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Introduction and Thesis Structure

Modern Astronomy gathers data from a plethora of instruments from the ground
and from space, spanning the entire electromagnetic spectrum and even some non-
electromagnetic carriers of information, such as neutrinos and gravitational waves. The
quality and quantity of data is rapidly increasing over time, but analysis techniques
are often lagging behind in terms of fully taking advantage of this complexity. On the
one hand, this is expected: popular analysis techniques receive continuous algorithmic
development, making the analysis extremely fast. This is the case of the Fast Fourier
Transform, which revolutionized frequency analysis. Today, the power spectral den-
sity is still routinely modeled using periodograms calculated through an FFT, despite
its very well-known limitations in terms of spectral resolution and rather strict as-
sumptions. Renouncing the FFT means increasing the timescales of analysis by many
orders of magnitude. One class of analysis tools that have received considerable devel-
opment is of course Machine Learning, a portmanteau for many different techniques
that span from classic algebraic manipulation to algorithms imitating in some way the
functioning of the brain (e.g. neural networks). This thesis addresses the challenge
of extracting and characterizing faint signals from the wealth of modern astrophysical
data, focusing in particular on two major problems in observational astronomy. On one
hand, we investigate the timing properties of cosmic X-ray sources, especially ultralumi-
nous X-ray sources (ULXs) in starburst galaxies, aiming to characterize quasi-periodic
variability that reflects the physics of accretion onto compact objects. On the other
hand, we develop a machine-learning method to detect and classify sources in wide-field
infrared survey maps, where instrumental noise and foregrounds often obscure faint sig-
nals. In both cases, the goal is to move beyond traditional techniques—such as naive
Fourier analysis of evenly sampled data or simple thresholding of images—to apply ad-
vanced statistical cleaning, bootstrap resampling, and neural-network algorithms that
leverage the high information content of modern observations. By combining rigorous
time-series analysis with contemporary deep learning tools, this work seeks to improve
the reliability of signal detection in challenging astrophysical datasets.

This thesis is structured as follows :

1. Chapter 1 – Astrophysical Background: Reviews the physics of accreting X-ray
binaries and the properties of ULXs. It examines how rapid X-ray variability and
QPOs arise in these systems and their implications for accretion physics. The
chapter includes a case study of the ULXs in the galaxy M82 to illustrate the
observational context and challenges.

2. Chapter 2 – Methodological Foundations: Introduces the main data analysis
techniques used in this work. Time-series methods (Fourier transforms, peri-

13



14 List of Tables

odograms, and treatment of gaps or uneven sampling) are covered, followed by
statistical tools such as maximum-likelihood PSD fitting and Monte Carlo/ boot-
strap uncertainty estimation. The chapter also presents the machine-learning
concepts relevant to this thesis, especially convolutional neural networks and
training strategies for source detection.

3. Chapter 3 – Cleaning and Bootstrapping for QPO Analysis: Describes the ap-
plication of data cleaning and bootstrap methods to X-ray timing data. We
develop a pipeline that identifies and removes contaminated intervals from X-ray
light curves (for example, using Good-Time-Interval filtering) and then uses a
parametric bootstrap to assess the significance of candidate QPO signals. This
approach is applied to NuSTAR observations of M82 ULXs, demonstrating im-
proved detection of known QPOs and exploration of weak timing features that
were previously ambiguous.

4. Chapter 4 – Neural Networks for Infrared Source Detection: Covers the de-
velopment of a deep learning model to find sources in an infrared survey. We
design and train a convolutional neural network on a mix of labeled and unla-
beled image patches to classify the presence of astrophysical sources. The chapter
compares the CNN-based detection performance to traditional methods, show-
ing how the neural network can identify faint or blended sources that simpler
algorithms might miss.

5. Chapter 5 – Regularized Spectral Estimation: Introduces a novel regularization
approach to estimate power spectra from unevenly-sampled time series. We for-
mulate spectral analysis as an inverse problem with a smoothness constraint on
the PSD. After deriving the mathematical framework, the method is tested on
simulated and real uneven datasets. The results demonstrate that the regular-
ized approach yields higher-resolution PSD estimates and mitigates biases and
variance that affect standard periodogram techniques.



Chapter 1

Introduction

1.1 Compact Objects and X-ray Binaries

Astrophysical compact objects are the dense, evolved remnants of stars that have ex-
hausted their nuclear fuel. Primary among these are neutron stars (NSs) and black
holes (BHs), which originate from the death of medium- to high-mass stars. Neutron
stars were first proposed by Baade & Zwicky (1934) as the collapsed cores of supernova
explosions, packing more mass than the Sun into a sphere only ∼ 10kmacross. Decades
later, this prediction was dramatically confirmed with the discovery of pulsars – rapidly
pulsating radio sources – beginning with the landmark detection of a 1.337-second pul-
sating signal by Jocelyn Bell Burnell in 1967 (Hewish et al., 1968). The recognition
that pulsars are rotating neutron stars provided the first direct evidence of NSs as a
new class of compact star. Black holes, on the other hand, represent an even more
extreme endpoint of stellar evolution. If the collapsing core of a massive star exceeds
the neutron star mass limit (around 2–3 M⊙), no known force can halt the collapse,
and a black hole is formed. The concept of an object so compact that not even light
can escape its gravity dates back to ideas by John Michell and Pierre-Simon Laplace
in the 18th century, but black holes entered modern science through Einstein’s theory
of general relativity (Einstein, 1916) and Schwarzschild’s solution for curved spacetime
around a point mass (Schwarzschild, 1916). Astronomers obtained strong empirical ev-
idence for stellar-mass black holes in the early 1970s with X-ray observations of binary
systems like Cygnus X-1, where a ∼ 15M⊙ compact object accretes matter from a blue
supergiant companion and exhibits properties best explained by a black hole (Bolton,
1972; Webster & Murdin, 1972). Together, neutron stars and black holes (as well as
white dwarfs, the compact cores of less massive stars) constitute the family of compact
objects that are key players in high-energy astrophysics.

1.1.1 X-ray Binaries
Compact objects become extraordinary X-ray emitters when they reside in binary
systems with a stellar companion. In an XRB, a normal star transfers mass onto a dense
compact companion, converting gravitational energy into intense X-ray emission (Lewin
et al., 1997). Instead of free-falling, the gas forms an accretion disk, where frictional
forces heat the material to millions of degrees, causing it to radiate predominantly in
X-rays (Shakura & Sunyaev, 1973; Done et al., 2007). This process is highly efficient at
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16 Chapter 1. Introduction

converting mass into energy—far surpassing nuclear fusion—which is why XRBs can
rival entire galaxies in X-ray luminosity. Beyond their brightness, X-ray binaries serve
as astrophysical laboratories, revealing insights into strong gravity, dense matter, and
plasma physics (As depicted in Figure 1.1). Precise pulsar timing in binary systems
has enabled tests of general relativity and contributed to the detection of gravitational
waves from neutron star mergers (Hulse & Taylor, 1975; Abbott et al., 2016). The
turbulent flow of gas within the disk amplifies the radiant output, especially in systems
with neutron stars or black holes Frank et al. (2002).

X-ray binaries are commonly classified by the mass of the donor star:

• Low-Mass X-ray Binaries (LMXBs): The companion is a low-mass star (≲ 1M⊙).
filling its Roche lobe. Many LMXBs are transient systems: they undergo dra-
matic outbursts separated by long quiescent intervals. During an outburst, the
X-ray luminosity can rise by factors of 104–105 (Tetarenko et al., 2016). Neutron-
star LMXBs often exhibit Type I X-ray bursts (thermonuclear flashes on the
NS surface), while black-hole LMXBs reach comparable peak luminosities near
the Eddington limit (Galloway et al., 2020). Despite their eruptive behaviour,
both classes share the same fundamental engine: gravity-powered accretion onto
a compact object. Despite differences in their observational features, both types
of LMXBs are powered by the same fundamental process: accretion driven by
gravity. Their behaviour and evolution differ markedly from high-mass X-ray
binaries, as discussed by Done et al. (2007), and this contrast provides valuable
context for understanding ultraluminous X-ray sources (ULXs). Once believed
to require intermediate-mass black holes, many ULXs are now interpreted as
stellar-mass systems accreting at extreme, and possibly super-Eddington, rates
(Kaaret et al., 2017a).

• High-Mass X-ray Binaries (HMXBs): The companion is a massive O/B-type
star (≳ 10M⊙). Mass transfer often proceeds via the donor’s intense stellar wind
or Roche-lobe overflow if the star expands (illustrated in Figure 1.2). Figure 1.2
illustrates the Roche-lobe geometry of a binary star system, showing the La-
grange points (L1–L5) and how mass transfer occurs through the inner L1 point.
Many HMXBs show persistent X-ray emission due to a strong, steady mass sup-
ply. Systems with strongly magnetized neutron stars can display coherent X-ray
pulsations (e.g., the pulsar in Vela X-1; see (Kretschmar et al., 2019) .

Another important distinction is whether the compact object is a black hole or
neutron star, as this affects the observed X-ray properties. Black hole XRBs often reach
higher peak luminosities (up to the Eddington limit of a ∼ BH LX ∼ 1039 ergs−1) and
exhibit characteristic spectral/timing states (see next section). Neutron star XRBs can
be equally luminous but also display phenomena absent in BHs, such as Type I X-ray
bursts (thermonuclear flashes on the NS surface) and coherent pulsations (if the NS’s
magnetic field channels the inflow to the magnetic poles). Despite these differences,
both classes share the same fundamental engine: gravity-powered accretion onto a
compact object. In either case, the binary nature is crucial — the presence of a donor
star replenishing the disk distinguishes XRBs from isolated compact objects. The
formation and evolution of XRBs are intimately tied to stellar evolution and binary
interactions (Tutukov & Yungelson, 1973; Tauris & van den Heuvel, 2006). Notably, the
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abundance of X-ray binaries in a galaxy correlates strongly with star formation activity.
Galaxies undergoing high rates of recent star formation (producing many massive stars
that end their lives as NSs and BHs) tend to host numerous XRBs, especially HMXBs.
Indeed, the collective X-ray luminosity of HMXB populations scales roughly linearly
with a galaxy’s star formation rate. Starburst galaxies – those undergoing short bursts
of intense star formation – are therefore expected to be rich in X-ray binaries and
related high-energy phenomena.

Figure 1.1: Representation of a typical X-ray binary configuration. The companion star (left
portion) extends beyond its gravitational boundary, causing material flow toward the dense
stellar remnant (right) through boundary overflow. The transferred stellar matter forms a
rotating collection around the compact remnant, featuring both an outer cooler region and
an intensely heated central area that produces energetic radiation (illustrated by light-blue
beams). The central region’s extreme temperature generates substantial high-energy output,
while the inward movement patterns (orange markers) show how rotational energy diminishes
during accretion. Potential high-velocity matter streams may project perpendicular to the
main plane (purple elements). A dotted elliptical line indicates the approximate path these
two bodies follow in their mutual orbit.

1.2 Accretion Physics
Accretion onto a compact object lies at the heart of X-ray binary emission. Gas spi-
raling inward releases gravitational potential energy with high efficiency, producing
multi-component X-ray spectra. Key components of the emission typically include: (1)
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thermal emission from an accretion disk, (2) a high-energy Comptonization compo-
nent from a hot electron corona, and (3) disk reflection features, often with relativistic
effects near the compact object.

Accretion Disc

In soft states, the disk is thin and optically thick, with angular momentum trans-
ported by magneto-rotational turbulence rather than the traditional α-viscosity. Re-
cent general-relativistic magnetohydrodynamic (GR-MHD) simulations confirm that,
for sub-Eddington accretion rates, the flow collapses into a Keplerian sheet with H/R ≪
1, maintaining efficient angular-momentum transport down to the innermost stable cir-
cular orbit (ISCO) and placing the inner edge of a 10 M⊙ disc at ∼ 90 km—consistent
with strong-gravity predictions (Dihingia & Fendt, 2025; Penna et al., 2010; Liska et al.,
2019). Long-term monitoring of sources such as LMC X-3 and GX 339-4 supports this
picture: multi-temperature black-body fits yield inner radii and temperature profiles
T (r) ∝ r−3/4 that agree with the steady-state disc model, even when irradiation in-
flates a tenuous atmosphere (Steiner et al., 2010). Radiative MHD simulations show
that a thin disc can coexist with a luminous corona, reproducing the observed hard
X-ray tail without erasing the thermal hump (Jiang et al., 2014). Recent IXPE po-
larimetry of Cyg X-1 adds an independent constraint: the observed polarization swing
requires relativistic light bending and a beamed corona near the ISCO (Krawczynski
et al., 2022). Taken together, these theoretical and observational advances reinforce
the classical thin disc as the dominant structure in the soft states of accreting compact
objects.

In black hole X-ray binaries (BHXRBs) during their high/soft state, thermal radi-
ation from the accretion disk dominates the soft X-ray band, with characteristic color
temperatures around kT ∼ 1–2 keV for black holes of stellar mass Remillard & Mc-
Clintock (2006); Done et al. (2007). In NS XRBs, the disk can be even hotter (several
keV) since the flow extends down to the neutron star surface, a deeper gravitational
potential (Lin et al., 2007; Cackett et al., 2008) . During such “soft states,” the disk
contributes the majority of the X-ray luminosity. the disk luminosity roughly follows
L ∝ T 4 (as expected for blackbody emission from a constant-area radiator), which
suggests the inner disk radius remains fairly stable (near the ISCO) as the luminosity
varies Gierliński & Done (2004); Steiner et al. (2010). This behavior supports the thin
disk model and allows estimates of the inner disk radius (and thus BH spin or NS
radius) by fitting the observed disk spectrum (Miller et al., 2009; McClintock et al.,
2014).

At lower accretion rates (the hard spectral state in BHXRBs), the disk cools and
may terminate at greater distances from the compact object, contributing primarily in
ultraviolet or extremely soft X-ray bands Tomsick et al. (2009); Plant et al. (2015). In
these hard states, the disk’s contribution to X-ray emission diminishes considerably;
instead, other components dominate the spectrum Remillard & McClintock (2006)
(discussed in subsequent sections). Nonetheless, even during hard states, sensitive
instruments can frequently detect the presence of a faint, cool accretion disk Miller
et al. (2006); Reis et al. (2010).).
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Figure 1.2: Schematic diagram of a Roche lobe in a binary star system. The diagram
shows two stars, labeled M1 and M2, with their Roche lobes, which are the regions where
material is gravitationally bound to each star. The five Lagrangian points (L1 to L5) are
equilibrium points in the rotating frame of the binary system. Only L1 allows direct mass
transfer between the stars, as it is the lowest-energy pathway for material to cross from one
Roche lobe to the other. This illustration helps explain mass transfer and accretion in binary
systems (Frank et al., 2002).
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Comptonisation Component

Inverse Compton scattering generates another significant spectral feature in X-ray bina-
ries when disk photons interact with an energetic, diffuse plasma known as the “corona.”
This distinctive region contains high-temperature electrons (characteristic temperature
kTe ∼ 30–200 keV) with low to moderate optical thickness τ ≲ 1) situated near the
compact object—either suspended above the disk or embedded within the innermost
accretion flow Zdziarski et al. (1996). Soft photons emitted by the disk penetrate this
corona and undergo energy augmentation through interactions with these energetic
electrons (the Compton process). Individual scattering events boost a photon’s energy
by approximately

∆E ≈ 4kTe

mec2

on average, continuing until the photon escapes or the electron population experiences
substantial energy depletion, which leads to a hard X-ray tail (a power-law spectrum)
Titarchuk (1994); Coppi (1999).

The Comptonization (or “power-law”) component typically dominates the spectrum
in low-accretion-rate conditions (the hard state), and its shape encodes information
about the corona’s optical depth and temperature. For instance, a larger disk trun-
cation (i.e., a hotter, more extended corona) often leads to a harder spectrum Done
et al. (2007). NS XRBs also have Comptonized spectra; however, the presence of the
NS surface (and boundary layer) adds additional seed photons and can lead to some-
what softer high-energy cutoffs Lin et al. (2007). Fundamentally, the corona and its
Comptonization emission provide insight into the geometry of the inner accretion flow,
since a smaller, more centrally concentrated disk (in the hard state) likely corresponds
to a larger, possibly more spherical corona.

Disc Reflection Component

A fraction of the coronal hard X-ray photons inevitably shines back onto the accre-
tion disk, triggering various interactions: photoelectric absorption (followed by fluores-
cence), Compton scattering (which can redirect and reduce photon energies), and, at
the highest energies, pair production. These phenomena combine to generate a reflec-
tion spectrum that accompanies the direct power-law emission Fabian & Ross (2010).
Figure 1.3 illustrates the disk–corona geometry in an X-ray binary: soft photons from
the accretion disk (red) are Compton-upscattered by a hot corona (yellow), and some
hard photons (green) reflect off the disk producing the iron line and Compton hump.

Hallmark features of reflection include fluorescent emission lines (especially the iron
Kα line around 6.4−6.9keV , depending on ionization state) and a broad hump at ∼20–
30 keV (the “Compton hump”) due to down-scattered photons Magdziarz & Zdziarski
(1995). Iron is particularly important: neutral Fe yields a line at 6.4 keV, whereas
highly ionized Fe XXVI can produce lines up to ∼6.97 keV Miller (2007). In partially
ionized disks, multiple lines blend into a broad Fe K feature García et al. (2013).

Though the reflection emission is weaker than the direct continuum, detecting and
modeling features like the Fe Kα line and Compton hump is essential for constrain-
ing disk properties García et al. (2015). Figure 1.3 illustrates the geometry of disk
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Figure 1.3: Schematic illustration of disc reflection in an X-ray binary. The geometrically
thin disc emits soft photons (red arrows). A hot corona (yellow region) Compton upscatters
some of these photons to produce a power-law (blue arrows). Some of these hard photons
illuminate the disc, leading to reflection features (green arrows), including iron fluorescence
lines and the Compton hump.

reflection: the thin disk (red) emits soft X-rays, the hot corona (yellow) Compton-
upscatters some photons to hard X-rays (blue), and those hard photons irradiate the
disk to produce fluorescence and the Compton hump (green).

Relativistic Effects near the Compact Object

If the reflection originates from the innermost regions of the disk (very close to the BH
or NS), relativistic effects markedly shape the observed spectrum. Special relativistic
Doppler shifts (from fast orbital motion) and general relativistic gravitational redshift
cause the Fe Kα line to appear broad and skewed. The line’s red wing can extend
down to ∼4–5 keV for a disk around a rapidly spinning BH, and the blue wing to ∼7–8
keV (Reynolds & Nowak, 2003; Miller, 2007).

By fitting relativistically broadened iron lines with disk reflection models (e.g.,
the relxill model that convolves a rest-frame reflection spectrum with relativistic
blurring), one can infer the inner disk radius and thus the BH spin parameter a∗
(assuming the disk terminates at the ISCO). Many BHXRB observations have measured
broad Fe lines and yielded BH spin estimates (McClintock et al., 2014; Reynolds, 2014).
NS XRBs also exhibit broad Fe lines, though their profiles can be influenced by the
NS surface or boundary layer emission (Miller et al., 2013).

In NS systems, the evidence suggests the inner disk often extends very close to the
NS, as indicated by significant relativistic broadening (Miller et al., 2013). Beyond
line profiles, general relativistic light-bending can focus more coronal photons onto the
disk (enhancing reflection if the corona is compact) (Dauser et al., 2016), and both
disk and coronal emission can be modulated by gravitational redshift and Doppler
shifts (Bhattacharyya & Strohmayer, 2007). Modern spectral models incorporate these
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relativistic effects to interpret high-quality X-ray data (Tomsick et al., 2014).

1.3 Emission Properties of XRBs: Spectra and Variabil-
ity

X-ray binaries display complex emission features, with rich spectra and pronounced
variability across a broad range of timescales. By examining both the spectral compo-
nents outlined above and the temporal variability, one gains insight into the physical
mechanisms in the accretion flows (van der Klis, 2006; Sartorio et al., 2023). These
systems can be broadly divided into: Broadly, XRBs can be categorized by their vari-
ability patterns and by specific types of timing features they exhibit, into persistent vs.
transient sources :

• Persistent XRBs, These maintain a relatively steady luminosity over long peri-
ods, Many wind-fed HMXBs (e.g. Vela X-1, Cen X-3) are persistent, sustained
by a continuous mass supply. They can still show state changes (e.g. transi-
tions between hard and soft states) but lack the years-long quiescent intervals of
transients (Neumann et al., 2023).

• Transient XRBs, More common among LMXBs, transients alternate between
faint (or undetectable) quiescence and dramatic outbursts. During an outburst,
luminosity can increase by factors of 104–105, then decay back to quiescence over
months. These eruptions are thought to be triggered by a thermal-viscous disk
instability that episodically dumps matter onto the compact object (Hameury
et al., 2009). V404 Cyg (a BH LMXB) Rodi et al. (2017) and Campana et al.
(2013) are Well-known examples. Transients provide valuable opportunities to
observe the full range of XRB behavior (from near-off to near-Eddington states)
within a single system (Marcel et al., 2020).

Across both transient and persistent XRBs, the composite X-ray spectrum arises
from multiple emission regions. The optically thick, geometrically thin accretion disk,
described in early studies by Shakura & Sunyaev (1973), produces thermal emission
typically peaking around 1 keV in black hole systems, though it can reach 2–3 keV in
neutron star binaries due to the smaller radius and the presence of a stellar surface
(Remillard & McClintock, 2006). Superimposed on this thermal component is a high-
energy, power-law-like tail arising from inverse Compton scattering in a hot coronal
region or the base of a jet (Sunyaev & Trümper, 1979). This Comptonized emission can
extend to tens or even hundreds of keV, and in many black hole binaries it dominates
the total flux in the so-called “hard state” (Zdziarski & Gierliński, 2004). Hard X-rays
from the corona can also irradiate the accretion disk, giving rise to reflection features
that include a strong Fe K� emission line at 6.4–6.7 keV and a backscattered continuum
component (Fabian et al., 1989; Miller, 2002). The detailed shape of the iron line often
reveals Doppler and relativistic broadening, which can be used to probe the inner disk
radius, black hole spin, and the geometry of the corona (Reynolds & Nowak, 2003).

