

σ2
i + λ2

vi.

This is useful when a compact SVD is available.

Formula (2.33) immediately yields the following result.

Corollary 2.5.3. When the regularization parameter λ approaches zero, the TikGN
iterate computed by (2.33) converges to the MNGN solution (2.13), that is

x
(k+1)
MNGN = lim

λ→0+
x

(k+1)
TikGN.

We now turn to the case L 6= In. We will denote the resulting method by TikLGN.

Theorem 2.5.4. Let rank(Jk) = rk. The iteration for the TikLGN approach (2.32)
is

x(k+1) = x(k) −
p∑

i=n−rk+1

ξiwi −
n∑

i=p+1

g
(k)
i−Nwi −W1Ŵ1x

(k), (2.37)

with

ξi =
ci−n+rkg

(k)
i−N + λ2s2

i−n+rk
z

(k)
i

c2
i−n+rk

+ λ2s2
i−n+rk

, i = n− rk + 1, . . . , p,

where N = max(n−m, 0) and W1 and Ŵ1 are defined as in Theorem 2.4.2.
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Proof. Let us consider the generalized singular value decomposition (1.3) of the
matrix pair (Jk, L). We initially assume that m ≥ n ≥ rk = rank(Jk) and that L
has full rank, i.e., rank(L) = p. We have Jk = UΣJW

−1 and L = V ΣLW
−1, with

ΣJ and ΣL given by (1.4).
Substituting the GSVD in the normal equations associated to (2.32),

(JTk Jk + λ2LTL)s = −JTk rk − λ2LTLx(k),

leads to
(D + λ2H)y = −ΣT

Jg(k) − λ2Hz(k), (2.38)

where

D =

On−r
C2

In−p

 , H =

In−r S2

On−p

 ,
y = W−1s, g(k) = UT rk, and z(k) = W−1x(k). The diagonal system (2.38) yields the
iterate

x(k+1) = x(k) −
p∑

i=n−rk+1

ξiwi −
n∑

i=p+1

g
(k)
i wi −W1Ŵ1x

(k), (2.39)

where

ξi =
ci−n+rkg

(k)
i + λ2s2

i−n+rk
z

(k)
i

c2
i−n+rk

+ λ2s2
i−n+rk

, i = n− rk + 1, . . . , p.

Similarly, when rk ≤ m < n, the TikLGN approach leads to the iterate

x(k+1) = x(k) −
p∑

i=n−rk+1

ξ′iwi −
n∑

i=p+1

g
(k)
i−n+mwi −W1Ŵ1x

(k), (2.40)

with

ξ′i =
ci−n+rkg

(k)
i−n+m + λ2s2

i−n+rk
z

(k)
i

c2
i−n+rk

+ λ2s2
i−n+rk

, i = n− rk + 1, . . . , p.

Introducing N = n−m if m < n and zero otherwise, the overdetermined (2.39) and
the underdetermined (2.40) cases may be condensed into the single expression (2.37),
and this completes the proof.

The normal equations associated to (2.25), if m ≥ n ≥ rk, are

(JTk Jk + λ2LTL)s = −JTk rk,

that is,
(D + λ2H)y = −ΣT

Jg(k),

where D, H, and g(k) are defined as above. This diagonal system yields

x(k+1) = x(k) −
p∑

i=n−rk+1

ci−n+rkg
(k)
i

c2
i−n+rk

+ λ2s2
i−n+rk

wi −
n∑

i=p+1

g
(k)
i wi. (2.41)
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When rk ≤ m < n, the iteration induced by (2.25) is

x(k+1) = x(k) −
p∑

i=n−rk+1

ci−n+rkg
(k)
i−n+m

c2
i−n+rk

+ λ2s2
i−n+rk

wi −
n∑

i=p+1

g
(k)
i−n+mwi. (2.42)

We can condense the overdetermined (2.41) and the underdetermined (2.42) cases
into a single expression, introducing N defined as in the Theorem 2.5.4:

x(k+1) = x(k) −
p∑

i=n−rk+1

ci−n+rkg
(k)
i−N

c2
i−n+rk

+ λ2s2
i−n+rk

wi −
n∑

i=p+1

g
(k)
i−Nwi.

Comparing (2.37) to this formula shows, as in the case L = In, that the minimal-
L-norm approach and the traditional Tikhonov method produce different reconstruc-
tions. Also, when the regularization parameter λ approaches zero, the TikLGN
solution converges to the MLNGN solution.

Corollary 2.5.5. For the iterations computed by the MLNGN method (2.20) and
by the TikLGN method (2.39), it holds that

x
(k+1)
MLNGN = lim

λ→0+
x

(k+1)
TikLGN.

In formulas (2.33) and (2.37), the solution at convergence will be denoted by xλ,
and also in this case we will consider the right-hand side b to be affected by noise
as in (2.28). In this case, the regularization parameter λ can be estimated by the
discrepancy principle, substituting F (x`) by F (xλ) in (2.29). The L-curve criterion
can also be adapted by substituting F (x`) and x` by F (xλ) and xλ, respectively,
in (2.30).

We adopt the following stopping rule for all the iterative methods (M(L)NGN,
TM(L)NGN, Tik(L)GN). We iterate until either the difference between two succes-
sive approximations is small enough

‖x(k+1) − x(k)‖ < δ‖x(k+1)‖,

or until a chosen maximum number of iterations Nmax is reached.
In the case of ill-conditioned problems, it is useful to consider an additional stop-

ping criterion in order to detect the unboundedness of the solution for a particular
value of the regularization parameter. The iteration is interrupted when one of the
preceding conditions is reached or when the ratio between the norms of the kth
approximate solution and the initial point is larger than a certain fixed threshold.

2.6 Implementation details

In some situations, the gsvd routine provided by Matlab produces unexpected re-
sults. We observed that when the norm of the Jacobian matrix Jk is very small,
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the GSVD of (Jk, L) may produce an inaccurate factor W , which prevents the
Gauss–Newton method (2.15) to converge. To overcome such numerical issues, when
‖Jk‖∞ < ρ (in the experiments we set ρ = 10−6), we rescale the least-squares prob-
lem (2.15) to obtain min

s∈Rn
‖L(x(k) + s)‖2

s ∈
{

arg min
s∈Rn
‖J̃ks + r̃k‖2

}
,

with J̃k = ρ−1Jk and r̃k = ρ−1rk, before applying the algorithms described in the
preceding sections. The Armijo–Goldstein principle (2.8) is modified accordingly.
The Tikhonov approach (2.32) is rescaled similarly.

2.7 Doubly relaxed nonlinear minimal-norm solu-

tion

Let us now briefly review the computation of the minimal-norm solution to the
nonlinear problem (2.1) by the minimal-norm Gauss–Newton (MNGN) method,
presented in [82] and reported in Section 2.3. Our aim is showing the reason for
the possible lack of convergence of such method. Here, we extend the discussion
by introducing a model profile x ∈ Rn, which represents an a priori estimate of the
desired solution, and formulate the problem in the formmin

x∈Rn
‖x− x‖2

x ∈
{

arg min
x∈Rn
‖F (x)− b‖2

}
.

(2.43)

When such an approximation is unavailable, we just set x = 0. Similarly to Section
2.3, we consider an iterative method of the type (2.7) based on the following first-
order linearization of the problemmin

s∈Rn
‖x(k) − x + αks‖2

s ∈
{

arg min
s∈Rn
‖Jks + rk‖2

}
,

(2.44)

where Jk is the Jacobian of F in x(k) and rk is the residual vector. The damp-
ing parameter αk is indispensable to ensure the convergence of the Gauss–Newton
method. We determine it by the Armijo–Goldstein principle.

The iteration resulting from the solution of (2.44) is defined by the following
theorem.

Theorem 2.7.1. Let x(k) ∈ Rn and let x̃(k+1) = x(k) + αks̃
(k) be the Gauss–Newton

iteration for (2.1), where the step s̃(k) is determined by solving (2.9) and the step
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length αk by the Armijo–Goldstein principle. Then, the iteration x(k+1) = x(k) +
αks

(k) defined by (2.44) is given by

x(k+1) = x̃(k+1) − V2V
T

2

(
x(k) − x

)
, (2.45)

where rank(Jk) = rk and the columns of the matrix V2 = [vrk+1, . . . ,vn] are or-
thonormal vectors in Rn spanning the null space of Jk.

Proof. The proof follows the pattern of that of Theorem 2.3.1. Let UΣV T be the
singular value decomposition of the matrix Jk. The upper-level problem in (2.44)
can be expressed as

‖x(k) − x + αks‖2 = ‖V T (x(k) − x + αks)‖2 = ‖αky + z(k)‖2,

with y = V T s and z(k) = V T
(
x(k) − x

)
. Replacing Jk by its SVD and setting

g(k) = UT rk, we can rewrite (2.44) as the following diagonal linear least-squares
problem min

y∈Rn
‖αky + z(k)‖2

y ∈
{

arg min
y∈Rn
‖Σy + g(k)‖2

}
.

Solving the lower-level minimization problem uniquely determines the components
yi = −σ−1

i g
(k)
i , i = 1, . . . , rk, while the entries yi, i = rk + 1, . . . , n, are left undeter-

mined. Their values can be found by solving the upper-level problem. From

‖αky + z(k)‖2 =

rk∑
i=1

(
−αk

g
(k)
i

σi
+ z

(k)
i

)2

+
n∑

i=rk+1

(
αkyi + z

(k)
i

)2

,

we obtain yi = − z
(k)
i

αk
= − 1

αk
vTi (x(k) − x), i = rk + 1, . . . , n. Then, the solution

to (2.44), that is, the next approximation to the solution of (2.43), is

x(k+1) = x(k) + αkV y = x(k) − αk
rk∑
i=1

g
(k)
i

σi
vi −

n∑
i=rk+1

(vTi (x(k) − x))vi,

where the last summation can be written in matrix form as V2V
T

2

(
x(k) − x

)
, and

the columns of V2 = [vrk+1, . . . ,vn] are a basis for N (Jk).
It is immediate (see Theorem 2.3.1) to prove that

x̃(k+1) = x(k) + αks̃
(k) = x(k) − αk

rk∑
i=1

g
(k)
i

σi
vi,

from which (2.45) follows.
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Summarizing, the MNGN method consists of the iteration

x(k+1) = x(k) + αks
(k),

where the step is

s(k) = s̃(k) − 1

αk
t(k),

with

s̃(k) = −
rk∑
i=1

g
(k)
i

σi
vi, t(k) = V2V

T
2

(
x(k) − x

)
. (2.46)

Theorem 2.7.1 shows that the correction vector t(k) defined in (2.46), which al-
lows to compute the minimal-norm solution at each step, is not damped by the
parameter αk. As a result, in some numerical examples, the method fails to con-
verge because projecting the solution orthogonally to the null space of Jk causes the
residual to increase. To understand how this can happen, a second-order analysis
of the objective function is required.

The second-order Taylor approximation to the function f(x) = 1
2
‖r(x)‖2 at

x(k+1) = x(k) + αs is

f(x(k+1)) ' f(x(k)) + α∇f(x(k))T s +
1

2
α2sT∇2f(x(k))s. (2.47)

The gradient and the Hessian of f(x), written in matrix form, are given by (2.2) and
(2.3), respectively; see Section 2.2. By replacing the expression of f and αs = αs̃−t
in (2.47), where s̃ is the Gauss–Newton step and t is in the null space of Jk, and
letting Qk = Q(x(k)), the following approximation is obtained

1

2
‖rk+1‖2 ' 1

2
‖rk‖2 + αrTk Jks +

1

2
α2sT

(
JTk Jk +Qk

)
s

=
1

2
‖rk‖2 + αrTk Jks̃ +

1

2
α2s̃T

(
JTk Jk +Qk

)
s̃− αtTQks̃ +

1

2
tTQkt.

The first two terms containing second derivatives (the matrix Qk) are damped by
the α parameter. If the function F is mildly nonlinear, the third term 1

2
tTQkt is

negligible. In the presence of a strong nonlinearity, its contribution to the residual
is significant and may lead to its growth. This shows that a damping parameter
is required to control the step length for both the Gauss–Newton step s̃ and the
correction vector t. If a relaxation parameter is introduced for t, Theorem 2.7.1
implies that the minimal-norm solution of (2.44) can only be approximated.

Remark 2.7.2. We report a simple low dimensional example for which the MNGN
method may not converge. Let us consider the function F : R2 → R defined by

F (x) = δ2
[
(x1 − γ)2 + (x2 − γ)2

]
− 1,
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depending on the parameters δ, γ ∈ R. Since the Hessian matrix of the residual is
given by

∇2r(x) =

[
2δ2 0
0 2δ2

]
,

the second-order term 1
2
tTQkt is not negligible, in general, when δ is relatively

large. For example, setting δ = 0.7, γ = 2, and choosing an initial vector x(0) with
random components in (−5, 5), the MNGN method converges with a large number
of iterations (350 on average). Setting δ = 0.75, the same method does not converge
within 500 iterations.

2.8 Estimating the rank of the Jacobian

In order to apply Theorem 2.7.1 to computing the minimal-norm solution by (2.45),
the rank of the Jacobian matrix Jk should be known in advance. As the rank may
vary along the iterations, we set rk = rank(Jk). The knowledge of rk for each
k = 0, 1, . . ., is not generally available, making it necessary to estimate its value at
each iteration step, to avoid non-convergence or a breakdown of the algorithm.

In such situations, it is common to consider the numerical rank rε,k of Jk, where
ε represents a chosen tolerance; see Subsection 1.2.1. The numerical rank is defined
in terms of the singular values σ

(k)
i of Jk, as the integer rε,k such that

σ(k)
rε,k

> ε ≥ σ
(k)
rε,k+1.

Theorem 2.7.1 can be adapted to this setting, by simply replacing at each iteration
the rank rk with the numerical rank rε,k.

Determining the numerical rank is a difficult task for discrete ill-posed prob-
lems, in which the singular values decay monotonically to zero. In such a case, the
numerical rank plays the role of a regularization parameter.

When the problem is locally rank-deficient, meaning that the rank of J(x) de-
pends on the evaluation vector x, the numerical rank rε,k can be determined, in
principle, by choosing a suitable value of ε. Numerical experiments show that a
fixed value of ε does not always lead to a correct estimation of rε,k, and that it is

preferable to determine the ε-rank by searching for a sensible gap between σ
(k)
rε,k and

σ
(k)
rε,k+1.

To locate such a gap, we adopt a heuristic approach already applied in [23] for
the same purpose, in a different setting. At each step, we compute the ratios

ρ
(k)
i =

σ
(k)
i

σ
(k)
i+1

, i = 1, 2, . . . , q − 1,

where q = min(m,n). Then, we consider the index set

Ik =
{
i ∈ {1, 2, . . . , q − 1} : ρ

(k)
i > R and σ

(k)
i > τ

}
.



2.9. CHOOSING THE PROJECTION STEP LENGTH 63

An index i belongs to Ik if there is a significant “jump” between σ
(k)
i and σ

(k)
i+1, and

σ
(k)
i is numerically non-zero. If the set Ik is empty, we set rε,k = q. Otherwise, we

consider
ρ

(k)
j = max

i∈Ik
ρ

(k)
i , (2.48)

and we define rε,k = j. This amounts to selecting the largest gap between “large”
and “small” singular values. In our numerical simulations (Section 6.2), we set
R = 102 and τ = 10−8. We observed that the value of these parameters is not
critical for problems characterized by a rank-deficient Jacobian. Estimating the
rank becomes increasingly difficult as the gap between “large” and “small” singular
values gets smaller. This condition usually corresponds to ill-conditioned problems,
which require specific regularization methods.

2.9 Choosing the projection step length

The occasional non-convergence in the computation of the minimal-norm solution to
a nonlinear least-squares problem was discussed in [20], where the authors propose
an iterative method based on a convex combination of the Gauss–Newton and the
minimal-norm Gauss–Newton iterates, which we denote by CKB. Following our
notation, it can be expressed in the form

x(k+1) = (1− γk)
[
x(k) + s̃(k)

]
+ γk

[
x(k) + s̃(k) − V2V

T
2 x(k)

]
, (2.49)

where the parameters γk ∈ [0, 1], for k = 0, 1, . . ., form a sequence converging to zero.
The standard Gauss–Newton method is obtained by setting γk = 0, while γk = 1
leads to the minimal-norm Gauss–Newton method. In their numerical examples,
the authors adopt the sequences γk = (0.5)k+1 and γk = (0.5)2k .

It is immediate to rewrite (2.49) in the form

x(k+1) = x(k) + s̃(k) − γkV2V
T

2 x(k), (2.50)

showing that the method proposed in [20] is equivalent to the application of the
undamped Gauss–Newton method, whose convergence is not theoretically guaran-
teed [10], with a damped correction to favor the decrease of the norm of the solution.
The numerical experiments reported in the paper show that the minimization of the
residual is sped up if γk quickly converges to zero, while the norm of the solution
decreases faster if γk has a slower decay. The choice of the sequence of parameters
appears to be critical to tune the performance of the algorithm, and no adaptive
choice for γk is proposed.

In this section, following [83], we propose to introduce a second relaxation pa-
rameter, βk, to control the step length of the minimal-norm correction t(k) defined
in (2.46). The new iterative method is denoted by MNGN2 and it takes the form

x(k+1) = x(k) + αks̃
(k) − βkt(k), (2.51)
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where s̃(k) is the step vector produced by the Gauss–Newton method and t(k) is the
projection vector which makes the norm of x(k+1) minimal, without changing the
value of the linearized residual.

The second-order analysis reported at the end of Section 2.7 may be adapted for
the CKB method (2.50)

1

2
‖rk+1‖2 =

1

2
‖rk‖2 + rTk Jks̃ +

1

2
s̃T
(
JTk Jk +Qk

)
s̃− γtTQks̃ +

1

2
γ2tTQkt.

It shows that neither the CKB nor the MNGN method are guaranteed to converge, as
both the Gauss–Newton search direction and the projection step should be damped
to ensure that the residual decreases. The MNGN2 method locally converges if αk
and βk are suitably chosen, but it will recover the minimal-norm solution only if
βk ' 1 for k close to convergence.

Our numerical tests showed that it is important to choose both αk and βk adap-
tively along the iterations. A simple solution is to let βk = αk and estimate αk by
the Armijo–Goldstein principle (2.8), with s(k) = s̃(k)− t(k) in place of s(k). This ap-
proach proves to be effective in the computation of the minimal-norm solution, but
its convergence is often rather slow. To speed up iteration we propose a procedure
to adaptively choose the value of βk.

