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1. Approximation Theory

The Approximation Theory is the branch of the mathematical analysis studying methods for
approximating some mathematical objects by others, questions related to the research of such
objects and estimation of the error that arises here. Many areas of mathematics itself make use
of quantities that are too complicated, too difficult, and even too abstract to work with directly.
Hence, the goal of the approximation theory is to discover and analyze simple, easy to work with,
concrete quantities that can do a good, efficient job in their place - for example, polynomials, splines
and so on. As we might guess from its name, the approximation theory has both a theoretical
side, which is more often concerned with existence and uniqueness questions, and a practical side,
which is concerned largely with computational practicalities and precise estimations of error.

In this notes we are going to study how a given function f belonging to an infinite dimension space
F can be approximated by another simpler one fn belonging to a sequence of finite dimensional
subspace of {Fn}n ⊂ F such that fn is close in some sense to f . More precisely, we will consider the
case where the function f belongs to the space Ck([a, b]), k ≥ 0 of k-times continuous-differentiable
functions on [a, b] ⊂ R.
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In order to approximate it we have at first to identify a class Fn = {fn(x)} of all possible
approximating functions. In this context we will consider the following subspaces Fn:

(a) the set of all algebraic polynomials of degree at most n

Pn = {fn(x) = a0 + a1x+ · · ·+ anx
n} .

(b) the set of all spline functions of order d

Sn,d = {fn = piecewise-defined by polynomial functions of local degree d} .

Once this class is fixed, we have to choose an element fn ∈ Fn. The criterion we will adopt
is the classical approach of the interpolation that is prescribe that the values of fn in a certain
number of distinct points xi coincide with those of the functions to be approximated yi that is

fn(xi) = yi, i = 0, 1, . . . ,m.

Finally, we have to “measure the goodness” of such approximation by estimating the following
norm

‖f − fn‖∞ := max
x∈[a, b]

|f(x)− fn(x)|(1.1)

and verifying that

lim
n→∞

‖f − fn‖∞ = 0.

If this last condition is satisfied, we will say that the sequence {fn}n converges to f in Ck([a, b])
in uniform norm.

1.1. Algebraic approximation.
The approximation of functions by means of algebraic polynomials is based on the well-known

Weierstrass’s Theorem which states that any continuous function f can be approximated uniformly
by polynomials, no matter how badly behaved f may be on [a, b].

Theorem 1.1 (Weierstrass’s Theorem). Let f ∈ C0([a, b]). For every ε > 0, there exists a
polynomial P such that

(1.2) |f(x)− P (x)| < ε.

Definition 1.2. We define the error of best polynomial approximation of f by means of
algebraic polynomials of degree at most n the quantity

(1.3) En(f) := inf
Pn∈Pn

‖f − Pn‖∞.

Let us note that according to Theorem 1.1, if f ∈ C0([a, b]) we can deduce that lim
n→∞

En(f) = 0.

Moreover, if f ∈ C0([a, b]) there exists only one polynomial P ∗n ∈ Pn such that

En(f) = inf
Pn∈Pn

‖f − Pn‖∞ = ‖f − P ∗n‖∞,

and P ∗n is said the polynomial of best approximation.
Given a function f is not simple to find its polynomial of best approximation. However the

estimate of the error of best approximation could be a useful tool to state which is the best
approximation that we could aspect.

The error of best approximation depends on the smoothness properties of the function f we
would like to approximate. Indeed the following theorem holds true.
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Theorem 1.3. Let f ∈ Ck([a, b]), k ≥ 1. The following estimate for the error of best approximation
holds true

(1.4) En(f) ≤ C
nk

where C is a constant independent of n and k.

Let us remark that if f ∈ C0([a, b]), we only know that lim
n→∞

En(f) = 0 but we do not have an

estimate. However, it is possible to prove that if f ∈ Ck+α([a, b]) where Ck+α([a, b]) is the set of

all k-times continuous-differentiable functions on [a, b] ⊂ R such that f (k) is a Lipschitz continuous
function of order α with 0 < α ≤ 1 1, then

(1.5) En(f) ≤ C
nk+α

,

where C is a constant independent of n, k and α.

Example 1.4. Let us consider f(x) = e|x|
3/2 ∈ C1+ 1

2 ([−1, 1]). Then, if we want to approximate
such a function with seven correct digits, according to (1.5), we have to choose an integer n such
that

En(f) ≤ C
n3/2

≤ C
108

, =⇒ approximately n ≥ 1016/3.

Example 1.5. Let us consider g(x) = | cosx|
7
2 e− cos2 x ∈ C3+ 1

2 ([−π, π]). Thus, in order to get an
approximation of such a function with five correct digits, we have to choose a polynomial of degree
n such that

En(f) ≤ C
n7/2

≤ C
106

, =⇒ approximately n ≥ 102.

1.1.1. Taylor polynomial. Let us consider a function f ∈ Cn+1([a, b]) and a point x0 ∈ [a, b].
It is well-known that a first approximation of this function could be furnished by means of the

Taylor polynomial of degree n centered at x0

f(x) = Tn(x) +Rn+1(f, x)

where

(1.6) Tn(x) = f(x0) + f ′(x0)(x− x0) + · · ·+ f (n)(x0)

n!
(x− x0)n

is the Taylor polynomial and

Rn(f, x) =
f (n+1)(ξ)

(n+ 1)!
(x− x0)n+1, ξ ∈ (x0, x)

is the remainder term in the Lagrange form.
About this latter term, if the derivatives of f are such that

|f (k)(x)| ≤ `, ∀x ∈ [a, b], ∀k = 0, 1, . . . , n+ 1

then we have

|Rn+1(f, x)| ≤ ` |x− x0|
n+1

(n+ 1)!
, ∀x ∈ [a, b] \ {x0}

1Let g ∈ C0([a, b]). We say that g is a Lipschitz continuous function of order α ≥ 0 if there exists a constant

M > 0 such that

|f(x)− f(y)| ≤M |x− y|α, ∀x, y ∈ [a, b].
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and consequently

lim
n→+∞

|Rn+1(f, x)| = 0, ∀x ∈ [a, b] \ {x0}.

Example 1.6. Let us consider the function f(x) = ex. The Taylor expansion of f centered at
x = x0 is

(1.7) ex = ex0 + ex0(x− x0) + · · ·+ ex0
(x− x0)n

n!
+Rn(f, x), Rn(f, x) = eξ

(x− x0)n+1

(n+ 1)!
.

Assume that we want to know the approximated value of the Euler number e. By using (1.7) with
x0 = 0 and taking into account that for 0 < ξ < 1 we have

|f(1)− Tn(1)| = |Rn(f, 1)| = eξ

(n+ 1)!
<

e

(n+ 1)!
<

3

(n+ 1)!

we can deduce that if n = 10 we get our approximation with seven correct digits being

Rn(f, 1) ≤ 3

11!
' 7.5× 10−8.

Indeed we have

e = 1 + 1 +
1

2!
+

1

3!
+ · · ·+ 1

10!
= 2.7182818

which is the exact value of the Euler number up to the seven correct digits.

Example 1.7. Let us consider the function f(x) = cos(x) whose Taylor expansion of f centered
at x = 0 is

(1.8) cosx = 1− x2

2
+
x4

4!
− x6

6!
+ · · ·+ (−1)n

x2n

(2n)!
+R2n+1(f, x)

where

(1.9) |R2n+1(f, x)| =
∣∣∣∣sin ξ x2n+1

(2n+ 1)!

∣∣∣∣ ≤ |x2n+1|
(2n+ 1)!

.

Polynomial (1.8) is a good approximation for f in a neighborhood of the initial point x0 = 0.
Indeed, if we fix n = 4 and x = 1, we get

cos (1) = 1− 1

2
+

1

4!
− 1

6!
+

1

8!
= 0.5403025793650793.

Then, as the exact value is f∗(1) = 0.5403023058681398, we can see that we get five correct
digits. Such numerical result confirms the theoretical estimate since by (1.9) we can deduce that
|R9(f, 1)| ≤ 2.48× 10−5. On the other hand, if we fix n = 4 and x = 3, we get

cos (3) = −0.9747767857142857

that is a bad approximation for cos (3), as the exact value isf∗(3) = −0.9899924966004454.

The Taylor polynomial is a good approximation from a theoretical point of view but practically
unusable for a practical point of view. In order to approximate a function with such a polynomial
we have to compute all the n + 1 derivatives and then evaluate it at the initial point x0. This
could be simple if we have an elementary function but if we want to approximate for instance

g(x) =
(1 + x2 + 3x)2 cos (3x+ 1)

1 + x+ ex
such computation could be very hard. Moreover often we would

like to approximate functions which are only continuous for example f(x) =
√

1− x2 or functions
whose analytical expression is not known and then it is impossible to use the Taylor polynomial.
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1.1.2. Algebraic interpolation. Let f be a continuous function on [a, b] and assume we know the
values f(x1), f(x2), ..., f(xn). We seek a polynomial P (x) such that the following interpolation
conditions are satisfied

(1.10) P (xi) = f(xi), i = 1, 2, ..., n.

The following theorem allow us to state that such a polynomial is unique.

Theorem 1.8. Given n distinct points x1, x2, ..., xn and arbitrary values f(x1), f(x2), ..., f(xn)
there is at most one polynomial P of degree less or equal to n − 1 such that the interpolation
conditions (1.10) hold true. A polynomial that satisfies these conditions is called interpolating
polynomial and the points xi are called interpolation points or interpolation nodes.