”In addition to the large-amplitude flux changes already noted, X-ray binaries—
especially near or beyond their peak luminosity—exhibit well-defined oscillatory signa-
tures in their X-ray light curves. These include rapid X-ray variability and red noise,
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quasi-periodic oscillations (QPOs), coherent pulsations, and features associated with
magnetized neutron stars. Each of these phenomena is detailed below.”

1.3.1 Rapid X-ray variability and Red Noise
X-ray binary (XRB) light curves display pronounced aperiodic variability that spans
several orders of magnitude in frequency. In the Fourier domain, this broadband
component appears as red noise, i.e., a power-density spectrum whose amplitude rises
toward lower frequencies and is well described by a broken power-law with slopes ≳ −1
(Heil et al., 2015). The fluctuations are widely interpreted as the imprint of stochas-
tic perturbations in the mass-accretion rate—driven by magneto-rotational turbulence
and other disc instabilities—that propagate inward through the accretion flow (Ingram
& Klis, 2013).

Characteristic timescales therefore range from milliseconds, set by dynamical pro-
cesses at the innermost stable circular orbit, up to hundreds of seconds during luminous
outbursts. The fractional root-mean-square (rms) amplitude of this red-noise compo-
nent depends strongly on spectral state: it typically exceeds ≈ 20–30% in the hard
state but falls below ≈ 5% when the source enters a soft, disc-dominated state (Belloni
& Stella, 2014; Motta et al., 2021).

1.3.2 Quasi-Periodic Oscillations
XRBs frequently exhibit distinct quasi-periodic oscillations. Quasi-Periodic Oscilla-
tions (QPOs) are peaks in the power spectrum indicating that some variability occurs
at a preferred frequency (or narrow range of frequencies), but with a finite coherence
(quality factor) rather than being a strictly periodic signal. QPOs were first identified
in XRBs in the 1980s (van der Klis et al., 1985) and have since been commonly ob-
served in dozens of systems. They are typically categorized by characteristic frequency
ranges and the type of source in which they appear.

Low-frequency QPOs in black-hole LMXBs

Low-frequency QPOs (LF-QPOs) are oscillations with frequencies of order ∼ 0.1–
30Hz, often seen in black hole and neutron star binaries during their intermediate-
brightness states. Black hole LMXBs, transients display three types of LF-QPOs (his-
torically labeled A, B, and C) have been distinguished by their properties (Casella
et al., 2005; Belloni, 2010).

• Type-C QPOs dominate the hard– and hard-intermediate states. Their centroid
frequency drifts from ≃ 0.1 to ∼ 15 Hz as the source softens, their quality
factor is high (Q ≳ 10), and they ride on top of a strong band-limited noise
hump. Relativistic Lense–Thirring precession of a geometrically thick inner flow
remains the leading—but still debated—explanation (Ingram et al., 2009; Ingram
& Motta, 2019).

• Type-B QPOs manifest at centroid frequencies of ∼ 4–6 Hz, retain moderate co-
herence (Q ≈ 5–7) and fractional rms amplitudes of a few per cent, and they
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appear during the brief soft-intermediate intervals that bridge the hard and
thermal-dominant regimes. Their arrival is accompanied by a marked suppression
of broad-band noise and is often contemporaneous—within hours—with discrete
radio flares signalling compact-jet ejections (Motta et al., 2014).
Type-A QPOs, in contrast, emerge only once the spectrum is already dominated
by the optically thick disc. They are rarer, weaker (rms ≲ 2%), and broader
(Q≲3), typically clustering around ∼ 7–8 Hz and showing almost no harmonics
or phase lags. Because sources sometimes evolve smoothly from a Type-B to a
low-coherence oscillation as the disc fraction rises, some authors contend that
Type-A events may represent the low-contrast tail of the same underlying mode
rather than a distinct phenomenon.

Although this A/B/C taxonomy is empirically useful, the underlying physics is
almost certainly more continuous than the discrete labels imply. Any model must
reproduce both the abrupt B ↔ C transitions (suggesting geometry changes) and the
systematically lower coherence of Type-A oscillations (implying a short-lived or more
weakly modulated structure). At present, no single theory satisfies all the constraints.
The physical origin of LF-QPOs is still debated; leading models involve geometrical and
relativistic effects such as Lense–Thirring precession of the inner disk (Ingram & Motta,
2019) or accretion flow instabilities. For instance, the relativistic precession model
posits that Type-C QPOs correspond to the nodal precession of the inner accretion
disk, which would naturally produce a modulation at the Lense–Thirring precession
frequency (Ingram et al., 2009; Motta et al., 2012). This model can qualitatively explain
how QPO frequency correlates with spectral state (through inner disk radius changes).
But low-frequency QPOs spanning a range of few mHz–60 Hz have been observed in
many classes of accreting binaries, both powered by neutron stars and black holes (van
der Klis, 2006).

High-frequency QPOs (HF-QPOs) – oscillations at tens to hundreds of Hz – have
been observed in a few high-luminosity X-ray binaries. In some cases, the frequencies
are close to the edge range of low-frequency QPOs, for example the 67 Hz QPO in GRS
1915+105 (see Motta & Belloni 2024 for an interpretation as Type-C), or the 40Hz and
80Hz QPOs in XTE J1550–564; (Remillard & McClintock, 2006); the 300-450Hz pair
in GRO J1655-40 (Motta et al., 2014) and as kHz QPOs (∼ 300–1200 Hz) in many
neutron star LMXBs (van der Klis, 2006). These HF-QPOs often appear in pairs and in
some cases have frequency ratios near 3:2, hinting at an underlying resonance or orbital
motion at the inner accretion disk. Because their frequencies approach the Keplerian
orbital frequency in the innermost disk, HF-QPOs likely originate very close to the
compact object and potentially encode information about the mass and spin of the
accretor (Kluźniak & Abramowicz, 2001). However, HF-QPOs are typically weak and
rare, making them challenging to study; to date no precise model has fully explained
their occurrence.

1.3.3 Coherent Pulsations and Magnetized Neutron Stars
If the compact object is a neutron star endowed with a strong magnetic field—particularly
an X-ray or millisecond pulsar—the accretion flow is funnelled onto the magnetic poles,
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generating X-ray pulsations at the stellar spin period (Caballero & Wilms, 2012). Clas-
sical high-mass X-ray binary (HMXB) pulsars such as Cen X-3, with a spin period
P ≈ 4.8 s, provided the first clear example of this behaviour (Giacconi et al., 1971).
Comparable but far faster signals (tens of milliseconds) arise in accreting millisecond
X-ray pulsars found in low-mass systems, the prototype being SAX J1808.4-3658 (Pa-
truno & Watts, 2020). Detecting such coherent pulsations confirms the presence of
a magnetised neutron star and enables precise tracking of its spin evolution through
long-term timing studies (Caballero & Wilms, 2012). In the ultraluminous regime, the
discovery of pulsations in a handful of objects—most famously M82 X-2; GC 5907 and
NGC 7793—has revealed a distinct population of “ultraluminous pulsars,” demonstrat-
ing that neutron stars can power some ultraluminous X-ray sources (Bachetti et al.,
2014; Israel et al., 2017a,b).

1.4 Ultraluminous X-ray Sources (ULXs)

Among the broad range of X-ray binaries, Ultraluminous X-ray Sources (ULXs) stand
out for pushing accretion physics to its limits. Found outside their host galaxy’s nucleus,
ULXs are point-like X-ray emitters whose brightness surpasses that of typical stellar X-
ray binaries (XRBs). ULXs are characterized by X-ray luminosities of approximately
∼ 1039 erg/s and higher, surpassing the Eddington limit for a typical black hole of
mass ∼ 10 M⊙ (Makishima et al., 2000; Colbert & Mushotzky, 1999). Because of these
extraordinary luminosities, early studies speculated that ULXs might host intermediate-
mass black holes (hundreds to thousands of solar masses. An IMBH accreting at or
near its Eddington rate could feasibly achieve ULX-scale luminosities, and some early
observations—such as unusually cool thermal spectra—seemed to support this notion
(Miller et al., 2004).

However, ULXs also possess traits that run counter to the IMBH picture and instead
point toward super-Eddington accretion onto stellar-mass black holes. Many systems
display curved or two-component X-ray spectra poorly matched by simple disk models
for very massive black holes, showing, for instance, a “soft excess” below ∼ 2 keV
and a turnover beyond ∼ 5 keV (Gladstone et al., 2009). These features are better
explained by a radiation-dominated disk or thick outflow in a ∼ 10 solar-mass black
hole that’s accreting above the Eddington threshold. Such ULXs also vary over days
to months—timescales more typical of lighter accretors than of a 104 solar-mass IMBH,
whose changes would occur more slowly. As a result, the consensus emerging from
recent multiwavelength studies is that most ULXs are extreme accretors: stellar-mass
black holes or neutron stars taking in matter at super-Eddington rates, sometimes
aided by geometric beaming of their emission (Kaaret et al., 2017b).

Super-Eddington accretion can drive radiatively powered outflows or funnels within
the inflow. The expelled material may focus the X-rays in specific directions, so an
observer looking down the outflow channel sees a super-Eddington luminosity—though
the emission might not truly exceed the local Eddington limit by as large a factor
(King et al., 2001). Even in cases with minimal beaming, objects can exceed classical
Eddington limits if, for instance, the disk is thick and the radiation transport diverges
from a standard thin-disk scenario, or if the accretor is a neutron star whose strong
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magnetic field lowers the effective electron scattering opacity.
Dramatic confirmation of super-Eddington accretion came with neutron-star ULXs.

In ULX M82X-2 (NuSTARJ095551+6940.8), observed X-ray pulsations revealed a
spinning neutron star accreting at roughly 100 times its normal Eddington rate (Ba-
chetti et al., 2014).This breakthrough inaugurated a growing category of ultralumi-
nous X-ray pulsars. Several more were soon detected (e.g., in NGC5907 ULX1 and
NGC7793 P13; (Israel et al., 2017a,b)), all implying neutron-star accretors radiating
as much as a few times 1040 erg s−1. These findings confirm that some ULXs don’t
require an IMBH—and that neutron stars can reach extraordinary brightness under
intense accretion flows.

The discovery of ultraluminous X-ray pulsars (ULXPs) has fundamentally reshaped
theories of super-Eddington accretion in X-ray binaries. Coherent pulsations detected
from sources such as M82 X-2, NGC 5907 ULX1, and NGC 7793 P13 reveal that
highly magnetized neutron stars can sustain apparent luminosities of LX ∼ 1040–1041

erg s−1, several hundred times the canonical Eddington limit for a 1.4 M⊙ star (Bachetti
et al., 2014; Israel et al., 2017a,b). These extreme outputs are typically attributed to a
strong combnation of magnetic pressure, radiation-dominated accretion columns, and
geometric beaming, allowing the accretion flow to circumvent traditional luminosity
constraints (Kawashima et al., 2016). At the same time, sources like HLX-1 in ESO
243-49 achieve peak luminosities near 1042 erg s−1, exhibiting long outburst cycles
that are more naturally explained by accretion onto an intermediate-mass black hole
(IMBH) (Farrell et al., 2009; Godet et al., 2014).

More broadly, X-ray observations suggest that ultraluminous X-ray sources (ULXs)
are not merely scaled-up versions of standard X-ray binaries but instead occupy a dis-
tinct ultraluminous state (Gladstone et al., 2009; Sutton et al., 2013). This regime often
includes a soft thermal component—potentially linked to radiatively driven winds or
an inflated inner accretion disk—alongside a harder spectral tail originating from the
innermost regions near the compact object. ULXs also exhibit variability patterns con-
sistent with super-Eddington accretion, including dips, stochastic fluctuations, and, in
rare cases, quasi-periodic oscillations (QPOs). Notably, M82 X-1 displays a persistent
QPO near 0.2 Hz, resembling the low-frequency QPOs seen in Galactic black hole bi-
naries, albeit at much higher luminosities (Strohmayer & Mushotzky, 2003; Pasham
et al., 2014a).

By bridging the gap between stellar-mass X-ray binaries and active galactic nuclei,
ULXs provide a natural laboratory for testing how compact objects of different masses
respond to extreme accretion rates. While many ULXs may represent neutron stars or
stellar-mass black holes undergoing super-Eddington accretion, some—such as HLX-
1—remain compelling candidates for hosting IMBHs, raising important questions about
black hole formation channels and the upper mass limit for stellar remnants (Mezcua,
2017; Pasham et al., 2014b).

1.5 ULXs in Starburst Galaxies
ULXs are observed in a variety of galactic environments, but they show a strong pref-
erence for galaxies with active star formation. Starburst galaxies, which undergo short-
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lived episodes of exceptionally high star formation rate (often tens or hundreds of
times the Milky Way’s rate; Weedman 1983), are especially fertile ground for ULXs.
In a starburst, the copious production of massive stars leads, after a few million years,
to a correspondingly large population of compact remnants (NSs and BHs) and X-
ray binaries. It is therefore not surprising that the number and total luminosity of
ULXs correlate with the star formation activity of the host galaxy (Swartz et al., 2011;
Mapelli et al., 2010). ULXs tend to be absent or very rare in quiescent elliptical galax-
ies (which lack young massive stars), whereas star-forming spiral and irregular galaxies
can host multiple ULXs. For example, the Cartwheel galaxy (a ring starburst) and the
Antennae galaxies (an interacting pair) each contain dozens of ULX candidates (Gao
et al., 2003; Zezas & Fabbiano, 2002). In these environments, ULXs are thought to
be predominantly HMXB systems—either a neutron star or stellar-mass BH accreting
from a short-lived massive donor star—hence tightly linked to recent (< 10 Myr) star
formation.

Starburst galaxies also shine in X-rays through other mechanisms: they have a
diffuse thermal X-ray glow from hot gas (heated by supernovae and stellar winds)
and many normal X-ray binaries and supernova remnants contributing to the emission
(Griffiths et al., 2000; Persic & Rephaeli, 2002). ULXs, however, often account for
a significant fraction of the hard X-ray output of a starburst galaxy, outshining the
numerous fainter sources. Their extreme luminosities and often off-nuclear locations
make them standout features in high-resolution X-ray images of starbursts.

A prototypical example is the nearby starburst galaxy M82 (NGC 3034). M82,
colloquially known as the “Cigar Galaxy”, is undergoing a vigorous burst of star for-
mation in its central regions (O’Connell et al., 1995). It was one of the first galaxies
recognized to harbor ULXs: early X-ray observations with Einstein and ROSAT re-
vealed two exceptionally bright X-ray sources in M82, later designated M82 X-1 and
M82 X-2. With the advent of Chandra and XMM-Newton, M82 X-1 was found to reach
luminosities of ∼ 1040 erg s−1, firmly in the ultraluminous regime (Kaaret et al., 2001).
M82 X-1 became a prime IMBH candidate after the discovery of a ≈ 54 mHz QPO
in its X-ray flux (Strohmayer & Mushotzky, 2003). This low-frequency QPO, if inter-
preted as a scaled-down analog of the type-C QPOs in stellar-mass BHs, suggested a
black hole mass on the order of 103 M⊙. Further excitement came when XMM-Newton
and Chandra observations found twin QPO peaks at 3.3 Hz and 5.1 Hz from M82 X-1,
in a 3:2 frequency ratio. Such a pair mirrors the 3:2 high-frequency QPO pairs seen
in Galactic BH XRBs (like the 300 and 450 Hz QPOs in GRO J1655–40) but scaled
down in frequency, again hinting at an intermediate-mass BH. Pasham et al. (2014a)
reported these twin QPOs and estimated a black hole mass of ∼ 400 M⊙ for M82 X-1
if the 3:2 QPOs represent orbital motion near the innermost stable orbits. While not
yet conclusive, this evidence positions M82 X-1 as one of the most compelling IMBH
candidates known.

M82’s other ultraluminous source, M82 X-2, delivered a surprise of a different
kind. In 2014, NuSTAR observations revealed coherent pulsations at 1.37 s from
M82 X-2, identifying it as an accreting neutron star rather than a black hole (Bachetti
et al., 2014). The pulsar’s spin period, combined with its luminosity (approximately
∼ 1040 erg s−1), implied that M82 X-2 is accreting at ∼100–500 times the Eddington
rate for a 1.4 M⊙ neutron star. This discovery was the first confirmation that ULXs can
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be powered by neutron stars, overturning the assumption that ultraluminous sources
must be black holes. M82 X-2 (also called ULX pulsar M82 X-2) likely has an extremely
strong magnetic field (on the order of 1013–1014 G) that allows it to funnel accretion
and produce such high luminosity without immediately blowing away the inflow. Its
pulsations and spin-up rate have provided valuable data on how a neutron star man-
ages hyper-Eddington accretion. The fact that M82, a single starburst galaxy, hosts
two ULXs of very different nature—one a candidate IMBH and one a neutron star—
underscores the diversity of ultraluminous X-ray sources and the special conditions in
starbursts that produce them. In M82’s starburst, massive binary evolution can yield
either path: a stellar-collapse BH possibly growing via accretion into an IMBH, or a
highly magnetized neutron star pushing accretion to record levels.

More broadly, ULXs in starbursts are key objects for understanding the end-products
of massive stars in an environment of intense stellar formation. The high supernova
rate in a starburst not only seeds many NSs and BHs, but the ensuing stellar feedback
(from supernovae and winds) can alter the environment around these XRBs. Starbursts
drive galactic superwinds—large-scale outflows of hot gas carrying thermal and kinetic
energy into the galaxy’s halo (Chevalier & Clegg, 1985; Veilleux et al., 2005). These
outflows, observed in M82 and others, can interact with the ULX radiation or the
ULX’s own smaller-scale winds. While the detailed interplay is complex, one can imag-
ine that a ULX in a dense starburst region might be surrounded by nebulae ionized by
its X-rays or by shock-heated bubbles from the collective effects of nearby supernovae.
Indeed, some ULXs are associated with optical emission nebulae (Vavilova et al., 2020)
, indicating they deposit energy into their surroundings. The spatial distribution of
ULXs in starbursts often correlates with stellar clusters or OB associations, supporting
their origin in massive binaries. For example, in the Antennae galaxies (NGC 4038/39),
ULXs are found near stellar clusters generated in the galaxy collision (Zezas & Fab-
biano, 2002). The study of ULXs in different starburst environments—from the dense
nuclear starburst of M82 to more extended disks of spirals—helps us learn how factors
like metallicity and cluster formation affect the upper end of the X-ray source pop-
ulation. Low metallicity (metal-poor) starbursts might produce more ULXs because
lower metal content leads to weaker stellar winds, so massive stars retain more mass
and can form heavier BHs (Mapelli et al., 2010; Linden et al., 2010). This is relevant
for understanding ULX populations in dwarf starbursts or early-universe star-forming
galaxies.

In conclusion, starburst galaxies provide the cosmic laboratories where the most
extreme X-ray binaries—ULXs—are forged and observed in large numbers. Their
abundant high-mass XRBs and frequent dynamical interactions yield a higher proba-
bility of achieving the conditions for ultraluminous X-ray output. Through meticulous
observations of ULXs in starbursts like M82, NGC 253, and others, astronomers are
piecing together the life cycles of these extraordinary binaries. The temporal variabil-
ity of ULXs (whether in the form of QPOs, pulsations, or chaotic flaring) carries the
imprint of accretion physics under extreme conditions. By analyzing this variability, as
well as the spectral signatures, we gain insight into whether a ULX is a neutron star or
black hole, how its accretion disk and outflows behave, and how it fits into the broader
context of its host galaxy’s evolution. These insights not only illuminate the nature
of ULXs themselves but also inform models of stellar remnants, binary star evolution,
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and feedback in galaxies. The subsequent chapters will build on this foundation, ex-
ploring in depth the temporal analysis methods and discoveries related to variability
in ULXs (with a focus on M82) and extending the investigation to other high-energy
astrophysical data, such as the Planck cosmic microwave background maps, through
advanced mathematical and deep learning techniques.
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Chapter 2

Mathematical Foundations and Statistical
Methods for Time Series Analysis

2.1 Introduction
Time series analysis is a branch of statistics focused on modeling and understanding
data that are observed sequentially over time. Broadly, two complementary approaches
exist: the time–domain approach, which develops models for temporal dependencies
(often for forecasting), and the frequency–domain approach, which analyses the data in
terms of periodic or oscillatory behaviour. Classic texts by Box et al. (2015) and Brock-
well & Davis (2016) detail time-domain modelling strategies (e.g. ARIMA processes),
whereas this chapter emphasises frequency-domain methods and their associated in-
ference tools, which are especially useful for studying periodicities and variability in
physical signals.

In astrophysics—particularly in high-energy X-ray astronomy—frequency-domain
techniques have become indispensable. The rapid, aperiodic variability of X-ray sources
is often characterised by analysing their power spectra to identify features such as
quasi-periodic oscillations (QPOs). By decomposing a light curve into its frequency
components, one can identify characteristic time-scales and frequencies of variability
that provide insight into the underlying physical processes (e.g. orbital motions or disk
instabilities) near compact objects. For instance, frequency-domain analysis has been
used to detect QPOs and to constrain the geometry and dynamics of accretion flows
around black holes and neutron stars.

We now lay the mathematical groundwork for these analyses, covering fundamental
time-series concepts, spectral-analysis methods, statistical inference in the frequency
domain (including the Whittle likelihood), and bootstrap techniques for spectral anal-
ysis, before discussing their application to X-ray timing and QPO detection.