This procedure is outlined in Algorithm 1. Initially, we set β = 1. At each
iteration, we compute the residual at the Gauss–Newton iteration x̃(k+1) and at the
tentative iteration x(k+1) = x̃(k+1) − βt(k). Subtracting the vector βt(k) may cause
the residual to increase. We accept such an increase if

‖r(x(k+1))‖ ≤ ‖r(x̃(k+1))‖+ δ
(
‖r(x̃(k+1))‖, η

)
, (2.52)

where δ(ρ, η) is a function determining the maximal increase allowed in the residual
ρ = ‖r(x̃(k+1))‖, and η > 0 is a chosen tolerance. On the contrary, β is halved and
the residual is recomputed until (2.52) is verified or β becomes excessively small.
To allow β to increase, we tentatively double it at each iteration (see line 9 in the
algorithm) before applying the above procedure. At line 12 of the algorithm we add
the machine epsilon εM to the actual residual ρ̃k+1 to avoid that δ(ρ̃k+1, η) becomes
zero.

A possible choice for the value of the residual increase is δ(ρ, η) = ηρ, with η
suitably chosen. Our experiments showed that it is possible to find, by chance, a
value of η which produces good results, but its choice is strongly dependent on the
particular example. We also noticed that, in cases where the residual stagnates,
accepting a large increase in the residual may lead to non-convergence. In such
situations, a fixed multiple of the residual is not well suited to model its increase.
Indeed, if the residual is large, one is prone to accept only a small increase, while if
the residual is very small, a relatively large growth may be acceptable.

To overcome these difficulties, we consider δ(ρ, η) = ρη, and choose η at each step
by the adaptive procedure described in Algorithm 2. When at least kres iterations
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Algorithm 1 Outline of the MNGN2 method.

Require: nonlinear function F , data vector b,
Require: initial solution x(0), model profile x, tolerance η for residual increase
Ensure: approximation x(k+1) of minimal-norm least-squares solution
1: k = 0, β = 1
2: repeat
3: k = k + 1
4: estimate rk = rank(J(x(k))) by (2.48)
5: compute s̃(k) by the Gauss–Newton method (2.6)
6: compute αk by the Armijo–Goldstein principle (2.8)
7: compute t(k) by (2.46)
8: if β < 1 then
9: β = 2β
10: end if
11: x̃(k+1) = x(k) + αks̃

(k)

12: ρ̃k+1 = ‖F (x̃(k+1))− b‖+ εM
13: x(k+1) = x̃(k+1) − βt(k)

14: ρk+1 = ‖F (x(k+1))− b‖
15: while (ρk+1 > ρ̃k+1 + δ(ρ̃k+1, η)) and (β > 10−8) do
16: β = β/2
17: x(k+1) = x̃(k+1) − βt(k)

18: ρk+1 = ‖F (x(k+1))− b‖
19: end while
20: βk = β
21: until convergence
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have been performed, we compute the linear polynomial which fits the logarithm of
the last kres residuals in the least-squares sense. To detect if the residual stagnates
or increases, we check if the slope M of the regression line exceeds −10−2. If this
happens, the value of η is doubled. The effect on the algorithm is to enhance
the importance of the decrease of the residual and reduce that of the norm. To
recover a sensible decrease in the norm, if at a subsequent step the residual reduction
accelerates (e.g., M < −1

2
), the value of η is halved. In our experiments, we initialize

η to 1
8

and set kres = 5.

Remark 2.9.1. The adaptive estimation of δ(ρ, η) does not significantly increase
the complexity of Algorithm 1, as line 3 of Algorithm 2 implies the solution of a
2 × 2 linear system whose matrix is fixed and can be computed in advance, while
forming the right-hand side requires 4kres floating point operations.

Algorithm 2 Adaptive determination of the residual increase δ(ρ, η).

Require: actual residual ρ = ‖r(x̃(k+1))‖, starting tolerance η
Require: iteration index k, residuals θj = ‖r(x̃(k−kres+j))‖, j = 1, . . . , kres

Ensure: residual increase δ(ρ, η)
1: Mmin = −10−2, Mmax = −1

2

2: if k ≥ kres then
3: compute regression line p1(t) = Mt+N of (j, log(θj)), j = 1, . . . , kres

4: if M > Mmin then
5: η = 2η
6: else if M < Mmax then
7: η = η/2
8: end if
9: end if
10: δ(ρ, η) = ρη

To detect convergence, we interrupt the iteration as soon as

‖x(k+1) − x(k)‖ < τ‖x(k+1)‖ or ‖αks̃(k)‖ < τ, (2.53)

or when a fixed number of iterations Nmax is exceeded. The second stop condition in
(2.53) detects the slow progress of the relaxed Gauss–Newton iteration algorithm.
This often happens close to the solution. The stop tolerance is set to τ = 10−8.

2.10 Doubly relaxed nonlinear minimal-L-norm

solution

In this section we extend the discussion made in Section 2.4, by introducing in the
analysis the step length and an a priori estimate of the solution. Let us introduce
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a regularization matrix L ∈ Rp×n, p ≤ n. While in (2.10) the seminorm ‖Ls‖ is
minimized over all the updating vectors s which minimize the linearized residual,
here we seek to compute the minimal-L-norm solution to the nonlinear problem (2.1),
that is the vector x which solves the constrained problemmin

x∈Rn
‖L(x− x)‖2

x ∈
{

arg min
x∈Rn
‖F (x)− b‖2

}
.

(2.54)

Similarly to Section 2.7, we consider an iterative method of the type (2.5), where
the step s(k) is the solution of the linearized problemmin

s∈Rn
‖L(x(k) − x + αs)‖2

s ∈
{

arg min
s∈Rn
‖Jks + rk‖2

}
.

(2.55)

We will denote the iteration resulting from the solution of (2.55) as the minimal-L-
norm Gauss–Newton (MLNGN) method.

Let Jk = UΣJW
−1, L = V ΣLW

−1 be the GSVD of the matrix pair (Jk,L). We
indicate by wi the column vectors of the matrix W , and by ŵj the rows of W−1,
that is

W = [w1, . . . ,wn], W−1 =

ŵ1

...
ŵn

 .
Theorem 2.10.1. Let x(k) ∈ Rn and let x̃(k+1) = x(k) + αks̃

(k) be the Gauss–
Newton iteration for (2.1), where the step s̃(k) is determined by solving (2.10) and
the step length αk by the Armijo–Goldstein principle. Then, the iteration x(k+1) =
x(k) + αks

(k) for (2.55), is given by

x(k+1) = x̃(k+1) −W1Ŵ1

(
x(k) − x

)
, (2.56)

where Ŵ1 ∈ R(n−rk)×n contains the first n− rk rows of W−1, and W1 ∈ Rn×(n−rk) is
composed of the first n− rk columns of W .

Proof. The proof proceeds analogously to that of Theorem 2.4.2. Replacing Jk and
L with their GSVD and setting y = W−1s, z(k) = W−1

(
x(k) − x

)
, and g(k) =

UT rk, (2.55) can be rewritten as the following diagonal least-squares problemmin
y∈Rn
‖ΣL(αky + z(k))‖2

y ∈
{

arg min
y∈Rn
‖ΣJy + g(k)‖2

}
.



68 CHAPTER 2. MINIMAL-NORM GAUSS–NEWTON METHOD

When m ≥ n, the diagonal linear system in the constraint is solved by a vector y
with entries

yi =


− g

(k)
i

c
i−n+rk

, i = n− rk + 1, . . . , p,

−g
(k)

i , i = p+ 1, . . . , n.

The components yi, for i = 1, . . . , n−rk, can be determined by minimizing the norm

‖ΣL(αky + z(k))‖2 =

n−rk∑
i=1

(
αkyi + z

(k)
i

)2

+

p∑
i=n−rk+1

(
−αk

g
(k)
i

γi−n+rk

+ si−n+rkz
(k)
i

)2

,

(2.57)

where γi = ci
si

are the generalized singular values of the matrix pair (Jk, L). The

minimum of (2.57) is reached for yi = − 1
αk
z

(k)
i = − 1

αk
ŵi(x(k)−x), i = 1, . . . , n− rk,

and the solution to (2.55), that is, the next approximation to the solution of (2.54),
is

x(k+1) = x(k) + αkWy

= x(k) −
n−rk∑
i=1

z
(k)
i wi − αk

p∑
i=n−rk+1

g
(k)
i

ci−n+rk

wi − αk
n∑

i=p+1

g
(k)
i wi,

(2.58)

where the first summation in the right-hand side can be rewritten as W1Ŵ1(x(k)−x).
Applying the same procedure to (2.10), we obtain

x̃(k+1) = x(k) − αk
p∑

i=n−rk+1

g
(k)
i

ci−n+rk

wi − αk
n∑

i=p+1

g
(k)
i wi,

from which (2.56) follows. Since solving (2.55) for m < n leads to a formula similar

to (2.58), with g
(k)
i−n+m in place of g

(k)
i , the validity of (2.56) is confirmed.

As in the computation of the minimal-norm solution, the iteration based on
(2.56) fails to converge without a suitable relaxation parameter βk for the projection

vector t(k) = W1Ŵ1(x(k) − x). We adopted an iteration similar to (2.51), choosing
βk by adapting Algorithms 1 and 2 to this setting. It is important to note that
P̃N (Jk) = W1Ŵ1 is an oblique projector onto N (Jk).

At the same time, the rank of the Jacobian is estimated at each step by applying
the procedure described in Section 2.8 to the diagonal elements c

(k)
j , j = 1, . . . , q−d,

of the GSVD factor ΣJ of Jk; see equations (1.4) and (1.6). In this case, at each
step, we compute the ratios

ρ
(k)
i =

c
(k)
i+1

c
(k)
i

, i = 1, 2, . . . , q − d− 1,
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where q = min(m,n).
Actually, the GSVD routine computes the matrix W−1, but the matrix W is

needed for the computation of both the vectors s̃(k) and t(k). To reduce the compu-
tational load, we compute at each iteration the LU factorization PW−1 = LU , and
we use it to solve the linear system with two right-hand sides

W−1
[
t(k) s̃(k)

]
=

[
Ŵ1(x(k) − x) 0n−r

0r ỹ

]
,

where ỹ ∈ Rr contains the last r components of the vector y appearing in (2.58),
and 0k denotes the zero vector of size k.

2.11 Conclusions

This chapter explores the solution of a nonlinear least-squares problem in the case
its solution lacks uniqueness. The usual approach is to compute the minimal-norm
solution to a linearization of the problem, generating an iterative method which does
not guarantee that the converged solution itself has a minimal-norm, or minimizes
a suitable seminorm. Here, we develop various techniques to impose such constraint
on the solution.

In the case of ill-conditioned problems, we also propose two regularization al-
gorithms, namely the truncated minimal-L-norm Gauss–Newton method and the
minimal-L-norm Tikhonov–Gauss–Newton method. In the numerical experiments
(see Section 6.1), we compare the newly proposed methods to the classical ap-
proaches. The results show that the two classes of methods produce, in general,
different results. The new methods are in some cases less sensitive to the initial
guess without a significant increase in the computational load.

The second part of the chapter explores the reasons for the occasional lack of
convergence of the minimal-norm Gauss–Newton method. We propose an auto-
matic procedure to estimate the rank of the Jacobian along the iteration, and the
introduction of two different relaxation parameters that improve the efficiency of
the iterative method. The first parameter is determined by applying the Armijo–
Goldstein principle, while three techniques are investigated to estimate the second
one. In numerical experiments (see Section 6.2) performed on various test problems,
the new methods prove to be very effective, compared to other approaches based on a
single damping parameter. In particular, the variant which automatically estimates
the projection parameter gives satisfactory results in all the examples.
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CHAPTER 3
Large-scale minimal-norm solution

In this chapter, we see how to handle the problem of computing the minimal-norm
solution of a nonlinear least-squares problem in a large-scale setting.

3.1 Golub–Kahan bidiagonalization

In [82, 83], formula

x(k+1) = x(k) + αks̃
(k) − βkPN (Jk)

(
x(k) − x

)
,

is implemented by computing the singular value decomposition (SVD) of the matrix
Jk at each step of the iterative methods. Although the SVD is a powerful tool for
the analysis of inverse problems, it is feasible to compute it only for small-scale
problems. For large-scale problems, one must turn to iterative methods that realize
a partial factorization of the matrix Jk. In such a way, large-scale least-squares
problems

min
s∈Rn
‖Jks + rk‖2 (3.1)

are reduced to small size by carrying out a few steps of the Golub–Kahan bidiag-
onalization process [43]. This is the basis for the LSQR algorithm by Paige and
Saunders [79, 80], where the matrix Jk is only used to compute products of the form
Jkv and JTk u for various vectors v and u.

Application of ` Golub–Kahan bidiagonalization steps to Jk with initial vector
rk yields the decompositions

JkV` = U`+1C`+1,`

JTk U` = V`C
T
`,`,

(3.2)

where the matrices U`+1 = [u1,u2, . . . ,u`+1] ∈ Rm×(`+1) and V` = [v1,v2, . . . ,v`] ∈
Rn×` have orthonormal columns, with u1 = rk/‖rk‖, and U` ∈ Rm×` consists of the
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first ` columns of U`+1. Finally,

C`+1,` =


ρ1

σ2 ρ2

. . . . . .

σ` ρ`
σ`+1

 ∈ R(`+1)×` (3.3)

is lower bidiagonal and C`,` is its leading ` × ` submatrix. In the decomposition
(3.2), to ease the notation, we drop the dependence on the iteration index k.

Starting with a vector u1 ∈ Rm, with ‖u1‖ = 1, and setting v0 = 0, the algorithm
recursively generates the vectors vi, ui+1, i = 1, . . . , `, and the non-zero elements in
C`+1,` by the recursion

ṽi = JTk ui − σivi−1, ρi = ‖ṽi‖, vi = (ρi)
−1ṽi,

ũi+1 = Jkvi − ρiui, σi+1 = ‖ũi+1‖, ui+1 = (σi+1)−1ũi+1,
(3.4)

for i = 1, 2, . . . , `. The computation requires ` matrix-vector product evaluations
with Jk, and ` matrix-vector product evaluations with JTk .

If exact arithmetic were used, then one would have UT
`+1U`+1 = I`+1 and V T

` V` =
I`. In finite precision arithmetic, to avoid loss of orthogonality in the columns of
U`+1 and V`, reorthogonalization is usually employed.

For the moment, we assume that the non-trivial entries of the bidiagonal matrix
(3.3) are positive for all `. When either ρ` or σ`+1 are zero at step ` a breakdown
occurs. The Golub–Kahan process will lead to a breakdown for i > rk = rank(Jk).
Anyway, a breakdown may happen even for i ≤ rk, we will comment later on its
consequences.

The columns of U`+1 and V` form an orthonormal basis for the following Krylov
subspaces

KU,k`+1 := K`+1(JkJ
T
k , rk) = R(U`+1),

KV,k` := K`(JTk Jk, JTk rk) = R(V`),
(3.5)

where
K`(A,b) = span{b, Ab, A2b, . . . , A`−1b}.

It follows from (3.2) and UT
`+1U`+1 = I`+1 that

UT
`+1JkV` = C`+1,`.

LSQR is an iterative method for solving (3.1) based on the decomposition (3.2),
which is equivalent to applying the conjugate gradient iteration to the normal equa-
tions associated with the problem. Let the initial iterate be s0 = 0. Then, the `th
iterate s` determined by the LSQR method satisfies

‖Jks` + rk‖ = min
s∈KV,k`

‖Jks + rk‖. (3.6)
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This shows that LSQR is a so-called minimal residual method: the iterate s` mini-
mizes the residual error over the Krylov subspace KV,k` defined in (3.5). Substituting
s = V`y into the right-hand side of (3.6) and using the decompositions (3.2), yields

min
s∈KV,k`

‖Jks + rk‖ = min
y∈R`
‖JkV`y + rk‖ = min

y∈R`
‖U`+1C`+1,`y + rk‖

= min
y∈R`

∥∥∥C`+1,`y + ‖rk‖e1

∥∥∥, (3.7)

where e1 = [1, 0, . . . , 0]T ∈ R`+1.
By employing the QR factorization

C`+1,` = Q`+1R`+1,`,

in the reduced least-squares problem on the right-hand side of (3.7), the `th iterate
can be expressed as s` = V`y`, where y` solves the linear system

R`,`y` = −‖rk‖q1,

R`,` is the bidiagonal `× ` upper block of R`+1,`, and qT =
[
qT1 , q`+1

]
is the first row

of the matrix Q`+1. Moreover,

min
s∈KV,k`

‖Jks` + rk‖2 = (‖rk‖q`+1)2.

Since KV,k`−1 ⊆ K
V,k
` the method generates a sequence of approximations s` such that

the residual error ‖Jks` + rk‖ decreases monotonically when ` increases.
The LSQR is outlined in Algorithm 3. For further background on Golub–Kahan

bidiagonalization, Lanczos methods, and Krylov subspaces, see [10, 91].
A proof of the fact that the LSQR algorithm converges to the minimum norm

solution can be found in [40, Theorem 4.2]. Since it is essential to solve problem
(2.12), we review the following results.

Theorem 3.1.1. The Krylov spaces KV,k` generated by the Golub–Kahan process for
` = 1, . . . , rk = rank(Jk), are orthogonal to the null space of Jk.

Proof. From (3.4), we have that ui ∈ R(Jk) if and only if rk ∈ R(Jk) and vi ∈
R(JTk ) = N (Jk)

⊥, independently of rk, for i = 1, . . . , rk. Since KV,k` = R(V`), the
result follows.

Theorem 3.1.2. The LSQR method converges to the minimal-norm solution of
(2.6). If a breakdown occurs, then LSQR finds the exact solution.

Proof. The fact that LSQR converges to a minimizer of the residual ‖Jks + rk‖ has
been proved in [80]. In [68, Theorem 2], it is shown that, for each `,

‖JTk (Jks` + rk)‖ = ρ`+1σ`+1|eT` y`|, (3.8)
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Algorithm 3 Outline of the LSQR algorithm.

Require: Jacobian matrix Jk, residual vector rk, threshold tol for breakdown
Ensure: U`, V`, C`+1,`, and s

(k)
`

1: v0 = 0, u1 = rk/‖rk‖, and i = 1
2: repeat
3: ṽi = JTk ui − σivi−1

4: reorthogonalization ṽi = ṽi −
∑i−1

j=1〈vj, ṽi〉vj
5: ρi = ‖ṽi‖
6: if ρi < tol then
7: breakdown
8: end if
9: vi = (ρi)

−1ṽi
10: ũi+1 = Jkvi − ρiui
11: reorthogonalization ũi+1 = ũi+1 −

∑i
j=1〈uj, ũi〉uj

12: σi+1 = ‖ũi+1‖
13: if σi+1 < tol then
14: breakdown
15: end if
16: ui+1 = (σi+1)−1ũi+1

17: solve miny∈Ri
∥∥∥Ci+1,iy + ‖rk‖e1

∥∥∥
18: i = i+ 1
19: until convergence
20: ` = i, s

(k)
` = V`y`
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so that if the algorithm breaks down at step ` < rk ≤ min(m,n), then the `th iterate
of LSQR s` = V`y` ∈ KV,k` minimizes the residual, as (3.8) is equivalent to normal
equations of (3.1). If this is the case, s` belongs to N (Jk)

⊥ by Theorem 3.1.1, so
it is the minimal-norm solution. The same happens, with ` = rk, if no breakdown
occurs and rk = m < n. If m ≥ n, the least-squares solution is unique.