Proof. Let us consider a polynomial of degree n− 1

P (x) = a0 + a1x+ ...+ an−1x
n−1.

By requiring conditions (1.10) we get
a0 + a1x1 + ...+ an−1x

n−1
1 = f(x1)

a0 + a1x2 + ...+ an−1x
n−1
2 = f(x2)

.......................

a0 + a1xn + ...+ an−1x
n−1
n = f(xn)

which can be rewritten as

(1.11)


1 x1 .... xn−11

1 x2 .... xn−12
...

... . . .
...

1 xn . . . xn−1n




a0
a1
...

an−1

 =


f(x1)
f(x2)

...
f(xn)

 .

The matrix of the system is the so-called Vandermonde matrix whose determinant is given by

(1.12) det


1 x1 .... xn−11

1 x2 .... xn−12
...

... . . .
...

1 xn . . . xn−1n

 =

n−1∏
j=1

 n∏
i=j+1

(xi − xj)

 6= 0 if and only if xi 6= xj .

Then, system (1.11) has a unique solution. �

The proof of the previous theorem allow us to construct an interpolating polynomial in the
canonical basis {1, x, x2, ..., xn−1} of the form

P (x) =

n−1∑
i=0

aix
i.

It is sufficient solve system (1.11) to get the coefficients. By the way, system (1.11) generally
require about O(n3) operations. In addition, the Vandermonde matrix is notorious for being
challenging to solve (especially with Gauss elimination) and prone to large errors in the computed
coefficients ai when n is large and/or xi 6= xj . Several authors have therefore proposed algorithms
that allow us to construct an interpolating polynomial without solve any system.
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1.1.3. Newton’s polynomial. In 1670 Isac Newton wrote the uniquely determined interpolation
polynomial of Theorem 1.8 in the basis{

ej =

j∏
k=1

(x− xk)

}
.

More precisely, the Newton form of the interpolation polynomial of degree n− 1 is

(1.13) Nn(x) = a1 +

n∑
j=2

aj

j−1∏
k=1

(x− xk)

where the coefficients aj are given by

(1.14) a1 = f(x1) and aj =
f(xj)−Nj−1(xj)

j−1∏
k=1

(xj − xk)

, j = 2, 3, ..., n.

Thus, according to (1.13), the polynomial of degree 0 which interpolates (x1, f(x1)) is

N1(x) = f(x1);

while the polynomial of degree 1 which interpolates the points (x1, f(x1)), (x2, f(x2)) reads as

N2(x) = f(x1) +
f(x2)− f(x1)

(x2 − x1)
(x− x1).

In general, the jth coefficient aj is also said jth order divided difference and it depends on
the values x1, ..., xj and the values f(x1), ...., f(xj). To emphasize such dependence, sometimes
the coefficients are also written in the following form

a1 = [x1; f ] = f(x1)

a2 = [x1, x2; f ] =
f(x2)− f(x1)

(x2 − x1)

a3 = [x1, x2, x3; f ] =
[x2, x3; f ]− [x1, x2; f ]

(x3 − x1)
...

...

an = [x1, ..., xn; f ] =
[x2, ..., xn; f ]− [x1, ..., xn−1; f ]

(xn − x1)
.

Then, according to this notation, the so-called Newton’s divided difference interpolation
polynomial is given by

(1.15) Nn(f, x) = f(x1) +
n∑
j=2

[x1, ..., xj ; f ]

j∏
k=1

(x− xk).

Let us note that when two arguments are equal we have

[x0, x0; f ] = lim
x→x0

[x0, x; f ] = lim
x→x0

f(x)− f(x0)

x− x0
= f ′(x0)

and in general

lim
xi→x0

[x0, ..., xi; f ] =
f (i)(x0)

i!
.
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Then we get

lim
xi→x1

Nn(f, x) = f(x1) +

n−1∑
i=1

(x− x1)i
f (i)(x1)

i!

that is the Taylor’s polynomial of degree n− 1 centered at x1.

1.1.4. Lagrange’s polynomial. In 1795 Joseph Louis Lagrange discovered the base of the so-called
fundamental Lagrange polynomials

(1.16)

lk(x) =
n∏
j=1
j 6=k

(x− xj)
(xk − xj)

 ,

which are polynomials of degree n− 1 such that for each j, k = 1, 2, ..., n

(1.17) lk(xj) =

{
1 if j = k,
0 if j 6= k.

Alternatively, the fundamental Lagrange polynomials can also be written as

(1.18) lk(x) =
πn(x)

π′n(xk)(x− xk)

where πn(x) =

n∏
k=1

(x− xk) is a polynomial of degree n having all the interpolation nodes as zeros.

Then, he introduced the so-called Lagrange interpolation polynomial

(1.19) Ln(f, x) =

n∑
k=1

lk(x)f(xk),

that is a polynomial of degree n − 1 interpolating the function f at the interpolation nodes
x1, x2, ..., xn.

The Lagrange polynomial can be seen as a linear operator

Ln : C0([a, b])→ Pn−1
f → Ln(f)

such that

Ln(Pn−1, x) = Pn−1(x), for each Pn−1 ∈ Pn−1.
In other words the Lagrange polynomial project a continuous function on the space of the

polynomials of degree at most n− 1.
From a computational point of view, the Lagrange polynomial and the Newton polynomial are

equivalent. In both cases the computational cost is of the order O(n2) but the Lagrange polynomial
is numerical stable even if the nodes are very close.

1.2. Uniform Approximation by Lagrange polynomial. Let f be a continuous function on
[−1, 1] and assume we have a sequence of monic polynomials {qn}n∈N such that for each n ≥ 1
the polynomial qn has n distinct zeros xn,k, k = 1, 2, ..., n in [a, b], i.e.

−1 ≤ xn,1 < xn,2 < ... < xn,n ≤ 1.

The generalization to the case of a generic interval [a, b] is straightforward.
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Let X be the corresponding infinite triangular array of these zeros

X =



x1,1
x2,1 x2,2
x3,1 x3,2 x3,3
· · · · · · · · ·
xn,1 · · · · · · xn,n
· · · · · · · · · · · · · · ·

 ,

i.e. a matrix in which the n-th row consists of the zeros of the polynomial qn. We will call the
matrix X the interpolation matrix or the system of interpolation nodes.

We associate to {qn}n∈N and then to the matrix X, a sequence of Lagrange polynomial
{Ln(X, f)}n∈N defined by

Ln(X, f, x) =
n∑
k=1

ln,k(x)f(xn,k), k = 1, 2, ..., n.

Obviously Ln(X, f) ∈ Pn−1 and the index n in Ln(X, f) denotes the number of the nodes. From now
on, to simplify the notation, for a fixed n, we will set xn,k := xk and ln,k(X,x) := lk(x). In definitive,
for a given interpolation array X, we define a sequence operators Ln(X) : C0([−1, 1]) → Pn−1
called Lagrange interpolatory process such that Ln(X, f, x) = f(x) if f ∈ Pn−1.

The main question is the convergence Ln(X, f) → f when n → ∞ and more precisely what
kind of interpolation array X provides this convergence. Denoting by Pn−1 the polynomial of best
approximation in uniform norm we have

|(f(x)− Ln(X, f, x))| 6 |f(x)− Pn−1(x)|+ |(Ln(X, f, x)− Pn−1(x))|
6 |(f(x)− Pn−1(x))|+ |Ln(X, f − Pn−1, x)|

6 En−1(f)

(
1 +

n∑
k=1

|lk(X,x)|

)
from which we can deduce that

(1.20) |(f(x)− Ln(X, f, x))| ≤ En−1(f) (1 + Λn(X,x))

where

(1.21) Λn(X,x) =

n∑
k=1

|lk(X,x)|

is the so-called Lebesgue function. Then, taking the maximum in (1.20) over [−1, 1], we get

(1.22) ‖f − Ln(X, f)‖ ≤ En−1(f) (1 + ‖Λ(X)‖)
where

(1.23) ‖Λn(X)‖ = max
x∈[−1,1]

n∑
k=1

|lk(X,x)|

are the Lebesgue constants of the Lagrange interpolation.
Hence, according to estimate (1.20) and (1.22), the Lebesgue constant and more in general the

Lebesgue function play an important role in the convergence of the Lagrange polynomials
In 1914 Faber [5] proved that

(1.24) ‖Λn(X)‖ ≥ 1

12
log n, n ≥ 1,
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for any interpolation matrixX. Therefore according to (1.24) the Lebesgue constants are unbounded
and for particular choices of the interpolation array X they can take very large values. This is the
case when the interpolatory matrix consists of the equidistant nodes on [−1, 1],

xk = −1 + 2
k − 1

n− 1
k = 1, 2, ..., n.

In fact in 1916 Bernstein [2,3] showed by an example the pointwise divergence properties of the
Lagrange interpolation on these type of nodes (in 1901 Runge already proved that this choice
was bad), and in 1917 Tureckii [17] proved the following asymptotic estimate for the Lebesgue
constants

‖Λn(X)‖ ∼ 2n

e n log n
.

This circumstance can strongly influence the numerical computation, where we handle with
perturbed values of f and we compute the polynomial Ln(X, f + η), where η is a perturbation of
the function f deriving from the evaluation of f(xn,k). In this case the actual error is

‖(f − Ln(X, f + η))‖ ≤ ‖f − Ln(X, f)‖+ ‖Λn(X)‖ηn
where ηn = max

1≤k≤n
|η(xn,k)|. The first term is the theoretical error while the second term represents

the numerical error that can be very large even if f is computed with the machine precision.
According to Faber inequality, we will say that the interpolatory array X is an optimal system

of nodes if and only if there exists a constant C 6= C(n) such that

(1.25) ‖Λn(X)‖ ≤ C log n, n > 1.