2.2 Fundamental Time-Series Concepts

2.2.1 Stochastic Processes and Stationarity
A time series can be viewed as a realisation of a stochastic process, formally de-
fined as a collection of random variables {X(t) : t ∈ T} indexed by time t on a
probability space (Ω, F , P ). In this thesis we deal mainly with discrete-time series
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X1, X2, . . . , Xn representing sequential observations (e.g. photon counts in successive
time bins). The probabilistic structure of a time series is described by the joint distri-
butions of

(
X(t1), . . . , X(tk)

)
for any set of time points.

An important simplifying property is stationarity, which—loosely speaking—means
that the statistical properties do not change over time. A process X(t) is strictly station-
ary if, for any collection of times t1, . . . , tn and any time shift h, the joint distribution
satisfies

FX

(
X(t1), . . . , X(tn)

)
= FX

(
X(t1 + h), . . . , X(tn + h)

)
,

i.e. it is invariant under time translation. Strict stationarity imposes a very strict
requirement, so analyses typically assume a milder condition called second-order (weak)
stationarity (Brockwell & Davis, 2016). A process is second-order stationary if its mean
µ = E[X(t)] is constant in time and its covariance depends only on the lag between
two observations:

Cov
(
X(t), X(t + τ)

)
= γ(τ),

a function of τ alone. Equivalently, the autocovariance function γ(τ) depends only on
τ and not on absolute time. For a weakly stationary process, we define the normalized
autocorrelation ρ(τ) = γ(τ)

γ(0) , capturing how observations are correlated at lag τ . The
Autocorrelation Function (ACF) provides insight into the memory of the process and
is a primary tool for identifying temporal-dependence structures.

Many natural time series, including those from astronomical sources, exhibit stochas-
tic (aperiodic) behaviour that can often be treated as arising from a stationary or
approximately stationary process over short time-scales. Stationarity is an essential as-
sumption for the frequency-domain methods discussed later, since the very definition
of a power spectrum relies on time-invariant properties. If a series is non-stationary,
techniques such as detrending or differencing (in the time domain) or time-localised
spectral methods may be required (Priestley, 1981). Throughout this chapter we as-
sume weak stationarity unless stated otherwise.

2.2.2 Examples of Processes and Autocovariance Structure
A broad range of statistical models exist for stationary time series. For example, the
classical autoregressive moving-average (ARMA) processes introduced by Box et al.
(2015) are defined by linear difference equations and can reproduce a variety of auto-
correlation structures. In an AR(p) process

Xt = ϕ1Xt−1 + · · · + ϕpXt−p + εt,

the parameters ϕi control how past values influence the present, and the noise εt

is typically white. Such processes are stationary if the roots of the characteristic
polynomial lie outside the unit circle. The autocovariance γ(τ) of an ARMA pro-
cess decays exponentially—or as a mixture of exponentials and damped oscillations—
reflecting short-memory behaviour (Brockwell & Davis, 2016). Other processes, such as
fractional-differencing models, can produce long-memory behaviour with γ(τ) decaying
algebraically.

For a given process the total variance is γ(0) = Var(Xt), and the portion of vari-
ance explained by structure at lag τ is γ(τ); the autocorrelation ρ(τ) gives a normalised
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measure. In practice an empirical ACF is computed from the data and compared with
theoretical forms or used in model identification. For instance, an exponentially decay-
ing ACF suggests an AR(1)-like process, whereas an oscillatory ACF might indicate an
under-damped system or cyclic behaviour. In astronomical time series (light curves),
the ACF has been used to identify characteristic time-scales—for example, X-ray light
curves of active galactic nuclei (AGN) often show an ACF that decays on time-scales
comparable to the viscous time of the accretion disk. A short ACF length implies rapid
decorrelation of flux (perhaps small emitting regions or rapid accretion fluctuations),
whereas a long correlation time suggests slowly varying processes. Such connections
between the ACF and physical mechanisms underscore the importance of careful time-
domain characterisation as a prelude to frequency-domain analysis.

2.3 Frequency-Domain Methods

2.3.1 The Fourier Transform and Spectral Representation
Frequency-domain analysis treats the data as a sum of sinusoids. The key mathematical
tool for this decomposition is the Fourier transform. For a continuous-time function
x(t) that is square-integrable, the Fourier transform is defined by

X(f) =
∫ ∞

−∞
x(t) e−i2πft dt, x(t) =

∫ ∞

−∞
X(f) ei2πft df,

where f denotes frequency (cycles per unit time). In practice, our finite discrete time
series use the discrete Fourier transform (DFT), typically computed with a fast FFT
algorithm.

2.3.2 Spectral Representation Theorem
A fundamental result for stationary processes is the spectral representation theorem,
which states that any zero–mean, weakly stationary process can be expressed as an
integral superposition of orthogonal sinusoidal components with random coefficients
(Priestley, 1981). Intuitively, the randomness in the time series can be viewed as
the combined contribution of many independent frequency components, motivating
analysis of how the variance is distributed across frequency bands.

2.3.3 Power Spectral Density
The distribution of a process’s variance over frequency is quantified by the power–
spectral density (PSD). For a weakly stationary process X(t) with autocovariance func-
tion γ(τ), the Wiener–Khinchin theorem defines the PSD via the Fourier transform

SX(f) =
∫ ∞

−∞
γ(τ) e−i2πfτ dτ, (2.1)

with inverse relation
γ(τ) =

∫ ∞

−∞
SX(f) ei2πfτ df.
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Equation (2.1) implies that SX(f) df is the contribution to the variance from an in-
finitesimal band around frequency f . By Parseval’s identity,∫ ∞

−∞
SX(f) df = γ(0) = Var

(
X(t)

)
.

Alternatively, for a series observed over T seconds, let XT (f) be the Fourier trans-
form of the truncated data. Then

SX(f) = lim
T →∞

1
T
E
[

|XT (f)|2
]
,

and an analogous definition holds in discrete time. In practice, SX(f) is unknown and
must be estimated from finite data.

Many physical PSDs are smooth continua, but certain phenomena appear as dis-
tinct features: a pure sinusoid yields a δ–function spike, whereas broadband stochastic
processes often display power–law (“red–noise”) behaviour. High-energy X-ray light
curves frequently exhibit red noise with superposed narrow QPO peaks.

2.3.4 Periodogram and Basic Spectral Estimation
For a discrete series x1, . . . , xN sampled every ∆t, the periodogram

I(fj) = ∆t

N

∣∣∣∣ N∑
k=1

xk e−i2πfjtk

∣∣∣∣2, fj = j

N∆t
, (2.2)

is the simplest empirical PSD estimator. Although E[I(fj)] = SX(fj) (away from
f = 0), the raw periodogram is inconsistent: Var[I(fj)] ≈ SX(fj)2 even as N → ∞
(Percival & Walden, 1993). Variance reduction therefore relies on averaging techniques
(e.g. Bartlett, Welch) or tapering, each trading resolution for stability (Bartlett, 1950a;
Welch, 1967).

Parametric alternatives fit a model PSD (e.g. AR(p) spectra) whose coefficients
are estimated from the data (Yule–Walker or maximum likelihood) (Kay & Marple,
1981). When well-specified, parametric PSDs are smoother and less variable than
non-parametric estimates, though susceptible to bias if the assumed model is wrong.

2.4 Statistical Inference in the Frequency Domain
For Gaussian, weakly stationary processes, discrete Fourier coefficients at distinct
Fourier frequencies are asymptotically independent; the periodogram ordinates satisfy

I(fj)
SX(fj)

∼ χ2
2,

providing an exponential likelihood for I(fj). Whittle (1953) exploited this to propose
the Whittle likelihood

ℓWhittle(θ) = −
N ′∑
j=1

[
ln fθ(fj) + I(fj)

fθ(fj)

]
, (2.3)
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where fθ is a model PSD with parameters θ. Maximum-likelihood fitting in the fre-
quency domain is far cheaper than exact time-domain likelihoods and remains asymp-
totically efficient under standard regularity conditions. When the periodogram has
been smoothed (averaged, tapered), its distribution generalises to χ2

ν with ν > 2 de-
grees of freedom; the likelihood is modified accordingly.

2.5 Bootstrap Methods for Power–Spectral Analysis
Analytical confidence intervals may be unreliable for short or non-Gaussian series. Re-
sampling provides a flexible alternative:

2.5.1 Block Bootstrap
To preserve temporal dependence, contiguous blocks of length ℓ are resampled (moving,
circular, or stationary block variants) (Hall et al., 1995). Choosing ℓ on the order of
the longest correlation time balances bias and variance (Shumway et al., 2000).

2.5.2 Frequency-Domain Bootstrap and Phase Randomisation
Because Fourier amplitudes are (approximately) independent, one may randomise
phases: multiply each Fourier coefficient by eiϕj with ϕj ∼ Unif(0, 2π) and invert
the transform (Theiler et al., 1992). Surrogates thus preserve the PSD exactly while
removing deterministic phase structure, enabling Monte-Carlo significance tests for
narrow features.

2.5.3 Bootstrap Confidence Intervals
Given B bootstrap replicates {I∗

b (f0)}B
b=1 at some frequency f0:

• Normal interval: Î(f0) ± z1−α/2 σ̂, where σ̂ is the bootstrap standard error.

• Percentile interval: [ I∗
(α/2), I∗

(1−α/2) ].

• BCa interval: Bias-corrected and accelerated percentiles using z0 and a (Efron,
1987).

• Studentised (bootstrap-t) interval: Resample the studentised statistic tb =(
I∗

b (f0) − Î(f0)
)
/σ̂∗

b .

These intervals illustrate the bias–variance trade-offs that underpin modern spectral-
analysis practice. Detailed algorithms and further discussion can be found in Efron &
LePage (1992).

Each of these methods has advantages and drawbacks. The normal interval is
simple, but it relies on an unstated normality assumption; the percentile and BCa
intervals are non–parametric and adapt to the bootstrap distribution, yet they are
sensitive to the bootstrap sample size B; the studentised interval often performs well
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in theory, but it requires a stable estimate of the standard error for every bootstrap
sample.

In spectral problems, raw periodogram ordinates are highly skewed (exponential),
so a normal approximation can be poor on the original scale. It is therefore common
to work with a log–periodogram or with an averaged periodogram (which increases the
degrees of freedom and reduces skewness) before applying the bootstrap.

The bootstrap is readily extended to more complex tasks, such as simultaneous
confidence bands for an entire PSD curve or uncertainty estimates for derived quantities
(e.g. the location of a spectral peak). Its appeal is that no explicit sampling distribution
is required—the distribution is obtained empirically by resampling the data.

2.6 Applications in X-ray Timing Analysis and QPO De-
tection

High-energy astrophysical sources—accreting black holes and neutron stars—exhibit
variability that is often described by a broadband PSD approximated by a power-law
in frequency (“red noise”). Detecting a quasi-periodic oscillation (QPO) in such data
is inherently a statistical challenge: one must identify a weak, narrow peak against a
noisy, steep continuum. The Fourier tools, Whittle‐likelihood fitting, and bootstrap or
Monte-Carlo techniques developed above are routinely combined to meet this challenge.

2.6.1 Characterising the Noise Continuum
Before claiming a QPO detection, the underlying continuum must be modelled. Typical
choices are a simple power law S(f) ∝ f−α or a sum of broad Lorentzians (Vaughan,
2013). Because a pure red-noise process produces occasional large periodogram peaks
(the “look-elsewhere” effect), significance tests must account for the distribution of the
maximum noise power.

A widely used approach is to simulate artificial light curves under the null hy-
pothesis of no QPO. The algorithm of Timmer (1995) generates Gaussian time se-
ries with a prescribed PSD: one draws complex Fourier coefficients with amplitudes
|X(fj)| =

√
S(fj) N∆t/2 and random phases, then performs an inverse FFT. By cre-

ating, say, B = 1000 such curves, computing their periodograms, and recording the
largest peak in each, one obtains the null distribution of the maximum power. If the
observed peak exceeds the 99.9 th percentile of this distribution, the QPO is detected
at 0.1% false-alarm probability (p-value = 10−3). Phase-randomisation surrogates
(Theiler et al., 1992) supply a similar test while exactly preserving the empirical PSD.

2.6.2 Detection and Parameter Estimation of QPOs
A candidate QPO appears as a localised excess above the continuum. The PSD is
then fitted with a model consisting of a continuum plus a Lorentzian peak; using
the Whittle likelihood in Eq. (2.3), one obtains maximum-likelihood estimates of the
QPO centroid νQPO, quality factor Q, and amplitude (Barret, 2012). Likelihood-ratio
intervals (Wilks’ theorem) or curvature‐based errors give first-order confidence regions,
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but bootstrapping provides a more robust alternative when Gaussian or large-sample
assumptions are questionable:

1. Generate bootstrap time series (block bootstrap or phase-randomised surrogates).

2. Fit each bootstrap PSD with the same Lorentzian+continuum model.

3. Use the resulting empirical distribution of νQPO, Q, and amplitude to form con-
fidence intervals and assess detection significance.

If none of the B bootstrap (or Monte-Carlo) spectra contains a peak as strong as
the real data, the QPO is highly significant.

In summary, combining the mathematical foundations of stochastic processes with
modern spectral-inference techniques—Whittle likelihood for model fitting, plus boot-
strap and simulation for uncertainty quantification—yields a rigorous framework for
X-ray timing analysis. Such methods ensure that reported discoveries (e.g. a new
QPO) are supported by sound statistical evidence and furnish reliable constraints on
the extreme physics occurring near compact objects.

Applications in Astrophysical Time Series Analysis

Bootstrap methods have proven particularly valuable in astrophysical time series analy-
sis, where noise characteristics can be complex and non-Gaussian. Applications include:

Significance Testing of QPOs: By generating bootstrap distributions of peak heights
in power spectra, astronomers can assess the statistical significance of potential quasi-
periodic oscillations against the null hypothesis of red noise. This approach accounts
for the multiple testing problem inherent in searching for peaks across many frequency
bins. For example, Timmer (1995) and Uttley et al. (2002) demonstrated the use of
bootstrap methods to establish robust significance thresholds for QPO detection in
AGN light curves.

Parameter Uncertainty Estimation: We can use bootstrap resampling to estimate
uncertainties for model parameters in complex power spectra, such as broken power
laws or Lorentzian components. For example, in modeling the power spectrum of an
X-ray binary, bootstrapping can yield confidence regions for QPO frequencies, widths,
and amplitudes, accounting for correlations between these parameters. Vaughan (2005)
applied this approach to constrain power-law slopes and break frequencies in AGN
power spectra.

Cross-Spectral Analysis: Bootstrap techniques can quantify uncertainties in phase
lags and coherence functions between different energy bands in X-ray observations, pro-
viding insights into the causal relationships between different emission regions. This
is particularly important for reverberation mapping studies that aim to constrain the
geometry of accretion flows. Uttley et al. (2014a) applied bootstrap methods to estab-
lish confidence intervals on time lags in X-ray reverberation studies.
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Red Noise Simulation: Parametric bootstrap methods can generate synthetic red
noise light curves with statistical properties matching observed data, providing a ro-
bust basis for significance testing of potential signals against realistic noise backgrounds.
The method of Timmer (1995) generates surrogate light curves that match the original
power spectrum but with randomized phases, enabling robust hypothesis tests.

Non-stationary Time Series Analysis: Bootstrap methods can be adapted to an-
alyze time-varying power spectra, allowing for the detection of transient oscillations
or evolving spectral features in X-ray observations. Belloni et al. (2002) used boot-
strapping to characterize the dynamic power spectral properties of black hole binaries
during state transitions.

The bootstrap is particularly useful in applications where parametric assumptions
about noise distribution are unsuitable, making it an effective tool for analyzing red
noise processes with complex spectral shapes. With today’s high-performance com-
puting resources, it can be efficiently implemented, allowing for the generation and
execution of thousands of bootstrap replications. It provides accurate approximations
of variance and bias in estimators and is well-suited to handling the non-Gaussian na-
ture of most spectral estimators. Additionally, it can accommodate complex spectral
forms and multiple fitted components simultaneously, offering comprehensive uncer-
tainty quantification for advanced spectral models.

Furthermore, the bootstrap properly accounts for correlations between parameters
in multivariate estimation problems, such as multiple QPO parameters used in joint
confidence region analyses. It supports various sampling patterns, including gapped
or uneven observations, which are common in astronomical time series. Its relative
simplicity and flexibility make it an indispensable tool in statistical inference for time
series analysis, particularly for complex or non-standard astrophysical data. As com-
putational capabilities continue to advance, bootstrap methods are likely to become
increasingly integrated with other sophisticated techniques, such as Bayesian inference
and machine learning, for analyzing astronomical time series.

2.6.3 Applications in Astrophysical Data Analysis
X-ray Timing Analysis Applications

The mathematical framework and statistical methods outlined in the previous sec-
tions find extensive application in X-ray timing studies, where the PSD of source flux
variations provides critical insights into the physical processes operating in extreme en-
vironments (Ingram & Motta, 2019). Power spectra of accreting black holes typically
are comprised of complex structures including:

• Broadband Noise Components, Often modeled as power laws or Lorentzians,
these components reflect stochastic variability in the accretion flow (Nowak,
2000). The shape and strength of these components provide information about
the geometry and dynamics of the accretion disk and corona.

• Quasi-Periodic Oscillations (QPOs) : Manifest as narrow peaks in the power
spectrum, these features are associated with characteristic dynamical frequencies
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in the inner accretion flow, potentially including effects of General Relativity
(Stella & Vietri, 1998; Ingram et al., 2009). Both low-frequency (0.1-30 Hz) and
high-frequency (40-450 Hz) QPOs have been observed in black hole binaries, with
their frequencies often scaling with the mass of the compact object.

• Breaks and Cutoffs: Changes in power-law slope or exponential cutoffs at specific
frequencies constrain the geometry and physical scales of the emission region
(McHardy et al., 2006; González-Martín & Vaughan, 2012). For example, break
frequencies in AGN power spectra have been found to scale inversely with black
hole mass, suggesting a universal process in accretion physics across mass scales.

The statistical techniques developed for spectral estimation must be further adapted
to account for instrumental effects in X-ray detectors, including dead time, Poisson
noise, and background contamination (van der Klis, 1989; Vaughan et al., 2003). These
adaptations include:

• Leahy Normalization: A standard normalization such that the statistical distri-
bution of the powers of the Poissonian noise follows a chi-squared (χ2) distri-
bution with 2N degrees of freedom, where N is the number of averaged PSDs.
For N = 1, the expected value of the PSD powers is 2, as is the variance. The
chi-squared distribution, i.e. the knowledge of the statistical behavior of noise
powers, provides an objective statistical tool to assess whether a peak in the PSD
belongs to the noise or represents a candidate signal.

• Fractional RMS Normalization: Expresses variability amplitude as a fraction of
the mean count rate, facilitating comparison between different sources or obser-
vations.

• Cross-Spectral Analysis: Techniques for analyzing coherence and phase lags be-
tween different energy bands, providing insights into causal connections and time
delays between different emission regions.

Maximum likelihood estimation plays a crucial role in fitting parametric models to
observed power spectra, allowing for the quantification of QPO parameters (frequency,
width, amplitude) and their uncertainties. Bootstrap methods provide robust esti-
mates of confidence intervals, particularly important when assessing the significance
of potential QPOs against complex noise backgrounds. These techniques have been in-
strumental in advancing our understanding of accretion physics and strong-field gravity.
For example:

The discovery and characterization of high-frequency QPOs in black hole bina-
ries have provided observational tests for relativistic precession models (Stella & Vi-
etri, 1998). The observation of similar variability patterns across both stellar-mass
and supermassive black holes suggests a scale-invariant nature of accretion processes
(McHardy et al., 2006). Energy-dependent time lags detected through cross-spectral
analysis have revealed the reverberation of X-ray signals, constraining the geometry of
the accretion flow and corona (Uttley et al., 2014b).

The application of these techniques to current and next-generation X-ray missions
promises to further refine our understanding of the extreme physics around compact
objects.
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2.6.4 Advanced Computational Approaches

Neural Networks in Astronomical Time Series Analysis

Convolutional Neural Networks (CNNs) represent a specialized class of deep neural
networks designed to efficiently process data that exhibit a grid-like topology, such
as images (LeCun et al., 1998). In astronomy, CNNs have gained increasing traction
for automated feature extraction in large-scale datasets. Unlike traditional machine
learning algorithms, which often require painstaking feature engineering, CNNs learn
relevant features directly from raw input data by leveraging convolutional filters and
pooling operations to detect and aggregate spatially correlated signals (Krizhevsky
et al., 2012). Key components that make CNNs particularly well-suited for astronomi-
cal data include:
Convolutional Layers: These layers apply trainable filters (kernels) across an input im-
age or feature map, systematically extracting local patterns such as emission peaks or
extended filaments; Pooling Layers: Pooling reduces the spatial dimensions of feature
maps, aggregating information and providing invariance to small translations or dis-
tortions; Activation and Normalization: Nonlinear activation functions, such as ReLU
(Rectified Linear Unit), and normalization strategies, including Batch Normalization
(Ioffe & Szegedy, 2015). improve training stability and accelerate convergence; End-to-
End Learning: CNNs adapt their internal representations to optimize a task-specific
loss function.

Recent advances expanded CNN applications to time series processing in astron-
omy to cover: Feature Detection in Power Spectra: CNNs can automatically identify
quasi-periodic oscillations and other features in complex power spectra where tradi-
tional methods might struggle with noise or complex backgrounds (Huertas-Company
et al., 2018). For example, a CNN trained on simulated power spectra can detect weak
QPOs embedded in red noise with higher sensitivity than classical detection meth-
ods; Classification of Variable Sources: Time-domain surveys generate vast libraries
of light curves that require efficient classification. CNNs can distinguish between differ-
ent types of variable stars, transients, and active galactic nuclei based on their temporal
signatures (Dieleman et al., 2015). The Zwicky Transient Facility and other large sur-
veys have begun implementing CNN-based classification pipelines to identify rare or
interesting variable sources in real-time; Anomaly Detection: By learning the typi-
cal characteristics of astronomical time series, CNNs can flag unusual or potentially
interesting objects that deviate from expected patterns, enabling focused follow-up ob-
servations. This approach has been used to identify peculiar variability patterns in
blazar monitoring data and to detect instrumental artifacts in X-ray light curves.