3.2 Breakdowns

Some properties related to the breakdown will now be analyzed. Combining the
decompositions (3.2) we obtain

JkJ
T
k U` = U`+1T`+1,`,

JTk JkV` = V`+1T̂`+1,`,
(3.9)

where
T`+1,` = C`+1,`C

T
`,`, T̂`+1,` = CT

`+1,`+1C`+1,`,

are tridiagonal matrices of the form

γ1 δ2

δ2 γ2 δ3

. . . . . . . . .

δ`−1 γ`−1 δ`
δ` γ`

δ`+1


∈ R(`+1)×`,

and T`,` and T̂`,` are their leading `× ` symmetric submatrices. Equations (3.9) are
Lanczos decompositions of the symmetric positive semidefinite matrices JkJ

T
k and

JTk Jk, respectively. They allow one to apply the theorem stated for the Lanczos
decomposition in [95, Theorem 36.1] to the Golub–Kahan decomposition.

Theorem 3.2.1. As long as the Golub–Kahan iteration does not break down, the
characteristic polynomial of Tj,j is the unique polynomial pj of degree j such that

‖pj(JkJTk )rk‖ is minimum, and the characteristic polynomial of T̂j,j is the unique
polynomial p̂j of degree j such that ‖p̂j(JTk Jk)JTk rk‖ is minimum.

If a breakdown happens for σ`+1 at step `, then p`(JkJ
T
k )rk = 0.

If a breakdown happens for ρ` at step `, then p̂`−1(JTk Jk)J
T
k rk = 0.

If the breakdown occurs at the first steps in the Golub–Kahan process, it is
possible to obtain an explicit expression for the above polynomial equations.

Corollary 3.2.2. If at the first step of the Golub–Kahan bidiagonalization σ2 = 0,
then

JkJ
T
k rk − ρ2

1rk = 0, (3.10)
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that is, rk is an eigenvector of JkJ
T
k and ρ1 is a singular value of Jk. If a breakdown

occurs at the second step, then if ρ2 = 0

(JTk Jk)J
T
k rk − (ρ2

1 + σ2
2)JTk rk = 0,

and if σ3 = 0 [
(JkJ

T
k )2 − (ρ2

1 + ρ2
2 + σ2

2)JkJ
T
k + ρ2

1ρ
2
2Im
]
rk = 0. (3.11)

Proof. The results follow easily from (3.2). For example, if σ3 = 0 we have

Jkv2 = ρ2u2. (3.12)

Substituting v2, u2, and v1, retracing the algorithm (3.4) in reverse, we get

Jkv2 =
1

ρ1ρ2σ2

[
(JkJ

T
k )2 − (ρ2

1 + σ2
2)JkJ

T
k

]
u1,

and
ρ2u2 =

ρ2

ρ1σ2

[
JkJ

T
k u1 − ρ2

1u1

]
.

Replacing these two expressions in (3.12), since u1 = rk/‖rk‖, yields (3.11).

In the next example, we illustrate a particular function which presents a break-
down at the first step (σ2 = 0).

Example 3.2.3. Let F : Rn → Rm be the nonlinear function (5.5) defined in Test
Function 4 (see Section 5.1). The function (5.5) can be written in vectorial form as

F (x) = S(x)Im×n(x− c),

and its Jacobian matrix is

J(x) = Im×n
[
S(x)In + 2(x− c)(x− c)TD

]
,

where

S(x) =
n∑
j=1

(
xj − cj
aj

)2

− 1

is the n-ellipsoid with center c = [c1, . . . , cn]T and whose semiaxes are the compo-
nents of the vector a = [a1, . . . , an]T , and

D = diag

(
1

a2
1

,
1

a2
2

, . . . ,
1

a2
n

)
.

If a = e = [1, 1, . . . , 1]T , i.e., D = In, that is, S(x) is a sphere, a breakdown
for σ` occurs at the first step of the Golub–Kahan bidiagonalization, i.e., σ2 = 0;
see Corollary 3.2.2. Since b = 0, then r(x) = F (x). From (3.4) it follows ρ2

1 =
‖JT r‖2/‖r‖2. It is simple to verify that JJT r and ρ2

1r are both equal to

S(x)
[
S(x)2 + 4(2S(x) + 1)‖Im×n(x− c)‖2

]
Im×n(x− c),

that is, equation (3.10) is verified.
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3.3 Minimal-norm solution

Let PN (Jk) represent the orthogonal projector onto N (Jk). Following [83], the ap-
proximate solution of (2.12) is

x(k+1) = x(k) + αks̃
(k)
`k
− βkPN (Jk)(x

(k) − x),

where k is the iteration index of the MNGN2 method. It follows that the (k + 1)th
iterate of the MNGN2 method, when βk = 1, is orthogonal to the null space of Jk.
The parameter βk is chosen by applying the method described in Section 2.9.

We remark that the orthogonal projector onto the null space of Jk is approx-
imated by the orthogonal projector onto the null space of J

(`)
k , where the matrix

J
(`)
k = U`+1C`+1,`V

T
` is a rank-` approximation of the matrix Jk obtained after `

steps of the Golub–Kahan bidiagonalization.

Lemma 3.3.1. The null space of J
(`)
k is orthogonal to the Krylov subspace

K`(JTk Jk, JTk rk).

Proof. Since the null space of J
(`)
k coincides with the null space of V T

` , indeed J
(`)
k x =

0 if and only if V T
` x = 0, and N (V T

` ) is orthogonal to the range R(V`), equation
(3.5) completes the proof.

From this result, it follows that the orthogonal projector onto the null space of
J

(`)
k is given by

PN (Jk) ≈ PN (J
(`)
k )

= In − V`V T
` .

A natural extension is to develop an analogous method for solving the minimiza-
tion problem (2.15), where the seminorm of the solution is minimized.

3.4 Tikhonov regularization

Regularization is achieved by terminating the iterations sufficiently early. Another
approach is to apply the Tikhonov regularization.

The minimization problem (2.6) is replaced by a nearby problem

min
s∈Rn

{
‖Jks + rk‖2 + λ2‖s‖2

}
,

where λ > 0 is a regularization parameter. The unique solution is given by

sλ = −
(
JTk Jk + λ2In

)−1
JTk rk.

To choose λ, the quantity ‖Jks` + rk‖ has to be evaluated for several λ-values.
This can be expensive when the matrix Jk is large. We first reduce Jk to a small
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bidiagonal matrix with the aid of Golub–Kahan bidiagonalization. After ` steps of
Golub–Kahan bidiagonalization, the functional becomes

min
y∈R`

{∥∥C`+1,`y + ‖rk‖e1

∥∥2
+ λ2‖y‖2

}
.

The normal equations related to this functional are(
CT
`+1,`C`+1,` + λ2I`

)
y = −‖rk‖CT

`+1,`e1

If the Tikhonov functional is in general form, i.e., there is a regularization matrix
L ∈ Rp×n,

min
s∈Rn

{
‖Jks + rk‖2 + λ2‖Ls‖2

}
,

it is prohibitively expensive to compute the GSVD of a pair of large matrices.
Tikhonov regularization problems with large matrices Jk and L have to be reduced
to problems of small size. We first reduce Jk by applying ` steps of Golub–Kahan
bidiagonalization (3.2). Then, we introduce the QR factorization of the “slim” ma-
trix

LV` = Q`R`,

where Q` ∈ Rp×` has orthonormal columns and R` ∈ R`×` is upper triangular;
see [81]. This approach is computationally convenient because ` � p and the QR
factorization can be realized by only ` Householder transformations. We seek a
solution in the subspace KV,k` . Thus, we solve the Tikhonov minimization problem

min
y∈R`

{∥∥C`+1,`y + ‖rk‖e1

∥∥2
+ λ2‖R`y‖2

}
,

with s = V`y.



CHAPTER 4
Minimal-norm solution of first
kind integral equations

4.1 Introduction

Fredholm integral equations of the first kind model several physical problems arising
in different contexts such as medical imaging, image processing, signal processing
and geophysics. Their standard form is∫ b

a

k(x, t)f(t) dt = g(x), x ∈ [c, d], (4.1)

where the right-hand side g, usually given at a finite set of points x = xi, i = 1, . . . , n,
represents the experimental data, the kernel k, often analytically known, stands for
the impulse response of the experimental equipment, and the function f is the signal
to recover.

From a theoretical point of view, they are treated in a Hilbert space setting which
typically coincides with the space of square-integrable functions. The corresponding
integral operator

(Kf)(x) =

∫ b

a

k(x, t)f(t) dt,

is a bounded linear operator from a Hilbert space H1 into a Hilbert space H2, and
a solution f of (4.1) exists only if the right-hand side g belongs to the range of
K, R(K) ⊂ H2. Consequently, the existence of the solution of (4.1) cannot be
guaranteed for any right-hand side, but only for a restricted class of functions g
[51]. The uniqueness of the solution depends upon the structure of the null space of
the operator K, but even when it is ensured the problem is still ill-posed since the
stability is missing; see [50, pag. 155].

In an experimental setting, g is certainly an element of R(K), since it represents
the data g(xi) produced by an operator K which reproduces a real situation. This
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leads to the integral equation with discrete data∫ b

a

k(xi, t)f(t) dt = g(xi), i = 1, . . . , n. (4.2)

However, even when g ∈ R(K), the data values in (4.2) are affected by per-
turbations due to measuring and rounding errors, so one cannot be sure that the
perturbed right-hand side lies exactly in the range of K. Moreover, the solution
of (4.2) is not unique and it does not depend continuously on the data. In other
words, a discretization (4.2) of equation (4.1) is an ill-posed problem [52, 100]. This
fact makes its numerical treatment rather delicate, especially if compared to the dis-
cretization of integral equations of the second kind, a typical example of well-posed
problem [5].

The non-uniqueness of the solution of (4.2) can be stated as follows. Let us
consider the functions ki(t) = k(xi, t), i = 1, . . . , n. By the Gram–Schmidt process
it is possible to construct a set of orthonormal functions φj(t), j = 1, . . . , n̄ ≤ n,
such that

S = span{φ1, . . . , φn̄} = span{k1, . . . , kn}.

Chosen any function ψ(t) linearly independent of ki(t), i = 1, . . . , n, the function

φn̄+1(t) = ψ(t)−
n̄∑
j=1

〈ψ, φj〉φj

is orthogonal to S, so that whenever f(t) is a solution of (4.2) also f(t) + αφn̄+1(t)
is, for any α ∈ R.

Of course, if we move to a system of integral equations of the first kind the
situation is not different, at least if the number of equations and unknown functions
is the same.

Overdetermined systems of such equations, that is, at least two equations whose
solution is a single unknown function, arise in a variety of applications. Indeed,
specific physical systems can be observed by different devices, or by the same device
with different configurations, and this fact results in writing distinct equations with
the same unknown. An example is given by the geophysical model presented in
[76]; see also Test Function 10 in Section 5.3. The model reproduces the readings of
a ground conductivity meter, a device composed of two coils, a transmitter and a
receiver, placed at a fixed distance from each other. It reads as two integral equations
of the first kind involving the same unknown function, representing the electrical
conductivity of the soil at a certain depth; see equations (5.20). The first equation
describes the situation in which both coil axes are aligned vertically with respect
to the ground level, while the second one corresponds to the horizontal orientation
of the coils. This system has been studied in [33], under the assumption that the
values of the unknown function at the boundaries are known, either on the basis of
additional measurements or of known geophysical properties of the subsoil.
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Further applications are the model considered in [62], and the Radon transform
[97, 98]. In all these situations, the model is written in terms of an overdetermined
system and boundary a priori information on the signal to recover may be known.

In this chapter and in [32], motivated by these applications and with the purpose
of developing a method that can be applied to different physical models, we focus
on the following system of m integral equations of the first kind

∫ b

a

k`(x, t) f(t) dt = g`(x), ` = 1, . . . ,m, x ∈ [c, d],

f(a) = f0, f(b) = f1,

(4.3)

where k` and g` are the given kernel and right-hand side of the `th equation, respec-
tively, and f is the function to be determined satisfying known constraints at the
boundary. Specifically, given the data at a finite (and often small in applications)
set of points x`,i ∈ [c`, d`], i = 1, . . . , n`, we aim at solving the problem with discrete
data 

∫ b

a

k`(x`,i, t) f(t) dt = g`(x`,i), ` = 1, . . . ,m, i = 1, . . . , n`,

f(a) = f0, f(b) = f1.

(4.4)

As it is well-known, such a problem has infinitely many solutions. Our aim is to
construct a method that selects, among all the possible solutions, the one having
a certain degree of regularity. We reformulate the problem as a minimal-norm
least-squares problem, and solve the latter in suitable function spaces. While this
approach is rather standard in functional analysis, it has never been applied to an
overdetermined system. Moreover, as we will show, the corresponding algorithm
proves to be very accurate in the absence of experimental errors and it naturally
leads to an effective regularization technique, when the data is affected by noise.

Specifically, we consider a reproducing kernel Hilbert space where, by using the
Riesz theory, the minimal-norm solution can be written as a linear combination of the
so-called Riesz representers. Then, the main issue is to determine the Riesz functions
as well as the coefficients of such a linear combination. The first ones, which are
determined by the reproducing kernel, are expressed in terms of integrals which need
suitable quadrature schemes, whenever they cannot be evaluated analytically. The
latter ones are obtained by solving a square ill-conditioned linear system. If the
data is only affected by rounding errors, this representation proves to be accurate.
If the noise level is realistic, as one would expect, the error propagation completely
cancels the solution and a regularized approach is required.

To this end, we construct a regularization method to solve problem (4.4), based
on a truncated expansion in terms of the singular functions of the corresponding
integral operator. To improve steadiness, the singular system is not explicitly used
in the construction of the regularized solution, which is still represented as a linear
combination of the Riesz representers instead. We prove that the coefficients of such
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regularized expansion are obtained by applying the truncated eigenvalue decompo-
sition to the initial ill-conditioned linear system. The truncation index is, in fact,
a regularization parameter, which we determine by different estimation approaches.
The effectiveness of the resulting solution method is confirmed by numerical experi-
ments, which involve both artificial examples and an integral model reproducing the
propagation of an electromagnetic field in the earth soil.

We remark that a preliminary version of the above procedure, still not completely
motivated from a theoretical point of view, has been applied to the solution of a
single equation in a specific applicative context in [31].

The structure of the chapter is as follows. In Section 4.2, we reformulate (4.4) as
a minimal-norm solution problem in suitable Hilbert spaces. Then, in Section 4.3,
we develop a solution method which leads to a linear ill-conditioned system, whose
regularized solution is characterized in Section 4.4. The reader is referred to Section
6.3 to analyze the performance of our method applied to some numerical examples,
including the application of the proposed numerical approach to a geophysical model.

4.2 Statement of the problem

Let us consider problem (4.4) and, from now on, let us assume that f0 = f1 = 0.
This assumption does not affect the generality. Indeed, if it is not fulfilled, by
introducing the linear function

γ(t) =
b− t
b− a

f0 +
t− a
b− a

f1, (4.5)

we can rewrite problem (4.3) into an equivalent one with vanishing boundary con-
ditions 

∫ b

a

k`(x, t) ξ(t) dt = ϕ`(x), ` = 1, . . . ,m,

ξ(a) = 0, ξ(b) = 0,

(4.6)

where

ξ(t) = f(t)− γ(t), ϕ`(x) = g`(x)−
∫ b

a

k`(x, t) γ(t) dt, (4.7)

are the new unknown function and right-hand side, respectively.
Let us now introduce the integral operators

(K`f)(x) :=

∫ b

a

k`(x, t) f(t) dt, ` = 1, . . . ,m, (4.8)

so that problem (4.4) can be written as{
(K`f)(x`,i) = g`(x`,i), ` = 1, . . . ,m, i = 1, . . . , n`,

f(a) = 0, f(b) = 0,
(4.9)
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or, equivalently, {
Kf = g,

f(a) = 0, f(b) = 0,
(4.10)

where

Kf =

K1f
...

Kmf

 , g =

g1
...

gm

 , (4.11)

and
K`f = [(K`f)(x`,1), . . . , (K`f)(x`,n`)]

T ,

g` = [g`(x`,1), . . . , g`(x`,n`)]
T ,

are vectors in Rn` for ` = 1, . . . ,m.
As already remarked, the above problem is ill-posed. If the right-hand side does

not belong to the range of the operator the solution does not exist; this happens,
in particular, when the data are affected by errors. Moreover, the solution is not
unique. Indeed, if f(t) is a solution of (4.10) and h(t) is orthogonal to the functions
k`(x`,i, t), for ` = 1, . . . ,m and i = 1, . . . , n`, then f(t) + h(t) is a solution as well.

Because of this, we reformulate (4.10) in terms of the following least-squares
problem

min
f
‖Kf − g‖2, (4.12)

where ‖ · ‖ is the Euclidean norm. Problem (4.12) has infinitely many solutions and
among them we look for a function f(t) which verifies

min

∫ b

a

(f ′′(t))
2
dt, (4.13)

that is, we look for the solution having second derivative with minimal norm over
the interval [a, b]. The result of this choice is to minimize the curvature of f(t)
and promote the selection of a smooth solution. In the space of square-integrable
functions, this solution may not be unique. It is necessary to introduce a suitable
function space in which (4.13) represents a strictly convex norm. In this way, the
uniqueness of the solution is ensured.

Remark 4.2.1. Let us observe that in case f does not satisfy homogeneous bound-
ary conditions, so that we have to reformulate the original problem as (4.6), from
(4.5) and (4.7), we obtain

min

∫ b

a

(f ′′(t))
2
dt = min

∫ b

a

(ξ′′(t))
2
dt.

This means that, after collocation, selecting the solution f of (4.4) satisfying
(4.13) corresponds to computing the minimal-norm solution of (4.9) in a suitable
Hilbert space.
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Let us now introduce a function space for the solution of such a problem. Let
L2([a, b]) be the Hilbert space of square-integrable functions f : [a, b]→ R, equipped
with the inner product

〈f, g〉L2 =

∫ b

a

f(x)g(x) dx,

and the induced norm
‖f‖L2 =

√
〈f, f〉L2 .

Let us also define the Hilbert space

W = {f ∈ L2 : f, f ′ ∈ AC([a, b]), f ′′ ∈ L2, f(a) = f(b) = 0},

where AC([a, b]) denotes the set of all functions f which are absolutely continuous
on [a, b], with inner product

〈f, g〉W = 〈f ′′, g′′〉L2 , (4.14)

and induced norm
‖f‖W = ‖f ′′‖L2 .