Then in such case by (1.22) we get the following error estimate

‖f − Ln(X, f)‖ ≤ C log nEn−1(f)

and thus under the assumption that f ∈ Ck([−1, 1]) we have by applying Theorem (1.5)

‖f − Ln(X, f)‖ ≤ C log n

nk
.

Now we will show some optimal system of nodes.
To this end we consider as sequence of polynomial {qn}n∈N, the sequence of orthonormal

polynomials on (−1, 1) with respect to the Jacobi weight

vα,β(x) = (1− x)α(1 + x)β

i.e. {pn(vα,β)} where pn(w) = γnx
n + γn−1x

n−1 + .... with γn > 0. Then instead of Ln(X, f) and
Λn(X) we will use the notation Ln(vα,β, f) and Λ(vα,β), respectively.

The following classical result of Szegö, whose proof can be found in [15], describes the behaviour
of the Lebesgue constants.

Theorem 1.9. For all n ∈ N

(1.26) ‖Λn(vα,β)‖ ∼
{

log n, if −1 < α, β ≤ −1/2

nmax{α,β}+ 1
2 , otherwise.

where the constants in ∼ are independent of m.

So by this result we can deduce that only a restricted class of Jacobi polynomials Pn(vα,β) with
α, β ≤ −1/2 gives an optimal interpolation process. Then, for instance, the zeros of the Legendre
polynomial (α = β = 0) and those of Chebyschev polynomial of the second kind (α = β = 1/2) are
not an optimal system. Nevertheless, it is possible to overcome this problem modifying the system.
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To this end we construct two sequences of polynomials {Zr = Zn,r} and {Ys = Yn,s} of fixed

degree r and s, respectively. Thus, denoting by x1 < x2 < ... < xn, the zeros of Pn(vα,β) we define

yj = −1 + (j − 1)
1 + x1
s

j = 1, 2, ..., s(1.27)

zi = xn + i
1− xn
r

i = 1, 2, ..., r(1.28)

and we set

Ys(x) = Yn,s(x) =

s∏
j=1

(x− yj), Zr(x) = Zn,r(x) =

r∏
i=1

(x− zi).

Hence introduce the polynomial

Qn+r+s(x) = Yn,s(x)Pn(vα,β, x)Zn,r(x),

with zeros {yj}sj=1 ∪ {xj}nj=1 ∪ {zj}rj=1 and denote by Ln,r,s(v
α,β, f) ∈ Pn+r+s−1 the Lagrange

polynomial interpolating f at the points

−1 < y1 < ... < yj < x1 < ... < xn < z1 < ... < zr < 1.

This polynomial can be written as

Ln,r,s(v
α,β, f, x) = (YsZr)(x)

n∑
k=1

lk(x)
f(xk)

(YsZr)(xk)

+ Ys(x)pn(vα,β, x)
r∑

k=1

lk(x)
f(zk)

Ys(zk)pm(vα,β, zk)

+ Zr(x)pn(vα,β, x)
s∑

k=1

lk(x)
f(yk)

Zr(yk)pn(vα,β, yk)
.

The following theorem shows the behaviour of the Lebesgue constants ‖Λn,r,s(vα,β)‖ corresponding

to the interpolation process Ln,r,s(v
α,β, f) [11,14].

Theorem 1.10. Let α, β > −1 and r, s be non negative integers. The following inequality

‖Ln,r,s(vα,β, f)‖ ≤ C log n‖f‖ C 6= C(n, f)

holds true if and only if

α

2
+

1

4
≤ r ≤ α

2
+

5

4
(1.29)

β

2
+

1

4
≤ s ≤ β

2
+

5

4
.(1.30)

Thus, we can see that if α = β = 0 or α = β = 1/2, by (1.29) we have that the zeros of

(1− x2)Pn(v0,0, x) or the zeros of (1− x2)Pn(v1/2,1/2, x) are an optimal system of nodes. In Figure
1 have been represented the Lebesgue constants related to the Lagrange polynomial of degree 5
with different interpolation matrix.

Example 1.11. Let us consider the so-called Runge function f(x) = 1
1+x2

. Figure 2 shows the
behaviour of the Lagrange polynomial in the case when the interpolation nodes are the equispaced
nodes (to the left) and the Chebyshev nodes of the first kind (to the right).
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Figure 1. The Lebesgue function ‖Λ6(X,x)‖ in the case when the interpolation

nodes are the equispaced nodes (to the left), the zeros of p6(v
−1/2,−1/2) (to the

center) and the zeros of (1− x2)p6(v1/2,1/2) (to the right).
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Figure 2. The Lagrange polynomial Lm for the Example 1.11 based on the
equispaced nodes (to the left) and on the Chebyshev nodes of the first kind (to the
right)

n ‖Λn(E)‖ En(E , f) ‖Λn(v−1/2,−1/2)‖ En(v−1/2,−1/2, f)

8 1.0938e+01 8.3640e-02 2.3618 1.9561e-02

16 9.2892e+02 6.2789e-01 2.7663 3.0459e-03

32 2.2944e+07 1.3179e+03 3.1885 4.3153e-04

64 3.7553e+16 1.7183e+11 3.6200 5.7819e-05

128 6.2741e+34 3.4065e+28 4.0563 7.5177e-06

256 2.1466e+71 1.4451e+64 4.9352 1.1742e-07
Table 1. Numerical results for Example 1.12

Example 1.12. Let us consider f(x) = |x|5/2 with x ∈ [−1, 1]. Table 1 shows the Lebesgue
constant and the absolute error

En(X) = max
x∈[−1,1]

|f(x)− Ln(X, f)|

we have in the case when we approximate the function f by using the Lagrange polynomial
based on the equidistant nodes Ln(E , f) and the Lagrange polynomial based on the zeros of the

Chebychev polynomial of the fist kind Ln(v−1/2,−1/2, f).
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1.3. Spline Interpolation. In the previous paragraphs we have seen that if we know a function
f ∈ Ck([a, b]), we can choose an interpolation matrix X whose Lebesgue constant are as in (1.25)
and we can construct a Lagrange interpolation process Ln(X) such that

Ln(X, f)→ f, n→∞, ∀x ∈ [a, b].

However, in different applications we do not have the analytical expression of the function f but
we only know the values that it has in different points x1, x2, ..., xn of the interval [a, b]. Then, in
such cases, it is useful to adopt the interpolation with piecewise polynomial function.

Definition 1.13. Let a = x0 < x1 < · · · < xn = b be a subdivision of the interval [a, b]. A function
Sn is called piecewise polynomial function if the restriction of Sn to each subinterval [xi−1, xi]
reduces to a polynomial of degree at most ki. Usually, ki ≡ k for each i i.e. the polynomials have
the same degree.

In other words, a piecewise polynomial function is a function that is a polynomial on each
of its sub-domains, but possibly a different one on each. The most simple example of piecewise
polynomial function is the piecewise linear function Sn defined as

Sn(x) =
(xi+1 − x)f(xi) + (x− xi)f(xi+1)

xi+1 − xi
, x ∈ [xi, xi+1].

It is very simple and stable but it furnishes a bad graphic representation. Indeed, as no conditions
are established between the derivatives of polynomials, the connection between two different
polynomials in general presents a corner point.

The most used piecewise polynomial function are the so-called spline. They are constructed by
imposing conditions which assure the continuity of the derivatives at the interior points xi without
using the values that such derivatives have in these point that could not be available.

Definition 1.14. Let a = x0 < x1 < · · · < xn = b be a subdivision of the interval [a, b] and d ≥ 1.
A function Sd(f, x) is called a spline of degree d with respect to this subdivision if

• Sd is a polynomial of degree d in each subinterval [xi−1, xi], i = 1, . . . , n;

• S(k)
d is a continuous function on [a, b] for each k = 0, 1, . . . , d− 1.

Practically, the spline are d − 1 times continuous differentiable on [a, b] and coincide with a
polynomial of degree d in each subinterval. Next paragraph deals with the most used spline that is
the so-called cubic spline.

1.3.1. Cubic Spline. Let xk = a+ hk, k = 0, 1, . . . , n be n+ 1 equidistant points of the interval
[a, b] and let us denote by S3(f, x) the cubic spline interpolating the function f in the nodes xi
that is

S3(f, xi) = f(xi), i = 0, 1, . . . , n.(1.31)

According to Definition 1.14, S3(f, x) is a function such that

S3(f, x) = ai + bix+ cix
2 + dix

3, x ∈ [xi−1, xi], i = 1, . . . , n(1.32)

S
(k)
3 (f, x+i ) = S

(k)
3 (f, x−i ), i = 1, . . . , n− 1, k = 0, 1, 2.(1.33)

Conditions (1.31) and (1.33) get a linear system of 4n − 2 unknowns in the 4n unknown
ai, bi, ci, di. Then, in order to obtain a square system we need to add two additional conditions.
However, we can get S3(f, x) by solving a linear system of order n+ 1 instead of 4n.
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To this end, we introduce the following unknowns

Mi = S′′3 (f, xi), i = 0, 1, . . . , n.(1.34)

We know that S3 is a polynomial of degree 3 in each interval [xi−1, xi]. Hence, we can write

S′′3 (f, x) =
(xi − x)Mi−1 + (x− xi−1)Mi

hi
, i = 1, 2, . . . , n(1.35)

where hi = xi − xi−1. Let us note that S′′3 (f, x) ∈ C0([a, b]).
Then, for each x ∈ [xi−1, xi], by integrating (1.35) we get

(1.36) S′3(f, x) =
−(xi − x)2Mi−1 + (x− xi−1)2Mi

2hi
+ Ci, i = 1, 2, . . . , n

and integrating again we get an expression for the function S3 we are looking for

(1.37) S3(f, x) =
(xi − x)3Mi−1 + (x− xi−1)3Mi

6hi
+ Ci(x− xi−1) +Di, i = 1, 2, . . . , n

where Ci and Di are constants which we can recover by using (1.31). Indeed, since

S3(f, xi−1) = f(xi−1), and S3(f, xi) = f(xi),

we find

Ci =
f(xi)− f(xi−1)

hi
− hi(Mi −Mi−1)

6
and Di = f(xi−1)−

h2i
6
Mi−1.