In source detection applications, CNNs can identify both point-like and extended
sources by discerning spatial patterns of brightness and morphology. By capitalizing
on GPU acceleration, CNN-based pipelines can sift through millions of time series far
more efficiently than classical methods (Alger et al., 2018).
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Integration of Deep Learning with Statistical Approaches

The integration of traditional statistical methods with deep learning approaches rep-
resents a promising direction for astrophysical time series analysis. Several hybrid
approaches have emerged:
Neural Bootstrapping applies Bootstrap resampling with neural networks to provide
prediction uncertainty estimates for CNN. This produces multiple bootstrap samples
of input, feeds each through the network, and examines output distribution to estimate
prediction uncertainty (Michelucci & Venturini, 2021).
Likelihood-Free Inference uses simulation-based inference with neural networks as
surrogate models for complex likelihood functions that would be intractable with tra-
ditional MLE approaches. Techniques such as Approximate Bayesian Computation
(ABC) and neural density estimation allow for Bayesian inference without explicitly
formulating likelihood functions (Papamakarios et al., 2019; Alsing et al., 2019).
Bayesian Neural Networks incorporate Bayesian principles into neural network train-
ing to provide posterior distributions over model parameters rather than point esti-
mates. By treating network weights as probability distributions rather than fixed
values, these methods quantify epistemic uncertainty in model predictions (Möller &
de Boissière, 2020).
Physics-Informed Neural Networks: Constraining neural network training with known
physical laws and relationships, ensuring that predictions respect conservation princi-
ples or other theoretical constraints (Sel et al., 2023). This approach combines the
flexibility of neural networks with the theoretical rigor of physical models.

These hybrid approaches leverage the flexibility and pattern recognition capabilities
of deep learning while maintaining the statistical rigor and uncertainty quantification
of traditional methods. As astronomical datasets continue to grow in volume and com-
plexity, such integrated approaches will become increasingly valuable for extracting
maximum scientific insight from time series observations. The field of astronomical
time series analysis is currently experiencing rapid evolution with the convergence of
advanced statistical methods, high-performance computing, and sophisticated machine
learning techniques. This synergy promises to unlock new discoveries from both exist-
ing data archives and forthcoming large-scale surveys.

Architecture and Working Principles of CNNs

Convolutional Neural Networks (CNNs) have revolutionized data analysis across nu-
merous domains, including astronomical time series analysis. The architecture of a
CNN is specifically designed to exploit the spatial or temporal structure present in
the input data, making it ideal for analyzing signals that exhibit local patterns and
hierarchical features (LeCun et al., 2015).

Fundamental components

1. Input layer. Raw or pre-processed light-curves (normalised, detrended, or con-
verted to a time–frequency map).

2. Convolutional layers. For a discrete signal x[n] and kernel w[k] of length K, the
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convolution at position n is

y[n] =
K−1∑
k=0

w[k] x[n + k], (2.4)

where early layers capture simple local variations and deeper layers combine them
into higher-level motifs (e.g. burst envelopes or quasi-periodic modulations).

3. Activation functions. Non-linearities such as ReLU(z) = max(0, z), Leaky-ReLU
or ELU promote hierarchical feature learning.

4. Pooling layers. Max, average, or global pooling summarise local information,
give translation invariance, and reduce parameter count.

5. Batch normalisation (Ioffe & Szegedy, 2015). For a mini-batch {xi},

x̂i = xi − µB√
σ2

B + ϵ
, yi = γx̂i + β, (2.5)

accelerating convergence and acting as a mild regulariser.

6. Dropout (Srivastava et al., 2014). Randomly zeroing a fraction p of activations
during training reduces co-adaptation and approximates an ensemble of subnet-
works.

7. Fully-connected & output layers. Dense layers aggregate the learned features
and produce class probabilities (soft-max) or regression outputs.

Specialised architectures for time-series

• 1D CNNs: One-dimensional convolutions slide only along the time axis, making
them suitable for raw time series data such as light curves. The filters learn to
detect temporal patterns at different scales (Hon et al., 2018).

• 2D CNNs: When time series are transformed into time-frequency representations
(e.g., spectrograms or scalograms), 2D CNNs can exploit both temporal and
frequency patterns. This approach has been particularly effective for detecting
quasi-periodic oscillations in power spectra (Bouchard et al., 2019).

• Recurrent Convolutional Networks: These hybrid architectures combine CNNs
with recurrent neural networks (RNNs) such as Long Short-TermMemory (LSTM)
or Gated Recurrent Units (GRU). The CNN component extracts local features,
while the RNN component captures long-range dependencies in the time series
(Brunel et al., 2019).

• Temporal Convolutional Networks (TCNs): These use dilated causal convolu-
tions to achieve a large receptive field while maintaining computational efficiency.
TCNs have shown superior performance to RNNs on many time series tasks while
being easier to parallelize during training (Bai et al., 2018).
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• Attention-augmented CNNs: Incorporating attention mechanisms allows these
networks to focus on the most relevant parts of the input sequence when making
predictions, improving performance on complex time series tasks (Cheng et al.,
2016).

• Variational Autoencoders (VAEs): VAEs map time series into a compact, prob-
abilistic latent space that preserves its statistical properties, making them well-
suited for anomaly detection, feature extraction and probabilistic forecasting.
Augmenting VAEs with CNNs sharpens their ability to learn complex temporal
patterns—especially in irregular or noisy sequences Desai et al. (2021)

Training and optimisation

Loss functions such as mean-squared error for regression or cross-entropy for classifica-
tion,

LCE = −
∑

c

yc log ŷc,

are minimised via optimisers like Adam or SGD with momentum. Hyper-parameters
(depth, kernel width, learning rate, batch size, etc.) are tuned by cross-validation or
Bayesian optimisation, while L1/L2 penalties, early stopping, and data augmentation
mitigate over-fitting.

Hyperparameter Tuning

The performance of a CNN depends critically on hyperparameters such as network
depth (number of layers), number of filters per layer, filter size Pooling window size,
stride learning rate, optimization algorithm, batch size, amd regularization strength.
These hyperparameters are typically optimized through techniques such as grid search,
random search, or Bayesian optimization, often using cross-validation to estimate per-
formance on unseen data.

Interpretability and Applications to Astronomical Time Series

Tools for interpreting deep models—most notably feature-visualisation maps, Gradient-
weighted Class Activation Mapping (Grad-CAM) (Selvaraju et al., 2017), and in-
tegrated gradients (Sundararajan et al., 2017)—reveal which time segments drive a
convolutional neural network’s decisions, thereby providing physical insight into the
learned representations. Armed with this transparency, astronomers have deployed
CNNs across a wide spectrum of time-series problems: detecting transients such as
stellar flares, fast radio bursts, and gravitational-wave events in noisy light curves
(George & Huerta, 2018); classifying variable stars by light-curve morphology (Naul
et al., 2018); recovering exoplanet transits in the presence of complex stellar variabil-
ity (Shallue & Vanderburg, 2018); discovering pulsars and fast radio bursts in radio
dynamic spectra (Connor & van Leeuwen, 2018); identifying quasi-periodic oscillations
in X-ray power spectra under strong red-noise backgrounds (Bouchard et al., 2019);
and flagging anomalous patterns that may signal new astrophysical phenomena or in-
strumental artefacts (Pruzhinskaya et al., 2019). In Chapter 4, we will investigate the
performance of CNNs in binary classification tasks using Planck data.
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Challenges and Limitations

Despite the impressive gains that convolutional neural networks (CNNs) have delivered
in astronomical signal classification, several substantive challenges still constrain their
routine deployment on time–series data. Foremost among these is the requirement
for large, vetted training sets: comprehensive light-curve libraries remain scarce for
most rare or fast phenomena—such as fast-radio bursts, unusual super-nova subclasses,
or quasi-periodic oscillations—so networks risk over-fitting or learning survey-specific
artefacts rather than genuine variability patterns. Even where sizeable catalogues
exist, severe class imbalance is typical, with “background’’ instances dwarfing bona-
fide events by orders of magnitude; practitioners therefore rely on cost-sensitive losses,
synthetic minority re-sampling, or focal-loss variants (Lin et al., 2017) to prevent the
decision boundary collapsing around the majority class.

Interpretability constitutes a second major hurdle. Gradient-based saliency techniques—
e.g. Grad-CAM (Selvaraju et al., 2017) or integrated gradients (Sundararajan et al.,
2017)—highlight which temporal segments drive the network’s output, yet translating
these heat maps into statements about accretion‐rate fluctuations or magnetospheric
instabilities is rarely straightforward. A related issue is that conventional CNNs return
only point estimates. Recent work on Monte-Carlo dropout (Gal & Ghahramani, 2016),
deep ensembles (Lakshminarayanan et al., 2017), and full Bayesian neural networks
(Neal, 2012) now supplies epistemic and aleatoric uncertainties, but propagating those
error budgets into subsequent population-level inferences remains an open problem.

Domain shift further complicates matters. Astronomical light curves are irregu-
larly sampled, heteroscedastic, and often contaminated by survey-specific systemat-
ics; hence models pre-trained on natural-image corpora seldom transfer cleanly. Self-
supervised contrastive pre-training (Moschou et al., 2023a) and other representation-
learning strategies can mitigate data scarcity, but each new facility still tends to re-
quire bespoke architectures or extensive fine-tuning, undermining one of deep learning’s
practical attractions. Finally, although GPU advances and distributed optimisation
have eased computational constraints, exhaustive hyper-parameter searches—especially
the posterior sampling demanded by Bayesian CNNs—can still be prohibitive for the
petabyte-scale streams anticipated from surveys such as LSST (Ivezić et al., 2019) and
the SKA (Braun et al., 2015).

Active research is tackling many of these limitations. Physics-informed neural net-
works embed conservation laws directly into their loss functions, reducing parame-
ter space and improving interpretability (Raissi et al., 2019; Moschou et al., 2023b).
Uncertainty-aware losses encourage calibrated predictive intervals, and the combina-
tion of transfer-learning with domain adaptation is beginning to close the gap between
laboratory benchmarks and on-sky performance. As these techniques mature, CNNs
will complement—rather than replace—the classical spectral-analysis and stochastic-
process frameworks developed earlier in this thesis, broadening the methodological
repertoire for probing variable high-energy sources.



Chapter 3

A NuSTAR study of quasi-periodic oscillations
from the ultraluminous X-ray sources in M82

3.1 Discovery and M82 History
M82, or ”Cigar Galaxy”, is a starburst galaxy (exhibiting an extraordinarily high
rate of star formation) approximately 12 million light-years away in the Ursa Major
constellation. As a nearby edge-on galaxy, M82 has a luminosity five times that of
the entire Milky Way (Sanders et al., 2003). M82 was discovered in 1774 by Johann
Elert Bode and later catalogued in 1781 by Charles Messier (Holmberg, 1958). Initially
classified as an irregular galaxy due to having a disrupted morphology, M82 now exists
in a disrupted disk galaxy form that strongly interacts with its giant neighbour Messier
81 (M81) (de Grijs et al., 2001). The gravitational interaction with M81 has triggered
intense star formation and has sculpted M82’s unusual structure, making it one of the
best-studied starburst galaxies in the local universe (Mayya et al., 2006).

3.1.1 The Impact of Starburst Activity on the High-Energy Environ-
ment

M82’s starburst activity is a direct result of its historical gravitational interaction
with M81, which is presumed to have triggered a starburst event between 200 and 600
million years ago (Mayya et al., 2006). The resulting supernova explosions and energetic
stellar winds have driven large-scale outflows, culminating in a galactic superwind that
can be detected across multiple wavelengths, including optical, infrared, radio, and
X-ray observations (Strickland & Heckman, 2009). The interplay between starbursts,
supernovae, and black-hole accretion creates a complex, energetic environment in M82.
Soft, diffuse X-ray emission permeates the galaxy, arising from hot gas heated by these
stellar processes and superwind shocks. Meanwhile, small, point-like hard X-ray sources
in M82—mainly the ULXs—stand out against this spread-out background, highlighting
sites of extreme accretion activity amid the starburst-driven environment.

3.1.2 Early Observations and Multi-Wavelength Studies
Early optical observations revealed M82 to be a highly perturbed system [[has a com-
plex structure]. Subsequent multi-wavelength studies across radio, infrared, and X-ray
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bands established M82 as a prototypical starburst galaxy. Infrared observations by
the IRAS satellite and later by Spitzer confirmed an exceptionally high rate of star
formation concentrated in the galaxy’s core. In X-rays, Einstein Observatory and later
missions detected unusually bright point sources in M82, hinting at the presence of
ultraluminous X-ray sources (ULXs). Over time, coordinated observations have linked
the galaxy’s intense starburst to its X-ray output: young supernova remnants and
ULXs contribute significantly to the hard X-ray emission, while hot plasma from su-
perwinds produces extended soft X-ray glow. These early studies set the stage for
focused investigations of M82’s compact X-ray sources.

3.1.3 X-ray Binary Systems in M82
In X-ray binaries, the electromagnetic radiation emitted by accreting matter can reach
extreme luminosities. M82 hosts several ULXs, which are exceptional X-ray binaries
exhibiting luminosities above the Eddington limit for typical stellar-mass black holes
(i.e., LX ≳ 1039 erg s−1). The galaxy’s starburst central region provides a fertile ground
for the formation of such systems, including neutron stars and black holes accreting at
high rates. Below we summarize the key known ULXs of M82 and their relevance to
understanding accretion physics in this galaxy.

M82 X-1 : Evidence for an Intermediate-Mass Black Hole

M82 X-1 represents one of the most promising candidates for an intermediate-mass
black hole (IMBH). Timing analysis of its X-ray emission has provided major evidence
in favor of this hypothesis (Strohmayer & Mushotzky, 2003).first reported a QPO
at 54 mHz associated with M82 X-1 using XMM-Newton data. Building on this re-
search, (Mucciarelli et al., 2006).reported QPOs spanning between 50–166 mHz using
combined XMM-Newton and RossiXTE archival observations. The most compelling
evidence for M82 X-1 harboring an IMBH came from (Pasham et al., 2015). who de-
tected stable twin-peak QPOs with a 3:2 frequency ratio (3.32 ± 0.06 Hz and 5.07 ±
0.06 Hz). This frequency pattern, which is characteristic of high-frequency QPOs in
stellar-mass black hole binaries but scaled down to lower frequencies—indicates a black
hole of approximately 400 M⊙. This places M82 X-1 firmly in the intermediate-mass
range, representing a critical “missing link’’ between stellar-mass and supermassive
black holes.

M82 X-2: Challenging ULX Paradigms

Prior to 2014, the astronomical community largely assumed that ULXs were accreting
black holes. This view was challenged when Bachetti et al. (2014) unveiled the nature
of M82 X-2, the second-brightest X-ray source in M82, as an X-ray pulsar. M82 X-
2 was found to be a neutron star accreting matter at super-Eddington rates, with
coherent pulsations implying the presence of a strong magnetic field. This discovery
demonstrated that neutron stars can power ULX-level luminosities, overturning the
paradigm that ULXs necessarily host black holes. The detection of pulsations from
M82 X-2 also provided key insights: the measured pulse period (of 1.37 seconds and
a pulse fraction sin 20%) and its derivatives allowed constraints on the neutron star’s



3.1. Discovery and M82 History 47

magnetic field and spin-up rate due to accretion torque, offering a rare opportunity to
study magneto-hydrodynamic processes in an extreme accretion regime.

M82 as a Key Laboratory for Astrophysics

M82 continues to be a valuable target in astrophysics across a wide wavelength regime.
With its unparalleled combination of energetic starbursts, a rich population of compact
objects, and superwinds extending to large scales, it provides an ideal environment for
studying the interplay between stellar evolution, black hole growth, and mechanisms
of galactic feedback (Zhang et al., 2019). Ongoing and future investigations utilizing
next-generation observatories—including the James Webb Space Telescope (JWST),
the Advanced Telescope for High Energy Astrophysics (ATHENA), and the Square
Kilometre Array (SKA)—promise to further illuminate M82’s population of black holes,
the physics of ULXs, and the dynamics of starburst-driven outflows (Padovani et al.,
2017). In particular, M82’s ULXs serve as natural laboratories for extreme accretion:
continuing to monitor and model these sources will help bridge our understanding
between stellar-mass X-ray binaries and more massive accretors.

Figure 3.1: A composite high-energy X-ray image of the core of M82, combining NuSTAR
data (shown in pink) with lower-energy X-rays from Chandra. The two brightest compact
X-ray sources, M82 X-1 and M82 X-2, are indicated. ULXs are regions that shine intensely
in X-rays, and in M82 these lie in the starburst core.
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3.1.4 Quasi-Periodic Oscillations: Theoretical Background
One of the most intriguing phenomena in the accretion processes of X-ray binaries is
the presence of quasi-periodic oscillations (QPOs). These oscillations are manifested
as relatively narrow peaks in the X-ray power spectrum of accreting neutron stars
and black holes (Ingram & Motta, 2019; Van der Klis, 1989). QPOs are typically
characterized by a Lorentzian profile with three key parameters: the centroid frequency,
the width (inversely related to the coherence time of the oscillation), and the strength
(the integrated power, proportional to the variance contributed by the QPO) (Motta
et al., 2017).

The study of QPOs provides crucial insights into the fundamental physics of com-
pact objects, including their masses, radii, and spin rates (Kluźniak, 2006). Low-
frequency QPOs (LFQPOs), with frequencies up to tens of Hz, have been observed in
the majority of black hole X-ray binaries (e.g., up to ∼30 Hz in black hole binaries
and ∼60 Hz in neutron star binaries (Belloni et al., 2005; van der Klis, 2006). High-
frequency QPOs (HFQPOs, sometimes called kHz QPOs in neutron star systems) occur
at frequencies between 100 and 500 Hz in BHs to over 1kHz in NSBs with weaker mag-
netic fields (Motta et al., 2017). These variations highlight differences in the accretion
environments and compact object properties of black holes versus neutron stars, as
reflected in their distinct variability patterns. By studying QPOs, researchers gain
insight into the inner accretion disk dynamics and strong-gravity effects near the com-
pact object (Remillard & McClintock, 2006; Belloni & Stella, 2012; Zhang et al., 2006).
For example, certain QPO frequency ratios or evolutions may indicate specific physical
mechanisms such as relativistic precession or resonance in the inner disk (Ingram et al.,
2009; Motta et al., 2016). Thus, QPOs serve as important diagnostics of the conditions
and processes in the immediate vicinity of compact objects.

A significant challenge in studying X-ray variability in M82 is attributing specific
QPO signals to their source ULXs and separating the contributions of M82 X-1 and
M82 X-2. This difficulty arises because most X-ray telescopes (including NuSTAR)
have insufficient spatial resolution to distinctly resolve the two ULXs in the crowded
starburst core. As a result, any variability detected in integrated X-ray lightcurves
of M82 could originate from either one of these sources (or a combination of both),
complicating the interpretation of timing features.

In this work, we analyze observational data acquired with NASA’s NuSTAR ()
satellite spanning from 2014 to 2024, to investigate the variability of the X-ray flux in
the M82 galaxy. to assess consistency of previous works and to identify new insights.

3.2 Data reduction
We used data from all available ustar observations of the M82 galaxy between 2014
and 2024, reduced with the standard pipeline (nupipeline) from the High Energy
Astrophysics Science Archive Research Center (HEASARC), and selected photons from
a region of 70′′ around the position of the source. Our data consist of individual
events that are timestamps of when a photon reached the detector and their associated
properties, such as the photon energy. Each timestamp was corrected from local time
to the barycenter of the Solar System using the barycorr FTOOL, using the ICRS
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Figure 3.2: Example of the GTI cleaning process. We plot a rescaled background light curve
and the source light curve, and eliminate intervals where the background light curve is above
10 % of the mean level. Vertical black bands indicate these bad intervals, while blue bands
indicate the standard bad time intervals due to occultation or poor star tracker coverage.
Red data points are taken in intervals with poor star tracker coverage. We will not consider
them when modeling the PDS, but we will use them to improve the detectability of unseen
features.

coordinates of M82 X-2 09:55:51.040 +69:40:45.491 (Kaaret et al., 2006) and using the
DE430 JPL ephemeris2.

For the power spectral fitting, we only used events from good time intervals and with
full star tracker visibility (mode-01 data). For a limited part of the analysis, we made
use of photons from intervals with limited star tracker coverage (the SCIENCE_SC
mode, or mode-06, data). We used the tool nusplitsc to split the mode-06 data
in interval with single star tracker combinations, we moved the extraction region for
events in each sub-interval to adapt to the position of the PSF centroid, we extracted
the events from the source region, and finally we merged the events together with the
mode-01 data. Given the circumpolar position of the source and the close-to-equatorial
orbit of NuSTAR, this allowed to almost double the number of photons available for
sensitive QPO searches, at the cost of increasing the red noise level. Therefore, we
only used these data to increase the sensitivity to the search of new features at high
frequencies where the red noise was negligible.

We ran the analysis using Stingray (Huppenkothen et al., 2019), a Python library
built to perform time series analysis, providing implementations of the most advanced
spectral timing techniques available in the literature.

Raw data do not provide the photon energy directly. However, in NuSTAR the
energy channel number (PI) and the central energy Ep of the channel are related by
the simple formula Ep(keV) = 1.62+0.04 PI. This is accounted for automatically when
loading data in Stingray.