The space W is a reproducing kernel Hilbert space (RKHS), i.e., there exists a
bivariate function G : [a, b]× [a, b]→ R, called the reproducing kernel, satisfying the
following properties:

(i) for any y ∈ [a, b], we have Gy(x) = G(x, y) ∈ W ;

(ii) for any y ∈ [a, b], each function f belonging to W can be written as

f(y) = 〈Gy, f〉W . (4.15)

The expression of G, for any x, y ∈ [a, b], is given by

G(x, y) = Gy(x) =

∫ b

a

G′′x(z)G′′y(z) dz,

where

G′′y(z) =
∂2Gy(z)

∂z2
=


(z − a)(y − b)

b− a
, a ≤ z < y,

(y − a)(z − b)
b− a

, y ≤ z ≤ b.

It is easy to check that from (4.14) and (4.15) it follows

f(y) =

∫ b

a

G′′y(z)f ′′(z) dz.

For further examples and properties concerning reproducing kernels, the interested
reader can consult [4, 63, 88, 89, 101].
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Let us now consider problem (4.10) in W . This means that the bounded linear
functional K is such that

K : W −→ RNm

f 7−→ Kf,

with

(Kf)j = (K`f)(x`,i), j = i+N`−1, Nr =
r∑

k=1

nk, (4.16)

` = 1, . . . ,m, i = 1, . . . , n`, and N0 = 0. We want to solve the following problemmin
f
‖f‖2

W

f ∈
{

arg min
f
‖Kf − g‖2

}
.

(4.17)

For a brief summary of linear operators, the reader is referred to Section 1.3.

By the Riesz representation theorem (see Theorem 1.3.4), there exist Nm func-
tions {ηj}Nmj=1 ∈ W , named Riesz representers, such that the jth component of the
array Kf is given by

(Kf)j = 〈ηj, f〉W , j = 1, . . . , Nm. (4.18)

Moreover, let us denote by K∗ : RNm → W the adjoint operator of K, defined by

〈Kf,g〉2 = 〈f,K∗g〉W , for any g ∈ RNm , (4.19)

where 〈·, ·〉2 is the usual Euclidean inner product in RNm . Let us also introduce the
null space of K

N (K) = {f ∈ W : Kf = 0},

and its orthogonal complement

N (K)⊥ = {f ∈ W : 〈f, g〉W = 0,∀g ∈ N (K)}.

The latter space is spanned by the Riesz representers, as the following lemma states.

Lemma 4.2.2. Let K be a bounded linear operator from a Hilbert space to a finite-
dimensional Hilbert space, then N (K)⊥ coincides with the range of the adjoint op-
erator R(K∗)

N (K)⊥ = R(K∗) = {f ∈ W : f = K∗g, for g ∈ RNm},

and, in addition,

N (K)⊥ = span{η1, . . . , ηNm}.
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Proof. We recall from Theorem 1.3.7 that in [50, Theorem 3.3.2] it is proved that
N (K)⊥ = R(K∗). In our case, R(K∗) is finite-dimensional, so the closure is not
needed. For any f ∈ W and g ∈ RNm , we have

〈Kf,g〉2 =
m∑
`=1

〈K`f,g`〉2 =
m∑
`=1

n∑̀
i=1

(K`f)(x`,i) g`(x`,i).

Then, by combining (4.16) and (4.18), we can assert

〈Kf,g〉2 =
m∑
`=1

n∑̀
i=1

〈ηi+N`−1
, f〉W g`(x`,i) =

〈
f,

m∑
`=1

n∑̀
i=1

g`(x`,i) ηi+N`−1

〉
W

= 〈f,K∗g〉W ,

where the last equality follows by virtue of (4.19). This shows that any function in
the range of K∗ can be expressed as a linear combination of the Riesz representers
ηj, j = 1, . . . , Nm.

4.3 Computing the minimal-norm solution

In this section, we develop a projection method to compute the minimal-norm so-
lution of (4.10).

As a consequence of Lemma 4.2.2, such a solution can be expressed as a linear
combination of the Riesz representers, as the following theorem shows.

Theorem 4.3.1. The minimal-norm solution f † of (4.10) is given by

f † =
m∑
`=1

n∑̀
i=1

ci+N`−1
η`,i, (4.20)

with η`,i := ηi+N`−1
.

Proof. Since the minimal-norm solution f † belongs to N (K)⊥ [101], from
Lemma 4.2.2 we can write

f † =
Nm∑
j=1

cjηj =
m∑
`=1

n∑̀
i=1

ci+N`−1
η`,i, with η`,i := ηi+N`−1

.

Since the Riesz representers are functions in the space W , we have

η`,i(t) = 〈Gt, ηi+N`−1
〉W and η`,i(a) = η`,i(b) = 0. (4.21)
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Given the definition (4.14) of the inner product, to obtain the Riesz representers
η`,i(t) the expressions of functions η′′`,i are needed, for ` = 1, . . . ,m and i = 1, . . . , n`.
To this end, we consider (4.8) and write the unknown function by (4.15)

(K`f)(x`,i) =

∫ b

a

k`(x`,i, t)

∫ b

a

G′′t (z) f ′′(z) dz dt

=

∫ b

a

f ′′(z)

∫ b

a

G′′t (z) k`(x`,i, t) dt dz,

from which, by (4.18), we deduce

η′′`,i(z) =

∫ b

a

G′′t (z) k`(x`,i, t) dt, (4.22)

for ` = 1, . . . ,m and i = 1, . . . , n`.
Let us mention that, depending on the expression of the kernels k`, the above

integrals may be analytically computed. Whenever this is not possible, we employ
a Gaussian quadrature formula of suitable order to approximate (4.22). The two
examples Test Functions 8 and 9, described in Chapter 5, illustrate both situations.
In the same chapter, the expressions of the Riesz representers and of their second
derivatives are reported.

Let us now compute the coefficient of the expansion (4.20) of the minimal-norm
solution. By substituting expression (4.20) in place of f in (4.9), we obtain

(K`f
†)(x`,i) = g`(x`,i), ` = 1, . . . ,m, i = 1, . . . , n`,

namely,
m∑
`=1

n∑̀
k=1

(K`η`,k)(x`,i)ck+N`−1
= g`(x`,i),

where η`,k := ηk+N`−1
and the integers N` are defined in (4.16). By renumbering the

Riesz representers, we obtain the square linear system

Nm∑
j=1

(K`ηj)(x`,i)cj = g`(x`,i), ` = 1, . . . ,m, i = 1, . . . , n`.

Taking into account (4.18), the above linear system can be written in matrix form
as

Gc = g, (4.23)

where g is defined in (4.11) and c = [cj]
Nm
j=1 is the vector of the unknowns. The

Gram matrix G ∈ RNm×Nm is defined as

G =


G1 Γ1,2 · · · Γ1,m

(Γ1,2)T G2 ...
...

. . .
...

(Γ1,m)T · · · · · · Gm

 , (4.24)
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where the entries of the m diagonal blocks G`, ` = 1, . . . ,m, are given by

G`ij = 〈η`,i, η`,j〉W , (4.25)

and the off-diagonal blocks Γ`,k, with `, k = 1, . . . ,m, k > `, have entries

Γ`,kij = 〈η`,i, ηk,j〉W , (4.26)

for i = 1, . . . , n` and j = 1, . . . , nk.
The inner products in (4.25) and (4.26) involve the second derivatives η′′`,i. When-

ever they can be computed analytically, the elements of the Gram matrix G can be
obtained by symbolic computation; we used the integral function of Matlab. If
this is not possible, a Gaussian quadrature formula is adopted.

As it is well-known, the Gram matrix G defined in (4.24) is symmetric positive
definite. Then, a natural approach for solving system (4.23) would be to apply
Cholesky factorization. However, as this linear system results from the discretization
of an ill-posed problem, the matrix G is severely ill-conditioned. Since experimental
data is typically contaminated by noise, the numerical solution of (4.23) is subject
to strong error propagation and can deviate substantially from the exact solution.
Moreover, because of ill-conditioning, the numerical computation of the Cholesky
factorization may lead to computing the square root of small negative quantities,
making it impossible to construct the Cholesky factor.

We adopted a different approach, consisting of writing the Gram matrix in terms
of its spectral factorization

G = UΛUT , (4.27)

where the diagonal matrix Λ = diag(λ1, λ2, . . . , λNm) contains the eigenvalues of G
sorted by decreasing value, and U = [u1, . . . ,uNm ] is the eigenvector matrix with
orthonormal columns; see Section 1.1 and [94].

Then, by employing factorization (4.27) in system (4.23), we obtain the following
representation for the coefficients

c = [c1, . . . , cNm ]T =
Nm∑
`=1

uT` g

λ`
u`, (4.28)

of the minimal-norm solution

f † =
Nm∑
j=1

cjηj, (4.29)

resulting from Theorem 4.3.1.

4.4 Regularized minimal-norm solution

The severe ill-conditioning of the matrix G produces a strong error propagation in
(4.28) and, consequently, in the solution (4.29). A regularized solution is needed,
instead.
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In what follows, it is convenient to write f † as a linear combination of orthonor-
mal functions. The orthonormalization of family of functions is a classical topic in
functional analysis. The properties arising from the orthogonalization of the trans-
lates of a given function, and the connections of such process to the factorization
of the associated Gram matrix have been investigated in [46, 48], and later gener-
alized to multivariate functions in [49]. A review of the available algorithms for the
spectral factorization of infinite Gram matrices is contained in [47].

The following Theorem shows how an orthonormal expansion for the minimal-
norm solution can be constructed by (4.27), and gives the expression of such or-
thonormal functions, which are, in fact, the singular functions [35, 72] of the integral
operator K. For a summary on singular systems we refer the reader to Section 1.2.

Theorem 4.4.1. The minimal-norm solution f † of (4.10) can be written as a linear
combination of orthonormal functions η̂`

f † =
Nm∑
`=1

ĉ`η̂`, (4.30)

where

ĉ` =
uT` g√
λ`
, η̂` =

Nm∑
j=1

uj`√
λ`
ηj, ` = 1, . . . , Nm, (4.31)

and uj` denotes the jth component of the eigenvector u` with eigenvalue λ` in the
spectral factorization (4.27). Moreover, the set of the triplets

{√
λ`, η̂`,u`

}
, ` =

1, . . . , Nm, is the singular system of the operator K (4.10).

Proof. Starting from (4.29) and (4.28), changing the order of summation, we obtain

f † =
Nm∑
j=1

cjηj =
Nm∑
j=1

Nm∑
`=1

uT` g

λ`
uj`ηj =

Nm∑
`=1

uT` g√
λ`

Nm∑
j=1

uj`√
λ`
ηj.

Equation (4.30) follows by defining ĉ` and η̂` as in (4.31).
Let us now prove the final statement of the theorem. It is immediate to verify

that the functions η̂`, ` = 1, . . . , Nm, form an orthonormal basis for N (K)⊥. Indeed,
letting Gij = 〈ηi, ηj〉W be the elements of G, we have

〈η̂k, η̂h〉W =
Nm∑
i=1

Nm∑
j=1

uik√
λk

ujh√
λh
〈ηi, ηj〉W =

1√
λkλh

Nm∑
i=1

uik

Nm∑
j=1

Gijujh

=
1√
λkλh

(UTGU)kh =
1√
λkλh

Λkh = δkh,

where δkh is the Kronecker delta and, in the last equality, the matrix G is replaced
by its spectral decomposition (4.27). The orthonormality of the vectors u`, ` =
1, . . . , Nm, immediately follows from factorization (4.27).
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From the definition (4.18) of the Riesz representers, we can write

(Kη̂`)j = 〈ηj, η̂`〉W =
Nm∑
s=1

us`√
λ`
〈ηj, ηs〉W =

Nm∑
s=1

us`√
λ`
Gjs =

1√
λ`

(GU)j`

=
1√
λ`

(UΛ)j` =
√
λ` uj`, j = 1, . . . , Nm,

where the spectral factorization (4.27) of G is employed again. Then, Kη̂` =
√
λ`u`.

Now, let f ∈ W . Then, f = f0 + f1, with f0 ∈ N (K), f1 ∈ N (K)⊥, and

f1 =
Nm∑
j=1

αj η̂j, with αj = 〈f1, η̂j〉W .

By the definition (4.19) of the adjoint operator, we obtain

〈f,K∗u`〉W = 〈Kf,u`〉2 = 〈Kf1,u`〉2 =
Nm∑
j=1

αj〈Kη̂j,u`〉2

=
Nm∑
j=1

αj〈
√
λjuj,u`〉2 = α`

√
λ` = 〈f,

√
λ`η̂`〉W ,

since α` = 〈f1, η̂`〉W = 〈f, η̂`〉W . Then K∗u` =
√
λ`η̂`. It follows that

K∗Kη̂` = λ`η̂`, KK∗u` = λ`u`, ` = 1, . . . , Nm.

This completes the proof.

We remark that Theorem 4.4.1 is applicable under the assumption that the Gram
matrix G is positive definite. In practice, because of error propagation, the smallest
numerical eigenvalues of G may become zero, or even negative. In this case, that is,
if λNm ≤ 0, we substitute to Nm, in all summations, an integer N < Nm such that
λN > 0 ≥ λN+1.

From (4.30) and from the definition of ĉ in (4.31), it follows that

‖f †‖W = ‖ĉ‖ = ‖Lc‖, with L = Λ1/2UT , (4.32)

where the relation between c and ĉ is obtained by (4.31), writing ĉ in matrix form

ĉ = Λ−1/2UTg = Λ−1/2UTGc = Λ−1/2UTUΛUTc = Λ1/2UTc.

As it is customary, in order to face ill-conditioning, we replace the original prob-
lem by a nearby one, whose solution is less sensitive to the error present in the
data. The representation (4.30) is particularly suitable to construct a regularized
solution. Indeed, according to the Picard condition [93], the sum of the coefficients
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ĉ` should theoretically be bounded. Anyway, the presence of noise in the right-hand
side g will prevent the projections uT` g from decaying when ` increases, leading to a
severe growth in the values of the coefficients. Truncating the summation in (4.30)
removes the noisy components of the solution that are enhanced by ill-conditioning.
Moreover, it damps the high frequency components represented by the η̂` functions
with a large index `.
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Figure 4.1: Orthonormalized Riesz functions for the system (5.10): η̂1,i (top-left)
and η̂′′1,i (top-right) for xi = 0.1 + 0.2(i− 1), i = 1, . . . , 5; η̂2,i (bottom-left) and η̂′′2,i
(bottom-right) are displayed only for x1 and x2.

It is well-known that singular functions associated with first kind integral equa-
tions with a smooth kernel oscillate at an increasing frequency as the singular values
decrease. For example, Figure 4.1 displays the functions η̂` obtained by applying
formula (4.31) to the Riesz functions constructed in Test Function 8 of Chapter
5. In the summation (4.31), the upper bound for the index is fixed at N = 7, to
preserve the positivity of the eigenvalues. The graphs in the left column depict the
orthonormal functions, and the ones in the right column their second derivatives.
It is immediate to observe the increasing frequency of the orthonormal basis. It is
also clear that there is a strong error propagation in the numerical construction of
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such functions; see, in particular, the graphs in the bottom-left panel. This deters
from employing the orthonormal basis in the real computation, unless a more stable
orthonormalization process is implemented. Anyway, as we will show, the functions
η̂` are only implicitly used in the construction of the regularized solution.

Indeed, the regularized solution is obtained by choosing an index κ to truncate
the summation in (4.30), i.e., 1 ≤ κ ≤ N , leading to the expression

f (κ) =
κ∑
`=1

ĉ`η̂` =
κ∑
`=1

uT` g√
λ`

N∑
j=1

uj`√
λ`
ηj =

N∑
j=1

κ∑
`=1

uT` g

λ`
uj`ηj =

N∑
j=1

c
(κ)
j ηj. (4.33)

This shows that f (κ) can be expressed as a linear combination of the Riesz repre-
senters ηj and there is no need to explicitly construct the singular functions η̂`.

The coefficients in the last summation correspond to the truncated eigendecompo-
sition (TEIG) solution of system (4.23) (see [1, 41] for more details) with parameter
κ ≤ N , defined to be the components of the vector

c(κ) = UΛ†κU
Tg =

κ∑
`=1

uT` g

λ`
u`, (4.34)

where Λ†κ denotes the Moore-Penrose pseudoinverse [10] of Λκ =
diag(λ1, . . . , λκ, 0, . . . , 0). We observe herein that, because of the orthonormality of
the functions η̂`, ‖f (κ)‖W ≤ ‖f (κ+1)‖W ≤ ‖f †‖W .

It is possible to show that the above vector c(κ) solves the optimization problemmin
c
‖Lc‖

c ∈
{

arg min
c
‖Gκc− g‖

}
,

where Gκ = UΛκU
T is the TEIG of G. Therefore, from the algebraic point of view,

the computation of f (κ) corresponds to selecting the minimal-L-norm vector among
the solutions of the best rank-κ approximation of system (4.23). Equation (4.32)
shows that the regularized solution f (κ) has minimal-norm in W .

Remark 4.4.2. If the problem does not verify homogeneous boundary conditions
and it has to be transformed in an equivalent one, then the solution of the original
problem is given by

f (κ) =
N∑
j=1

c
(κ)
j ηj + γ,

where the function γ is defined in (4.5).

A crucial point in the regularization process, in order to get an accurate solution,
is the estimation of the truncation parameter κ in (4.33) and (4.34). There exist
many methods, either a posteriori and heuristic, aiming at this. In this chapter,
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we focus our attention on the discrepancy principle and the L-curve method. For
a summary of the criteria for choosing the regularization parameter, the reader is
referred to Subsection 1.2.3 and [35, 57, 87].

We assume that the exact right-hand side vector gexact is contaminated by an
unknown normally distributed noise vector e, i.e.,

g = gexact + e. (4.35)

If ‖e‖ is known, a widely used method to estimate κ is the classical discrepancy prin-
ciple, introduced by Morozov [77], which selects the smallest truncation parameter
κd such that

‖Gc(κd) − g‖ ≤ τ‖e‖, (4.36)

where τ > 1 is a constant independent of the noise level ‖e‖, and ‖ · ‖ denotes the
Euclidean norm. Note that from (4.27) and (4.34), we can write the residual norm
as

‖Gc(κ) − g‖2 = ‖U(ΛΛ†κ − I)UTg‖2 =
Nm∑

j=κ+1

(uTj g)2. (4.37)

Besides reducing the computational load, this relation shows that the residual is
non-decreasing when κ decreases.