Consequently, if x ∈ [xi−1, xi], we can rewrite (1.36) and (1.37) as

S′3(f, x) =
−(xi − x)2Mi−1 + (x− xi−1)2Mi

2hi
+
f(xi)− f(xi−1)

hi
− hi(Mi −Mi−1)

6

S3(f, x) =
(xi − x)3Mi−1 + (x− xi−1)3Mi

6hi
+

[
f(xi)− f(xi−1)

hi
− hi(Mi −Mi−1)

6

]
(x− xi−1)

+ f(xi−1)−
h2i
6
Mi−1, i = 1, 2, . . . , n.(1.38)

By proceeding in this way we have required to S3 and S′′3 to be continuous at the points xi−1
and xi. Now we have to impose that S′3 is continuous too. We can do it by determining the
quantities Mi such that the following conditions hold true

(1.39) lim
x→x−i

S′3(f, x) = lim
x→x+i

S′3(f, x), i = 1, 2, . . . , n− 1.

By (1.36) we can deduce that if x ∈ [xi+1, xi] it has the following form

(1.40) S′3(f, x) =
−(xi+1 − x)2Mi + (x− xi)2Mi+1

2hi+1
+
f(xi+1)− f(xi)

hi+1
− hi+1(Mi+1 −Mi)

6
.

Then by replacing (1.40) and (1.36) into (1.39) we get the following linear system

(1.41) hiMi−1 + 2(hi + hi+1)Mi + hi+1Mi+1 =
6

hi+1
(f(xi+1)− f(xi))−

6

hi
(f(xi)− f(xi−1)).

of n− 1 equations in the n+ 1 unknowns M0,M1, ...,Mn. Hence, in order to get a linear system we
need to add two conditions. There are various ways of specifying these two additional constraints
such as the following.
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Complete cubic spline. We add conditions at the endpoints x0 = a and xn = b of the interval.
More precisely, we impose that

(1.42) S′3(f, x0) = f ′(x0) S′3(f, xn) = f ′(xn)

from which we have

2h1M0 + h1M1 = 6

[
f(x1)− f(x0)

h1
− f ′(x0)

]
hnMn−1 + 2hnMn = 6

[
f ′(xn)− f(xn)− f(xn−1

hn

]
.

These last conditions together with (1.41) lead to the following symmetric tridiagonal system
2h1 h1
h1 2(h1 + h2) h2

. . .

hn−1 2(hn−1 + hn) hn
hn 2hn




M0

M1
...

Mn−1
Mn

 = 6



f(x1)−f(x0)
h1

− f ′(x0)
f(x2)−f(x1)

h2
− f(x1)−f(x0)

h1
...

f(xn)−f(xn−1)
hn

− f(xn−1)−f(xn−2)
hn−1

f ′(xn)− f(xn)−f(xn−1)
hn


Then by solving this system we obtain the so-called complete cubic spline.

Natural cubic spline. We impose the conditions M0 = Mn = 0. In this case we obtain the so-called
natural cubic spline. We could also use the correct second derivatives values

(1.43) M0 = f ′′(x0), Mn = f ′′(xn).

In this case, these last conditions together with (1.41) lead to the following tridiagonal symmetric
system of order n− 1

2(h1 + h2) h2
h2 2(h2 + h3) h3

. . .

hn−2 2(hn−2 + hn−1) hn−1
hn−1 2(hn−1 + hn)




M1

M2
...

Mn−2
Mn−1



= 6



f(x2)−f(x1)
h2

− f(x1)−f(x0)
h1

− h1
6 f
′′(x0)

f(x3)−f(x2)
h3

− f(x2)−f(x1)
h2

...
f(xn−1)−f(xn−2)

hn−1
− f(xn−2)−f(xn−3)

hn−2
f(xn)−f(xn−1)

hn
− f(xn−1)−f(xn−2)

hn−1
− hn

6 f
′′(xn)


Periodic cubic spline. If we are dealing with a periodic function we can impose the periodic
conditions

S′3(f, x0) = S′3(f, xn)(1.44)

S′′3 (f, x0) = S′′3 (f, xn).(1.45)

Condition (1.45) leads to the following equation

(1.46) 2h1M0 + h1M1 + 2hnMn + hnMn−1 = 6

[
f(x1)− f(x0)

h1
− f(xn)− f(xn−1

hn

]
,
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while condition (1.45) allow us to state that

M0 = Mn.

Then by replacing this last equation in (1.47) and taking into account that f(x0) = f(xn) equation
(1.47) reads as

(1.47) h1M1 + hnMn−1 + 2Mn(h1 + hn) = 6

[
f(x1)− f(xn)

h1
− f(xn)− f(xn−1

hn

]
,

In this case this last condition together with (1.41) lead to the following diagonal dominant
symmetric system

2(h1 + h2) h2 h1
h2 2(h2 + h3) h3

. . .

hn−1 2(hn−1 + hn) hn
h1 hn 2(h1 + hn)




M1

M2
...

Mn−1
Mn



= 6



f(x2)−f(x1)
h2

− f(x1)−f(xn)
h1

f(x3)−f(x2)
h3

− f(x2)−f(x1)
h2

...
f(xn)−f(xn−1)

hn
− f(xn−1)−f(xn−2)

hn−1
f(x1)−f(xn)

h1
− f(xn)−f(xn−1)

hn


.

This procedure lead to the so-called periodic spline.
In all the previous case the system we have to solve is non singular and since the matrix of

coefficient is a diagonal dominant matrix we can solve it by using the Gauss method. Once we have
determined the array M0,M1, ...,Mn, in order to compute the cubic spline in a point x ∈ [a, b], we
have at first determine the subinterval [xi−1, xi] which contain x and then use the formula (1.38).

About the convergence the following theorem holds true.

Theorem 1.15. Let S3(f, x) be a cubic spline with the additional conditions (1.43) or (1.44) and
(1.45). If f ∈ C2([a, b]) then

lim
h→0

‖f (p) − S(p)
3 (f)‖∞

h2−p
= 0, p = 0, 1, 2, h = max

1≤i≤n
hi.

If f ∈ Ck([a, b]), k = 3, 4 and there exists a constant C such that h
hi
≤ C <∞ then for p = 0, 1, 2, 3

(1.48)


lim
h→0

‖f (p) − S(p)
3 (f)‖∞

h3−p
= 0, k = 3

lim
h→0

‖f (p) − S(p)
3 (f)‖∞

h4−p
= 0, k = 4.

By the way it was proved that the maximum order of convergence we can get with the cubic
spline is h4 that is

‖f(x)− S3(x)‖∞ = O(h4)

even if f ∈ Ck([a, b]), k > 4.
The natural cubic spline are the most interesting spline. By the way if f ′′(a) and f ′′(b) are

not zero the order of convergence is not the optimal one. In fact, if f ∈ C4([a, b]), the order of
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convergence is O(h4) in each subinterval of [a, b] but in a neighbord of the endpoints it reduces to
O(h2).

It is also possible to determine a cubic spline without specifying any extra conditions at the
end points (other than that the spline interpolates the data points there). This is the case of the
so-called not-a-knot spline which requires that the third derivative of the spline is continuous at
x1 and xn−1:

(1.49) S
(3)
3 (x+1 ) = S

(3)
3 (x−1 ), and S

(3)
3 (x+n−1) = S

(3)
3 (x−n−1).

In this case the nodes x1 and xn−1 are interpolating points but are not partition points. In other
words, the polynomial in the first two subintervals (and in the last two) are equal.

1.4. Matlab Programming exercises.
Task 1. Investigate on the Matlab commands polyfit , polyval , figure, plot and subplot . By

using such commands, write an m-file function, named pflagrange.m, which compute and plot
the fundamental Lagrange polynomials and the Lebesgue constants. The m-file function has to
take the following variables as input:

1. the degree of the polynomials;
2. the interval of the interpolation [a, b];
3. the variable “flag” which allows one to choose the interpolation nodes (flag = 1 for the

equidistant nodes, flag = 2 for the zeros of pn(v−1/2,−1/2) and flag = 3 for the zeros of

(1− x2)pn(v1/2,1/2)).

Then, use the m-file function to plot both the foundamental Lagrange polynomials of degree 6 and
the Lebesgue functions based on these zeros.

Task 2. Write an m-file function, named Lagrange.m, which compute the Lagrange polynomial
of degree n− 1 defined as

Ln(f, x) =

n∑
k=1

lk(x)f(xk), lk(x) =

n∏
j=1
j 6=k

(x− xj)
(xj − xk)

.