1Data were barycentered in order to allow the study of aperiodic variability from M82 X-1 and
pulsations from M82 X-2. A 5′′ mismatch is irrelevant for the study of slow variability, but it might
be detectable in precise pulsar timing.

2https://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets/aareadme_
de430-de431.txt

https://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets/aareadme_de430-de431.txt
https://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets/aareadme_de430-de431.txt
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We plotted light curves of the source region of all observations, and background
light curves containing all photons further than 100′′ from the source. This criterion is
different from the one usually employed for spectral analysis, where a background re-
gion is chosen in a large circular region of the FOV devoid of sources. In our case, these
background light curves were meant to catch flares in the background, corresponding
to anything from particles hitting the telescope or other increased environmental back-
ground (e.g. approaching the SAA), and we needed to gather all the photons we could
at a reasonable distance from the source region. We rescaled the background light
curve by multiplying by the ratio of pixels inside the source and background regions.
Whenever the rescaled background light curve had flares reaching more than ∼ 10%
of the source mean flux, we rejected that time interval and excluded it from the good
time intervals (GTI). See Fig. 3.2 for an example.

3.3 Periodogram production and filtering

Our source light curve is produced by sampling the photons from the source region
falling into equispaced time intervals with resolution tsamp. Alongside the source light
curve, we create synthetic visibility light curves with the same sampling interval that
are equal to the mean counts per bin of the source light curve during GTIs and 0 outside.
We take a periodogram of this synthetic light curve, that shows strong features corre-
sponding to the missing data while going rapidly to zero at high frequencies, because
it does not contain noise. In this periodogram, we can set a threshold, and single out
the strongest peaks, to be used for notch filtering. The idea is that we will eliminate
these frequencies from the final periodogram, and then make a geometrical rebinning
(as it is commonly done) that will average the remaining nearby bins, maintaining the
statistical properties of the periodogram.

However, if we take the source light curve at face value, using 0 outside GTIs, we
can see that if one applies the notch filter above straight away, a large number of powers
do not follow the expected distribution (Figure 3.3, middle panels). This is because
some noise is still leaking at frequencies near the blacklisted ones.

But we can also fill the bad time intervals of the light curve not with zeros, but with
the mean of the data. This produces a much smaller effect of the visibility windows
on the final periodogram, creating an almost flat distribution of power, and the notch
filter will just be an additional cautionary measure (Figure 3.3, bottom panels, black
data). In a real-life situation, when there is some long-term source variability, filling
band intervals with the mean will not be as clean as this example, so the notch filtering
will be useful. There is an additional measure to take, however. The periodogram is a
measure of the variance of the data, and it is calculated from an FFT which contains
a division by the total number of data points. However, the filled data points do not
contribute to the variance, and this means that the calculated power will be lower than
the expected value. To reinstate the correct normalization, we need to multiply this
periodogram by ntot/ngti, where ntot is the total number of bins and ngti the number
of bins in GTIs. (Figure 3.3, bottom panels, magenta data).

To verify that the method does not alter the response of the periodogram in a
frequency-dependent way, we performed the following test: we generated synthetic
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Figure 3.3: Procedure to filter periodograms from the effect of visibility windows described in
Section 3.3, using simulated Poissonian data (so, no source variability) with the same mean
count rate and GTIs of ObsID 80002092006. (Top) Periodogram of the visibility light curve,
showing the features corresponding to the missing data. We set a threshold and select a
number of bad frequency intervals (orange) to be black listed. (Middle) Periodogram of the
binned light curve with 0 outside GTIs: it contains many of the same features, with similar
powers, plus the expected white noise from the data. After notch filtering, some powers
clearly exceed the expected χ2

2 distribution. (Bottom) Periodogram of the binned light curve
with the mean counts per bin used as a filler outside GTIs instead of 0. Most of the features
disappear from the periodogram even before notch filtering, and the powers follow the correct
distribution, but with the wrong normalization, which is corrected as described in the text
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light curves with a sinusoidal modulation at 10% fractional amplitude, using the same
GTIs and mean flux as Obsid 80002092006. The light curve had no Poisson noise,
only the smooth sinusoidal modulation. Outside GTIs, we filled the time intervals
with the mean value of the flux as we did for the data. We repeated the experiment
for 1000 frequencies distributed log-uniformly over the range 10−4 − 1 Hz. We always
used frequencies extracted from the grid of the periodogram in order to avoid the
expected sinc2 response degradation when moving away from the centre of the frequency
bin (Van der Klis, 1989). We applied the same notch filters as the real data, and
we measured the decrease of rms (hereafter, the damping factor) in the remaining
frequencies compared to an uninterrupted pulsation over the whole observation. The
decrease of rms was the same at all frequencies and exactly what was expected from
the fact of having missing data (i.e., outside GTIs there is no variability, and the total
variance decreases). Only very close to the notch-filtered frequencies, we noticed some
“wiggles” in the damping factor, by 10% at most.

3.4 Timing analysis

3.4.1 Statistical properties of the periodogram
Periodogram-based methods are commonly used as a parametric approximation of the
power spectrum. Given the Discrete Fourier Transform (DFT) components ai of a light
curve xn (n = 0, . . . , N) (see Eq. 3.1)

ai = 1
N

N−1∑
n=0

xne−j2πni/N , (i = −N/2, . . . , N/2 − 1) (3.1)

the periodogram is defined as Pi = |ai|2.
In X-ray Astronomy, it is common to use the normalization from Leahy et al.

(1983), where the periodogram defined above is multiplied by a factor 2/Nph, where
Nph is the number of photons in the light curve. With this normalization, the powers of
a periodogram of pure white noise follow a χ2

2 distribution, allowing for an easy identifi-
cation of outliers. A common procedure to limit the noise of the periodogram is indeed
based on power averaging, either of W nearby bins from the same periodogram, or M
periodograms from different segments of the data (the so-called Bartlett periodogram,
from Bartlett 1950b), or using both methods. It is easy to demonstrate that the effect
of averaging MW noise powers leads to a normalized χ2

2MW /MW distribution, which
resembles more and more a Gaussian distribution with width σ = 2/

√
MW (Van der

Klis, 1989) as the number of averaged powers increases.
The Bartlett periodogram has the additional major advantage of being applicable

to observations containing missing data, for example due to Earth occultation, South-
Atlantic Anomaly passes, high background, and so on. In X-ray observations, these
“bad intervals” are usually eliminated from the observations during the data reduction
procedure, and good observing conditions are encoded in a Good Time Interval (GTI)
list in the same FITS files of the data. The Bartlett periodogram can then be chosen
so that one or more intervals of duration tseg fit inside the typical length of GTIs.
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The powers Ij of a periodogram containing signal are distributed following a χ2
2MW

around the real spectrum Sj (Barret & Vaughan, 2012).

I(fj) = S(fj)
2MW

X (3.2)

where X follows a χ2
2MW distribution.

From the properties of the χ2
2M distribution, the log-likelihood formula in this gen-

eral case can be derived as follows:

log L = −ν

2

N−1∑
j=1

{
Ij

Sj

+ ln Sj +
(2

ν
− 1

)
ln Ij + c(ν)

}
(3.3)

where ν = 2MW is the number of degrees of freedom and c(ν) is a constant for fixed ν.
Since minimization algorithms are more common than maximization ones, maximum-
likelihood fitting procedures usually consist of minimizing the quantity −2 log L.

However, the Bartlett periodogram calculated from a typical Fast Fourier Transform
(Cooley & Tukey, 1965) has a major limitation in terms of frequency resolution, limited
to ∆ν = 1/tseg. This also means that we cannot investigate frequencies lower than
∆ν. Some techniques to improve the frequency resolution, such as interbinning or
Fourier interpolation (Ransom et al., 2002), can be used, but at the cost of altering the
statistical properties of the data and making the fitting and interpretation of results
less robust.

On the other hand, a single periodogram of the whole time series has a much
better frequency resolution and sensitivity to low frequencies (as now the resolution
is ∆ν = 1/tobs), but it is affected by the missing data and contains a large number
of (typically) low-frequency peaks that correspond to the variability introduced by the
visibility windows. If the bad time intervals (BTIs) are very small (e.g. less than 1%
of the data), it is customary to add some white noise to fill-up the intervals and have
a final periodogram with all the desired statistical properties, at the expense of some
minor loss of sensitivity. However, in our observations, the bad intervals are comparable
in length with the good ones, which would imply simulating about half the data, which
is unacceptable for our purposes.

For this work, we devised a treatment for the periodogram that limits the effects
of windowing while maintaining most of the statistical properties of the periodogram
(as detailed in section 3.3).

3.4.2 Model construction
The periodograms of X-ray binaries show a variety of variable phenomena, and can be
conveniently modeled through a composition of Lorentzian components (Belloni et al.,
2002). For these functions, we use the definition:

P (ν) =
A0
(

w
2

)2

(ν − ν0)2 +
(

w
2

)2 (3.4)

where ν0 is the centroid frequency or the frequency at the peak of the signal, w rep-
resents the full width at half maximum (FWHM), and A0 is the amplitude of the
signal.
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Figure 3.4: Example analysis using obsid 80002092006. Data are cleaned as described in
Section 3.3. Orange bands show the notch-filtered frequencies. The top panel shows the
periodogram of the light curve when BTIs contain zeroes, and the lower panel shows the
result when BTIs are filled with the mean counts per bin. It is clear that notch filtering is
still needed in this non-ideal case. The two blue curves are the two best-fit Lorentzians for
the red noise component and the QPO.
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The use of Lorentzian components is mostly phenomenological given the symme-
try properties of these functions, even though it is originally rooted in the fact that
Lorentzians are the Fourier transforms of exponentially decaying oscillations, a com-
mon phenomenon in nature.

These Lorentzian components can be characterized through three main quantities.
First of all, the characteristic frequency (νmax):

νmax =
√

ν2
0 +

(
w

2

)2
,

that represents the maximum of the Lorentzian in a νP vs ν plot and the frequency
at which the Lorentzian contains the most power per logarithmic frequency interval
(Belloni et al., 2002). This quantity is very close to ν0 for coherent QPOs, while it
departs considerably from it for broadband red-noise components. It is particularly
useful when considering the evolution of timing features, as it is common to observe
a broadband noise component evolve into a QPO. The characteristic frequency, in
this case, makes a smooth transition that would not be as clear when using the central
frequency (e.g. Motta et al., 2016). The second important quantity is the Quality factor
(Q): Defined as Q = ν0

HWHM = 2ν0
w
, it measures the signal’s coherence3. Commonly,

Lorentzian components with Q > Qlim are classified as QPOs, while those with Q <
Qlim are considered broadband peaked noise. Qlim used in literature is variable. In this
work we will use Qlim = 2 as the boundary between a QPO and a broadband component.
However, it will become clear that the feature we identify as QPO can sometimes have
a low coherence. Finally, we can define the (fractional or absolute) root-mean-squared
(rms) amplitude: A measure of the signal’s strength, which depends on the source flux.
It is proportional to the square root of the integrated power contributed by the QPO
to the periodogram. Using eq. 3.4, the rms amplitude can be calculated as the square
root of the integral of P (ν) normalized in the desired rms units (fractional à la Belloni
& Hasinger 1990 or absolute, in counts per second). Since power is only calculated at
positive frequencies, assuming P (ν) was fit in Leahy normalization, the rms amplitude
can be calculated as:

rms =
√

F
∫ ∞

0
P (ν)dν =

√√√√A0F

(
π/2 − tan−1 −ν0

w/2

)
(3.5)

where F is the conversion factor between the Leahy normalization and the desired rms
units.

3.4.3 Inference
Our periodogram modeling consists of two main steps: a maximum likelihood esti-
mation (MLE) of the best fitting model, following Barret & Vaughan (2012), and a
parametric bootstrap technique to evaluate uncertainties. The MLE is done with the
stingray.modeling package (Huppenkothen et al., 2019). The procedure consists

3Many works in the literature divide by the full width at half maximum, so their values of Q would
be half ours.
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Figure 3.5: (Top) rms versus frequency for the power spectral features fit in Section 3.1
and (Bottom) HWHM versus frequency for the same features. There does not seem to be a
systematic pattern in the appearance of these timing features and pulsations. We calculated
1-σ uncertainties and 3-σ, upper limits through the bootstrap procedure in Section 3.4.3. The
identification of the two features is often tricky if only one of them is present in the data, but
simple criteria to distinguish them seem to emerge from this visualization, with the QPO,
regardless of its Q factor in a given observation, following a rms ∝ ν1/2 law and generally
having a frequency above 0.02 Hz.
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of minimizing the negative loglikelihood in Equation 3.3, using a model power spec-
trum. We employ an optimization algorithm that supports bounds, like the limited-
memory Broyden–Fletcher–Goldfarb–Shanno scheme (L-BFGS; Byrd et al. 1995) to
maximize the likelihood function, thereby obtaining parameter estimates. We fit the
periodograms with one or two Lorentzians. When in doubt about the most appropri-
ate number of components, we use the Akaike Information Criterion (Akaike, 1974)
to determine whether a model is best described by one or two Lorentzians. For the
Lorentzian components, we use an Astropy model (Lorentz1D) with the same param-
eters as Equation 3.4, and we fit an additional constant with starting value 2, the
expected white noise level in the Leahy normalization. For the initial values of the
Lorentzians, we use an interactive interface that allows to create a reasonable starting
model, but then we do not set boundaries to the parameters other than being positive
definite, and the FWHM being more than 0.001 Hz.

Once we obtain a best-fit model, we use a parametric bootstrap to evaluate the
uncertainties, which involves the following steps:

1. Generate random powers: Randomly simulate powers from the best-fit model,
ensuring that they follow a distribution of χ2

2M/2M , where M is the number of
averaged powers in each bin of the original periodogram. These simulated powers
should scatter around the best-fit model.

2. Fit a model to the random powers, starting from random parameters distributed
within 10% of the real parameters.

3. Bootstrap procedure: Repeat steps 1–2 1,000 times, recording the fit parameters
in every iteration (a bootstrap distribution is obtained for each parameter)

4. Parameter estimates: use the appropriate percentiles from the bootstrap results
of the parameters to compute relevant statistics such as means, two-sided stan-
dard errors, and confidence intervals around estimates. These provide informa-
tion on the uncertainty associated with the parameter estimates based on the sim-
ulated powers. To take into account cases where the fit swaps the two Lorentzian
components, we always order them by central frequency ν0 and, if they both go
to zero, by characteristic frequency νmax. To reject outliers, we calculate the
median and reject points at more than 5 median absolute deviations from the
median.

Table 1 presents the complete set of best-fit parameters derived from our modeling
of the PDS described above (see also in the Appendix 5.4 a table that prensent the
parameter inferences of the model ). Figure 3.5 shows the variation of the total absolute
rms of the features with frequency. The points with upper limits refer to models
where the AIC criterion suggested an advantage in adding a model component, but
the bootstrap procedure returned a 3-σ confidence interval including zero. We use
total rms and not the more customary fractional rms because the total X-ray flux of
M82 is the combination of many X-ray sources, and in particular of both M82 X-1 and
M82 X-2. Therefore, the fractional rms of the features will change randomly based on
which source is more luminous during each observation, while the absolute rms retains
a physical meaning in terms of total variable luminosity, in counts/s.
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From this visualization, two distinct features are clearly identified. One at frequen-
cies below ∼ 0.02 Hz whose rms does not depend on frequency, and one above, with
a clear correlation between rms and frequency, that can confidently be identified with
the QPO from M82 X-1 studied by Strohmayer & Mushotzky (2003); Dewangan et al.
(2006); Mucciarelli et al. (2006) (see below for an additional test of the association).
The increase of absolute rms with frequency follows an approximate ν1/2 law, which
might imply that the frequency is increasing with increasing flux of M82 X-1 (assuming
a constant fractional amplitude).

3.4.4 Energy dependence

Figure 3.6: Fractional rms of the red noise and the QPO in different obsids. Horizontal bars
with caps represent exact energy ranges, vertical bars are 1-σ uncertainties. All variability is
more significant at higher energies

It is interesting to investigate how the features evolve with energy. We divide the
3-80 keV energy band into 8 intervals whose width follows approximately a geometric
sequence but with larger intervals at higher energies to account for the very small
number of high-energy counts. We re-fit the model in each energy band; however, in
most observations, the fit is not robust enough to leave all parameters free. Since there
is no evidence of changes in the shape of the Lorentzian components with energy, only
their normalization, and the Poisson noise level does not depart significantly from 2,
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Figure 3.7: (a) Averaged PDS of the full ∼5 Ms NuSTAR data set on M82. The 3–79 keV
light curve, sampled at ∆t = 0.1 s, was divided into ∼5 000 non-overlapping segments of
1024 s duration. Each segment’s Leahy-normalised periodogram was computed and the set
was averaged to form the final PDS using the Bartlett estimator. This procedure is consis-
tently applied to all PDS shown in this paper. The solid blue curve marks the 99.73% (3σ)
single-trial detection level, computed from the cumulative χ2 distribution with 2M degrees
of freedom (where M is the number of averaged segments) and scaled by the best-fitting
broadband noise model (see Section 3.1). The strong feature at ∼0.73 Hz corresponds to
the 1.37 s pulsation of M82 X-2. The absence of a peak near 30 Hz sets an upper limit of
≲ 2% rms on any quasi-coherent signal at that frequency. Horizontal dotted lines mark 2%
and 3% rms amplitudes. (b) Result of the shift-and-add technique applied to the ∼50 mHz
QPO. Individual 1024 s PDS were aligned on the QPO centroid measured in each segment
and co-added (red histogram). The resulting peak has a quality factor Q ≈ 8. No significant
harmonic is detected at twice the frequency. The black histogram shows an individual PDS
for comparison.

we fix all parameters but the amplitudes of the one/two Lorentzians to their best-fit
values from the total-flux analysis. Through repeating the bootstrap procedure, we get
sensible values for the amplitudes and their uncertainties, and we can calculate the rms
at different energies. Since we are proceeding on an observation-by-observation basis,
we calculate the fractional rms, as we are only interested in the relative variation of
rms with energy. The results are shown in Figure 3.6, and clearly show that the rms
increases with energy for all components.

3.4.5 Search for other QPOs and harmonics
Pasham et al. (2014a) reported the detection of 3- and 5-Hz QPOs from M82, most
probably from M82 X-1, using RXTE data. We now know that there are ∼15 ULXs
between the galaxies M82, M81 and the satellite Holmberg IX (Walton et al., 2022),
all within the 1o field of view of the RXTE/PCA instrument used to detect the QPOs.
Despite M82 X-1 being the brightest at its maximum, all bright ULXs in the field,
including M82 X-1, M82 X-2, Holmberg IX X-1, are known to be transient. This leaves
open the possibility that M82 X-1 is not the source of the twin QPOs, and generally
implies that the 3–5% rms limit measured by Pasham et al. (2014a) is underestimated.

Reproducing the RXTE twin-QPO result with NuSTAR is challenging for several
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reasons. Although the focused optics greatly reduce background compared with RXTE,
the NuSTAR point-spread function still encloses M82 X-1, M82 X-2, and at least one
additional ULX (“X-3”), and its effective area is an order of magnitude smaller. With
these caveats in mind, we averaged all M82 observations discussed above. Because the
PDS is relatively clean above 1 Hz, we included even intervals with poor star-tracker
coverage (Section 3.2); the circumpolar location of M82 almost doubled the usable
exposure time, improving the detection sensitivity by ∼

√
2.