When the noise level is unknown, heuristic methods are commonly used. We use
the L-curve criterion [56, 60] which selects the regularization parameter κlc at the
“corner” of the curve obtained by joining the points(

log ‖Gc(κ) − g‖, log ‖f (κ)‖W
)
, κ = 1, . . . , N, (4.38)

where f (κ) is the function defined in (4.33) and its W -norm can be expressed in the
form

‖f (κ)‖W = ‖Lc(κ)‖ =
√

(c(κ))TGc(κ).

When solving discrete ill-posed problems, this curve often exhibits a typical L-shape.
We determine its corner by the method described in [59] and implemented in [58].

When the exact solution f is available, to ascertain the best possible perfor-
mance of the algorithms independently of the strategy adopted for the estimation
of the regularization parameter, in the numerical experiments we also consider the
parameter κbest which minimizes the norm of the error, that is

κbest = arg min
κ
‖f − f (κ)‖W = arg min

κ
‖L(c− c(κ))‖. (4.39)

Remark 4.4.3. We observe that the operator Fκ which assigns to a noisy right-hand
side g (see (4.35) and (6.6)) the regularized solution f (κd) (4.33), corresponding to
the regularization parameter κd = κd(δ,g) estimated by the discrepancy principle,
is trivially a regularization method in the sense of [35, Definition 3.1]. Indeed, from
(4.36) and (4.37), κd = Nm when δ → 0, and f (Nm) coincides with the minimal-norm
solution f †.
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CHAPTER 5
Test problems

In this chapter, we collect the test problems which were adopted, in [31, 32, 82, 83],
as well as in the following chapter, to illustrate the performance of the algorithms
proposed in the same papers and in this thesis. Test Functions 1, 2, 3, 4, 5, 8,
and 9 are nonlinear functions introduced by the authors of the above papers. Test
Function 6 is a nonlinear function already described in [20]. Test Function 7 is a
nonlinear model describing an engineering application. Finally, Test Functions 10
and 11 are a linear and a nonlinear model, respectively, involved in soil surveying.

For each test function, the “ingredients” needed to apply the algorithms are
reported. For instance, we compute the Jacobian matrix when the function is tested
in “MNGN” algorithms and we report the computation of the Riesz representers
when we want to solve linear integral equations in a RKHS.

5.1 Nonlinear least-squares

We start with nonlinear functions of very small size.

Test Function 1. Let F : R2 → R be the nonlinear function defined by

F (x) =
[
α(x1 − 1)2 + β(x2 − 1)2 − 1

]2
, b = −1, (5.1)

depending upon the parameters α, β ∈ R, x = [x1, x2]T , and r(x) = F (x)− b is the
residual function. The function is constructed in such a way as to assign different
values to α and β and thus obtain different functions. The objective function we
want to minimize is

f(x) =
1

2
r(x)2 =

1

2

{[
α(x1 − 1)2 + β(x2 − 1)2 − 1

]2
+ 1
}2

.

The Jacobian matrix of F (x) is

J(x) = 4
(
α(x1 − 1)2 + β(x2 − 1)2 − 1

) [
α(x1 − 1) β(x2 − 1)

]
,
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while the Hessian matrix is

H(x) =

[
12α2(x1 − 1)2 + 4αβ(x2 − 1)2 − 4α 8αβ(x1 − 1)(x2 − 1)

8αβ(x1 − 1)(x2 − 1) 4αβ(x1 − 1)2 + 12β2(x2 − 1)2 − 4β

]
.

If α, β > 0 or α > 0, β < 0, then any point on the conic section

α(x1 − 1)2 + β(x2 − 1)2 = 1

is a minimum of f(x). Whereas if α, β < 0, then the minimum is unique and given
by x† = [1, 1]T .

Test Function 2. A second function concern an underdetermined least-squares
problem with solution in R3 and values in R2. The nonlinear function has the
expression

F (x) =

[
(x1 − 1)2 + x2

2 + x2
3

x3

]
, and b =

[
1
0

]
, (5.2)

with x = [x1, x2, x3]T and r(x) = F (x) − b is the residual function. The Jacobian
matrix of F (x) is

J(x) =

[
2(x1 − 1) 2x2 2x3

0 0 1

]
.

The minimal-norm solution is x† = [0, 0, 0]T .

Test Function 3. Let F : Rn → Rm be the nonlinear function

F (x) = [F1(x), F2(x), . . . , Fm(x)]T , m ≤ n, (5.3)

defined by

Fi(x) =
1

2
S(x)

(
x2
i + 1

)
, i = 1, . . . ,m, (5.4)

where

S(x) =
n∑
j=1

(
xj − cj
aj

)2

− 1

is the n-ellipsoid with center c = [c1, . . . , cn]T and whose semiaxes are the compo-
nents of the vector a = [a1, . . . , an]T . The locus of the solutions is the n-ellipsoid.

Setting yi = x2
i + 1, for i = 1, . . . ,m, and zj =

xj−cj
a2j

, for j = 1, . . . , n, the

Jacobian matrix can be expressed as

J(x) = S(x)Dm,n(x) + yzT ,
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where Dm,n(x) is an m × n diagonal matrix whose main diagonal consists of the
vector x. Indeed,

∂Fi
∂xk

=


xiS(x) +

xi − ci
a2
i

(x2
i + 1) , k = i,

xk − ck
a2
k

(x2
i + 1) , k 6= i.

When S(x) = 0, rank(J(x)) = 1, so we expect the Jacobian to be rank-deficient in
a neighborhood of the solution.

If a = e = [1, . . . , 1]T , the locus of the solutions is the n-sphere centered in c
with unitary radius. If c = 2e, the minimal-norm solution is

x† =

(
2−
√
n

n

)
e,

while if c = [2, 0, . . . , 0]T it is x† = [1, 0, . . . , 0]T .

Test Function 4. Let F : Rn → Rm be a nonlinear function such as (5.3), with

Fi(x) = S(x) (xi − ci) , i = 1, . . . ,m, (5.5)

and S(x) defined as in the previous example. The first-order derivatives of Fi(x)
are

∂Fi
∂xk

=


2

a2
i

(xi − ci)2 + S(x), k = i,

2

a2
k

(xk − ck)(xi − ci), k 6= i.

Setting yi = xi − ci, for i = 1, . . . ,m, and zj =
xj−cj
a2j

, for j = 1, . . . , n, the Jacobian

matrix can be represented as

J(x) = S(x)Im×n + 2yzT ,

where Im×n includes the first m rows of an identity matrix of size n. The Jacobian
turns out to be a diagonal plus rank-1 matrix. This structure may be useful to
reduce complexity when solving large-scale problems.

When S(x) = 0, the matrix J(x) has rank 1. Indeed, in this case, the compact
SVD of the Jacobian is

J(x) =
y

‖y‖
(2‖y‖‖z‖) zT

‖z‖
,

so that the only non-zero singular value is 2‖y‖‖z‖. Therefore, the pseudoinverse is

J(x)† =
z

‖z‖

(
1

2‖y‖‖z‖

)
yT

‖y‖
.
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As in the preceding example, we may assume that the Jacobian is rank-deficient in
the surroundings of a solution.

The locus of the solutions is the union of the n-ellipsoid and the intersection
between the planes xi = ci, i = 1, . . . ,m.

If a = e and c = 2e, the minimal-norm solution x† depends on the dimensions
m and n: if m < n−

√
n+ 1

4
, then it is

x† = [2, 2, . . . , 2︸ ︷︷ ︸
m

, 0, . . . , 0︸ ︷︷ ︸
n−m

]T , with ‖x†‖ = 4m,

otherwise, it is

x† =

(
2−
√
n

n

)
e, with ‖x†‖ = 4n− 4

√
n+ 1.

From the comparison of the two norms reported in the above equations, the inequal-
ity on the dimensions is deduced. If c = [2, 0, . . . , 0]T , it is x† = [1, 0, . . . , 0]T .

In the case of a square problem, i.e., m = n, the locus of the solutions is the
union of the n-ellipsoid and the point x = c. The spectrum of J(x) is

σ(J(x)) =
{
S(x) + 2yTz, S(x), . . . , S(x)

}
,

where the eigenvalue S(x) has algebraic multiplicity n− 1. The Jacobian matrix is
invertible if and only if S(x) 6= 0. If this condition is met, the inverse is obtained
by the Sherman–Morrison formula

J(x)−1 =
1

S(x)
In −

2

S(x)(S(x) + 2zTy)
yzT .

Test Function 5. Let F : Rn → Rm be the nonlinear function (5.3) with compo-
nents

Fi(x) =

{
S(x), i = 1,

xi−1(xi − ci), i = 2, . . . ,m,
(5.6)

and S(x) defined as above. The first-order partial derivatives of Fi(x) are

∂Fi
∂xk

=



2

a2
k

(xk − ck), i = 1, k = 1, . . . , n,

xi − ci, i = 2, . . . ,m, k = i− 1,

xi−1, i = k = 2, . . . ,m,

0, otherwise.
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Setting zj = 2
xj−cj
a2j

and yj = xj − cj, for j = 1, . . . , n, the Jacobian matrix of F is

J(x) =



z1 z2 z3 · · · zm−1 zm · · · zn
y2 x1

y3 x2

. . . . . .
. . . . . .

ym xm−1


. (5.7)

The locus of the solutions is the intersection between the hypersurfaces defined by
S(x) = 0 and by the pairs of planes xi−1 = 0, xi − ci = 0, i = 2, . . . ,m.

If a = e = [1, . . . , 1]T and c = 2e, the minimal-norm solution is

x† = [ξn,m, 2, . . . , 2︸ ︷︷ ︸
m−1

, ξn,m, . . . , ξn,m︸ ︷︷ ︸
n−m

]T ,

with ξn,m = 2− (n−m+ 1)−1/2, while if c = [2, 0, . . . , 0]T it is x† = [1, 0, . . . , 0]T . It
is immediate to observe that in the last situation the Jacobian (5.7) is rank-deficient
at x†.

In particular, if m = n, a = e = [1, . . . , 1]T and c = 2e, the locus of the solutions
consists of two points of the n-sphere. In this case, the minimal-norm solution is
x† = [1, 2, . . . , 2]T .

Test Function 6. Here we consider a test problem introduced in [20]. Let F :
R3 → R be the nonlinear function defined by

F (x) = x3 − (x1 − 1)2 − 2(x2 − 2)2 − 3. (5.8)

The equation F (x) = 0 represents an elliptic paraboloid in R3 with vertex V =
[1, 2, 3]T . The Jacobian matrix of F (x) is

J(x) =
[
−2(x1 − 1) −4(x2 − 2) 1

]
.

We remark that the minimal-norm solution is the point

x† ≈ [0.859754, 1.849178, 3.065164]T ,

and not the vector x̂ reported in [20, Sec. 4.2]. Indeed, ‖x†‖ ≈ 3.681558, whereas
‖x̂‖ ≈ 3.706359.

Test Function 7. Here we consider a nonlinear model that describes the behavior
of a redundant parallel robot. It is a problem that concerns the inverse kinematics
of position [2], and is defined by the following function F : R4 → R2

F (x) =

[
(X − A cos(x1))2 + (Y − A sin(x1))2 − x2

2

(X − A cos(x3)−H)2 + (Y − A sin(x3))2 − x2
4

]
. (5.9)



100 CHAPTER 5. TEST PROBLEMS

The model describes the kinematic of a robotic arm moved by four motors, whose
position is identified by the unknowns {xi}4

i=1, which must reach a point with given
coordinates (X, Y ); A and H are parameters describing the system.

The Jacobian matrix of F is

J(x) =

∂F1

∂x1

∂F1

∂x2

0 0

0 0
∂F2

∂x3

∂F2

∂x4

 ,
with

∂F1

∂x1

= 2A(X − A cos(x1)) sin(x1)− 2A(Y − A sin(x1)) cos(x1),

∂F2

∂x3

= 2A(X − A cos(x3)−H) sin(x3)− 2A(Y − A sin(x3)) cos(x3),

∂F1

∂x2

= −2x2,
∂F2

∂x4

= −2x4.

5.2 Systems of integral equations

Now, we introduce some examples of systems of integral equations. In Test Functions
8 and 9, by using the notation of Chapter 4, we assume m = 2, n1 = n2 = n, so
that Nm = 2n, and x1,i = x2,i = xi, for i = 1, . . . , n.

Test Function 8. Let us consider the system of integral equations
∫ 1

0

x

t+ 1
f(t) dt = x

(
log 4− 1

2

)
,∫ 1

0

cos (xt)f(t) dt =
2

x3

(
x cosx+ (x2 − 1) sinx

)
,

(5.10)

with x ∈ (0, 1], whose exact solution is f(t) = t2 + 1. We note that the function
1/x3 has a discontinuity of the second kind at x = 0. Anyway, the right-hand side
of the second equation is a square-integrable function. We introduce the function
(4.5)

γ(t) = t+ 1,

to reformulate the original problem as the following one
∫ 1

0

x

t+ 1
ξ(t) dt = x

(
log 4− 3

2

)
,∫ 1

0

cos (xt)ξ(t) dt =
1

x2

(
cosx+ 1− 2 sinx

x

)
,

where ξ(t) = f(t)− γ(t) satisfies homogeneous boundary conditions.
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Figure 5.1: Riesz functions for the system (5.10): η1,i (top-left), η′′1,i (top-right), η2,i

(bottom-left), and η′′2,i (bottom-right), with xi = 0.1 + 0.2(i− 1) for i = 1, . . . , 5.

From (4.22), after some computation, we obtain, for i = 1, . . . , n,

η′′1,i(z) = xi

[
(1− z) log(1 + z)− z log

(
4

(1 + z)2

)]
, (5.11)

η′′2,i(z) =
1

x2
i

(z cosxi − cos (xiz)− z + 1) . (5.12)

Then, from (4.21),

η1,i(y) =
xi
36

{
6(1 + y)3 log (1 + y)− y

[
y2(5 + 12 log 2) + 15y + 4(9 log 2− 5)

]}
,

(5.13)

η2,i(y) =
y(y − 1)

6x2
i

[
(y + 1) cos (xi)− y + 2

]
+

1

x4
i

[
y(1− cos (xi))− 1 + cos (xiy)

]
.

(5.14)

Figure 5.1 displays, in the top row, the functions η1,i (on the left) and η′′1,i (on the
right), while the bottom row depicts the functions η2,i (on the left) and η′′2,i (on the
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right) for different collocation points x`,i. We see from Figure 5.1 that the Riesz
functions verify the boundary conditions, i.e., η`,i(0) = η`,i(1) = 0, for ` = 1, 2 and
i = 1, . . . , 5. From the same figure we can observe that, in this case, it also holds
η′′`,i(0) = η′′`,i(1) = 0.

Test Function 9. Let us consider the system
∫ π

0

ex cos tf(t) dt = 2
sinhx

x
,∫ π

0

(xt+ ext)f(t) dt = πx+
1 + eπx

1 + x2
,

(5.15)

with x ∈ (0, π/2], whose exact solution is f(t) = sin t. This system has been obtained
by coupling the well-known Baart test problem [6, 58] with another equation having
the same solution. The Green function, for the interval [0, π], is

G′′y(z) =


z(y − π)

π
, 0 ≤ z < y,

y(z − π)

π
, y ≤ z ≤ π.

From (4.22) we have, for i = 1, . . . , n,

η′′2,i(z) =

∫ z

0

t(z − π)

π
(xit+ exit) dt+

∫ π

z

z(t− π)

π
(xit+ exit) dt

=
z(1− eπxi)

πx2
i

+
xiz(z2 − π2)

6
+

exiz − 1

x2
i

,

(5.16)

and from (4.21)

η2,i(y) =

∫ y

0

z(y − π)

π
η′′2,i(z) dz +

∫ π

y

y(z − π)

π
η′′2,i(z) dz

=
π2xiy

36

(
7

10
π2 − y2

)
+

y

6πx4
i

(1− eπxi)(x2
i y

2 + 6)

+
πy

6x2
i

(eπxi + 2) +
y2

2

(
xiy

3

60
− 1

x2
i

)
+

exiy − 1

x4
i

.

(5.17)

The functions η′′1,i(z) and η1,i(y) do not have an analytic representation, so they
should be approximated by a quadrature formula. Here, we approximate the in-
tegrals by a Gauss–Legendre quadrature formula; see Section 1.3 for a summary
on quadrature methods. The functions η′′1,i(z) and η1,i(y) are approximated in the
following way:

η′′1,i(z) =

∫ z

0

t(z − π)

π
exi cos t dt+

∫ π

z

z(t− π)

π
exi cos t dt

≈ z − π
π

m∑
j=1

λ̂j t̂je
xi cos t̂j +

z

π

m∑
j=1

λ̃j(t̃j − π)exi cos t̃j ,
(5.18)
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and

η1,i(y) =

∫ y

0

z(y − π)

π
η′′1,i(z) dz +

∫ π

y

y(z − π)

π
η′′1,i(z) dz

≈ y − π
π

m∑
j=1

λ̂j t̂jη
′′
1,i(t̂j) +

y

π

m∑
j=1

λ̃j(t̃j − π)η′′1,i(t̃j),

(5.19)

where, for both equations, t̂j are the quadrature points in the integration interval

of the first integral and λ̂j are the corresponding quadrature weights, and t̃j are the

quadrature points in the integration interval of the second integral and λ̃j are the
corresponding weights. All these elements are obtained by equation (1.24) starting
from Legendre quadrature points and weights defined in [−1, 1].

5.3 FDEM data inversion

In the following two paragraphs, Test Functions 10 and 11, we report a linear and
a nonlinear model involved in applied geophysics. Electromagnetic induction (EMI)
techniques are used to investigate soil properties in a non-destructive way.

In 1980 McNeill [76] developed a linear model to reproduce the readings of one of
the first available ground conductivity meters (GCM), the Geonics EM-38. During
the last decades, much effort has been made to retrieve the electrical conductivity
distribution σ(z) by the above described linear model. In [12], a Tikhonov regu-
larization technique was implemented to reconstruct the conductivity profile from
measurements obtained by positioning a GCM at various heights above the ground,
while in [25] the Tikhonov approach was optimized by a projected conjugate gra-
dient algorithm. A nonlinear forward model for predicting the EM response of the
subsoil was described in 1982 by Wait in [96]. A regularized inversion algorithm was
studied in [27, 29] and recently extended to process complex-valued data sets [28].
The algorithm, as well as the forward model, were coded in Matlab and included in
a publicly available software package [26], which has already been employed in real-
world applications [11, 28, 34]. In [62], the technique adopted in [12] was extended
and applied to a nonlinear model for the same physical system, previously described
in [99]. For other integral models in applied geophysics, see [39].

In the models, the soil is assumed to have a layered structure with n layers below
ground level (z1 = 0). Each subsoil layer, of thickness dk (meters), ranges from depth
zk to zk+1, k = 1, . . . , n− 1, and it is characterized by an electrical conductivity σk
(Siemens/meter) and a magnetic permeability µk (Henry/meter), for k = 1, . . . , n.
The thickness of the deepest layer dn, starting at zn, is considered infinite.