The m-file function has to take the same input variables of the previous exercise and has to return
the absolute error E = max

x∈[a,b]
|f(x)−Ln(f, x)| and the graph of the polynomial and the function f .

Then use this m-file function to approximate the following functions:

1 f(x) = 1/(1 + x2), x ∈ [−5, 5]

2 f(x) = |x|9/2ex+5(1 + (x+ 4))3, x ∈ [−1, 1].

with the polynomial Ln, n = {16, 32, 64, 128, 256} by using the equidistant nodes.
Repeat the exercise by using the Chebyshev nodes of the first kind. Compare and comment the

results.
Task 3. Investigate on the Matlab command spline to construct the cubic spline with the

condition “not a knot”. Hence, determine the cubic spline which interpolates the Runge function
on 6, 10, 14 equidistant nodes of the interval [−5, 5]. Represent the relative graph and compare the
results with those obtained in the previous exercise with the Lagrange polynomial.
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2. Numerical Integration

Numerical integration formulae, or quadrature formulae, are methods for approximating definite
integrals of the following form ∫ b

a
f(x)dx

where f ∈ C0([a, b]).
The need for numerical quadrature arises when either a definite integral cannot be evaluated

analytically or when special functions involved in an analytical solution are too complicated to be
of direct use. A typical example of an integral for which the antiderivative of the integrand cannot
be expressed in terms of elementary functions are∫ 3

−3
e−x

2
dx,

∫ 5

0

sin 3x√
x2 + x+ 1

.

Morover, numerical quadrature are essential when the integrand function f is known in a set of
discrete data and they also provide a basic tool for other kind of problems such as the numerical
solution of integral equations like

f(y)− 1

2

∫ 1

0
(y + 1)e−xyf(x)dx = e−y − 1

2
+
e−(y+1)

2
, y ∈ [0, 1]

or the numerical solution of boundary value problems such as the classical Dirichlet problem
∂2f

∂x21
+
∂2f

∂x22
= 0, P = (x1, x2) ∈ Ω

f(P ) = f̄(P ), P ∈ Σ

where Ω is a planar domain and Σ is its boundary.
In order to describe the most important quadrature formula let us consider n+ 1 points in the

interval [a, b]

a ≤ x0 < x1 < ... < xn ≤ b
and assume that the values f(xk), ∀k = 0, 1, ..., n are known.

Under this assumption, we can compute the integral in the following way∫ b

a
f(x)dx =

n∑
k=0

akf(xk) +Rn(f) := Qn(f) +Rn(f)

where the sum Qn(f) is called quadrature formula and Rn(f) represents the remainder term.
In the quadrature formula

Qn(f) =

n∑
k=0

akf(xk)

the coefficients ak are called quadrature weights or simply weights and the points xk ∈ [a, b]
are called quadrature nodes or simply nodes. Moreover, Qn is called closed formulae if both
a and b are nodes. Conversely, it is called an open formulae.

When we introduce a quadrature formula we face to the following problems:

(1) The value of the sum Qn tends to the value of the integral? In other words, the error
Rn(f) tends to zero?

(2) How to construct the quadrature formula? And then, if we know (xk, f(xk)) how do
determine the coefficients ak?
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Let us consider the first problem.

Definition 2.1. The quadrature formula Qn is convergent if

lim
n→∞

Rn(f) = 0.

Definition 2.2. The quadrature formula Qn has degree of exactness or presicion p if
Qn(xk) =

∫ b

a
xkdx k = 0, ..., p

Qn(xk) 6=
∫ b

a
xkdx k > p

or equivalently


Rn(xk) = 0 k = 0, ..., p

Rn(xk) 6= 0 k > p

.

The following theorem states the assumption which assure that the quadrature formula {Qn}
has to satisfy to have convergence.

Theorem 2.3. Assume that the sequence {Qn} is such that

(i) {Qn} has degree of exactness n;

(ii) sup
n

n∑
k=0

|ak| <∞.

Then the sequence {Qn} is convergent.

Let us construct a convergent quadrature formula. To this end we fix n+ 1 distinct nodes in
[a, b]. Taking the previous theorem into account we have to impose that the quadrature rule has
degree of exactness n. In virtue of the linearity of the integrals, we can simply impose that the
formula is exact on the canonical base {1, x, x2, ..., xn}, namely

(2.1)

∫ b

a
xp =

n∑
k=0

akx
p
k, p = 0, 1, ..., n

By expliciting (2.1) we have
a0 + a1 + ...an = (b− a)

a0x0 + a0x1 + a1x2 + ...+ anxn = 1
2(b2 − a2)

...
...

a0x
n
0 + a0x

n
1 + a1x

n
2 + ...+ anx

n
n = 1

n+1(bn+1 − an+1)

which is a linear system that can be written as
1 1 ... 1
x0 x1 ... xn
...

... ...
...

xn0 xn1 ... xnn



a0
a1
...
an

 =


(b− a)

1
2(b2 − a2)

...
1

n+1(bn+1 − an+1)

 .

By the assumptions, the nodes are distinct and then the matrix is non singular. Thus the previous
system has only one solution which furnish the weights ak of our formula.

This method is the so-called method of undetermined coefficients, but it is not efficiently
from a computational point of view. Indeed, the matrix of coefficients is the well-known ill-
conditioned Vandermonde matrix and then the results are inaccurate when n is large.

In order to overcome this problem, we have to follow an other approach which leads to the
so-called interpolatory formula which are classified as
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(i) Newton-Cotes formula if the quadrature points are equidistant nodes;
(ii) Gaussian-formula if the quadrature points are the zeros of orthogonal polynomials.

2.1. Newton-Cotes formula. The Newton-Cotes formula was discovered by Newton in 1711.
Let n ≥ 0 and let us introduce the following equidistant quadrature nodes

xk = x0 + kh, k = 0, 1, ..., n.

We define closed Newton-Cotes formula the quadrature rules for which

a = x0, b = xn, h =
b− a
n

, n ≥ 1

and open formula the quadrature rules for which

a = x0 + h, b = xn − h, h =
b− a
n+ 2

, n ≥ 0.

In the next paragraphs we will described the most important Newton-Cotes quadrature formula.

Rectangle rule (and mid-point rule). The most simple Newton-Cotes formula is the rectangle
rule obtained by approximating the value of the integral with the area of the rectangle we have
under the curve representing the function f . Hence the integral can be approximated with the
product of the value of the function at one of the end-points by the length of the interval as follows

(2.2)

∫ b

a
f(x)dx = (b− a)f(a) +R0(f)

or

(2.3)

∫ b

a
f(x)dx = (b− a)f(b) +R0(f).

A variation of the rectangle rule is the midpoint rule. Similarly to the rectangular rule, we
approximate the value of the integral by multiplying the length of the interval by the value of the
function at the mid-point

(2.4)

∫ b

a
f(x)dx = (b− a)f

(
a+ b

2

)
+R0(f).

Both formulae are open Newton-Cotes formula and have degree of exactness equal to n = 0 that
is R0(f) = 0 if f is a constant.

Although the exact error R0 is not known, an estimate for it can be derived under the assumption
that f is suitably differentiable in the interval of integration [a, b]. More precisely if

(2.5)

∫ b

a
|f ′(x)|dx <∞

then since

R0(f) =

∫ b

a
f(x)dx− f(a)(b− a) =

∫ b

a
(f(x)− f(a))dx

∫ b

a

(∫ x

a
f ′(t)dt

)
dx

we can deduce

|R0(f)| ≤
∣∣∣∣∫ b

a

(∫ x

a
f ′(t)dt

)
dx

∣∣∣∣ ≤ (b− a)

∫ b

a
|f ′(t)|dt.(2.6)

Thus, the error only depends on the size of the interval. Hence, if the size is not small it is not
useful to use this formula.
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If b − a > 1, it is more practical subdivide the interval integration in n sub-intervals having
equal length h = (b− a)/n that is∫ b

a
f(x)dx =

n∑
i=1

∫ xi

xi−1

f(x)dx

where

a = x0 < x1 < ... < xn = b

with xk = x0 + kh, k = 0, ..., n and then applying a primitive rule to each of the sub-intervals.
This procedure leads to the so-called composite rectangle and mid-point quadrature formula
which read as

(2.7)

∫ b

a
f(x)dx =


(b−a)
n

n−1∑
k=0

f(xk+1) +Rn(f)

(b−a)
n

n−1∑
k=0

f(xk) +Rn(f)

and

(2.8)

∫ b

a
f(x)dx =

(b− a)

n

n−1∑
k=0

f

(
xk+1 + xk

2

)
+Rn(f).

About the error of formula (2.7), taking (2.6) we have

|Rn(f)| =
n−1∑
k=0

|Rk(f)| ≤
n−1∑
k=0

(xk+1 − xk)
∫ xk+1

xk

|f ′(x)|dx =
(b− a)

n

∫ b

a
|f ′(x)|dx.(2.9)

Hence, we can deduce that these formulae have order of convergence 1. Moreover, it is possible to
prove that if the integrand function is smoother the error does not improve.

Trapezoidal rule. A very useful Newton-Cotes formula is the trapezoidal rule in which the
integral is approximated with the area of the trapezoid we have under the graph of the function f :

(2.10)

∫ b

a
f(x)dx =

b− a
2
{f(a) + f(b)}+R1(f).