Pulsation check. The 1.37 s pulsation of M82 X-2 is recovered at ≃ 0.73 Hz without
applying barycentric, orbital, or Ṗ corrections. The Doppler smearing across each 1024-
s segment amounts to < 0.3 cycle, so the peak remains well above the 3σ detection
threshold even in the uncorrected PDS. As shown in Figure 3.7, no significant feature
appears at frequencies above the pulsation, and we constrain any quasi-coherent signal
near 30 Hz to ≲ 2% rms.
Additionally, we looked for harmonics of the 50-mHz QPO, in order to compare it to
other known classes of QPOs such as Type-C from BH LMXBs. We used the shift-
and-add technique (Barret et al., 2005) on the longest observing span available, the
series of ObsIDs 80002092002..11 from 2014. We split the observation in 128 s intervals,
calculated the periodogram in each, then averaged 25 such intervals to gain in signal
to noise, creating a series of periodograms, each from 3.2 ks of non-contiguous data.
These were sufficient to track the evolution of the QPO frequency νQPO during the
observations. We calculated the average QPO frequency ν̄QPO and then shifted each
periodogram by an amount corresponding to the νQPO − ν̄QPO , obtaining the average
shape of the QPO. This technique was used successfully to characterize kHz QPOs in
NS LMXBs, and in some cases even to discover the upper kHz QPO (Barret et al.,
2005). We also used a variation of this technique: since we were not looking for a
frequency following a parallel track but for a harmonic, we shifted the periodogram
around 2ν̄QPO, by a double amount. We did not find evidence for a harmonic of the
QPO.
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Symmary Tables

Obsid MJD Exposure (ks) Obs. conditions Phenomenology
80002092002 56680.5 67.4 QPO, pulsations
80002092004 56682.8 92.3 Bkg Flaring QPO, pulsations
80002092006 56685.5 321.1 Bkg Flaring QPO, pulsations
80002092007 56692.2 319.3 Bkg Flaring QPO, pulsations
80002092008 56698.8 35.2 Bkg Flaring QPO, pulsations
80002092009 56699.5 119.6 Bkg Flaring QPO, pulsations
80002092011 56719.7 114.5 Bkg Flaring Flaring, QPO, pulsations
50002019002 57037.9 32.8 Bkg Flaring
50002019004 57041.8 168.2 Bkg Flaring QPO, Flaring
90101005002 57193.6 38.8 Bkg Flaring Flaring
80202020002 57413.8 37.9 Flaring
80202020004 57441.7 32.4 Bkg Flaring
80202020006 57483.4 31.8 Bkg Flaring Flaring
80202020008 57502.8 41.7 Bkg Flaring Flaring
30101045002 57493.3 195.5 QPOs, pulsations
80202020008 57502.8 41.7 Bkg Flaring
30202022002 57542.9 40.3 Bkg Flaring
30202022004 57570.7 48.2
30202022008 57599.0 43.7 Bkg Flaring Flaring
30202022010 57619.4 44.1 Bkg Flaring
90201037002 57641.5 82.5 Pulsations
90202038002 57668.8 46.0 Bkg Flaring QPO
90202038004 57722.6 45.0 Bkg Flaring QPO
30502020002 58691.9 93.0 QPO
30502020004 58701.9 91.5 Flaring
30502021002 58918.1 86.3 QPO, pulsations
30502021004 58929.2 79.8 Bkg Flaring QPO
30502022002 59000.8 90.9 QPO, Fast Flaring
30502022004 59012.6 99.2 Bkg Flaring QPO, Fast flaring
30602028002 59215.2 69.0 Bkg Flaring QPO
30602028004 59226.9 70.8 Bkg Flaring
30602027002 59311.9 73.6 QPO, pulsations
30602027004 59325.3 71.6 Bkg Flaring QPO, pulsations
30702012002 59504.0 128.3 QPO, pulsations
30702012004 59674.3 124.4 QPO
30901038002 60110.6 128.1 Bkg Flaring Flaring
90901332002 60263.9 71.9
90901333002 60275.3 53.7 Bkg Flaring QPO
31001019002 60657.4 133.9 Bkg Flaring QPO, pulsations

Table 3.1: Summary of observing conditions and source phenomenology for all observations
in this work.
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obsid mjd rmsrn νmax,rn rmsqpo ν0,qpo wqpo Qqpo
80002092002 56680.5 0.130(18) 12(4) 0.095(19) 43(16) 6.7(15) 12(8)
80002092004 56682.8 0.122(11) 11.7(28) 0.103(11) 50.4(6) 9.8(17) 10.3(20)
80002092006 56685.5 0.103(4) 6.7(7) 0.127(4) 59.7(7) 26.3(22) 4.5(4)
80002092007 56692.3 0.086(6) 8.4(14) 0.152(5) 71.9(16) 56(5) 2.56(29)
80002092008 56698.8 0.172(19) 68(19)
80002092009 56699.5 0.114(12) 30(8) 0.124(8) 98.3(12) 23(4) 8.4(15)
80002092011 56719.7 0.118(15) 49(17) 0.099(9) 65.6(5) 11.8(17) 11.1(17)
50002019002 57037.9 0.130(8) 31.9(16) 22(4) 2.8(7)
50002019004 57041.8 0.101(11) 12.3(28) 0.114(9) 36(14) 14.1(20) 5.2(27)
90101005002 57193.6 0.063(32) 0.8(5)
80202020002 57413.9 0.079(18) 1.6(6)
80202020004 57441.7 0.269(35) 230(60)
80202020006 57483.4 0.184(9) 47.6(30) 56(9) 1.7(4)
30101045002 57493.3 0.122(4) 3.48(29) 0.161(6) 114.3(14) 42(4) 5.4(6)
80202020008 57502.8 0.153(12) 154.1(22) 28(6) 10.0(26)
30202022004 57570.7 0.069(30) 2.1(12)
30202022006 57597.9 0.08(8) 1.4(7)
30202022008 57599.0 0.055(24) 0.9(7)
30202022010 57619.4 0.055(20) 1.3(6)
90201037002 57641.5 0.265(35) 440(130)
90202038002 57668.8 0.23(4) 30(100) 960(320) 0.07(23)
90202038004 57722.6 0.213(13) 222(10) 166(31) 2.7(6)
30502020002 58692.0 0.256(11) 275(16) 400(50) 1.39(27)
30502020004 58701.9 0.135(9) 0.98(20)
30502021002 58918.2 0.194(8) 116(5) 116(15) 2.01(34)
30502021004 58929.2 0.162(21) 128(35) 0.114(19) 185.7(25) 36(10) 10.1(29)
30502022002 59000.8 0.120(8) 6.8(11) 0.117(8) 46.6(6) 10.9(19) 8.6(16)
30502022004 59012.6 0.096(7) 2.8(6) 0.184(9) 64(4) 69(11) 1.8(4)
30602028002 59215.2 0.192(8) 159(6) 136(18) 2.3(4)
30602028004 59226.9 0.038(14) 0.52(25)
30602027002 59311.9 0.074(11) 5.1(23) 0.196(12) 165(8) 140(27) 2.4(6)
30602027004 59325.3 0.159(19) 67(17) 0.115(12) 91.3(8) 15.2(33) 11.0(27)
30702012002 59504.0 0.106(6) 4.1(6) 0.163(9) 135(4) 75(11) 3.6(6)
30702012004 59674.3 0.13(5) 130(50) 0.15(4) 143(9) 110(40) 2.7(12)
30901038002 60110.6 0.108(7) 0.92(18)
90901332002 60263.9 0.117(10) 4.9(10)
90901333002 60275.3 0.139(8) 6.2(9) 0.157(10) 131.0(19) 33(5) 7.7(13)
31001019002 60657.4 0.089(5) 3.0(4) 0.215(11) 171(10) 240(40) 1.46(31)

Table 3.2: Best-fit values and uncertainties for the red noise and QPO components obtained
in Section bootstrap
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3.5 Discussion

ObsID Instrument Date Exposure Simultaneous
MJD ks NuSTAR ID

16580 ACIS-S 56691.8 47.5 80002092007
17578 ACIS-S 57038.6 10.1 50002019002
16023 ACIS-S 57042.0 10.1 50002019004
18064 ACIS-I 57483.7 25.1 80202020006
18068 ACIS-I 57502.8 25.1 80202020008
18070 ACIS-I 57669.0 25.1 90202038002
18072 ACIS-I 57723.4 25.6 90202038004
26664 ACIS-S 60274.5 40.1 90901333002

Table 3.3: Quasi-simultaneous Chandra and NuSTAR observations used for the QPO identi-
fication.

Our analysis is based on a multi-Lorentzian fit of the periodogram, as is often done
in similar studies from accreting sources (Belloni & Hasinger, 1990). One difference is
that we cannot rely on fractional variability when we study the evolution of the QPO,
as we cannot have a clean view on M82 X-1 using NuSTAR due to the presence of
M82 X-2, and the source flux is unknown. Hereafter, we will use fractional rms only
to compare the strength of the QPO at different energy bands in a given observation,
while we will use the absolute rms (in counts per second) when discussing the evolution
over time.

This source confusion, on a related note, also hinders us from doing detailed mod-
eling of the spectral break and its relation with the QPO frequency (à la Atapin et al.
2019), because the red noise component is produced by both sources.

The identification of the QPO with M82 X-1 is tricky by itself. Most detections
come from missions that do not resolve the two ULXs (Strohmayer & Mushotzky,
2003), such as XMM-Newton and RXTE, although with a good degree of confidence
given the higher flux of M82 X-1 and the change of the QPO strength when carefully
selecting data closer to M82 X-1 in XMM-Newton (Feng & Kaaret, 2007). We looked
for observations having quasi-simultaneous Chandra observations showing a low state
from M82 X-2 and the QPO in the data, and searched the Chandra data themselves
for QPO detections. Most on-axis Chandra observations of M82 are often plagued by
pileup and the sensitivity to any variability was low. We found that the QPO was
present in NuSTAR ObsID 90202038004, with Chandra ObsID 18072 showing a low
state of M82 X-2, and, for the first time, a tentative detection in off-axis Chandra
ObsIDs 17578 and 18064, this time using events firmly associated with M82 X-1, at
a frequency compatible with the detection from the simultaneous NuSTAR ObsIDs
(Figs. 3.8 and 3.9).

The evolution of the 20 − 300mHz QPO from M82 X-1 observed in our 10-year
NuSTAR campaign shows behavior compatible with what was previously observed
for this source (Mucciarelli et al., 2006; Feng & Kaaret, 2007; Atapin et al., 2019),
extending the range of observed frequencies. The low background and hard response
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Figure 3.8: Simultaneous detections of the QPO in NuSTAR and Chandra data, showing a
clear association with M82 X-1

NuSTAR HEW

X-2
X-1

Figure 3.9: Image of Chandra ObsID 18072, simultaneous to NuSTAR ObsID 90202038004.
Blue circles indicate the 7 ULXs in the catalogue by Liu & Bregman (2005). The QPO is sig-
nificantly detected in NuSTAR data and not in Chandra data of any source, but the Chandra
image shows that the emission is dominated by M82 X-1, while M82 X-2 is undetected.
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of NuSTAR, together with our power spectral cleaning procedure, allows for a better
modeling of the red noise component of the power spectrum and a systematic analysis
of the evolution of the QPO using almost 3 Ms of exposure.

Low-frequency QPOs are observed in all classes of accreting sources (Wijnands &
van der Klis, 1999). In particular, NS and BH binaries have a number of low-frequency
features spanning the frequency range ∼0.001–50Hz. Some evolution of the QPO
frequency over time is a hallmark of almost all classes of QPOs (van der Klis, 2006;
Motta et al., 2016), and in particular, all classes of low-frequency QPOs. Typically,
the absolute rms is linearly correlated with flux, with the fractional rms being stable
or slightly decreasing. Also the QPO frequency is often seen correlating with the flux
on short time scales, while the correlation is broken on long time scales (the so-called
“parallel tracks” van der Klis, 2006). At higher energies, the characteristic frequency
does not change significantly, while their fractional rms generally increases.

One class of QPOs that can naturally be compared with ours is Type-C QPOs from
BH LMXBs, the most common oscillatory pattern in this class of sources. They start
to appear in the low-hard state and their frequency generally increases as the luminos-
ity (and probably the mass accretion rate) increases, going through the intermediate
states that lead to the high-soft state and sometimes the so-called ultraluminous state.
These intermediate states are also associated with the presence of transient jet ejec-
tions. Type-C QPOs are generally also accompanied by broad red noise (or flat-top)
components, usually also modeled with Lorentzians whose characteristic frequencies
(Eq. 3.4) evolve in parallel with that of the QPO, and one or more harmonics. Models
for these QPOs often involve Lense-Thirring precession around a rotating BH, and put
their frequency in relation with other oscillatory components such as broadband noise
or high-frequency QPOs. These models use different approaches from single-particle
motion (the original relativistic precession model, or RPM; Stella & Vietri 1999), to
precessing rings (e.g. Psaltis & Norman, 2000), to entire regions of the disk that precess
like a solid body (Ingram & Done 2011, see also Ingram & Motta 2019 for a review).

Interpreting M82 X-1’s QPO as a Type-C QPO, one can also be tempted to go one
step further: all time scales around a gravitating body scale with mass, and notably this
includes orbital frequencies. The fact that this QPO are about an order of magnitude
slower than typical Type-C QPOs leads to a mass estimate of an order of magnitude
above stellar-mass BHs, in the regime of small intermediate-mass BHs. This kind of
scaling is often attempted, using different variability components, and in the case of
M82 X-1 this has often led to claims of IMBH origin for this source (e.g. Strohmayer
& Mushotzky, 2003; Pasham et al., 2014a).

However, similar claims were made for other sources. One such source is M82 X-2,
for which Feng et al. (2010) estimated a mass of 12,000–43,000 M⊙ by rescaling the
Chandra-detected mHz QPOs to Type-C QPOs. However, this famously turned out to
be a pulsar. It is generally difficult to compare QPO phenomena from different objects,
and there is a wealth of QPO phenomena on many time scales in stellar mass compact
objects, including at even lower frequencies. One example is the mHz QPO observed
in low-mass NS and BH X-ray binaries (e.g. Revnivtsev et al., 2001; Xiao et al., 2024).

Moreover, we note that the spectrum of M82 X-1 does not depart significantly from
the bulk of ULXs (Brightman et al., 2020), that are increasingly identified as super-
Eddington accreting stellar-mass objects. In some cases the detection of pulsations
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that univoquely identify them as NSs, but in general, their spectral shapes do not
resemble the bulk of sub-Eddington accreting objects, and frequently show signatures
of the strong winds expected from super-Eddington accretion (Pinto & Walton, 2023).
In particular, NGC 5907 X-1 has a comparable flux to M82 X-1 despite being a NS
(Israel et al., 2017; Fürst et al., 2023).

In addition, the decrease of the coherence of the M82 X-1 QPO with frequency
observed here (Fig. 3.5) is puzzling, and unlike what is observed in Type-C QPOs
where the coherence tends to generally increase with frequency, at least up to the
onset of the soft state where these oscillations disappear. Admittedly, this might be an
observational bias: the integration time required to detect the QPOmight just be longer
than the variation time for the frequency. We need thousands of oscillations of the
QPO before being able to detect it, and if the frequency is changing rapidly this would
artificially increase the measured width, and so its quality factor. A clear example of
this are ObsID 80002092006 and 80002092007, where using the shift-and-add technique
clearly improves the quality factor (Section 3.4.5). In an effort to determine if this
played a role, we used the shift-and-add technique in all observations with a strong QPO
and at least ∼90 ks exposure. The technique always improved the Q factor throughout
the frequency range, but without significant advantages for the higher frequencies.

Interestingly, bright accreting pulsars also show low-frequency QPOs, with a phe-
nomenology and characteristic frequencies similar to what we observe here. For these
sources, low-frequency QPOs are often hypothesized to arise from the Keplerian fre-
quency at some important radius, or from a beat between the Keplerian frequency at
the truncation radius and the spin frequency (beat frequency model, Alpar & Shaham
1985). Manikantan et al. (2024) provides a table of the energy-dependent QPO pa-
rameters for a number of sources over multiple observations. V0332+53 is the only
one with sufficient observations to see the evolution of the quality factor over a wide
range of QPO frequencies, and Q is interestingly seen to decrease between 10 and 2
with increasing frequency, as we observe for M82 X-1. As a general rule, we argue
against using QPOs alone to infer the mass of accreting objects. The QPOs studied in
this work are compatible with phenomenology observed in accreting sources of different
kinds, including NSs.

The non-detection of the twin 3–5Hz QPOs reported by Pasham et al. (2014a) can
be explained in various ways. First of all, the oscillations might be transient, and have
disappeared over time: the result by Pasham integrated many years of data. It is also
possible that the filtering of “flaring” observations by Pasham et al. (2014a), which
reduced considerably the time intervals analyzed to obtain their average periodogram,
was more aggressive than ours, and that we need more observations without flaring or
high variability to detect those QPOs with NuSTAR. Another possibility might even
be that the source of QPOs is not in M82 after all: the field of view of RXTE is one
degree, which includes three ULX host galaxies (M82, M81, Holmberg IX) with at least
9 ULXs (Liu & Bregman, 2005).
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3.6 Conclusions
We made an extensive, 10-year study of the QPOs from M82 X-1 using NuSTAR. Using
archival Chandra data, we made a robust identification of the 50-300 Hz QPO with
M82 X-1, which confirms previous evidence. Thanks to the sensitive response at and
above 10 keV, we were able to detect the QPO over ∼70% of the 3 Ms of existing
M82 observations, characterizing its behavior. We used a novel approach to cleaning
the periodogram in order to better fit the low-frequency component and get reliable
fit parameters for the QPO as well. The QPO tends to decrease its coherence as its
frequency increases, but it is not clear whether this is due to fast variations of the
frequency that we are not able to follow due to the long exposure required by the
detection at these count rates. We note that LFQPOs in this range of frequencies and
with similar behavior are observed in many accreting systems, including NSs, so that
any inference on the mass of the compact object based on the frequency of the QPOs
should be taken with a grain of salt.

3.7 Alternative periodogram analysis: Bartlett + Lomb-
Scargle

Another widely used tool for detecting and characterizing periodic signals is the Lomb-
Scargle periodogram (Lomb, 1976; Scargle, 1982). which has proven to be more effective
in detecting periodic patterns even when observations are unevenly spaced, providing
a reliable solution for analyzing time series data in astronomy and diverse scientific
fields as well. The Lomb-Scargle allows for covering a wide range of low frequencies in
comparison to the Bartlett periodogram, allowing for a more comprehensive analysis
of low-frequency signals.

The only downside of this periodogram is that its powers are not guaranteed to
be uncorrelated, and the assumption of χ2

2-distributed powers is not as solid as for
the periodogram. For a comprehensive view on modern algorithms to compute the
Lomb-Scargle periodogram and their limitations, see VanderPlas (2018).

Nonetheless, the Lomb-Scargle periodogram is very useful for the analysis of un-
evenly sampled data, including light curves with missing data. Our original approach
to the analysis of the datasets in this paper was a hybrid approach, using the Bartlett
periodogram and the Lomb-Scargle periodogram at the same time. We write it here
because it could be an interesting inspiration for future works and, in any case, it rep-
resents an alternative (even if not completely independent) approach to the analysis
presented in this paper. We calculated the Lomb-Scargle periodogram simply discard-
ing light curve bins outside GTIs, and avoiding oversampling (i.e., using the same
spectral resolution of the FFT), which limited the correlations between powers. Our
sample time was 0.1, giving 5 Hz as the Nyquist frequency, but we found that the
periodogram departed significantly from the expected noise level of 2 when reaching
about half the Nyquist frequency. Otherwise, the Lomb-Scargle and the Bartlett pe-
riodograms have very good overlap in the common frequency ranges, and we decided
to eliminate the frequencies above 1 Hz from the Lomb-Scargle periodogram for extra
caution. We checked that the assumption of χ2

2 distributed powers is justified for our
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case by plotting the distribution of the Lomb-Scargle powers of simulated and real data
similarly to 3.3. Moreover, even though in theory it should not have been needed, we
blacklisted the frequencies corresponding to the orbital occultations similarly to the
description in section 3.3. The raw periodograms have very different frequency reso-
lutions, but we rebinned both periodograms with geometrically increasing frequency
bin sizes, and defined a threshold frequency νthr where the frequency resolution of the
rebinned Lomb-Scargle periodogram reached the frequency resolution of the Bartlett
periodogram. From that point on, we used a hybrid periodogram containing the Lomb-
Scargle powers below νthr and the Bartlett ones above. The periodogram was charac-
terized by the power values and the number of averaged powers, either from rebinning
or – in the case of the Bartlett one – averaging of multiple periodograms.

We proceeded to fit the multi-Lorentzian model of Section 3.4.3, with the same
methods, to this hybrid periodogram. Indeed, the results using this alternative method
are compatible with those obtained for the single filtered periodogram in Section 3.4.3.



Chapter 4

Deep Learning Pipeline for Compact Source
Detection in Planck Maps

4.1 Introduction and Context
Mapping the cosmic microwave background (CMB) requires separation of the CMB
signal from foreground emissions and compact sources. Missions such as WMAP and
Planck have conducted full-sky surveys across microwave to submillimeter wavelengths,
providing extensive catalogs of embedded compact sources. WMAP’s nine-year analysis
identified numerous extragalactic sources in the microwave sky Bennett et al. (2013),
and the Planck mission produced nine all-sky maps (30 to 857 GHz) containing not only
the CMB signal but also a complex mixture of foreground emissions: diffuse Galactic
radiation (especially thermal dust at 857 GHz), the cosmic infrared background (CIB)
from unresolved distant galaxies, and various compact sources (Collaboration, 2014;
Bonavera et al., 2021). The Planck Catalogues of Compact Sources (PCCS) document
a vast array of compact objects that contribute to contamination in CMB maps Ade
et al. (2014, 2016).

Planck released two PCCS versions: the first, derived from its nominal 15-month
mission covering frequencies from 30 to 857 GHz, and a subsequent expanded version
incorporating data from the entire mission Ade et al. (2016). These catalogs list tens
of thousands of Galactic and extragalactic compact sources, including cold clumps,
dusty star-forming galaxies, and blazars, which complicate the extraction of the CMB
signal Ade et al. (2014, 2016). Detecting fainter sources, particularly at the highest
frequency (857 GHz), presents a significant challenge due to strong emission from
Galactic dust. These sources are often embedded in bright and highly non-uniform
Galactic emission, which can drown out or mimic their signals, especially in crowded
sky regions. Developing methods to reliably identify these faint sources and measure
their flux (brightness) is crucial for catalog completeness and for foreground separation.

The Mexican Hat Wavelet 2 (MHW2) filter has been widely used for the HFI
channels, including the construction of the first Planck Catalogue of Compact Sources
(PCCS) (Ade et al., 2014). Wavelet filters enhance structures of the same size as the in-
strument’s point-spread function while suppressing large-scale background variations.
Applying the MHW2 filter converts a sky map into a wavelet space where compact
objects stand out with higher signal-to-noise. However, a wavelet assumes a particu-
lar shape for both the source and background, so if the actual background is highly
structured—such as filamentary cirrus clouds of dust—the filter might not perfectly
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remove it, leading to false detections. Moreover, the MHW2 algorithm can introduce
slight ringing artifacts around real sources due to its oscillating kernel (Akrami et al.,
2020a), requiring careful handling to avoid misidentifications.

In the second Planck catalogue (PCCS2), the collaboration adopted a dual-pipeline
strategy (Ade et al., 2016):

1. MHW2 (updated implementation) for the six HFI frequencies (100–857GHz);

2. Bayesian PowellSnakes1

Both pipelines generate single-frequency detection lists which are later merged and
validated. While wavelet filtering efficiently boosts point sources, it still assumes a fixed
analytic kernel; PwS, in contrast, models the local background and instrument noise
jointly with the source profile, improving reliability at low signal-to-noise. Nevertheless,
classical filters (whether MHW2 or PwS) operate per frequency map and cannot exploit
spectral coherence across bands (Akrami et al., 2020b).