The GCM is an electromagnetic (EM) device composed of two coils, a transmitter
and a receiver, placed at a fixed distance ρ from each other. The two coils, operating
at frequency f in Hertz, are at height h above the ground with their axes oriented
either vertically or horizontally with respect to the ground surface. Both the depth z
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and the height h are measured in meters. The measuring device generates a primary
EM field that induces eddy currents in the conductive parts of the subsurface and
measures the ratio between the secondary EM field produced by such currents and
the primary field.

Test Function 10. Linear model. In this simplified linear model, the readings of
the device only depend upon the electrical conductivity σ of the soil as a function
of depth z. Mathematically, the model consists of two integral equations of the first
kind: 

∫ ∞
0

kV (z + h)σ(z) dz = gV (h), h ∈ [0,∞),∫ ∞
0

kH(z + h)σ(z) dz = gH(h), h ∈ [0,∞).

(5.20)

The first one describes the situation in which both coil axes are aligned vertically
with respect to the ground level, whereas the second one corresponds to the hori-
zontal orientation of the coils. In the above equations,

kV (z) =
4z

(4z2 + 1)3/2
, kH(z) = 2− 4z

(4z2 + 1)1/2
(5.21)

are the kernel functions corresponding to the vertical and horizontal orientation of
the coils, respectively, σ(z) ≥ 0 is the unknown function that represents the electrical
conductivity of the subsoil at depth z below the ground surface, and gV (h), gH(h)
are given right-hand sides that represent the apparent conductivity of the soil sensed
by the device when it is held at height h > 0 over the ground, in correspondence to
the two possible orientations of the coils.

Let us rewrite (5.20) in operatorial form{
KV σ = gV ,

KHσ = gH ,

where

(KJσ)(h) =

∫ ∞
0

kJ(z + h)σ(z) dz, J ∈ {V,H},

are self adjoint operators from L2([0,∞)) into itself. Both operators KV and KH ,
seen as functions from L2([0,∞)) into itself, are compact and hence bounded; see
[33]. Indeed ∫ ∞

0

∫ ∞
0

|kV (z + h)|2 dz dh =

∫ ∞
0

t |kV (t)|2 dt =
1

4
,∫ ∞

0

∫ ∞
0

|kH(z + h)|2 dz dh =

∫ ∞
0

t |kH(t)|2 dt = log 2− 1

2
,

and, by virtue of the Hilbert-Schmidt integral operator theorem, they define compact
and hence bounded maps of L2([0,∞)) into itself.
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From the numerical point of view, the numerical treatment of equations (5.20)
is quite delicate, due to the ill-posed nature of first kind integral equations [52].

In [33], the authors proved the well-posedness of the model in suitable function
spaces; three different collocation methods were also proposed and compared. To
face the ill-conditioning of the resulting linear systems, especially when the data are
affected by experimental errors, the authors resorted to the truncated (generalized)
singular value decomposition as a regularization method.

Now, we explain how to modify the model, in order to apply the numerical
method proposed in Chapter 4 and in [32]. Following [33], assuming the a priori
information σ(z) ≤ β, for z > z0, we split each integral appearing in (5.20) into the
sum∫ ∞

0

k`(h, z)σ(z) dz =

∫ z0

0

k`(h, z)σ(z) dz +

∫ ∞
z0

k`(h, z)σ(z) dz, ` = 1, 2,

where k1(h, z) = kV (h + z) and k2(h, z) = kH(h + z). Moreover, we may assume
that at a sufficient depth z0 the electrical conductivity stabilizes, converging to a
value β. There are significant cases where this value can be estimated a priori on the
basis of the geophysical properties of the subsoil. Let us also mention that the value
of α can be obtained by direct conductivity measures at z = 0, that is in the soil
portion which corresponds to the first layer of the subsurface discretization. Given
the expression (5.21) of the kernels, setting σ(z) ' β, for z > z0 and z0 sufficiently
large, the last integral can be analytically computed. Then, the system becomes∫ z0

0

k`(h, z)σ(z) dz = g`(h)− β
∫ ∞
z0

k`(h, z) dz, ` = 1, 2,

with g1(h) = gV (h) and g2(h) = gH(h). In this way, system (5.20) is replaced by
(K1σ)(h) :=

∫ z0

0

k1(h, z)σ(z) dz = g1(h)− β

θ(z0, h)
,

(K2σ)(h) :=

∫ z0

0

k2(h, z)σ(z) dz = g2(h)− β (θ(z0, h)− 2(h+ z0)) ,
(5.22)

where the right-hand sides are corrected by the available a priori information on the
unknown function and (see [33])

θ(z, h) =
√

4(z + h)2 + 1. (5.23)

We remark that (−θ(z, h))−1 is the primitive function of k1(h, z), and 2z − θ(z, h)
is that of k2(h, z).

To determine a solution by applying the theory developed in Sections 4.2 and
4.3, it is necessary to introduce the linear function (4.5)

γ(z) =

(
1− z

z0

)
α +

z

z0

β,
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and assume that the values of the electrical conductivity at the endpoints of the
integration interval are known, e.g., σ(0) = α and σ(z0) = β. The boundary values
can usually be approximated in applications; see [33].

By collocating equations (5.22) at the points hi, assuming n1 = n2 = n and
h1,i = h2,i = hi, for i = 1, . . . , n, we obtain the following system of integral equations
with discrete data

∫ z0

0

k1(hi, z)φ(z) dz = ψ1(hi), i = 1, . . . , n,∫ z0

0

k2(hi, z)φ(z) dz = ψ2(hi), i = 1, . . . , n,

where

φ(z) = σ(z)− γ(z)

is the new unknown function, and considering the fact that∫
k1(hi, z)z dz =

1

2
arcsinh(2(z + hi))−

z

θ(z, hi)
,

∫
k2(hi, z)z dz =

θ(z, hi)

2
(hi − z) + z2 − h2

i +
1

4
arcsinh(2(z + hi)),

then

ψ1(hi) = g1(hi)−
β

θ(z0, hi)
−
∫ z0

0

k1(hi, z)γ(z) dz

= g1(hi)−
α

θ(0, hi)
− α− β

2z0

[
arcsinh(2hi)− arcsinh(2(z0 + hi))

]
,

ψ2(hi) = g2(hi)− β (θ(z0, hi)− 2(hi + z0))−
∫ z0

0

k2(hi, z)γ(z) dz

= g2(hi)−
[

(α− β)hi
2z0

+ α

]
θ(0, hi) +

α− β
2

[
hi
z0

+ 1

]
θ(z0, hi)

+ 2βhi − z0(α− β)− a− b
4z0

[arcsinh(2hi)− arcsinh(2(z0 + hi))]

are the new right-hand sides.

The Green function, for the interval [0, z0], is

G′′y(z) =


z(y − z0)

z0

, 0 ≤ z < y,

y(z − z0)

z0

, y ≤ z ≤ z0.
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The second derivative of the Riesz representers can be computed analytically. In-
deed, from (4.22), it follows that

η′′1,i(x) =

∫ z0

0

G′′z(x)k1(hi, z) dz

=
1

2

[(
1− x

z0

)
arcsinh(2hi)− arcsinh(2(x+ hi))

+
x

z0

arcsinh(2(z0 + hi))

]

and

η′′2,i(x) =

∫ z0

0

G′′z(x)k2(hi, z) dz

=
1

2

[
2x(x− z0) + x

(
1 +

hi
z0

)
θ(z0, hi)− (x+ hi)θ(x, hi)

+hi

(
1− x

z0

)
θ(0, hi) + η′′1,i(x)

]
,

where θ(x, h) is the function defined in (5.23). From the above second derivatives,
we can compute the Riesz functions

η1,i(y) =

∫ z0

0

G′′y(x)η′′1,i(x) dx

=
3

16

[
(y + hi)θ(y, hi)− y

(
1 +

hi
z0

)
θ(z0, hi) + hi

(
y

z0

− 1

)
θ(0, hi)

]
+

1

2

{[
1

2

(
y

z0

− 1

)(
1

8
− h2

i −
y2

3

)
+
y

3
(y − z0)

]
arcsinh(2hi)

+

[
− y

2z0

(
1

8
− h2

i −
y2

3

)
+ y

(
hi +

z0

3

)]
arcsinh(2(z0 + hi))

+
1

2

[
1

8
− (y + hi)

2

]
arcsinh(2(y + hi))

}
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and

η2,i(y) =

∫ z0

0

G′′y(x)η′′2,i(x) dx

=
1

192z0

{
z0

[
hi
(
13− 8(3hiy + h2

i + 3y2)
)

+ y(13− 8y2)
]
θ(y, hi)

+y
[
hi
(
8(3hiz0 + h2

i + 2y2 + z2
0)− 13

)
+ z0

(
8(2y2 − z2

0)− 13
)]
θ(z0, hi)

+hi
[
z0

(
8(h2

i + 6y2 − 4yz0)− 13
)

+ y
(
13− 8(h2

i + 2y2)
)]
θ(0, hi)

+ 16yz0

(
y3 − 2y2z0 + z3

0

)}
+

1

128z0

{
(y − z0)

[
1− 16

(
h2
i +

y2

3
− 2yz0

3

)]
arcsinh(2hi)

+z0

[
1− 16 (y + hi)

2] arcsinh(2(y + hi)

−y
[
1− 16

(
h2
i +

y2

3
+ 2hiz0 +

2z2
0

3

)]
arcsinh(2(z0 + hi))

}
.

0 5 10 15 20 25 30

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

h=0.1

h=0.4

h=0.7

h=1.0

h=1.3

h=1.6

h=1.9

0 10 20 30

0

10

20

30

40

50

60

70

80

90
h=0.1

h=0.4

h=0.7

h=1.0

h=1.3

h=1.6

h=1.9

0 5 10 15 20 25 30

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

h=0.1

h=0.4

h=0.7

h=1.0

h=1.3

h=1.6

h=1.9

0 5 10 15 20 25 30

0

10

20

30

40

50

h=0.1

h=0.4

h=0.7

h=1.0

h=1.3

h=1.6

h=1.9

Figure 5.2: The functions η′′1,i (top-left), η1,i (top-right), η′′2,i (bottom-left), and η2,i

(bottom-right), with hi = 0.1 + (i− 1) 3
10

and i = 1, . . . , 7.
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Figure 5.2 shows the behavior of η′′1,i and η1,i for different values of hi, in the case
z0 = 30. We also report the graphs of the Riesz representers for the horizontal ori-
entation η′′2,i and η2,i. It is straightforward to verify that η1,i(0) = η1,i(z0) = η2,i(0) =
η2,i(z0) = 0. Figure 5.3 displays the orthonormal functions η̂1,i and η̂2,i defined in
(4.31), together with their second derivatives η̂′′1,i and η̂′′2,i. In the summation (4.31),
the upper bound is set to N = 12 for preserving the positivity of the eigenvalues.
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Figure 5.3: The orthonormal functions η̂′′1,i (top-left), η̂1,i (top-right), η̂′′2,i (bottom-
left), and η̂2,i (bottom-right), with hi = 0.1 + (i− 1) 3

10
and i = 1, . . . , 7.

Test Function 11. Nonlinear model. We report here a nonlinear model for the
same applicative setting. It is derived from Maxwell’s equations.

Let uk(λ) =
√
λ2 + iσkµkω be the propagation constant, where ω = 2πf is the

angular frequency of the instrument. The variable λ ranges from zero to infinity and
it measures the ratio between the depth below the ground surface and the inter-coil
distance ρ. If we denote the characteristic admittance in the kth layer by

Nk(λ) =
uk(λ)

iµkω
, k = 1, . . . , n,
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then it is shown in [96] that the surface admittance Yk(λ) at the top of the same
layer verifies the recursionYn(λ) = Nn(λ),

Yk(λ) = Nk(λ)
Yk+1(λ) +Nk(λ) tanh(dkuk(λ))

Nk(λ) + Yk+1(λ) tanh(dkuk(λ))
, k = n− 1, . . . , 1.

(5.24)

Let us define the reflection factor as

Rω(λ) =
N0(λ)− Y1(λ)

N0(λ) + Y1(λ)
,

where Y1(λ) is computed by the recursion (5.24) and N0(λ) = λ/(iµ0ω), with µ0 =
4π10−7H/m, that is, the value of the magnetic permeability in the empty space. The
ratio of the secondary to the primary field for the vertical and horizontal orientation
of the coils, respectively, is given by

M0(σ,µ;h, ω, ρ) = −ρ3

∫ ∞
0

λ2e−2hλRω(λ)J0(ρλ) dλ,

M1(σ,µ;h, ω, ρ) = −ρ2

∫ ∞
0

λe−2hλRω(λ)J1(ρλ) dλ,

where σ = [σ1, . . . , σn]T , µ = [µ1, . . . , µn]T , and J0, J1 are Bessel functions of the
first kind of order 0 and 1, respectively.

The functions M0 and M1 can be expressed in a more compact form in terms of
the Hankel transform

Hν [f ](ρ) =

∫ ∞
0

f(λ)Jν(ρλ)λ dλ,

as follows

Mν(σ,µ;h, ω, ρ) = −ρ3−νHν [λ
1−ν e−2hλRω(λ)](ρ), ν = 0, 1.

As it is usual in many applications, we let the magnetic permeability take the
constant value µ0, that is, the value in the empty space. According to the instrument
configuration (orientation of the coils, height above the ground, inter-coil distance,
alternating current frequency) multiple measurements are available. We will denote
them by bi, i = 1, . . . ,m, and the model prediction by F (σ), where σ = [σ1, . . . , σn]T .
Then, the problem of data inversion consists of computing the conductivity vector
σ which determines the best fit to the data vector b, that is, the one which solves
the problem

min
σ∈Rn

‖r(σ)‖2, with r(σ) = F (σ)− b.



CHAPTER 6
Numerical experiments

This chapter is devoted to testing the algorithms proposed in this thesis. In Section
6.1 we apply the MNGN method and its regularized variants, described in the first
part of Chapter 2, to nonlinear least-squares problems, while in Section 6.2, the
“doubly relaxed” approaches of the MNGN method, analyzed in the second part of
Chapter 2, are tested. In Section 6.3 we pass to solving some systems of integral
equations by applying the Riesz theory, developed in Chapter 4. All computational
codes are implemented in Matlab. The numerical experiments were performed on
an Intel Core i5 system with 16Gb RAM, running the Debian GNU/Linux operating
system.

6.1 The MNGN method in action

In this section, we present two classes of numerical examples. In the first one,
we apply the minimal-norm Gauss–Newton (MNGN) method of Section 2.3 to
two well-conditioned problems of small dimension in order to visualize its con-
vergence and compare it to the standard Gauss–Newton iteration. In the second
class, we apply the regularization techniques of Sections 2.5.1 and 2.5.2, that is, the
truncated minimal-L-norm Gauss–Newton (TMLNGN) method and the minimal-L-
norm Tikhonov–Gauss–Newton (TikLGN) method, to an ill-conditioned nonlinear
problem of larger size. In each experiment, we solve problem (2.1) for a particular
function F (x) with values in Rm for x ∈ Rn.

Regarding the stopping rule, the following ones are adopted for all iterative meth-
ods. We iterate until either the difference between two successive approximations is
small enough

‖x(k+1) − x(k)‖ < δ‖x(k+1)‖, δ = 10−8,

or until the maximum number of iterations Nmax = 60 is reached.
For ill-conditioned problems, it is useful to consider an additional stopping cri-

terion in order to detect the unboundedness of the solution for a particular value of
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the regularization parameter. The iteration is interrupted when one of the preceding
conditions is reached or when the ratio between the norms of the kth approximate
solution and the initial point is larger than 108.

Example 6.1.1. In the first example, we consider the nonlinear function (5.1)
defined in Test Function 1. This is a well-conditioned example. We recall that the
residual r : R2 → R is the nonlinear function

r(x) = F (x)− b =
[
α(x1 − 1)2 + β(x2 − 1)2 − 1

]2
+ 1,

depending upon the parameters α, β ∈ R. We minimize the objective function

f(x) =
1

2
r(x)2 =

1

2

{[
α(x1 − 1)2 + β(x2 − 1)2 − 1

]2
+ 1
}2

, (6.1)

which can be graphically represented by a surface; see Figure 6.1.
In this case, the least-squares problem (2.1) is underdetermined, so it has in-

finitely many solutions. We solve it by Newton’s method (2.4), the Gauss–Newton
method (2.7), the minimal-norm Gauss–Newton method (2.13), and the “projected”
Newton method discussed in Remark 2.3.5.

0 5 10 15 20 25

iterations

10
-15
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MNN

Figure 6.1: Convergence of problem (6.1) with α = β = 1
9

and x(0) = [5, 3]T . In the
3D graph on the left, the white dashed line represents the locus of the solutions, the
red dots are the iterations of the MNGN method, and the black ones correspond to
the GN method. The graph on the right reports the residuals for each method.

First we consider α = β = 1
9
. In this case, the minimal-norm solution is

x† ≈ [−1.12,−1.12]T , with ‖x†‖ ≈ 1.58. Figure 6.1 illustrates the progress of the
iterations: the graph on the left displays the iterates produced by the MNGN and
the GN methods in a 3D representation of f(x). The one on the right reports the
residuals corresponding to the above methods, to Newton’s method (N), and to the
“projected” Newton method (MNN). The last two methods converge to the same



6.1. THE MNGN METHOD IN ACTION 113

solutions as the GN and MNGN methods, respectively, so they are not represented
in the 3D plot.

All the methods reach convergence as the residuals converge to zero. We see
that MNGN takes longer to converge as it must “travel” across the solutions locus
to reach the minimal-norm solution, which is the one nearby the origin. On the
contrary, GN converges to the solution closer to the initial point. This fact is even
clearer in the contour plot on the left of Figure 6.2.

Observing the residuals, we see that Newton’s method has the highest conver-
gence rate. Anyway, if we trivially project its iterates orthogonally to the null space
of the Jacobian (see Remark 2.3.5), then it converges to the minimal-norm solu-
tion, but its speed of convergence degrades and equals the MNGN method. So, no
computational gain derives from its higher complexity.
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Figure 6.2: Contour plots for problem (6.1): on the left α = β = 1
9
, on the right

α = 1 and β = 1
10

. The red dots are the iterates of the MNGN method and the
black ones the approximations produced by the GN method. The thick black dot in
the graph on the right is the minimal-norm solution.

It is also interesting to observe that the residuals of the MNGN method are not
monotonically decreasing. The method, in some measure, is able to step away from
the local attraction basin in order to chase the minimal-norm solution. Anyway, the
dependence upon the initial point x(0) is obviously maintained. This is shown in the
contour plot on the right of Figure 6.2, which illustrates the convergence of the GN
and MNGN methods when α = 1 and β = 1

10
, starting from the same initial point.