Let us note that this is a closed Newton-Cotes formula having degree of exactness n = 1.
Moreover, let us remark that the previous formula could also be obtained by approximating the

integrand function f by using the Lagrange polynomial based on the nodes x0 = a and x1 = b
that is

(2.11)

∫ b

a
f(x)dx =

∫ b

a

(
1∑

k=0

lk(x)f(xk)

)
dx =

1∑
k=0

akf(xk)

where

a0 =

∫ b

a
l0(x)dx =

∫ b

a

x− x1
x0 − x1

dx =
(b− a)

2

a1 =

∫ b

a
l1(x)dx =

∫ b

a

x− x0
x1 − x0

dx =
(b− a)

2
.

Hence, by replacing the above coefficients in (2.11) we get (2.10).
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This is the general idea of the interpolatory formula based on n+ 1 points that is to approximate
the integrand function with the Lagrange polynomialof degree n∫ b

a
f(x)dx =

∫ b

a

n∑
k=0

`k(x)f(xk)dx =
n∑
k=0

f(xk)

∫ b

a
`k(x)dx =

n∑
k=0

akf(xk)

where

ak =

∫ b

a
`k(x)dx with `k(x) =

n∏
j=0
j 6=k

x− xj
xk − xj

.

Let us also remark that taking the properties of the Lagrange polynomial into account an
interpolatory formula based on n+ 1 nodes have degree of precision n.

About the error R1(f) of the trapezoidal rule if assumption (2.5) is verified then we have

R1(f) =

∫ b

a
f(x)dx− (b− a)

f(a) + f(b)

2

=
1

2

∫ b

a
(f(x)− f(a))dx+

1

2

∫ b

a
(f(x)− f(b))dx

=
1

2

∫ b

a

∫ x

a
f ′(t)dtdx− 1

2

∫ b

a

∫ b

x
f ′(t)dtdx.

Taking the absolute value we obtain an estimate for this error

(2.12) |R1(f)| ≤ 1

2

∫ b

a

∣∣∣∣∫ x

a
f ′(t)dt−

∫ b

x
f ′(t)dt

∣∣∣∣ dx ≤ (b− a)

2

∫ b

a
|f ′(t)|dt.

Then in this case the error is exactly half of the error we could get by using formula (2.2) or
(2.3).

Moreover, if the integrand function f is such that

(2.13)

∫ b

a
|f ′′(t)|dt <∞,

then

R1(f) = −1

2

∫ b

a
(b− x)(x− a)f ′′(x)dx

and the following estimate holds true

|R1(f)| ≤ (b− a)2

2

∫ b

a
|f ′′(t)|dt.

Summirising, if condition (2.5) is satisfied, the rectangle and trapezoidal quadrature formula
have the same order of convergence but if f satisifes (2.13) then the trapezoidal rule gives better
results and the order of convergence is 2.

Similarly to the rectangle rule, a better estimate can be obtained by dividing the interval [a, b]
into n sub-intervals of length h = (b− a)/n, applying the previous formula to each of the n sub-
intervals and then summing the result. In this way we get the so-called composite trapezoidal
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rule ∫ b

a
f(x)dx =

(b− a)

n

n−1∑
k=0

f(xk) + f(xk+1)

2
+R1(f)

=
(b− a)

2n

{
f(a) + 2

n−1∑
i=1

f(xi) + f(b)

}
+R1(f)(2.14)

where x0 = a, xk = a+ kh, k = 1, ..., n and xn = b. As regard the error, in this case it is possible
to prove that

(2.15) |R1(f)| ≤


b− a
2n

∫ b

a
|f ′(x)|dx, if

∫ b

a
|f ′(x)|dx <∞

(b− a)2

2n2

∫ b

a
|f ′′(x)|dx, if

∫ b

a
|f ′′(x)|dx <∞.

The Simpson rule. The most frequently Newton-Cotes quadrature formula is the Simpson rule
in which the integral is approximated by a parabola that passes through the two end points and a
single internal point. To derive it, we approximate the function f by using the Lagrange polynomial
based on three points x0 = a, x1 = a+b

2 , x2 = b. Thus, we can write∫ b

a
f(x)dx =

2∑
k=0

akf(xk) +R2(f)

where

a0 =

∫ b

a
l0(x)dx =

∫ b

a

(x− x1)
(x0 − x1)

(x− x2)
(x0 − x2)

dx =
b− a

6

a1 =

∫ b

a
l1(x)dx =

∫ b

a

(x− x0)
(x1 − x0)

(x− x2)
(x1 − x2)

dx =
2(b− a)

3

a2 =

∫ b

a
l2(x)dx =

∫ b

a

(x− x0)
(x2 − x0)

(x− x1)
(x2 − x1)

dx =
(b− a)

6

from which we get ∫ b

a
f(x)dx =

b− a
6

{
f(a) + 4f

(
a+ b

2

)
+ f(b)

}
+R2(f).(2.16)

It is a closed formula and it has degree of precision n = 2.
As regard the error R2, it is possible to prove that if f is such that

(2.17)

∫ b

a
|f (IV )(X)|dx <∞

then

|R2(f)| ≤ (b− a)4

1152
.

Now, let us improve this error of estimate by introducing the so-called composite Simpson
rule. To this end let us divide the interval [a, b] into 2n sub-intervals having the same length.
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Then, we can write ∫ b

a
f(x)dx =

n∑
i=0

∫ x2i+1

x2i

f(x)dx.

Now, by applying the primitive Simpson rule (2.16) to each sub-interval we get the following
formula
(2.18)∫ b

a
f(x)dx =

h

3

[
f(a) + 2

n−1∑
i=1

f(a+ 2ih) + 4
n∑
i=1

f(a+ (2i− 1)h) + f(b)

]
+Rn(f), h =

b− a
2n

where under the assumption (2.17)

|Rn(f)| ≤ C (b− a)4

n4

with C a positive constant independent of f and n.
By all the theoretical estimates of the remainder term, in order to improve the error might seem

natural increase the value of n and thus construct quadrature formula based on more points.
However, this can not be recommended for numerical purposes because it is possible to see

that for n ≥ 8 the weights tend to grow. As we have seen in the previous chapter the Lagrange
polynomial based on equidistant nodes is not a good approximant.

2.2. Gaussian formula. Sometimes the integrand function is such that there exists its integral
but has not some good smoothness properties because, for instance, its derivatives are singular in
some points tk ∈ [a, b]. For example,

(2.19) g(x) =
xe−x√
1− a

.

In this case we can proceed in the following way. We factorize the integrand function as

g(x) = w(x)f(x)

where w is a function having all the singularities of f and f is a smooth function; In the case of
(2.19) we have

f(x) = xe−x, w(x) =
1√

1− a
.

Hence, in order to approximate the integral we approximate the function f by means of the
Lagrange polynomial based on the points {xk}nk=0. Then we have∫ b

a
g(x)dx =

∫ b

a
f(x)w(x)dx =

∫ b

a

n∑
k=0

`k(x)f(xk)w(x)dx =

n∑
k=0

f(xk)

∫ b

a
`k(x)w(x)dx+ en(f)

from which we deduce that∫ b

a
f(x)w(x)dx =

n∑
k=0

λkf(xk) + en(f) with λk =

∫ b

a
`k(x)w(x)dx.(2.20)

The function w is called weight function and it must be such that the calculation of the
coefficients λk should be simple. Quadrature formula (2.20), namely the quadrature rule in which
the coefficients depend on w, is called weigthed interpolatory formula. In the case where the
quadrature nodes {xk}nk=0 of weighted interpolatory formula coincides with the zeros of orthogonal
polynomials with respect to the weight function w then such quadrature is called Gaussian
quadrature formula.
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Gaussian quadrature formula is exact for polynomials of degree at most 2n− 1 and is stable.
About the remainder term en(f), there exists different type of estimates according to the smoothness
of the function f . Here we only recall an estimate that is useful in the following. However for a
complete discussion the reader can consult [12].

Proposizione 2.4. Let f ∈ C0([a, b]). Then

(2.21) |en(f)| ≤ CE2n−1(f)

where C 6= C(n, f).

Proof. Let P ∈ P2n−1. Then we can write

|en(f)| = |en(f − P )| ≤
∫ 1

−1
|f(x)− P (x)|w(x)dx+

n∑
k=1

λk(w)|f(xk)− P (xk)|.

Hence,

|en(f)| ≤ 2C
∫ 1

−1
|f(x)− P (x)|w(x)dx ≤ 2C‖(f − P )‖∞

∫ 1

−1
w(x)dx

from which taking into account the infimum on P we have

|en(f)| ≤ CE2n−1(f).

�

3. Integral Equations

Integral equations (i.e. equations in which the unknown function appears under the integral
sign), are one of the most important classes of equations. They are classified as

1. Fredholm integral equations in which the limits of integrations are fixed. They have
the following general form

p(y)f(y)−
∫ b

a
k(x, y)f(x)dx = g(y)

where −∞ ≤ a < b ≤ +∞, f is the unknown and k, g and p are given functions. Often k
and g are called kernel and right-hand side of the equation, respectively.

According to the function p, Fredholm integral equations are classified as follows:
• Fredholm integral equations of the first kind if p(y) = 0, ∀y ∈ [a, b] that is∫ b

a
k(x, y)f(x)dx = g(y)

• Fredholm integral equations of the second kind if p(y) is a constant for every
y ∈ [a, b]. Generally, these equations read as

(3.1) f(y)− µ
∫ b

a
k(x, y)f(x)dx = g(y),

where µ := 1
p and g := g

p

• Fredholm integral equations of the third kind if p(y) = 0 in some points (but
not all) of the interval [a, b]. An example is the following

(1− y)f(y)−
∫ 1

−1
k(x, y)f(x)dx = g(y).
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Moreover, if the right-hand side g vanishes the integral equations are called homogeneous
integral equations. Conversely, if g is non zero they are called inhomogeneous integral
equations.