To improve reliability, the Planck collaboration introduced the Bayesian Extraction
and Estimation Package (BeeP) (Akrami et al., 2020a). BeeP applies a multi-frequency
Bayesian approach: it simultaneously analyzes Planck maps at 857 GHz, 545 GHz, and
353 GHz (the highest HFI channels) along with an external 3000 GHz IRIS map to
identify sources that exhibit consistent spectral signatures. BeeP assumes that most
857 GHz sources emit like warm dust, producing detectable emission in adjacent bands.
Instead of simply filtering out large-scale emission, BeeP explicitly models the level and
properties of the surrounding diffuse emission, incorporating it into the detection pro-
cess. This helps reduce confusion noise—the risk of mistaking a clump of dust for a
compact source. The algorithm returns not only detections but also fitted parameters
for each source, providing flux measurements at each frequency (after background sub-
traction) and fitting a modified blackbody curve to characterize the source’s spectral
energy distribution. It also assigns a reliability metric to each detection, indicating the
probability that the source is genuine given the surrounding cirrus noise. While the
Bayesian approach results in a more physically informed catalog, it remains computa-
tionally intensive and depends on an assumed spectral model (dust emission), which
may not capture all types of sources.

In recent years, deep learning techniques have emerged as powerful alternatives for
source detection in astronomy. Unlike fixed analytical filters, learning-based methods
can automatically capture intricate signal patterns. Baron (2019) provides a review of
the expanding role of machine learning in astrophysics, highlighting that deep neural
networks can often outperform traditional algorithms by learning from large datasets.

[fix Citation ] Convolutional Neural Networks (CNNs), in particular, have shown
promise for detecting and classifying astrophysical sources due to their ability to
recognize spatial features (Casas & et al., 2022). For example, Bonjean (2020)ap-
plied a U-Net CNN to Planck multi-frequency maps to detect galaxy clusters via
the Sunyaev–Zel’dovich (SZ) effect.The CNN recovered known Planck clusters and
identified thousands of new SZ cluster candidates, demonstrating the effectiveness
of deep learning in extracting faint signals that classical methods might miss Bon-
jean (2020). Beyond clusters, CNNs have been used for classifying point sources in

1A multi-frequency, Bayesian-inference algorithm; see Carvalho et al. (2009) (PwS) for the three
LFI channels (30–70GHz) and for polarized-flux estimates.
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surveys; attention mechanisms and advanced architectures have been integrated to
boost performance.Bhavanam et al. (2024), for instance, enhanced a CNN-based clas-
sifier (MargNet) with attention layers and Vision Transformer components, yielding
improved accuracy in distinguishing stars, quasars, and compact galaxies. This illus-
trates the benefit of allowing the network to focus on relevant features via attention,
an idea that can be extended to point-source detection in confused fields. Meanwhile,
unsupervised and generative models are being explored to assist CNN-based detec-
tion. Gagliano & Villar (2023) employed a variational autoencoder (VAE) for anomaly
detection in galaxy data, showing that VAEs can learn the underlying distribution of as-
tronomical images and flag unusual sources. Such generative models can be repurposed
to learn generic sky backgrounds, helping to isolate point-source signals. Finally, semi-
supervised learning techniques have begun to reduce the need for large labeled datasets
in astronomy. Sohn et al. (2020) introduced FixMatch, a semi-supervised framework
that combines consistency regularization and pseudo-labeling, which has been highly
successful in general image classification. Astronomical applications are now adopt-
ing similar ideas – for example, Slijepcevic et al. (2022) applied semi-supervised and
self-supervised learning to radio galaxy morphology classification, greatly reducing the
required training labels. These advances suggest that a hybrid approach (combining
unsupervised pre-training, semi-supervised learning, and supervised CNN detection)
could significantly improve compact source detection in CMB maps. Our work builds
on this prior art, bringing together a CNN with attention mechanisms, a VAE for fea-
ture learning, and a semi-supervised training scheme to push detection limits in the
challenging 857 GHz Planck band.

The next step was MultiPoSeIDoN (Casas & et al., 2022), a multi-frequency CNN
designed to leverage information across several Planck channels simultaneously. Multi-
PoSeIDoN uses a U-Net based architecture to perform image segmentation, essentially
labeling pixels that contain a source across multiple map layers. Two versions were
explored: one assuming sources have a flat spectrum across bands, and another allow-
ing for a realistic spectral shape (so it looks at three frequency maps and learns the
typical frequency-dependent signature of sources). When evaluated on realistic simula-
tions at frequencies 143, 217, and 353 GHz, MultiPoSeIDoN showed impressive gains
over traditional filtering. For instance, using a detection threshold corresponding to
90% completeness (meaning 90% of true sources above a certain flux are detected), the
neural network was able to detect sources roughly as faint as 60–80•mJy, whereas the
wavelet-based filters required sources to be brighter (on the order of ∼ 100mJy or more)
to reach the same completeness(Casas & et al., 2022). In all cases, the CNN produced
far fewer spurious detections (false positives) than the wavelet method at comparable
detection levels. Furthermore, the fluxes of sources recovered by the neural network
were closer to the true values – the network learned to output a more accurate flux
estimate for each source, whereas the wavelet filter tended to underestimate fluxes of
faint objects or struggled in the presence of strong background noise (Casas & et al.,
2022). These results highlight that deep learning can adapt to complex background
patterns and intrinsically combine multi-scale information, giving it an edge in both
finding and characterizing dim sources in Planck maps.

Building on this progress, our work focuses on developing a deep learning framework
for detecting compact sources specifically in the Planck HFI 857 GHz maps. This is
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a particularly challenging case due to the bright Galactic emission at 857 GHz, but it
is also scientifically rich, as this band contains many dusty galaxies and cold clumps.
Our approach follows the general strategy of training a convolutional neural network
on simulated sky “patches” so that it learns to identify point sources and estimate
their fluxes. We describe below the key components of our method: the preparation
of training data, the network architecture (which includes attention mechanisms and
a Transformer module), the training procedure with a hybrid loss function, and the
evaluation methodology.

4.2 Methodology

Our experiments are based on submillimeter astronomical sky images containing both
faint compact sources and background noise. The dataset consists of large sky maps
from a submillimeter survey, which we subdivide into smaller fixed-size image patches
for analysis. Each patch is labeled as either “source” (containing at least one com-
pact source) or “no-source” (containing no detectable source). The labeled set was
constructed using an existing source catalog from the survey : patches centered on
cataloged source positions are marked as positive examples, while patches extracted
from blank regions (with no known sources) serve as negative examples. To avoid am-
biguity, positive patches are chosen such that the source lies within the central region
of the patch (minimizing cases where a source is near the edge), and negative patches
are taken from regions well away from any known source. This results in a curated
collection of labeled patches reflecting the two classes of interest.

Because genuine compact sources are relatively rare in wide-field sky images, the
class distribution in the raw data is highly imbalanced – there are many more empty
sky patches than source-containing patches. We address this by stratified sampling
when splitting the data into training, validation, and test sets. In particular, we ensure
that each subset (train/validation/test) contains a representative proportion of source
vs. no-source patches, so that performance can be fairly evaluated on both classes. The
final training set comprises 52166 of labeled patches, 50% of them are patches with
sources listed with high reliability in the BeeP catalog, and the other half of the set
is randomly sampled at a distance ≥ 1° away from any source of the PCCS2 and its
extension PCCS2E catalogs. The test set is kept aside with a balanced mix of positives
and negatives for unbiased evaluation.

In addition to the labeled data, we leverage a large pool of unlabeled image patches
drawn from the same survey. These unlabeled patches are taken from regions of the
sky images that have not been exhaustively labeled (they may contain undetected
sources or just noise ; we treat them as having no ground-truth labels). The unlabeled
dataset greatly outnumbers the labeled set, which is typical in astronomy – only a
small fraction of objects are confirmed or annotated, while vast areas of the sky remain
unlabeled. By using this unlabeled pool in a semi-supervised learning framework, we
aim to improve the model’s sensitivity to faint sources without requiring additional
manual annotations.

Each patch in our dataset is a grayscale image (intensity map) at submillimeter
wavelength with dimensions of (64×64) pixels ( with a field of viewo 1.8◦ covering
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a region of sky sufficiently large to contain a compact source and surrounding back-
ground). The telescope’s point spread function causes compact sources to appear as
roughly point-like blobs a few pixels wide. Pixel values represent flux density and typ-
ically follow a noisy background distribution with occasional peaks for sources. Given
the nature of the instrumentation and sky background, noise in these images is ap-
proximately Gaussian with spatially varying standard deviation (due to instrumental
and atmospheric effects). This context motivates some of our pre-processing steps, as
described next.

(a) 25% : Faint foreground emission (b) 40% : Medium foreground emission

(c) 65% : bright foreground emission

Figure 4.1: Mask regions by defined by three foreground emission levels

4.3 Pre-processing
We apply a series of pre-processing steps to normalize and augment the data before
it is fed into the neural network. These steps ensure that the input patches are on a
consistent scale and improve the model’s ability to generalize. The key pre-processing
operations are described in the following paragraphs.

Patch extraction and alignment. Patches are extracted using a Gnomonic Projection2
Patches These patches are centered such that any potential, if present, is roughly in the

2A gnomonic projection is used to project a spherical surface onto a plane; the center of projection
is the sphere’s center, and the surface can be projected onto any plane not passing for the center,
typically tangential to the surface.
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middle of the patch. Centering the sources in positive patches is not strictly required
for classification, but it provides a consistent reference frame for the model and avoids
issues where a source might be cut off at a patch boundary.

Background subtraction and normalization. Prior to training, each patch undergoes
Gaussian blurring (kernel 3×3, σ = 1) to suppress high-frequency noise. The blurred
patch is then standardized by subtracting its mean pixel value and dividing by its
standard deviation, enhancing robustness to background variations. Labeled patches
are divided into training (70 %), validation (15 %), and test (15 %) sets via stratified
sampling (?), ensuring that positive and negative classes are proportionally represented
in every subset.

Region Masks. (Figure 4.1)To cope with different foreground levels across the Planck
sky, we slice the full-sky map into three partly overlapping brightness zones. Roughly
25% of the sky falls in the ”faint” zone, about 40% in the ”medium, and 65% in the
”bright”. The boundaries are drawn with a mask built from the Planck 857 Ghz fore-
ground components—dust, free-free, and synchrotron—and depend only on the local
integrated intensity of those components. The faint region therefore picks out the high-
latitude, low-emission patches, while the bright region hugs the Galactic plane where
dust light blazes most strongly. Splitting the data this way matters because back-
ground brightness strongly influences how easily a network can spot compact sources.
Training a separate model on each brightness tier lets the network focus on the noise
characteristics that are unique to that tier, instead of trying to learn a single compro-
mise that works everywhere. In practice, this regional training strategy yields more
dependable detections and keeps the false-positive rate in check even in the glare of
the Galactic plane.

Pre-training with Variational Auto-Encoder (VAE). A Variational Auto-Encoder
(VAE) is employed for pre-training to learn a compressed representation of the sky
patches. The VAE architecture consists of: Encoder : Two convolutional blocks (each
with two 3x3 convolutions, batch normalization, and ReLU activation) followed by
max-pooling, reducing the spatial dimensions. The bottleneck outputs the mean and
log-variance of a 64-dimensional latent space. Decoder : Two transposed convolutional
blocks to reconstruct the input patch, mirroring the encoder structure. The VAE is
designed to capture the underlying distribution of the patches, providing a robust
initialization for subsequent steps.

Data augmentation. To increase the effective size of the training dataset and make
the model more robust, we employ data augmentation on the fly during training. Sim-
ple geometric transformations that preserve the semantics of the image are applied
to patches. For labeled training patches, we randomly flip images horizontally and
vertically, and also rotate by 90, 180, or 270 degrees. These transformations are appro-
priate because astronomical sources at these wavelengths have no inherent orientation,
so a source rotated or flipped is still a valid example of the same class. We also apply
small random translations (shifts by a few pixels) to simulate slight mis-centering, and
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occasional random Gaussian noise added to mimic instrumental noise variation. These
augmentations help the model not to overfit to the exact positions or noise realization
of sources in the training set. For the unlabeled patches, augmentation plays a central
role in the semi-supervised strategy : we will use a distinction between “weak” and
“strong” augmentations as part of the FixMatch algorithm. In brief, weak augmenta-
tions are a subset of the above operations (e.g. flips and minor shifts), whereas strong
augmentations include more aggressive transformations (such as larger rotations, in-
tensity jittering, or Cutout mask augmentation). All augmented versions of patches
are generated on-the-fly each epoch, ensuring the model sees a new variation of each
patch each time, which improves generalization.

After these pre-processing steps, the labeled and unlabeled patches are ready for
input into the model. The normalization ensures that the network’s weights can learn
on a consistent intensity scale, and the augmentations expose the model to a wide
range of plausible variations, which is particularly important given the limited number
of labeled examples. Next, we describe the architecture of the deep learning model
used for classification of these patches.

4.4 Model Architecture
Our model 4.2 follows a U-Net style convolutional encoder-decoder architecture with
the addition of attention gates to enhance feature focus. The U-Net architecture, orig-
inally introduced by Ronneberger et al. (2015) for biomedical image segmentation, is
well-suited to our task because it combines multi-scale feature extraction with precise
localization through skip connections. In essence, the network has an encoder (down-
sampling path) that learns a hierarchy of features from the input patch, and a decoder
(upsampling path) that reconstructs a spatial output using those features, with short-
cuts connecting encoder and decoder layers of the same scale. This design allows the
model to capture the context of an entire patch (important for distinguishing noise fluc-
tuations from real sources) while preserving fine-grained spatial information (important
for pinpointing the presence of a small source in the patch).

4.4.1 Training Strategy
Training the model for reliable source detection is challenging given the limited avail-
ability od ground truth data. More that 40 % of entries in the PCCS2 catalog are
suspected to be spurious. To cope with this issue, we employ a semi-supervised learn-
ing strategy to allow the model to learn from abundant unlabeled patches alongside
the labeled ones. The less reliable sources will be treated as unlabeled data, enabling
the model to be fine-tuned for improved performance and adaptability.

Supervised training

We perform standard supervised learning on the labeled dataset. The model’s predic-
tions for the patches are compared to the known ground-truth labels (1 for source, 0 for
no-source) using a binary cross-entropy (BCE) loss. Binary cross-entropy is appropriate
for a single-probability Ramos et al. (2018). Labeled patches are augmented with the



76Chapter 4. Deep Learning Pipeline for Compact Source Detection in Planck Maps

Figure 4.2: Attention U-Net architecture highlighting the flow through encoders, bottleneck,
attention gates, and decoders for enhanced image processing tasks.
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“weak” transformations (random flips/rotations as described in pre-processing) during
training to add variation, but their true labels remain the supervisory signal.

Semi-Supervised Training (FixMatch)

We leverage a large pool of unlabeled data with FixMatch strategy Sohn et al. (2020).
which combines pseudo-labeling and consistency regularization. The idea is to generate
a pseudo-label for an unlabeled example using the model’s own prediction (when con-
fident), and then enforce that the model’s prediction remains consistent under a more
distorted view of that same example. For each unlabeled patch in a training batch, we
proceed as follows :

• Weak Augmentation and Prediction : We first, apply a weak augmentation to
the unlabeled patch using light transformations (e.g., a small random rotation
or flip). Pass this augmented patch through the model to obtain a predicted
probability for the “source present” class.

• Pseudo-Label Generation: If the model’s predicted probability is very high
(above 0.95) for a source, we assign a pseudo-label of 1 (source present) to the
patch. If the predicted probability is very low (below 0.05), we assign a pseudo-
label of 0 (no source). These thresholds (0.95/0.05) reflect a high confidence
requirement. Predictions that fall in between (i.e., uncertain cases) are not given
any pseudo-label and the patch is skipped for the unsupervised loss.

• Strong Augmentation & Consistency: Next, we apply a strong augmentation to
the same unlabeled patch (for example, heavy random rotations, crops, or color
distortions) and pass this augmented patch through the network, yielding a new
prediction pstrong. We then enforce consistency between the network’s output on
this strongly augmented input and the pseudo-label ŷ obtained from the weakly
augmented input.

• Consistency Prediction: Feed the strongly augmented patch into the model to
obtain a new prediction (a probability of source present).

• Unsupervised Consistency Loss: If a pseudo-label was assigned in step 2, com-
pute a loss that penalizes any discrepancy between the model’s prediction from
step 4 and the pseudo-label. We use binary cross-entropy for this loss, treating
the pseudo-label as the ground truth for the strongly augmented input.

Through this training strategy, the model learns from the ground-truth labels on the
bright, clear examples and simultaneously from the vast number of unlabeled examples
by enforcing consistency on those. The end result is a model that can detect compact
sources with higher sensitivity than would be possible using purely supervised training
on the small and incomplete labeled dataset. We next discuss how we evaluate the
trained model’s performance in a quantitative manner.
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Figure 4.3: Four representative Planck HFI 857 GHz sky views with catalogue overlays. The
sphere view represents the full sky with all PCCS2/E catalog sources . Red triangles. mark
PCCS2/E sources that our pipeline detects, while blue circles mark sources the pipeline does
not detect. Even in the most crowded and bright‐foreground regions (upper-right panel), red
symbols dominate, showing that the network still recovers the majority of catalogue sources
despite severe source confusion and diffuse emission. In the cleaner fields (lower panels),
virtually all catalogue sources are detected.

Regional Stratification

One challenge in our project is that the images come from multiple distinct sky regions,
each with its a different characteristics (for example, different background noise levels,
source densities, or artifact rates). A single model trained on all regions might struggle
to accommodate these differences. To address this, we employ a regional stratification
strategy: we divide the data into three regional subsets and train a separate model
for each region. In practice, the images were sorted according to their region of origin.
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We devided the labeled and unlabeled data into into three groups: Region A, Region
B, and Region C. This grouping ensured that each subset concontained images with
similar astronomical conditions.

We replicated our entire training pipeline for each of these region-specific subsets,
training three models (one per region) with identical architecture and hyperparame-
ters. All models were initialized with the same encoder pretrained as a variational
autoencoder (VAE) on the combined unlabeled dataset from all regions, providing a
common baseline of general features. After this shared initialization, each model was
trained independently on its own region’s data with no further weight sharing. This
approach offered a balance between general feature learning and region-specific spe-
cialization: the shared initialization captured broad features, while the independent
training allowed each model to focus on the nuances of its region.

As a result, each model specialized in the particular characteristics of its region. For
instance, the model trained on Region A learned to recognize Region A’s typical noise
patterns and source appearances without being confused by the much higher density of
sources in Region B. Similarly, the Region B model could focus on its own conditions
without interference from Region A’s attributes. By isolating the training by region, we
hypothesized that these specialist models would outperform a single generalized model,
which would have to compromise when dealing with very different data distributions.

Preliminary experiments supported this approach. Each region-specific model achieved
a higher F1 score on its own region’s validation set than the single model trained on
all regions combined achieved on that same region’s data. These results validated our
hypothesis that stratifying the training by region can capture region-specific details
more effectively.

Ensemble Strategy

After training the three regional models, the next step is to combine their outputs to
obtain the final detection results for the entire survey. We achieve this using an ensem-
ble strategy that leverages all three models’ predictions for each image. In particular,
we adopt a strict ’AND’ ensemble approach : a patch is classified as a source only if all
the corresponding regional models of the regions it belongs to predict it as a source.

For each test image, we run all three regional models and then perform a pixel-wise
logical AND on their predicted binary masks. In other words, a pixel is labeled as a
source in the final output only if all three models agree that it is a source. This con-
servative fusion sharply reduces false positives, as spurious detections from individual
models are unlikely to align, at least in the overlapped areas. Computationally, the
ensemble is efficient: predictions are parallelized, and combining outputs requires only
simple logical operations.

4.5 Results and Conclusions
The proposed pipeline achieves excellent detection performance across the sky. By
enforcing consensus among specialized models, we obtained a highly reliable catalogue
of sources. The best validation F1 scores (0.96, 0.95, and 0.93 for faint, medium,
and bright regions, respectively) and the ensemble’s test F1 score of 0.96 testify to



80Chapter 4. Deep Learning Pipeline for Compact Source Detection in Planck Maps

Table 4.1: Detection efficiency of the strict–AND ensemble for the two reliability classes and
for the full set of PCCS2 & PCCS2E catalogs entries. “Detected’’ counts correspond to
sources flagged by the pipeline; efficiency is the fraction of detected to total sources in each
class.

Reliability class (BEEP) Total sources Detected (%)
High 26 083 24 730 94.8
Low 22 098 14 013 63.4
Total 48 181 38 743 80.4

the effective of identifying most real sources (high recall), while supressing spurious
detections to a low level (high precision.). Table 4.1 summarizes the detection efficiency
as a function of the Planck reliability class. Quantitatively, the detection rate of bright
sources is around 95% in all cases. Spurious detections in each class are controlled at
or below the prescribed reliability levels by construction.

Taken together, these results indicate that our semi-supervised, regionally-specialized
pipeline is both sensitive and robust. Even in the most challenging parts of the sky
(near the Galactic plane), The strict-AND ensemble effectively eliminates unreliable
candidates, yielding an output catalog that is self-consistent and stable. Overall, our
method recovers nearly all relevant PCCS2/E objects while introducing only a handful
of new candidates.

Conclusion

This work introduces an end-to-end deep-learning pipeline for blind detection of com-
pact sources in CMB temperature maps. The sequence begins with an unsupervised
VAE that learns generic sky features without labels, moves to FixMatch for leverag-
ing the abundant unlabeled patches, trains separate CNNs tailored to low-, mid-, and
high-foreground zones, and finishes with a strict-consensus ensemble that filters out
spurious sources. Benchmarking on real Planck PCCS2/PCCS2E data shows that the
system retains more than 95% of catalogued sources even under the most stringent
reliability cuts (high reliable detected sources), while flagging a small set of additional
high-confidence candidates worthy of follow-up (low reliable detected sources). Taken
together, the results demonstrate that modern deep-learning techniques provide a ro-
bust and scalable solution for extragalactic point-source detection in current and forth-
coming cosmological surveys.