The MNGN method converges, in this case, to a solution with a smaller norm (i.e.,
with a smaller distance from the origin) than the one computed by the GN method
but not to the minimal-norm solution, identified by a thick black dot in the graph.

Example 6.1.2. As a second well-conditioned example we consider the nonlinear
function (5.2) defined in Test Function 2. The residual function r : R3 → R2 has
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the expression

r(x) =

[
(x1 − 1)2 + x2

2 + x2
3 − 1

x3

]
,

with x = [x1, x2, x3]T .
The objective function f is represented in Figure 6.3 by a contour-slice volume

plot, from two different points of view, together with the iterates of the GN and
MNGN methods. Contour-slices are contour plots drawn at specific planes within
the volume and they show where data values are equal on these planes.

As it is expected, the first method converges to the solution closer to the initial
point, while MNGN converges to the minimal-norm solution.

Figure 6.3: Contour-slice volume plot for problem (5.2): iterates of the MNGN
method (red dots) and of the GN method (black dots), starting from the initial
point x(0) = [1.01, 1,−1]T . The dashed circle represents the locus of solutions.

Example 6.1.3. Here we consider a nonlinear model applied to investigate soil
properties, which involves the use of electromagnetic induction techniques. A
brief description of the model can be found in Test Function 11. We denote
the measurements by bi, i = 1, . . . ,m, and the model prediction by F (σ), where
σ = [σ1, . . . , σn]T represents the electrical conductivity in the discretization layers.
Then, the problem of data inversion consists of computing the conductivity vector
σ such that

min
σ∈Rn

‖r(σ)‖2, with r(σ) = F (σ)− b. (6.2)

This is an ill-conditioned example.
In our numerical simulation, we fix the following test model for the electrical

conductivity as a function of depth,

σ(z) = e−(z−1.2)2 . (6.3)
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We discretize the soil by n = 20 uniformly spaced layers up to the depth of 3.5m and
we assign to each layer the conductivity σi = σ(zi), i = 1, . . . , n, with z1 = 0m and
zn = 3.5m. We choose the configuration of an existing device (the Geophex GEM-2),
using a single pair of coils at 1.66m distance and 5 different current frequencies. This
means that it can acquire 5 measurements for each sampling. The forward model
generates a noise-free data vector bexact of m synthetic measurements, corresponding
to placing the instrument at two different heights above the ground (0.75m and 1.5m)
with the coils either in vertical orientation (m = 10) or in vertical and horizontal
orientations (m = 20). To simulate experimental errors, the noise-free data vector
bexact is perturbed by

b = bexact +
ε‖bexact‖√

m
w,

where w is a normally distributed random vector with zero mean and unitary vari-
ance and ε represents the noise level.
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Figure 6.4: EM data inversion: m = n = 20, noise level ε = 10−2, comparison of the
solution corresponding to the regularization matrices L = In, D1, andD2. The initial
point σ(0) has random components uniformly distributed in the interval (49.5, 50.5).
The exact solution is compared to the solutions computed by TikGN/TikLGN on
the left and by TMNGN/TMLNGN on the right. The parameters λ and ` are the
best possible.

We solve problem (6.2) by the damped Gauss–Newton method with the damping
parameter determined by the Armijo–Goldstein principle. Each step of the iterative
method is regularized by one of the methods described in this chapter. In the stan-
dard case, when L = In, we display the solutions computed by the TMNGN (2.26)
and TikGN (2.33) methods; when a regularization matrix is present, that is, when
L = D1 or D2 (see (1.14)), we apply the TMLNGN (2.27) and TikLGN (2.37)
methods. The regularization parameters λ and ` are chosen by different criteria: by
minimizing the 2-norm error with respect to the exact solution in order to ascertain
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the best possible performance of the methods, by the discrepancy principle and by
the L-curve criterion to test the algorithms in a realistic situation (see Section 2.5).

We start by discussing the importance of the regularization matrix L for the
accuracy of the solution. The data set is composed by m = 20 measurements, the
noise level is ε = 10−2, a value consistent with experimental data sets, and the initial
vector is σ(0), whose components are uniformly distributed random numbers in the
interval (49.5, 50.5).

The model function (6.3) is smooth, favoring a regularizing term based on the
approximation of the first or second derivatives. The graphs in Figure 6.4 compare
the solutions obtained by the regularization matrices L = In, D1, and D2. The
computation is performed by using a Tikhonov approach (graph on the left) and
by truncating the SVD/GSVD in the minimal-norm Gauss–Newton iteration (on
the right). In the first case the solution corresponding to L = In is evidently less
accurate than the others. In the second one, the minimal-norm method TMNGN
converges to a solution which is totally different from the model function, while
the other two reconstructions are close to it. We also observe that in this case,
as it happened in other experiments, Tikhonov regularization can reach a higher
accuracy than the truncated SVD/TSVD approach. This is due to the fact that the
regularization parameter λ can be varied continuously, while the parameter ` can
only take integer values. In this example and in the following one, both parameters
are chosen by minimizing the 2-norm error.

0 0.5 1 1.5 2 2.5 3 3.5

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3 3.5

0

0.2

0.4

0.6

0.8

1

1.2

Figure 6.5: EM data inversion: m = n = 20, noise level ε = 10−2, regularization
matrix L = D1, initial point σ(0) with random components uniformly distributed in
the interval (49.5, 50.5). The exact solution is compared to the solutions computed
by TikLGN and the standard Tikhonov method (on the left) and by TMLNGN and
by the Gauss–Newton method regularized by TGSVD, labelled as TGN, (on the
right). The parameters λ and ` are the best possible.

In many cases, especially when the initial vector used to initialize the iteration is
close enough to the solution of the problem, the minimal-norm and the standard ap-
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proaches produce similar approximations. Anyway, when the initial vector is rather
far away from the solution, there are cases in which the minimal-norm methods are
significantly more accurate and less sensible to the presence of local minima than
the traditional approaches.

Figure 6.5 shows one of these cases. Here the minimal-norm algorithms are com-
pared to the traditional approaches, namely, Tikhonov regularization (2.25) and the
Gauss–Newton method regularized by TGSVD, labeled as TGN. The regularization
matrix is the discretization of the first derivative operator; the other parameters are
the same as in the previous example. We observe from both graphs of Figure 6.5
that the minimal-L-norm approaches, i.e., the TikLGN and the TMLNGN meth-
ods, reproduce acceptable solutions, while the approximations from the Tikhonov
approach (2.25) and the TGN method are completely wrong.

0 0.5 1 1.5 2 2.5 3 3.5

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3 3.5

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3 3.5

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3 3.5

0

0.2

0.4

0.6

0.8

1

1.2

Figure 6.6: EM data inversion: m = 10, n = 20, noise level ε = 10−4, regulariza-
tion matrix L = D2. The initial point has σ(0) with random components uniformly
distributed in the interval (0.45, 0.55). The exact solution is compared to the solu-
tions computed by TikLGN and the standard Tikhonov method (top row) and by
TMLNGN/TGN (bottom row). The parameters λ and ` have been chosen by the
discrepancy principle (left column) and by the L-curve (right column).
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In Figure 6.6 we illustrate the performance of the discrepancy principle, with τ =
1.6, and of the L-curve criterion in estimating the regularization parameters λ and `.
In this example, we consider m = 10 data values, the initial solution is σ(0), whose
components are uniformly distributed random numbers in the interval (0.45, 0.55),
and the noise level ε = 10−4. The regularization matrix is the discretization of
the second derivative D2. The graphs in the top row concern the reconstructions
obtained by the TikLGN and Tikhonov methods. In the bottom row we report
the results obtained by the TMLNGN and the TGN methods. The regularization
parameters for the graphs in the left column are determined by the discrepancy
principle, while the right column shows the reconstructions corresponding to the
regularization parameters estimated by the L-curve. From all four plots, we can see
that the minimal-L-norm solutions are more accurate.
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Figure 6.7: EM data inversion: m = 10 and n = 20, noise level ε = 10−4, reg-
ularization matrix L = D2, initial point σ(0) with random components uniformly
distributed in the interval (0.4, 0.6). The exact solution is compared to the solutions
computed by TikLGN (on the left) and by TMLNGN (on the right).

In Figure 6.7, we compare the “best” solution for the noise level ε = 10−4 to
the ones obtained by estimating the regularization parameter by the discrepancy
principle and by the L-curve criterion. Here, we consider m = 10 data values, the
initial solution is σ(0), whose components are uniformly distributed random numbers
in the interval (0.4, 0.6). The regularization matrix is the discretization of the second
derivative operator D2. On the left we report the approximate solutions obtained
by the TikLGN method, while the right pane shows the reconstructions obtained by
the TMLNGN method. Approximate solutions from all parameter selection criteria
are acceptable.



6.2. PERFORMANCE OF THE DOUBLY RELAXED MNGN METHOD 119

6.2 Performance of the doubly relaxed MNGN

method

This section is devoted to analyzing the behavior of the “doubly relaxed MNGN”
approach for several test problems.

The developed Matlab functions implement all the variants of the MNGN2 al-
gorithm, defined by (2.51), as well as the MNGN and CKB methods developed in
[82] and [20], respectively, and reported in this thesis.

In the following, the MNGN2 algorithm will be denoted by different names,
according to the particular implementation. In the method denoted by MNGN2α,
we let βk = αk in (2.51), and determine αk by the Armijo–Goldstein principle.
Algorithm 1 is denoted by MNGN2αβ, when δ(ρ, η) = ηρ, with a fixed value of η.
The same algorithm with δ(ρ, η) = ρη, and η estimated by Algorithm 2, is labeled
as MNGN2αβδ. The algorithm (2.49) developed in [20] is denoted by CKB1 when

γk = (0.5)k+1, and by CKB2 when γk = (0.5)2k . The same algorithms are denoted
by rCKB1 and rCKB2 when they are applied with the automatic estimation of the
rank of the Jacobian, discussed in Section 2.8.

We note that the computational cost of each iteration is roughly the same for all
the methods considered. Indeed, the additional complexity required by the MNGN2
algorithms consists of the estimation of the numerical rank rε,k, of the residual
increase δ(ρ, η), and of the projection parameter βk. All these computations involve
a small number of floating point operations; see also Remark 2.9.1.

To compare the methods and investigate their performance, we performed nu-
merical experiments on various test problems that highlight particular difficulties in
the computation of the minimal-norm solution. Example 6.2.1 illustrates a situation
where the MNGN method either fails or produces unacceptable results, while the
other methods perform well; in Example 6.2.2, we investigate the dependence of
the MNGN2αβ method on the choice of the parameter η; Example 6.2.3 is the first
medium-size test problem we consider, it shows the importance of the Jacobian rank
estimation for the effectiveness of the algorithms; in Example 6.2.4, the methods are
compared in the solution of minimal-L-norm problems with different regularization
matrices; finally, in Example 6.2.5, we let the dimension of the problem vary and
we explore the dependence of the computed solution on the availability of a priori
information in the form of a model profile.

In this section, we apply the MNGN2 methods also in the large-scale case in
Example 6.2.4 and Example 6.2.5. The different approaches are denoted as GK-
MNGN2α, GK-MNGN2αβ, and GK-MNGN2αβδ, where GK stands for “Golub–
Kahan”. We consider also the CKB methods and we denote them as GK-CKB1

and GK-CKB2. To detect a breakdown we set tol = 10−8 in Algorithm 3.

For each experiment, we repeated the computation 100 times, varying the start-
ing point x(0) by letting its components be uniformly distributed random numbers
in (−5, 5). The model profile x was set to the zero vector except in Example 6.2.5.
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We consider a numerical test a “success” if the algorithm converges according to
condition (2.53), with stop tolerance τ = 10−8 and maximum number of iterations
Nmax = 500. A failure is not a serious problem, in general, because non-convergence
simply suggests to try a different starting vector. Anyway, if this happens too often,
it increases the computational load. At the same time, a success of a method does
not imply that it recovers the minimal-norm solution, as the convergence is only
local. So, to give an idea of the performance of the methods, we measure over all
the tests the average of both the number of iterations required and the norm of the
converged solution ‖x̃‖. We also report the number of successes.

Example 6.2.1. In this first example, we consider the nonlinear model (5.9) de-
scribed in Test Function 7, that concerns the behavior of a redundant parallel robot.
In our simulation we assume (X, Y ) = (3, 3), A = 2, H = 10.

Table 6.1: Results for Example 6.2.1.
method iterations ‖x̃‖ #success
MNGN2α 239 8.7246 92
MNGN2αβδ 38 9.0621 96
CKB1 26 8.5515 100
CKB2 10 9.7344 100
MNGN 182 17.6329 30

The results obtained are reported in Table 6.1. We see that the MNGN2α and
CKB1 methods recover solutions with smaller norms, in the average, but the first
one requires a large number of iterations. The MNGN2αβδ implementation, with
automatic estimation of the projection step βk, quickly converges but produces so-
lutions with slightly larger norms. The CKB2 method leads to solutions with a
worse norm, testifying that the performance of the method in (2.49) is very sensi-
tive to the choice of the sequence γk. The MNGN method described in Section 2.3
leads to solutions far from optimality and fails in 70% of the tests. This happens in
most of the examples considered in this section, so we will involve it only in another
experiment.

Example 6.2.2. Now, we consider a test problem introduced in [20] and described
in Test Function 6. It consists of the nonlinear function (5.8). We recall that the
minimal-norm solution is

x† ≈ [0.859754, 1.849178, 3.065164]T ,

with ‖x†‖ ≈ 3.681558.
The results obtained are reported in Table 6.2. The MNGN2αβ method is tested

with two values of the parameter η appearing in the residual increase δ(ρ, η) = ηρ;
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Table 6.2: Results for Example 6.2.2.
method iterations ‖x̃‖ #success
MNGN2αβ (η = 8) 174 3.6903 15
MNGN2αβ (η = 2) 62 3.7120 100
MNGN2α 330 3.6816 100
MNGN2αβδ 37 3.6832 100
CKB1 26 3.7343 100
CKB2 10 3.7561 100

see Algorithm 1. It is clear that it can lead to accurate solutions only if the parameter
is suitably chosen (η = 2). On the contrary (η = 8), it shows a great number of
failures.

As in the previous example, the best results are produced by MNGN2α, and
MNGN2αβδ reaches very similar solutions but is about 10 times faster. The CKB
methods take a smaller number of iterations, but produce less accurate solutions.

Example 6.2.3. Let F : Rn → Rm be the nonlinear function introduced in Test
Function 3, whose components are defined by (5.4). The locus of the solutions
is the n-ellipsoid S(x) with center c = [c1, . . . , cn]T and whose semiaxes are the
components of the vector a = [a1, . . . , an]T .

We recall here that if a = e = [1, . . . , 1]T , the locus of the solutions is the n-sphere
centered in c with unitary radius. Moreover, if c = [2, 0, . . . , 0]T , the minimal-norm
solution is x† = [1, 0, . . . , 0]T .

Table 6.3: Results for Example 6.2.3 with m = 8, n = 10, a = e, and
c = [2, 0, . . . , 0]T . In MNGN, CKB1, and CKB2, the rank is not estimated.

method iterations ‖x̃‖ #success
MNGN2α 209 1.0263 83
MNGN2αβ (η = 8) 208 1.0449 99
MNGN2αβδ 206 1.0367 97
MNGN 70 2.1083 2
CKB1 216 2.2002 32
CKB2 20 2.1305 2
rCKB1 160 2.1088 32
rCKB2 197 1.0454 97

Table 6.3 displays the results for this case, when m = 8 and n = 10. These
results aim at underlining the importance of estimating the rank of the Jacobian
Jk. The implementations of the MNGN2 algorithm are more or less equivalent,
recovering solutions with almost optimal norm; MNGN2α fails in 17% of the tests.
The value of η for MNGN2αβ is tailored to maximize the performance, which is
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not possible in practice, while it is automatically estimated for MNGN2αβδ. The
MNGN and CKB methods do not perform well, because of the rank deficiency of
the Jacobian. We also implemented the rank estimation in the algorithms from [20];
the corresponding methods are denoted by rCKB. It happens that rCKB2 produces
results comparable to the MNGN2 methods, confirming that a correct estimation of
the rank is essential for the convergence, while rCKB1 converges only in 32% of the
tests and produces solutions with large norms. Again, this shows that the sequence
adopted for the step length in (r)CKB methods is critical for the effectiveness of the
computation.

The norms of the solutions, whose average is displayed in Table 6.3, are reported
in the boxplot in the left pane of Figure 6.8. In each box, the red mark is the median,
the edges of the blue box are the 25th and 75th percentiles, and the black whiskers
extend to the most extreme data points non considered to be outliers, which are
plotted as red crosses.
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Figure 6.8: Boxplot of the norms of the solutions for Examples 6.2.3 (left) and 6.2.4
(right). The series, labeled by the methods name, are displayed in the same order
of Table 6.3 and Table 6.4, respectively.

Example 6.2.4. Let F : Rn → Rm be the nonlinear function introduced in Test
Function 4, with components defined by (5.5). The locus of the solutions is the union
of the n-ellipsoid and the intersection between the planes xi = ci, i = 1, . . . ,m.

As already said in Section 5, if a = e and c = [2, 0, . . . , 0]T , the minimal-norm
solution is x† = [1, 0, . . . , 0]T . The case m = 2, n = 3, is displayed in Figure 6.9,
together with the iterations of the algorithms MNGN2αβδ and rCKB1. In this test,
the latter algorithm converges to a solution of non-minimal norm.

Table 6.4 illustrates the situation where a = e, c = [2, 0, . . . , 0]T , m = 8 and
n = 10. The corresponding boxplot of the norms of the solutions is displayed in the
right pane of Figure 6.8. The MNGN2αβδ method is the only one which recovers
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Figure 6.9: Solution of problem (5.5) (Example 6.2.4) for m = 2 and n = 3, with
a = [1, 1, 1]T , c = [2, 0, 0]T , and x(0) = [0, 3, 3]T . The locus of the solutions is the
sphere and the line intersection of the two planes. The blue dots are the iterations
of the MNGN2αβδ method, and the red ones correspond to the rCKB1 method. The
black circle encompasses the minimal-norm solution.

the correct solution; MNGN2α gets close to it, but with a very small number of
successes.

If a = e and c = 2e, we recall that the minimal-norm solution x† depends on
the dimensions m and n: if m < n−

√
n+ 1

4
, then it is

x† = [2, 2, . . . , 2︸ ︷︷ ︸
m

, 0, . . . , 0︸ ︷︷ ︸
n−m

]T ,

otherwise, it is

x† =

(
2−
√
n

n

)
e. (6.4)

Table 6.5 reports the results obtained for a = e, c = 2e, m = 8, and n = 10. In
this case, the solution is (6.4). We applied the algorithms to both the solution of the
minimal-norm problem, and the computation of the minimal-L-norm solution with
L = D2, i.e., the discrete approximations of the second derivative (1.14). Since the
solution is exactly in the null space of L, we expect the minimal-L-norm solution
to perform well. No algorithm is accurate when L = In, as the minimal-norm is
2
√
n−1 = 5.3246. When L = D2, the two MNGN2 implementations are superior to

the rCKB methods, as ‖Lx†‖ = 0. As in the previous example, MNGN2α exhibits
a large number of failures.