2. Volterra integral equations in which the limits of integrations are not fixed. Similarly
to Fredholm integral equations, we refer to homogeneous or inhomogeneous integral
equations according to the right-hand side. Moreover, we refer to Volterra integral
equations of the first kind if they are of the form∫ y

a
k(x, y)f(x)dx = g(y), x ∈ [a, b]

and Volterra integral equations of the second kind if they are written as

f(y) +

∫ y

a
k(x, y)f(x)dx = g(y), x ∈ [a, b].

Volterra integral equation of the second kind find a natural application in the ordinary
differential equation. In fact, let us consider the following ordinary differential equation of
the second kind

(3.2) x
′′
(t) + a1(t)x

′
(t) + a2(t)x(t) = y(t), t > a

with the initial conditions for t = a:

(3.3) x(a) = C0, x′(a) = C1.

Setting

(3.4) x
′′
(t) = f(t)

and taking into account the initial conditions we can write

(3.5)


x′(t) =

∫ t

a
f(s)ds+ C1

x(t) =

∫ t

a
(t− s)f(s)ds+ C1t+ C0.

Thus by replacing (3.4) and (3.5) in (3.2) we get the following Volterra equation of
second kind

(3.6) f(t)−
∫ t

a
k(t, s)f(s)ds = g(t)

where

k(t, s) = a1(t) + a2(t)(t− s)
and

g(t) = y(t)− C1(a1(t)− ta2(t))− C0a2(t).
In this way, problem (3.2) equipped with the initial conditions (3.3) has been reduced

to equation (3.6). Once it is solved, by replacing the calculated solution f in (3.5) we
can found the solution of our problem. We also underline that if the functions ai(t) are
constants for each i = 0, 1, 2 the Volterra integral equation has a kernel of the type k(t− s)
(integral equation of convolution type).
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3.1. Fredholm integral equations of the second kind. Let us consider equation (3.1) that is

(3.7) f(y)− µ
∫ 1

−1
k(x, y)f(x)dx = g(y), y ∈ [−1, 1]

where k and g are two given functions.

Example 3.1. The following equation

f(y) +

∫ 1

−1
ey−xf(x)dx = (y + 1) + (e2 − 3)ey−1, y ∈ [−1, 1]

has the unique solution f(y) = y + 1.

In this section we will introduce some numerical methods which aim to approximate the solution
of (3.7). Nevertheless before going on, in the next subsections, we will recall some basic facts on
the linear functional analysis useful for our aims.

3.1.1. Some basic facts on linear functional analysis. In the following we assume as well-known
[8, 9, 16] the notion of Banach space that we will denote by (X, ‖ · ‖), being ‖ · ‖ its norm, and the
notion of bounded linear operator and inverse operator. In particular we will denote by B(X,X)
the collection of all bounded linear operators from X to X, by

(3.8) ‖K‖ = sup
‖x‖≤1

‖Kx‖ = sup
x 6=0

‖Kx‖
‖x‖

,

the norm of the operator K ∈ B(X,X) and finally by K−1 the inverse of K ∈ B(X,X).
Now we go back to our equation (3.7). Introducing the operator

(Kf)(y) = µ

∫ b

a
k(x, y)f(x)dx

(3.7) can be written in the following form

(I −K)f = g

where I is the identity operator.
Our aim is to find the necessary and sufficient conditions so that (3.7) has a unique solution

for each given right-hand side g. To this end, we note that first of all we have to assure that the
inverse operator (I −K)−1 exists. In fact, in this way equation (3.7) has a unique solution, given
by f = (I −K)−1g. In this context the following theorem has an important role.

Theorem 3.2. Let (X, ‖ · ‖) be a Banach space and let K : X → X be a linear operator. If
‖K‖ ≤ q < 1 then (I −K)−1 exists and

(3.9) ‖(I −K)−1‖ ≤ 1

1− ‖K‖
≤ 1

1− q
.

Moreover, let K : X → X be a linear operator and {Km}m a sequence of linear operators with
Km : X → X, such that

lim
m
‖K −Km‖ = 0.

If (I−K)−1 exists, then for m sufficiently large (say m > mo), (I−Km)−1 exists and the following
inequality

(3.10) ‖(I −Km)−1‖ ≤ ‖(I −K)−1‖
1− ‖(I −K)−1‖ ‖(K −Km)−1‖
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holds true.

Proof. We begin with the proof of the first statement that is the well-known Von Neuman Theorem.

To this end we consider the partial sum Sm =

m∑
i=0

Ki of the series

∞∑
i=0

Ki.

For an arbitrary p we can write

‖Sm+p − Sm‖ = ‖Km+1 + ...+Km+p‖ ≤
p∑
i=1

‖Km+i‖

≤
p∑
i=1

‖K‖m+i ≤
p∑
i=1

qi+m = qm
p∑
i=1

qi ≤
(
qm+1

1− q

)
.

Since 0 < q < 1 we can deduce that the right-hand side tends to zero for m→∞. Moreover this
relation does not depend on p and then it is true for any arbitrary p. In other words the partial
sum is a Cauchy sequence and then, since X is a Banach space, is convergent.
Let us denote by S its sum. It results

‖S‖ =

∥∥∥∥∥
∞∑
i=0

Ki

∥∥∥∥∥ ≤
∞∑
i=0

qi =
1

1− q
.

Now if we prove that S = (I −K)−1 we have relation (3.9). We can write

S(I −K) = lim
m→∞

Sm(I −K)(3.11)

= lim
m→∞

[(I +K +K2 + ...+Km)(I −K)](3.12)

= lim
m→∞

[I +K +K2 + ...+Km −K −K2 − ...−Km+1](3.13)

= lim
m→∞

[I −Km+1] = I(3.14)

since ‖I −Km+1 − I‖ tends to zero for m→∞.
Then S is a left inverse operator of (I −K). In the same way it is possible to prove that S is a
right inverse operator and consequently (3.9) holds true. Now we prove (3.10). We first note that
according to our assumptions (I −K), is invertible and then it results

I −Km = (I −K) + (K −Km)

= (I −K)[I − (I −K)−1(Km −K)]

:= (I −K)(I −D),

where

D := (I −K)−1(Km −K).

Moreover since we assume that the sequence {Km}m converges to K, there exists m0 such that,
for any m > m0, we have

‖D‖ ≤ ‖(I −K)−1‖ ‖K −Km‖ <
1

2
.
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Now by the Von Neuman Theorem the operator (I −D)−1 exists and (I −Km)−1 = (I −D)−1(I −
K)−1 exists too, with

‖(I −Km)−1‖ ≤ ‖(I −K)−1‖ ‖(I −D)−1‖

≤ ‖(I −K)−1‖
1− ‖(I −K)−1‖‖(K −Km)−1‖

and (3.10) is proved. �

In the theory of the integral equation, the concept of compact operator is very important,
because in general, the classical results on the uniqueness and existence of the solution of an
integral equation refer to compact operators. For this reason, now we recall what means that an
operator K is compact and in which way it can be characterize.

Definition 3.3. Let X and Y be two normed spaces and let K ∈ B(X,Y ). The operator K is
compact (or completely continuous) if for each bounded set A of X, K(A) is relatively compact
2 in Y . Equivalently, K is compact if every bounded sequence {xn} ⊂ X contains a subsequence
{xn,k} such that {Kxn,k} converges to a point of Y .

In the sequel we will denote by K(X,Y ) the set of all compact operators K : X → Y .
We mention that in order to characterize the set relatively compact one can use the Arzelà-Ascoli

Theorem or the Riesz-Kolmogorov Theorem (see, for instance, [8, 9, 16]). Moreover we point out
that when the space Y is complete there is a useful characterization of the set relatively compact
in terms of precompactness. In fact it can be shown that a subset A of a complete metric space is
relatively compact if and only if it is precompact (see, for instance, [16, p. 122-126]) i.e. if for each
ε > 0, A is contained in the union of a finite number of open balls of radius ε. Thus we can state
the following.

Theorem 3.4. Let Y be a Banach space and X be a normed space. Then K ∈ K(X,Y ) if and
only if for every bounded set B ⊂ X the image K(B) is a precompact set.

In the following we also need the concept of conjugate operator that we recall briefly here.
Let X and Y be normed spaces and let K : X → Y be a linear and continuous operator which

maps x ∈ X in y = Kx ∈ Y . Moreover let g an element of the dual space of Y (that we will denote
by Y ∗) i.e. a linear continuous functional g : Y → R. Now we apply g to the element Kx:

g : Y → R
Kx→ g(Kx) := f(x).

Note that f ∈ X∗ i.e. g(Kx) is a continuous linear functional defined on X. Then, in other words,
to each functional g ∈ Y ∗ corresponds a functional f ∈ X∗ obtaining an operator

K∗ : Y ∗ → X∗

such that

g(Kx) = K∗(gx).

The operator K∗ is called conjugate operator. The following theorem holds true (see, for instance,
[16]).

2A set A is relatively compact if its closure A is compact.
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Theorem 3.5. Let X and Y be normed spaces and let K ∈ B(X,Y ). Then K∗ ∈ B(Y ∗, X∗) and

‖K∗‖ = ‖K‖.
Moreover if X and Y are two Banach spaces, and K ∈ K(X,Y ), then K∗ ∈ K(Y ∗, X∗).