Chapter 5

High-Resolution Spectral Analysis of Unevenly
Spaced Data Using a Regularization Approach

5.1 Introduction
Frequency-domain analysis is a core method for time series, showing how signal power
is distributed over different frequencies. Astronomers routinely use the power spectral
density (PDS) of light curves to characterize their variability in light curves (e.g. identi-
fying periodic or quasi-periodic signals superposed on stochastic noise). Classical spec-
tral estimation methods, such as the Fourier transform and periodogram, assume data
are evenly sampled in time. However, unevenly spaced data—common in astronomy
due to interruptions in observations (satellite orbits, Earth occultations, etc.)—violate
this assumption and pose significant challenges. Irregular sampling complicates the
efficient computation of spectra (the fast Fourier transform cannot be directly applied)
and, more importantly, makes the statistical interpretation of periodograms difficult
(Vaughan et al., 2011).

In other words, the standard periodogram’s distribution under noise is not well-
defined for uneven sampling (Gúrpide & Middleton, 2025), which hampers reliable
detection of true signals. Astronomical X-ray light curves exemplify these issues: they
often consist of gapped or uneven observations and exhibit strong red noise (stochastic
variability), so spurious peaks can arise if standard methods are applied incautiously.

To handle irregular timing, the Lomb-Scargle periodogram is commonly employed
as an extension of the classical periodogram (Lomb, 1976; Scargle, 1982). It provides
a way to compute a periodogram without needing uniform time bins and mitigates
some statistical issues by normalizing the signal and accounting for observational gaps.
While Lomb-Scargle periodograms (LSP) have become a standard tool, they still have
limitations. In particular, the LSP’s assumptions (a single-frequency sinusoid plus
constant offset, with white noise) can be unrealistic for astrophysical time series that
contain broadband noise and multiple signals or time-varying amplitudes. As a result,
classical periodograms and LSP can miss subtle features or introduce biases, making it
hard to distinguish a weak periodic signal from random fluctuations in a noisy, unevenly
sampled X-ray light curve.

These limitations motivate the development of more robust, high-resolution spec-
tral analysis techniques that can handle irregular data and complex signal content.
One promising solution is to cast spectral estimation as an inverse problem and apply
regularization. This approach can naturally handle uneven sampling and incorporate
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prior information to stabilize the solution, yielding a cleaner estimate of the PDS than
classical methods.

5.2 Challenges of Uneven Sampling and Classical Meth-
ods

5.2.1 Uneven sampling limitations
Unevenly sampled data violate the assumptions of the standard discrete Fourier trans-
form (DFT), leading to:

• Loss of FFT efficiency: Because the Fast Fourier Transform (FFT) assumes
uniformly spaced time samples, irregular time steps necessitate the use of direct
summation methods rather than an FFT.

• Spectral leakage and windowing: Missing data or uneven intervals effectively
apply a complex window to the signal, causing power to leak between frequencies,
and smearing out sharp features.

• Undefined noise distribution: The classical periodogram’s known statistical prop-
erties for even sampling do not directly carry over to irregular sampling, compli-
cating confidence interval construction and peak significance.

In X-ray astronomy, these issues are pronounced. NuSTAR or other X-ray missions
produce data with gaps, leading to strong red-noise phenomena. The periodogram of
such a light curve is typically dominated by a power-law continuum with superimposed
features like QPOs. Standard approaches (periodogram, LSP) may result in:

• Excess scatter in the estimated PDS, masking or mimicking genuine signals;

• Potential false positives due to random noise fluctuations under uncertain statis-
tics;

• Reduced frequency resolution, unless artificially zero-padded or interpolated (which
can introduce artifacts).

5.2.2 Lomb–Scargle Periodogram and Its Assumptions
The Lomb–Scargle method (Lomb, 1976; Scargle, 1982) performs a least-squares fit of
a single sinusoid (with an offset) at each trial frequency. Unlike the classical Fourier
approach, Lomb–Scargle handles irregularly spaced data directly, without needing to
interpolate. Mathematically, for a time series {x(ti)}N

i=1 observed at irregular times
{ti}, Lomb–Scargle aims to solve

x(ti) ≈ A cos(ωti) + B sin(ωti) + C, (5.1)
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where ω is the angular frequency. The parameters (A, B, C) are estimated by
minimizing the sum of squared residuals:

min
A,B,C

N∑
i=1

[
x(ti) − A cos(ωti) − B sin(ωti) − C

]2
. (5.2)

Denoting the data vector by x ∈ RN and the corresponding regressor matrix by

ϕ(ω) =


cos(ωt1) sin(ωt1) 1
cos(ωt2) sin(ωt2) 1

... ... ...
cos(ωtN) sin(ωtN) 1

 , (5.3)

the ordinary least-squares solution for each fixed ω can be written as

β̂(ω) =
[
ϕ(ω)⊤ϕ(ω)

]−1
ϕ(ω)⊤ x, (5.4)

with β(ω) = [A, B, C]⊤. A corresponding Lomb–Scargle “power” at each frequency is
then computed as

P (ω) = 1
2

(
Â2 + B̂2

)
, (5.5)

which quantifies how well a single sinusoid of frequency ω explains the data.

5.2.3 Key Assumptions and Their Consequences
1. Single-frequency fit: Each frequency is treated in isolation, so correlations among

frequencies are not modeled jointly. If multiple closely spaced signals exist, they
can “leak” into each other’s frequency bins.

2. Uncorrelated (white) noise: The well-defined statistical distribution for Lomb–
Scargle peaks relies on the assumption of i.i.d. (independent and identically
distributed) Gaussian noise. Strong red noise or correlated structure in the resid-
uals can spuriously inflate the power at certain frequencies or broaden signal
peaks.

3. Short or gappy time series: While Lomb–Scargle accommodates non-uniform
sampling, if the data set is too short or irregular, the variance of the estimated
parameters can grow large, and the periodogram can become quite noisy.

4. Single-sinusoid model: Only one sinusoid plus an offset is fit at each frequency.
Complex signals containing multiple harmonics or broad continuum structure
may not be well represented by such a restrictive model.

For cases in which the signal comprises multiple subcomponents, intricate broad-
band structure, or correlated noise, the Lomb–Scargle assumption of a single sinusoid
per frequency becomes restrictive. Hence, one naturally seeks global spectral estima-
tion methods—such as those using regularization or Bayesian priors—to simultaneously
model structure across frequency. By fitting multiple frequencies and exploiting prior
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information about the smoothness or sparsity of the spectrum, such methods can sta-
bilize power estimates and surpass the conventional “Rayleigh limit” in scenarios with
short or irregular sampling. These topics are discussed in detail in the following sec-
tions.

5.3 Regularization Approach to Spectral Estimation

5.3.1 Formulating Spectral Analysis as an Inverse Problem
Let N be the number of data points, y ∈ RN (or CN) the observed time-series values
at times t1, . . . , tN . Suppose we want to estimate the underlying spectrum x ∈ RP (or
CP ) at a chosen set of P frequency bins {f1, . . . , fP }. We write:

y = A x, (5.6)

where A is an N × P matrix encoding the relationship between the time-domain and
frequency-domain signals. Typically,

An,k = exp
(
2πi fk tn

)
,

for complex exponentials (or sines/cosines for a real-valued model). For evenly spaced
data and P = N , A may be invertible. But for uneven sampling or large P , A becomes
ill-conditioned or underdetermined: infinitely many solutions x can fit y perfectly if
we do not constrain the problem further.

5.3.2 Ill-conditioning and the need for regularization
The matrix A can be highly correlated, especially if P ≫ N for super-resolution.
Attempting to solve y = Ax via ordinary least squares can lead to fitting noise or
to wildly oscillatory solutions. Regularization is introduced to impose stability. In a
Tikhonov-like framework, we define a penalized cost function:

J(x) = ∥y − Ax∥2 + λ R(x), (5.7)

where R(x) is the regularization function (or prior), and λ > 0 governs the balance
between fidelity to data (the ∥y−Ax∥2 term) and adherence to prior assumptions (via
R(x)). A smaller λ attempts to fit the data more closely (risking noise overfitting),
while a larger λ enforces smoother or sparser solutions (potentially losing fine detail).

5.3.3 Choice of Regularization Function R(x)
The choice of R(x) determines the nature of the prior.

• A simple ridge (L2) penalty, R(x) = ∥x∥2
2, yields smooth solutions but can overly

blur sharp spectral lines.

• An L1 penalty, R(x) = ∥x∥1, promotes sparsity but is non-differentiable at xk = 0
and can produce spiky solutions.
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Ciuciu & Others (2001) introduced a convex function

R(xk) =
√

s2 + x2
k,

summed over k, which is differentiable everywhere and behaves like |xk| for large |xk|.
This “hyperbolic” or “Cauchy-type” penalty encourages parsimony without harshly
driving small coefficients to zero. As shown by Seghouani (2017), it can be effective
for short, noisy, and unevenly sampled data.

5.3.4 Solving the Regularized Inverse Problem
Minimizing

J(x) = ∥y − Ax∥2 + λ
∑

k

√
s2 + x2

k,

is a convex problem, but there is no closed-form analytic solution. Common numerical
methods include:

1. Gradient-based algorithms: The gradient of J(x) is well-defined because
√

s2 + x2
k

is differentiable. One can use gradient descent or quasi-Newton (e.g., L-BFGS)
to iteratively update x.

2. Iteratively Reweighted Least Squares (IRLS): Rewrite
√

s2 + x2
k in a quadratic

approximation around the current iterate, solving a weighted least-squares sub-
problem at each iteration. This approach often converges quickly for these half-
quadratic penalties.

3. Half-Quadratic (HQ) methods: Introduce auxiliary variables to transform the
non-quadratic penalty into a series of simpler subproblems.

Because J(x) is strictly convex, these methods converge to a unique global mini-
mum. In practice, computational cost depends on N and P . For large problems, fast
matrix-vector multiplication and iterative solvers (like Conjugate Gradient) may be
used.

After solving for x̂, we can form the power spectral density as

P (fk) = |x̂k|2.

This yields a high-resolution spectrum that is less noisy and better at separating closely
spaced frequencies or lines than the Lomb-Scargle or raw periodogram, particularly
when data are unevenly spaced or short.

5.4 Application to NuSTAR X-ray Data of M82
To test the regularisation scheme under clean, fully controlled conditions, we built a
synthetic light curve that combines three sinusoidal components—a lone feature at
≃ 0.2Hz plus a close pair at ≃ 0.8 and 0.9Hz—overlaid with Poisson noise. We then
imposed on this mock data set the same visibility gaps that affect the NuSTAR obser-
vations. As Figure 5.1 shows, the Seghouani-regularised spectrum of the gapped signal
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Figure 5.1: Normalised power spectra of the simulated Poisson-noisy light curve containing
three sinusoids: one at ≃ 0.2Hz and a closely spaced pair at ≃ 0.8–0.9Hz. Black curve:
FFT of the uniformly sampled light curve, marking the true broad peaks. Red dashed
curve: Lomb–Scargle periodogram of the same signal after two large gaps; irregular sampling
fragments each broad feature into a cluster of narrow side-lobes. Magenta curve: Seghouani-
regularised spectrum of the gapped data, which closely follows the underlying peak envelopes
and heights while suppressing most window-induced artefacts.

(magenta) reproduces both the widths and heights of the three true peaks recovered
by an FFT of the uniformly sampled series (black); by contrast, the Lomb–Scargle
periodogram (red dashed) breaks each broad feature into a forest of narrow side-lobes.
This benchmark demonstrates that, in an idealised setting, the regularisation method
can suppress window artefacts and preserve multi-component structure.

The outcome is markedly different when the same procedure is applied to the
NuSTAR light curve of M82. In that real data set, the regularised spectrum shows
pronounced distortions: several peaks are broadened or displaced with respect to
their Lomb–Scargle counterparts, and weaker harmonics are no longer recovered re-
liably. These deficiencies point to additional complications present in genuine astro-
physical data—overlapping features, a strong red-noise continuum, and non-Gaussian
statistics—that interact unfavourably with the current choice of regularisation strength
and noise model. Future work will therefore focus on tuning the regularisation parame-
ter, incorporating an explicit red-noise component, and exploring adaptive pre-filtering,
with the aim of extending the technique to complex X-ray timing observations.
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Appendix A
Complete NuSTAR Data Set and Best-Fit Timing Param-
eters
Table 1 lists, for every NuSTAR observation analysed in Chapter 3, the best-fit param-
eters obtained from the broadband power-spectral modelling described in Section 3.4.2.
Each row corresponds to one ObsID; asterisks (*) flag observations that are strictly
simultaneous with Chandra exposures used for source identification. The columns are
grouped as follows:

• M — number of independent 1024-s periodogram segments averaged for that
observation;

• rmsred — fractional rms (3–79 keV) of the broadband red-noise component;

• Exponential/Power-law block — amplitude, break frequency x0, slope α0, and
high-frequency cut-off adopted for the underlying red-noise continuum when a
simple power law was inadequate;

• Feature block — parameters of any broad Lorentzian “hump’’ required in addi-
tion to the continuum (amplitude, centroid x0, and full width at half-maximum,
FWHM);

• QPO block— fractional rms of the quasi-periodic oscillation, Lorentzian ampli-
tude and centroid frequency x1, and FWHM1. These values underpin the QPO
significance and energy-dependence results in Sections 3.4.4–3.5.

All uncertainties are quoted at the 90% confidence level. Symmetric errors use
the “±” notation; asymmetric errors are given as +upper

−lower . A dash (–) indicates that
the corresponding parameter was either unconstrained or not required by the preferred
model. This comprehensive table is provided to document the full data set and to
facilitate reproduction or extension of the analyses presented in Chapter 3.
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Obsid M rmsred Exponential/PowerLaw Feature QPO

amp x0 �0 xcutoff amp x0 FWHM rmsqpo amp1 x1 FWHM1

30101045002* 343 0.114±0.004 – – – – 1.893+0.255
−0.260 0.000+0.001

−0.000 0.020+0.015
−0.007 0.043±0.003 0.41+0.102

−0.101 0.111+0.050
−0.055 0.047+0.032

−0.032
30202022002 72 0.037±0.002 – – – – 0.216+0.185

−0.105 0.004+0.012
−0.004 0.024+0.031

−0.021 – 0.058+0.056
−0.046 0.146+0.093

−0.081 0.257+0.172
−0.207

30202022004 81 0.054±0.007 – – – – 1.117+0.639
−0.450 0.003+0.003

−0.003 0.002+0.002
−0.002 – – – –

30202022008 84 0 – – – – – – – – – – –
30202022010 77 0.117±0.005 – – – – 1.591+0.202

−0.229 0.000+0.000
−0.000 0.014+0.008

−0.007 – – – –
30502020002 166 0.010±0.0001 – – – – – – – 0.044±0.002 0.198+0.034

−0.033 0.28+0.025
−0.026 0.305+0.081

−0.070
30502020004 170 0.272 0.002+0.002

−0.001 0.1 1.735+0.182
−0.181 – – – – – – – –

30502021002* 160 0.047±0.003 – – – – 0.263+0.069
−0.069 0.001+0.002

−0.001 0.102+0.054
−0.046 0.076±0.005 0.457+0.101

−0.102 0.123+0.009
−0.010 0.045+0.024

−0.018
30502021004 152 0.046±0.005 0.164+0.065

−0.062 0.068+0.103
−0.068 0.081+0.163

−0.081 0.259+0.190
−0.165 – – – 0.060±0.005 0.369+0.103

−0.099 0.178+0.009
−0.009 0.055+0.029

−0.025
30502022002 164 0.177 0.056+0.030

−0.022 0.1 0.863+0.123
−0.112 – – – – 0.080±0.005 1.182+0.289

−0.285 0.046+0.033
−0.034 0.005+0.005

−0.005
30502022004 180 0.147±0.008 – – – – 3.064+0.595

−0.539 0.003+0.005
−0.003 0.003+0.002

−0.001 0.077±0.004 0.338+0.070
−0.067 0.059+0.010

−0.010 0.069+0.027
−0.023

50002019002 56 0.060±0.006 – – – – 1.088+0.448
−0.332 0.007+0.002

−0.001 0.006+0.003
−0.003 0.083±0.001 0.807+0.029

−0.028 0.035+0.001
−0.001 0.021+0.003

−0.001
50002019004 305 0.055±0.003 0.505+0.102

−0.083 1.161+0.196
−0.173 0.001+0.004

−0.001 0.044+0.027
−0.025 – – – 0.067±0.003 0.883+0.126

−0.170 0.037+0.005
−0.005 0.011+0.012

−0.010
80002092002* 124 0.095±0.005 – – – – 1.929+0.423

−0.385 0.004+0.001
−0.001 0.004+0.001

−0.001 0.080±0.005 0.903+0.201
−0.186 0.044+0.002

−0.001 0.013+0.007
−0.003

80002092004* 176 0.075±0.022 – – – – 0.930+0.215
−0.181 0.004+0.001

−0.004 0.012+0.020
−0.004 0.082±0.004 0.760+0.150

−0.133 0.051+0.012
−0.030 0.018+0.009

−0.009
80002092006* 583 0.040±0.002 – – – – 1.142+0.217

−0.181 0.001+0.001
−0.001 0.012+0.013

−0.004 0.043±0.003 0.505+0.106
−0.100 0.061+0.022

−0.013 0.043+0.014
−0.015

80002092007* 579 0.050±0.003 – – – – 0.718+0.158
−0.128 0.000+0.002

−0.000 0.016+0.030
−0.004 0.070±0.004 0.402+0.088

−0.084 0.068+0.033
−0.037 0.050+0.030

−0.025
80002092008* 61 0.062±0.004 0.569+0.143

−0.122 0.005+0.010
−0.005 0.004+0.006

−0.004 0.029+0.018
−0.013 – – – 0.060±0.005 0.412+0.124

−0.106 0.108+0.010
−0.010 0.033+0.020

−0.015
80002092009* 341 0.099±0.005 0.840+0.326

−0.375 0.004+0.006
−0.002 0.548+0.130

−0.166 0.147+0.165
−0.114 – – – 0.067±0.004 0.516+0.110

−0.104 0.099+0.035
−0.033 0.027+0.014

−0.016
80002092011* 219 0.053±0.010 – – – – 0.466+0.129

−0.094 0.000+0.022
−0.000 0.062+0.047

−0.029 0.069±0.004 0.960+0.182
−0.174 0.065+0.037

−0.042 0.012+0.013
−0.012

80202020002 69 0.125 – – – – – – – – – – –
80202020004*** 58 0.081±0.001 – – – – – – – – – – –
80202020006 57 0.084±0.006 – – – – 1.180+0.289

−0.274 0.001+0.003
−0.001 0.011+0.006

−0.005 0.055±0.005 0.087+0.029
−0.028 0.161+0.157

−0.160 0.699+0.375
−0.320

80202020008 80 0.160±0.036 0.022+0.019
−0.014 0.1 0.978+0.211

−0.186 – – – – 0.122±0.011 0.511+0.157
−0.139 0.157+0.006

−0.005 0.037+0.016
−0.014

90101005002 73 0.211±0.009 – – – – 2.293+0.318
−0.357 0.000+0.001

−0.000 0.011+0.008
−0.006 – – – –

90201037002* 164 0.096±0.004 – – – – 1.180+0.289
−0.274 0.001+0.003

−0.001 0.011+0.006
−0.005 – 0.087+0.029

−0.028 0.161+0.157
−0.160 0.699+0.375

−0.320
90202038002 88 0.06 1.893+0.255

−0.260 0 – – – – – – – – –
90202038004 81 0.039 – – – – – – – 0.084±0.005 0.309+0.065

−0.058 0.221+0.014
−0.013 0.136+0.042

−0.036
30602027002* 173 0.053±0.005 – – – – 1.206+0.481

−0.342 0.003+0.001
−0.000 0.003+0.001

−0.001 0.067±0.004 0.171+0.048
−0.028 0.130+0.028

−0.024 0.219+0.079
−0.069

30602027004* 170 0.128±0.018 0.606+0.244
−0.322 0.088+0.032

−0.033 0.094+0.140
−0.093 0.104+0.046

−0.043 – – – 0.036±0.008 0.404+0.344
−0.212 0.153+0.112

−0.063 0.015+0.012
−0.015

30602028002 159 0.043±0.003 – – – – 0.318+0.085
−0.075 0.004+0.013

−0.004 0.069+0.041
−0.036 0.079±0.005 0.413+0.093

−0.086 0.163+0.023
−0.025 0.076+0.031

−0.027
30602028004 145 – – – – – – – – – – – –
30702012002* 273 0.141±0.006 – – – – 2.025+0.291

−0.349 0.000+0.001
−0.000 0.014+0.012

−0.006 0.011±0.002 0.343+0.096
−0.090 0.140+0.056

−0.056 0.062+0.038
−0.034

30702012004 211 0.078 – – – – – – – 0.094±0.047 0.267+0.043
−0.039 0.124+0.015

−0.014 0.190+0.047
−0.042

30901038002 218 0.391±0.097 0.002+0.002
−0.001 0.1 1.661+0.153

−0.136 – – – – – – – –
90901332002 117 1.32±0.008 1.427+0.029

−0.029 0.1 0.500+0.008
−0.009 – – – – – – – –

90901333002 93 0.141±0.007 – – – – 2.081+0.380
−0.359 0.002+0.002

−0.002 0.010+0.004
−0.002 0.083±0.007 0.567+0.168

−0.143 0.129+0.005
−0.005 0.034+0.014

−0.011
30202022003 110 0.076 – – – – 0.928+0.700

−0.401 0.004+0.014
−0.004 0.036+0.031

−0.031 0.036±0.019 0.179+0.114
−0.081 0.150+0.049

−0.053 0.076+0.064
−0.057

30202022006 3 0.15 – – – – – – – – – – –
Table
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