124 CHAPTER 6. NUMERICAL EXPERIMENTS

Table 6.4: Results for Example 6.2.4 with m = 8, n = 10, a = e, and
c = [2, 0, . . . , 0]T .

method iterations ‖x̃‖ #success
MNGN2α 215 1.5196 12
MNGN2αβ (η = 8) 11 1.9911 100
MNGN2αβδ 47 1.0100 100
rCKB1 27 2.0346 100
rCKB2 11 2.0531 100

Table 6.5: Results for Example 6.2.4 with m = 8, n = 10, a = e, and c = 2e.
method iterations ‖Lx̃‖ #success

L = In MNGN2α 12 5.6569 23
MNGN2αβδ 45 5.4529 100
rCKB1 26 5.7274 100
rCKB2 11 5.7520 100

L = D2 MNGN2α 20 0.0500 26
MNGN2αβδ 17 0.0765 100
rCKB1 27 2.1694 100
rCKB2 17 2.2761 100

Now, we consider the same function introduced in Test Function 4 in the large-
scale case. We consider a = e, c = [2, 0, . . . , 0]T , m = 150, and n = 200. We remem-
ber that for this function, the Golub–Kahan decomposition presents a breakdown af-
ter the first step; see Example 3.2.3. In Table 6.6 we can see that the GK-MNGN2α,
GK-MNGN2αβ, and GK-MNGN2αβδ approaches converge to the minimal-norm so-
lution x† = [1, 0, . . . , 0]T .

Table 6.6: Results for Example 6.2.4 with m = 150, n = 200, a = e, and c =
[2, 0, . . . , 0]T .

method iterations ‖x̃‖ #success
GK-MNGN2α 17 1.0000 90
GK-MNGN2αβ (η = 8) 15 1.0000 100
GK-MNGN2αβδ 64 1.0000 100
GK-CKB1 27 2.4320 100
GK-CKB2 14 2.7101 100

Example 6.2.5. Let F : Rn → Rm be the nonlinear function described in Test
Function 5, with components defined by (5.6).

The locus of the solutions is the intersection between the hypersurface defined
by S(x) = 0 and by the pairs of planes xi−1 = 0, xi − ci = 0, i = 2, . . . ,m.
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Table 6.7: Results for Example 6.2.5 with different size (m,n), a = e, and c =
[2, 0, . . . , 0]T .

(m,n) method iterations ‖x̃‖ #success
(8, 10) MNGN2α 167 1.0000 48

MNGN2αβ (η = 8) 24 1.0508 100
MNGN2αβδ 37 1.0659 100
rCKB1 44 1.4867 100
rCKB2 22 1.4776 100

(16, 20) MNGN2α 144 1.0000 36
MNGN2αβ (η = 8) 29 1.0170 99
MNGN2αβδ 34 1.0518 99
rCKB1 54 1.4343 100
rCKB2 53 1.5269 90

(24, 30) MNGN2α 133 1.0000 34
MNGN2αβ (η = 8) 34 1.0154 99
MNGN2αβδ 32 1.0191 96
rCKB1 43 1.4446 100
rCKB2 52 1.4529 70

If a = e = [1, . . . , 1]T and c = 2e, the minimal-norm solution is

x† = [ξn,m, 2, . . . , 2︸ ︷︷ ︸
m−1

, ξn,m, . . . , ξn,m︸ ︷︷ ︸
n−m

]T , (6.5)

with ξn,m = 2 − (n −m + 1)−1/2, while if c = [2, 0, . . . , 0]T it is x† = [1, 0, . . . , 0]T .
This case is illustrated in Figure 6.10, where the iterations of the MNGN2αβδ and
the rCKB1 methods are reported too. The iterations performed are 20 and 24,
respectively; the computed solutions are substantially coincident.

Table 6.7 displays the results obtained for the same parameter vectors of Fig-
ure 6.10, when the size of the problem varies, i.e., for (m,n) = (8k, 10k), k = 1, 2, 3.
The MNGN2 algorithms behave almost optimally, while the rCKB methods lead
to solutions with larger norm. The table shows that the performance is not signif-
icantly affected by the size of the problem. This example suggests that large-scale
problems could be faced by the methods discussed, but a suitable algorithm for the
solution of the linearized problem should be adopted, to reduce the computational
complexity of each step.

Table 6.8 investigates the effectiveness of choosing an appropriate model profile
x when applying the MNGN2 algorithms. We consider the case a = e, c = 2e,
m = 8, and n = 10. The minimal-norm solution x† is (6.5), with ξ8,10 ' 1.4226 and
‖x†‖ ' 5.8371.

When x = 0, the solutions produced by the considered variants of the method
are almost optimal, but the number of iterations is quite large, as well as the number
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Figure 6.10: Solution of problem (5.6) (Example 6.2.5) for m = 2 and n = 3, with
a = [1, 1, 1]T , c = [2, 0, 0]T , and x(0) = [1

2
, 3, 3]T . The solutions are in the intersection

between the sphere and the union of the two planes. The blue dots are the iterations
of the MNGN2αβδ method, and the red ones correspond to the rCKB1 method. The
black circle encompasses the minimal-norm solution.

of failures for MNGN2αβ (with a suitably chosen η) and MNGN2αβδ. The model
profile x = 2e reduces the number of iterations and leads to almost 100% of suc-
cesses, but the average norm of the solutions is slightly larger than the optimal one.
Choosing x = 1.7e, a value which is roughly halfway between 2 and ξ8,10, the ex-
treme values of x†, restores the optimality of the results. This confirms that, when
a priori information is available, an accurate choice of the model profile enhances
the performance of the algorithms.

Now, we apply the MNGN2 and CKB methods in the large-scale setting. We
consider the same function described in Test Function 5 in the case a = e, c =
[2, 0, . . . , 0]T , m = 50, and n = 70. The results are reported in Table 6.9. The
GK-MNGN2 algorithms behave almost optimally, while the GK-CKB methods lead
to solutions with larger norm.
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Table 6.8: Results for Example 6.2.5 with m = 8, n = 10, a = e, and c = 2e.
method iterations ‖x̃‖ #success

x = 0 MNGN2α 138 5.8371 100
MNGN2αβ (η = 8) 175 5.8374 38
MNGN2αβδ 94 5.8988 67

x = 2e MNGN2α 37 6.1141 99
MNGN2αβ (η = 8) 34 6.1144 98
MNGN2αβδ 34 6.1144 98

x = 1.7e MNGN2α 54 5.8371 100
MNGN2αβ (η = 8) 34 5.8394 99
MNGN2αβδ 40 5.8789 99

Table 6.9: Results for Example 6.2.5 with m = 50, n = 70, a = e, and c =
[2, 0, . . . , 0]T .

method iterations ‖x̃‖ #success
GK-MNGN2α 212 1.0049 17
GK-MNGN2αβ (η = 8) 93 1.0382 93
GK-MNGN2αβδ 96 1.0838 87
GK-CKB1 69 1.5190 100
GK-CKB2 95 1.5166 37

6.3 Reproducing Kernel and Riesz representers

at work

In this section, we report some numerical results obtained by applying our algorithm
explained in Chapter 4 and in [32].

The following two numerical experiments are based on systems of two linear
integral equations. We consider the exact right-hand side gexact of the linear system
(4.23), corresponding to the collocation nodes x`,i, for ` = 1, . . . ,m and i = 1, . . . , n`.
We add Gaussian noise as in (4.35), where the noise vector e is defined by

e =
δ√
Nm

‖gexact‖w, (6.6)

with Nm as in (4.16). The components of the vector w are normally distributed
with zero average and unit variance, and δ represents the noise level. For the sake
of simplicity, for each system we consider the same collocation nodes x`,i in both
equations, so that m = 2, n1 = n2 = n, Nm = 2n, and x1,i = x2,i, for i = 1, . . . , n.

Example 6.3.1. We consider the system (5.10) described in Test Function 8. It
consists of two Fredholm integral equations of the first kind, with x ∈ (0, 1] and
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exact solution f(t) = t2 + 1. In this example we set x`,i = 0.1 + 0.9 (i− 1)/(n− 1),
for ` = 1, 2 and i = 1, . . . , n.

The corresponding Riesz representers have been computed analytically in (5.13)
and (5.14). Note that the analytic expression of η′′`,i defined in (5.11) and (5.12)
allows for an accurate computation of the elements of the Gram matrix (4.24) and
for obtaining an explicit representation of the functions η`,i, providing a fast and
accurate algorithm.

We remind the reader that, by (4.7), the solution of this problem is expressed as

f(t) = ξ(t) + γ(t),

where γ(t) = t+ 1 is the function (4.5) and ξ(t) is the solution of the system (4.6).
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Figure 6.11: Example 6.3.1: non-regularized reconstructions of the solution of Test
Function 8 (left) and corresponding errors (right), for n = 5, 10, 20, and without
noise.

To start with, we depict in Figure 6.11 the non-regularized reconstructions of the
solution, obtained for n = 5, 10, 20, without noise in the data, and the corresponding
error curves with respect to the exact solution. By “non-regularized”, we mean that
we set κ = N in (4.33) and (4.34). The fact that the errors are so small that the
solutions graphically coincide is remarkable. Indeed, setting δ = 0 in (6.6) only
guarantees that the right-hand side is accurate up to machine precision, that is,
roughly 10−16. Since the estimation of the condition number of the Gram matrix
G provided by the cond function of Matlab for the three problem sizes considered
is 2.2 · 1018, 6.9 · 1032, and 1.1 · 1019, respectively, the results highlight the extreme
stability in the computation, as well as the effectiveness of the function space setting.

Figure 6.12 shows, in the left pane, the reconstructions obtained without regu-
larization for n = 5, 10, 20, together with the exact solution, when the data vector
is affected by noise with level δ = 10−4. Due to the large condition number, the
computed solutions are polluted by noise propagation at such a point that they
swing at high frequency away from the exact solution. The graph on the right of the
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Figure 6.12: Example 6.3.1. On the left: non-regularized solutions of Test Func-
tion 8, for n = 5, 10, 20, and noise level δ = 10−4. On the right: regularized solution
f (κbest)(t), for n = 5, 10, 20, and δ = 10−4; the optimal value κbest of the regulariza-
tion parameter is displayed in the legend.

same figure displays the results obtained by computing the regularized solution f (κ)

defined in (4.33). Here, the truncation parameter κ coincides with the value κbest,
defined in (4.39), corresponding to the best possible performance of the algorithm.
The quality of the results is excellent.

The graph on the left of Figure 6.13 investigates the sensitivity of the solution on
the noise level. It shows the errors obtained for n = 10 and δ = 10−8, 10−4, 10−2. The
graph confirms the accuracy and stability of the proposed regularization method. In
the graph on the right, we compare the “best” solution for the noise level δ = 10−4

to the ones obtained by estimating the regularization parameter by the discrepancy
principle (4.36) (κd), with τ = 1.1, and by the L-curve criterion (4.38) (κlc). Both
estimation techniques are successful.

Example 6.3.2. Let us now consider the system (5.15) introduced in Test Func-
tion 9, with x ∈ (0, π/2]. It pairs the well-known Baart test problem [6, 58] to
an equation having the same solution f(t) = sin t. The collocation points are
x`,i = 0.1 + (π/2− 0.1) (i− 1)/(n− 1), for ` = 1, 2 and i = 1, . . . , n.

In this example, we were only able to analytically compute the Riesz representers
for the second equation; see (5.16) and (5.17). An approximation of the Riesz
representers for the first equation was computed by a Gauss–Legendre quadrature
formula; see (5.18) and (5.19).

Figure 6.14 shows that, when the data vector is only affected by rounding errors,
the non-regularized solution is very accurate. On the contrary, as in the previous
example, the non-regularized solution is strongly unstable when a sensible amount
of noise is added to the data; we do not display the results for the sake of brevity.

The graph on the left of Figure 6.15 depicts the behavior of the best regular-
ized solutions corresponding to the three noise levels δ = 10−8, 10−4, 10−2. All the
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Figure 6.13: Example 6.3.1. On the left: errors corresponding to the regularized
solutions f (κbest)(t) of Test Function 8, for n = 10 and δ = 10−8, 10−4, 10−2. On the
right: errors for the solutions f (κ)(t), for n = 20, δ = 10−4, and different estimation
methods for κ. The values of the regularization parameters κbest, κd, and κlc are
displayed in the legend.

reconstructions are accurate. In the second graph, we compare the reconstruction
corresponding by the optimal regularization parameter to the ones produced by the
discrepancy principle and the L-curve. Even if the estimated values of the parameter
are slightly different, the results are satisfactory. We verified that the results are
not sensibly influenced by the size of the problem.

In the next example, we apply the same algorithm to a linear model involved in
applied geophysics.

Example 6.3.3. Here we consider a linear model applied to investigate soil prop-
erties, described in Test Function 10 of Chapter 5. The aim is to determine the
electrical conductivity σ of the subsoil.

In order to ascertain the accuracy of our method, we consider three different
profiles for the electrical conductivity σ(z). Then, for each test function, we compute
the data vector ψexact, setting z0 = 4 and hi = 0.1 + 0.9 (i− 1)/(n− 1), i = 1, . . . , n,
for a chosen dimension n. The computation of the exact data vector is performed
by the quadgk function of Matlab, which implements an adaptive Gauss-Kronrod
quadrature formula.

In the case of experimental data, the available data is typically contaminated by
errors. To simulate this situation, the perturbed data vector ψ is determined by
adding to ψexact a noise-vector e, obtained by substituting in (6.6) ψexact to gexact

and setting Nm = 2n. The noise level is determined by the parameter δ.

In the first example, we assume a smooth profile for the exact solution of (5.20)

σ1(z) = e−(z−1)2 + 1.
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Figure 6.14: Example 6.3.2: non-regularized reconstructions of the solution of Test
Function 9 (left) and corresponding errors (right), for n = 5, 10, 20 and without
noise.

We set α = σ1(0) = e−1 + 1 and β = σ1(z0) = e−9 + 1. We remark that this test
function is extremely smooth, so the function φ1(z) = σ1(z)− γ1(z) can be assumed
to approximately belong to N (K)⊥ = span{η1, . . . , ηNm}, the space which contains
the minimal-norm solution.

Figure 6.16 displays the results obtained by applying the method described in this
chapter to the electromagnetic integral model (5.20) with the optimal regularization
parameter. On the left-hand side, we report the approximation of the solution for
different noise levels δ = 10−8, 10−4, 10−2, and n = 10; on the right-hand side,
the results for n = 5, 10, 20 and δ = 10−2 are depicted. All the reconstructions are
accurate and identify with sufficient accuracy the maximum value of the conductivity
and its depth localization. The graph on the left shows that, even for an increasing
noise level, the method is still able to produce reliable results. On the other hand,
from the graph on the right we deduce that both the reconstructions and the optimal
value of the regularization parameter are not very sensitive on the size of the data
vector.

In order to test the method in realistic conditions, in Figure 6.17 we compare
the optimal solution to the approximate solutions corresponding to the parameter
estimated by the discrepancy principle κd, with τ = 1.3, and by the L-curve criterion
κlc. In this case, we have fixed n = 10 and a noise level δ = 10−4. Both estimation
techniques appear to be effective.

In the second experiment, we select the following model function

σ2(z) =

{
0.8z + 0.2, z ∈ [0, 1],

0.8e−(z−1) + 0.2, z ∈ (1,∞),

and set α = 0.2 and β = 0.2 + 0.8e−3.
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Figure 6.15: Example 6.3.2. On the left: errors corresponding to the regularized
solutions f (κbest)(t) of Test Function 9, for n = 10 and δ = 10−8, 10−4, 10−2. On the
right: errors for the solutions f (κ)(t), for n = 20, δ = 10−4, and different estimation
methods for κ. The values of the regularization parameters κbest, κd, and κlc are
displayed in the legend.

The graph in the left pane of Figure 6.18 reports the optimal regularized solutions
corresponding to the noise levels δ = 10−8, 10−4, 10−2, and n = 10. The optimal
parameter is displayed in the legend. The reconstruction is not accurate as in the
previous test, because the solution is non-differentiable and, consequently, it does
not belong to N (K)⊥. Anyway, the algorithm correctly identifies the position of the
maximum of the electrical conductivity at 1m depth.

The third model function is the step function

σ3(z) =


0.2, z ∈ (0, 0.5),

2, z ∈ [0.5, 1.5],

0.2, z ∈ (1.5,∞),

with α = β = 0.2.
The graph on the right-hand side of Figure 6.18 reports the optimal regularized

solutions for δ = 10−8, 10−4, 10−2, and n = 10. Since the function is discontinuous,
we do not expect an accurate reconstruction and comments similar to the previous
example are valid.
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Figure 6.16: Example 6.3.3. On the left: regularized solution σ
(κbest)
1 (z) for noise

levels δ = 10−8, 10−4, 10−2, and n = 10. On the right: regularized solution σ
(κbest)
1 (z)

for n = 5, 10, 20, and noise level δ = 10−2; the optimal regularization parameter
κbest is displayed in the legend.
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Figure 6.17: Example 6.3.3. Regularized solution σ
(κ)
1 (z) with n = 10 and δ = 10−4;

the optimal regularization parameter κbest is compared to those determined by the
discrepancy principle κd and by the L-curve κlc.
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Figure 6.18: Example 6.3.3. Regularized solution σ
(κbest)
2 (z) (left) and σ

(κbest)
3 (z)

(right), for n = 10 and different noise levels δ = 10−8, 10−4, 10−2; the optimal
regularization parameter κbest is displayed in the legend.



Conclusions and future work

In this thesis, we proposed different methods to compute the minimal-norm solution
of nonlinear least-squares problems (Chapter 2) and of systems of linear integral
equations (Chapter 4). We dedicated Chapter 5 to the description of test problems,
both artificial and deriving from engineering applications. In Chapter 6 we applied
various methods to verify their effectiveness and performance.

Regarding the computation of the minimal-norm solution of nonlinear least-
squares problems, the large-scale case (Chapter 3) involves a work in progress. More-
over, we are planning to apply the MNGN method and its variants (MNGN2 and
regularized approaches) to imaging science. In this case, the approximate solution
will be a 2D reconstruction.

About solving systems of integral equations of the first kind using the tools of
functional analysis such as the Riesz theory, future work will concern the computa-
tion of the solution of nonlinear integral equations.
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