The last part of the theorem is the so-called Schauder Theorem.

3.1.2. The Fredholm Alternative Theorem. In this section we give some necessary and sufficient
conditions to have the existence and the uniqueness of a large class of Fredholm integral equations
of the second kind. They are contained in the so-called Fredholm Alternative Theorem that the
Swedish mathematician Eric Ivan Fredholm stated in the early 1900s.

In order to establish it we consider the following

(3.15) (I −K)f = g,

and the corresponding homogeneous equation

(3.16) (I −K)f = 0

whose solution are called autosolutions. Moreover we assume that the operator K ∈ K(X,X) with
X a Banach space. We have the following.

Theorem 3.6. Let X be a Banach space and K ∈ K(X,X). Then 3

dim(Ker(I −K)) <∞.

Now, we introduce the conjugate operator K∗ : X∗ → X∗ of K and the following equations

(3.17) (I −K∗)f = g f, g ∈ X∗

(3.18) (I −K∗)f = 0.

Note that since K ∈ K(X,X), by Theorem 3.4, it results that K∗ ∈ K(X∗, X∗).
The following theorems connect the equation (3.15) with (3.18) and (3.16) with (3.18).

Theorem 3.7. Let X be a Banach space and K ∈ K(X,X). Then equation (3.15) has a unique
solution for each given right-hand side g if and only if its right-hand side is orthogonal to each
solutions of equation (3.18).

Theorem 3.8. Let X be a Banach space and K ∈ K(X,X). Then equation (3.15) has a unique
solution for each given right-hand side g if and only equation (3.16) has only the trivial solution .

Theorem 3.9. Let X be a Banach space and K ∈ K(X,X). Then

dim(Ker(I −K)) = dim(Ker(I −K∗)),
i.e. the homogeneous equations (3.16) and (3.18) have the same finite number of linearly independent
solutions.

By means of the previous theorems we can deduce the well-known Alternative Fredholm’s
Theorem.

Theorem 3.10. Let X be a Banach space and let K ∈ K(X,X). Then there are two alternatives:

3The kernel or null space of a linear operator K, denoted by Ker(K), is the subspace defined as

Ker(K) = {x : x ∈ X,Kx = 0}.
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(i) equation (3.16) has only the trivial solution if and only if (3.15) has a unique solution for
each given function g.

(ii) equation (3.16) has not only the trivial solution if and only if, according to the right-hand
side g, (3.15) has not solutions or has more than one solution.

Remark 3.11. We note that the first alternative follows by Theorem 3.8. Moreover if (3.16) has
not only the trivial solution, then by Theorem 3.6 it has a finite number of linear independent
solutions and in virtue of Theorem 3.9, equation (3.18) has the same number of linear independent
solutions. Therefore, by Theorem 3.7, (3.15) has solutions if and only if its right hand side g is
orthogonal to each of these solutions. Otherwise it has not solutions.

Hence in virtue of this result only two cases are possible . In particular, it is the first case that is
useful to our aims. In fact, if the operator K is compact, assuming that the homogeneous equation
has only the trivial solution, our equation (3.15) has a unique solution for each right-hand side g.

Therefore, it will be important to find the necessary and sufficient conditions so that the operator
K is compact. Next theorem gives these conditions.

Theorem 3.12. Let X be a Banach space and let K ∈ B(X,X). Then K is compact if and only if

lim
m→+∞

sup
f∈X
‖f‖=1

Em(Kf) = 0,

where Em(Kf) is the error of best approximation of Kf ∈ X.

3.2. Numerical methods. In this section we describe two numerical methods that allow us to
approximate the solution of a Fredholm integral equation of the second kind. The first one is the
projection method. It is based on the resolution of finite dimensional equations that are equivalent
to a linear system. The second one is the Nyström method that uses a suitable quadrature rule and
it also brings back to the resolution of a linear system. In both cases we give (see, for instance, [1])
the conditions on which these methods can be applied including the error estimate.

3.2.1. The Projection Method. We consider the operator equation (3.15) i.e.

(I −K)f = g.

Assume that Ker{I − K} = {0} in X where K ∈ K(X,X) with X a Banach space equipped
with the norm ‖ · ‖X and denote by f∗ the unique solution of the given equation. In order to
approximate it we proceed in the following way.

We choose a sequence of finite dimensional subspaces Xm ⊂ X, m ≥ 1, and we introduce a
projector Pm : X → Xm i.e. a bounded operator such that Pmx = x, ∀x ∈ Xm.

Then we consider the following finite dimensional equations

Pm(I −K)fm = gm

i.e.

(3.19) (I − PmK)fm = gm

where for example gm = Pmg.
Now if we assume that

(3.20) ‖g − gm‖X → 0

and

(3.21) ‖K − PmK‖ → 0
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where the operator norm is defined in (3.8), then, by a standard argument (see, for instance [1]), it
is possible to prove the following.

Theorem 3.13. Assume that Ker(I − K) = {0} in X and conditions (3.21) and (3.20) are
fulfilled. Then, for m sufficiently large , equation (3.19) has a unique solution f∗m ∈ Xm. Moreover

(3.22) ‖f∗ − f∗m‖X ≤ C (‖g − gm‖X + ‖K − PmK‖ · ‖g‖X)

with C independent of f and m, and

(3.23) |cond (I −K)− cond (I − PmK)| = O(‖K − PmK‖)

where cond(T ) = ‖T‖ ·
∥∥T−1∥∥ denotes the condition number in infinity norm of an invertible

operator T .

Usually, the set of all algebraic polynomials of degree at most m− 1 is chosen as subspace Xm

and the Lagrange polynomial Lm(X̃, f, x) defined in (1.19), with X̃ an arbitrary triangular infinity
matrix of knots belonging to [a, b], is the projector Pm.

Moreover it is possible to prove (see, for instance, [4]) that equations (3.19) are equivalent to a
system of m equations in m unknowns and denoting by Am the matrix of the obtaining system
the following relation holds true:

cond(Am) ≤ cond(I −K)‖Λ(X̃)‖2∞
where Λm(X̃) is the Lebesgue constants defined in (1.23).

Therefore if the entries of the matrix X̃ are the equal-spaced points, we have

‖Λm(X̃)‖ ∼ 2m

em logm

and we can have serious problems in the computations of the solution of the system. Then, the
choice of matrices of knots X̃ for which it results ‖Λm(X̃)‖∞ ∼ logm is recommend.

3.2.2. The Nyström Method. One of the most common numerical methods used to approximate
the solution of equation (3.7) is the Nyström method. It is based on the following procedure.

We consider (3.7) i.e.

f(y)− µ
∫ b

a
k(x, y)f(x)dx = g(y)

and approximate the integral by means of a suitable quadrature formula

(3.24) (Gmf)(y) =
m∑
i=1

wm,ik(xm,i, y)f(xm,i)

in which we have denoted by wm,i its coefficients and by xm,i the quadrature nodes. We assume
that it is stable i.e.

sup
m
‖Gm‖ = sup

m

m∑
i=1

|wm,i| <∞

and is convergent i.e. if m→∞ the sum Gmf converges to the integral.
Then we consider the following

(3.25) f(y)− µ(Gmf)(y) = g(y)

and we compute it in the nodes xi. In this way we obtain the following linear system of order m
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(3.26) f(xm,j)− µ
m∑
i=1

wm,ik(xm,i, xm,j)f(xm,i) = g(xm,j) j = 1, ...,m

that is equivalent to (3.25).
In fact, each solution f∗(y) of equation furnishes a solution

f∗ ≡ [f∗(x1), ..., f
∗(xm)] for the system (3.26) and vice versa for each solution of system (3.26)

there is a unique solution for the equation (3.25) given by

f∗m(y) = g(y) + µ
m∑
i=1

wik(xi, y)f∗(xi).

The formula just written is called Nyström interpolation formula.
Of course we have to prove that (3.25) or (3.26) admit a unique solution. To this end the

following theorem is useful (see, for instance, [1, Chapter 4]).

Theorem 3.14. Let (X, ‖ · ‖) a Banach space of continuous functions, K : X → X a compact
operator, Ker{I −K} = {0} and denote with f∗ ∈ X the unique solution of the given equation.
Then if

• supm ‖Gm‖ <∞
• ‖Kf −Gmf‖ tends to zero for any f ∈ X
• ‖(K −Gm)Gm‖ tends to zero

for m sufficiently large, the operator (I −Gm)−1 exists and it is uniformly bounded since

‖(I −Gm)−1‖ ≤ 1 + ‖(I −K)−1‖‖Gm‖
1− ‖(I −K)−1‖‖(K −Gm)Gm‖

.

Moreover it results

‖f∗ − f∗m‖ ≤ ‖(I −Gm)−1‖ ‖(K −Gm)f∗‖(3.27)

and

cond(Am) ≤ cond(I −Gm) = ‖I −Gm‖ ‖(I −Gm)−1‖(3.28)

where cond(Am) denotes the condition number of the matrix of coefficients of system (3.26).

Remark 3.15. Note that supm ‖Gm‖ <∞ follows by the statement ‖Kf −Gmf‖ → 0, ∀f ∈ X
in virtue of the principle of uniform boundedness.
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[6] G. Grünwald, Über Divergenzerscheinungen der agrangeschen Interpolationspolynome, Acta.Sci. Math (Szeged),

7 (1935), 207-221.
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